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Abstract

Effectively training large-scale deep learning models is costly, and requires careful
planning and resource allocation. One strategy involves fitting simple parametric
functions, such as logarithmic functions, on smaller-scale experiments and extrap-
olating them to predict model performance and associated costs. These empirical
"scaling laws" are then used to predict the required resources for achieving a given
level of performance. This approach is widely used for Large Language Models but
is insufficiently investigated for computer vision generative models. Today, diffu-
sion models dominate image generation and ControlNet is one of the most popular
ways to customize and control them.

This work makes three contributions. First, we have estimated the scaling laws
for ControlNet quality depending on the dataset size. Second, we have shown that
task-specific metrics, such as edge detection metrics for Canny edges are more suit-
able for predicting image quality compared to the ControlNet training and valida-
tion loss itself. Finally, we present a practical recommendations for dataset size for
ControlNet training.

The code an and data are available on GitHub1 and HuggingFace2 respectively.

1https://github.com/Diana3101/ControlNetScalingLaws
2https://huggingface.co/scaling-laws-diff-exp
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Chapter 1

Introduction

Training large-scale deep learning models (and gathering large-scale datasets) is a
costly endeavor (Shen et al., 2023). For example, Stable diffusion version 1.5 (Rom-
bach et al., 2022) was trained on 5 billion images, with a help of approximately 250
A100 GPUs. The training took around 150k GPU-hours (Mostaque, 2022). Doing
this on Google Cloud Platforms would cost approximately 700 000 dollars.

Before starting a project, cost and resource estimation must be considered. Re-
searchers and practitioners have to determine how much data is necessary to reach
the desired performance level and what level of model performance can be achieved
within the allocated budget for data labeling and compute. For example, to label 60
thousand images for image classification task on Amazon costs 8k dollars, whereas
tasks such as object detection or image segmentation require even higher labeling
expenses (Lee, 2023). The ability to estimate required resources (compute, dataset
size) to achieve a given level of performance helps minimize the risks in such a pro-
cess. This implies that researchers and practitioners would have a performance and
cost estimate in the early stages of a project, rather than conducting experiments
blindly.

One set of approaches to performing this estimation which have recently come to
the fore are collectively referred to as "scaling laws" (Hestness and al, 2017). Appli-
cation of scaling laws is common in the training of Large Language Models (LLMs)
like GPT-3/4 (Brown and al., 2020, OpenAI, 2023). Scaling laws are also studied in
computer vision, focusing mainly on discriminative models (Zhai et al., 2022, Cherti
et al., 2023).

There is less research on scaling laws for generative models in computer vision,
such as Generative adversarial networks (GANs) (Brock, Donahue, and Simonyan,
2018), diffusion models (Jiaming Song, 2023), etc. To the best of our knowledge,
the exploration of scaling laws for generative, and, in particular, diffusion models
is limited and concentrated mostly on the size of the model (Nichol and Dhariwal,
2021,Peebles and Xie, 2023). There is a growing interest in text-to-image generative
models and approaches to personalize them, both in research (Jiaming Song, 2023,
Ruiz et al., 2023, Li et al., 2023b, Zhang, Rao, and Agrawala, 2023, Gal et al., 2022,
Mou et al., 2023), and industry (Midjourney 2022, HOVER Inc. 2023, getimg.ai 2023,
Hotpot.ai 2023). One of the most popular ways to control the geometric structure of
a generated image is the recently proposed ControlNet (Zhang, Rao, and Agrawala,
2023), where the generated image is conditioned on the input image data in the form
of a drawing, segmentation, depth map, etc.
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Chapter 2

Related Work

The following related works provide an overview into both the models we are ex-
ploring and the scaling laws within the domains they were investigated. First, we
overview the domain of the model we intend to develop scaling laws for, and then
move on to the scaling laws. We begin by discussing diffusion models broadly, then
narrow down to the text-to-image diffusion models, specifically Stable Diffusion,
which we will use in our approach. Additionally, we explore methods for personal-
izing text-to-image diffusion models, one of which is ControlNet.

2.1 Scaling laws for conditional generative models. Key re-
search gap

The conditional text-to-image modeling with diffusion is a young area of research
(ControlNet paper appeared on arXiv in February 2023 and was officially published
at ICCV2023, October 2023) and we have failed to find papers about this specific
topic. The authors of ControlNet (Zhang, Rao, and Agrawala, 2023) presented only a
qualitative evaluation of the model scaling without quantitative results (see Fig. 2.1);
we aim to fill this gap. We are focusing on the dataset size aspect of the scaling laws,
as it was repeatedly shown that the simpler model, trained on bigger and better
dataset outperforms larger or more complex model, trained on the smaller dataset
( Sun et al., 2017; Kolesnikov et al., 2020; Schuhmann et al., 2022). However, the
data aspect is often overlooked, as most of publications focus on the compute and
architectures, rather than data.

