Conditional Adversarial Networks for Blind Image Deblurring

Date

2018

Authors

Kupyn, Orest

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We present an end-to-end learning approach for motion deblurring, which is based on conditional GAN and content loss – DeblurGAN. DeblurGAN achieves state-of-the art in structural similarity measure and by visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem – object detection on (de-)blurred images. The method is 5 times faster than the closest competitor. Second, we present a novel method of generating synthetic motion blurred images from the sharp ones, which allows realistic dataset augmentation.

Description

Keywords

Conditional Adversarial Networks, DeblurGAN

Citation

Kupyn, Orest. Conditional Adversarial Networks for Blind Image Deblurring : Master Thesis : manuscript rights / Orest Kupyn ; Supervisor Dr. Rostyslav Hryniv ; Ukrainian Catholic University, Department of Computer Sciences. – Lviv : [s.n.], 2017. – 44 p. : ill.

Collections

Endorsement

Review

Supplemented By

Referenced By