FIGURE 2.1: The impact of dataset size on the generation quality of
ControlNet. Figure from (Zhang, Rao, and Agrawala, 2023).
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2.2 Diffusion models

Generative models give a lot of possibilities by creating synthetic data based on
structures and patterns from original data. It is widely used both for improving
the efficiency and accuracy of existing AI models, and for creating new original con-
tent for advertising and entertainment. Diffusion models (Sohl-Dickstein et al., 2015)
are deep generative models, which are used in a variety of domains (Ho, Jain, and
Abbeel, 2020,Jiaming Song, 2023).

At inference time, they iteratively transform noise randomly sampled from a
simple distribution into samples from complex data distributions, which resemble
real data. The training consists of two main processes: forward and reverse. During
the forward process, noise is gradually added to the original data until it becomes
a simple distribution such as Gaussian or Uniform. During the reverse process, at
each step the model predicts either the noise that was added to the image at this step
during the forward process, or directly the denoised version of the image (signal).
The process is visualized in the Figure 2.2.

FIGURE 2.2: Two processes in diffusion model training: forward dif-
fusion process, where noise is added to the signal, and reverse diffu-

sion process, where the noise is estimated and subtracted.

The drawback of working in pixel space is two fold. First, pixel space is enor-
mous (e.g. a relatively small RGB image of resolution 512 × 512 pixels has 786432
parameters) driving up computational cost. Additionally, most bits in an image are
allocated to representing details which are imperceptible to humans. To overcome
these limitations, latent diffusion models (LDM) (Rombach et al., 2022) were pro-
posed. Rombach et al. use pre-trained autoencoders to map images from pixel space
to latent space, which is much smaller, e.g. 4 × 64 × 64 = 16384 for Stable Diffusion
(48× more compact). It increases the efficiency of both the training and inference of
diffusion models. While we focus on images, LDMs can be applied across a wide
range of data modalities (Jiaming Song, 2023).

Unconditional diffusion models generate images that resemble the training data
distribution (Graham et al., 20230. Conditional diffusion models allow more control
of the output of the diffusion model by adding conditions like text, image, or scalar
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to the generation process (Saharia et al., 2021,Ramesh et al., 2022,Chitwan and al,
2022,Ho, 2022,Dhariwal and Nichol, 2021,Nie, Vahdat, and Anandkumar, 2021).

Some of the popular text-to-image (T2I) models are DALL-E2 (OpenAI, 2022),
Imagen (Chitwan and al, 2022), Midjourney (Midjourney 2022), and Stable Diffusion
(Rombach et al., 2022).

2.3 Stable Diffusion

We are focusing on Stable Diffusion (SD) (Rombach et al., 2022). It is a widely used
open-source latent text-to-image diffusion model.

The input image is initially encoded into latent space using a pre-trained en-
coder. It then undergoes a fixed forward diffusion process. During the generative
reverse denoising process, a U-net neural network architecture (Ronneberger, Fis-
cher, and Brox, 2015) is utilized for noise prediction. Additionally, the U-net receives
a text prompt along with the input noise. A text is converted to the CLIP embedding
(Radford et al., 2021) with a domain-specific encoder τθ . But, the encoder can be
also adopted for conditions from other domains. Then, the intermediate representa-
tion of the text is combined with the intermediate feature maps of the U-Net via a
cross-attention mechanism (Vaswani et al., 2017). The U-net receives the noise from
step ZT and the text embedding, and predicting the noise that should be subtracted
from ZT to obtain the denoised version ZT−1. This process repeats iteratively for T
steps. Finally, the pre-trained decoder converts the last denoised representation Z
from latent space to pixel space. The generative reverse process during training is
illustrated in Figure 2.3.

FIGURE 2.3: Reverse diffusion process of Stable Diffusion: denoising.
ZT is a noisy latent vector at the denoising step T. The ZT−1 is a latent
vector after one denoising step. Z is the last denoised latent vector. D
is a fixed VAE decoder, which projects from latent to image space. τθ

is a domain-specific encoder for text prompts.

Controlling the output of a diffusion model is more straightforward when using
an additional text prompt, as it is done with SD. For instance, with an unconditional
diffusion model, it is difficult control the specific breed of dog that is generated (see
the example image in Figure 2.2). It might generate the target breed or a different
one. But, with a text-to-image diffusion model, we can specify the breed, such as by
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using the prompt "cute corgi puppy" (see Figure 2.3) and receive the corresponding
generated image.

2.4 Personalization of the text-to-image diffusion models

One of the problems in real-world applications is the customization of T2I models
when the user wants to generate an image based on their reference image but in a
different setting and context (see Figure 2.4, Figure 2.5).

DreamBooth (Ruiz et al., 2023) allows generating images with the same custom
object in different contexts. It fine-tunes a T2I model by using 3-5 images of the
personal object and the text prompt that contains the unique identifier for the object
and the corresponding object class. Simultaneously it uses a specific objective that
maintains the characteristics specific to the class, encouraging the model to generate
varied instances related to that class.

Textual Inversion (Gal et al., 2022) resembles DreamBooth (Ruiz et al., 2023) in
its approach. But, it differs in that it doesn’t fine-tune the entire T2I model; rather, it
focuses on refining the text embedding component. In this method, a new pseudo-
word is incorporated into the text prompt. The model learns a new text embedding
associated with this new word, employing a reconstruction objective to represent the
images provided by the user accurately. Textual Inversion demonstrates effective
performance both for artistic style and personal objects.

FIGURE 2.4: Personalized generation results by Textual Inversion.
The figure is taken from ( Gal et al., 2022).

LoRA (Low-Rank Adaptation) was first proposed for LLMs (Hu et al., 2021). The
study revealed that concentrating solely on the attention layers, fine-tuning quality
using LoRA matched that of fine-tuning the entire model, but with the notable ad-
vantages of being significantly faster and demanding less computational resources.
This approach was adopted for Stable Diffusion (cloneofsimo, 2022).

Another method that fine-tunes solely cross-attention layers and text embedding
for new concept is Custom Diffusion (Kumari et al., 2023). What sets Custom Dif-
fusion apart is its unique capability to learn multiple concepts concurrently. This
is achieved by consolidating the training datasets tailored to each concept and em-
ploying specific tokens for each of them. Also, the authors suggested using the reg-
ularization images as a preventive measure against overfitting.
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Perfusion (Tewel et al., 2023) is one more technique for personalizing T2I models.
It introduced a unique mechanism known as "Key-Locking" to mitigate the risk of
attention overfitting. It associates the cross-attention keys of the new concepts with
their subject categories, preventing personalized examples from overpowering other
words across the entire attention map. Moreover, the authors created a gated rank-
1 method that allows merging various concepts and controlling the impact of an
acquired concept during inference.

All methods above do not allow for spatial control over the resulting image. The
methods, that will be described below, do allow such control (see Fig. 2.5).

FIGURE 2.5: Conditional image generation with ControlNet.

T2I Adapter (Mou et al., 2023) is a compact model linked to the frozen T2I
model’s U-Net (Ronneberger, Fischer, and Brox, 2015) encoder. It comprises lay-
ers that capture the features of the condition image by reducing its resolution. It
can use various conditions, similar to GLIGEN (Li et al., 2023b0, and unite different
adapters trained under varied conditions without requiring retraining.

GLIGEN (Li et al., 2023b) is a method where the weights of the diffusion model
are frozen, and new trainable layers are incorporated. This approach can be em-
ployed with various inputs such as bounding boxes with corresponding entities in
the text, semantic maps, canny maps, and more. The authors integrated a new gated
self-attention layer between the attention layers of the model at each transformer
block to include new conditional input. During the inference step, the model has the
flexibility to decide whether to utilize recently trained layers or not. This decision is
made to strike a balance between the quality of generation and the model’s ability
to establish new conditions.

ControlNet (Zhang, Rao, and Agrawala, 2023) is a neural network structure to
add image-based, spatial conditions to diffusion models. It proves useful when the
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user knows the shapes and structures they want in the generated image but desires
to observe them in various colors, textures, or environments. It trains specifically
for each input modality, like Canny edges, depth maps, human poses, scribbles etc.
One also can combine individual ControlNets into a multi-conditioning model dur-
ing inference. Moreover, ControlNet shows a strong recognition ability as it identi-
fies control signals and produces meaningful images even without prompts (Zhang,
Rao, and Agrawala, 2023). The authors chose to conduct experiments with Control-
Net over Stable diffusion, while it can be applied to any neural network blocks.

Although sufficient number of methods exist for personalizing T2I diffusion mod-
els, we focus our research on those that enable precise spatial control over image gen-
eration (see Figure 2.5). Specifically, there are three methods: ControlNet (Zhang,
Rao, and Agrawala, 2023), T2I Adapter (Mou et al., 2023), and GLIGEN (Li et al.,
2023b). Other described methods allow generating the object from input images in
various styles and settings (see Figure 2.4), but they do not provide control over the
specific placement, shapes, or structure of the object in the generated images. Con-
trolNet, T2I Adapter, and GLIGEN also share similarities in the concept of locking
parameters of the original model and incorporating new trainable layers for fine-
tuning T2I models. But, ControlNet is much widely used in research and industry,
which is evidenced by the number of citations and GitHub stars. As of May 29, 2024,
ControlNet has 1555 citations and 28300 stars, compared to T2I Adapter with 395 ci-
tations and 3200 stars, and GLIGEN with 275 citations and 1800 stars. ControlNet is
the de-facto standard for spatial control over the diffusion-based image generation.
That is why we chose to focus our research on scaling laws for ControlNet and not
other approaches.

FIGURE 2.6: Reverse diffusion process of ControlNet over Stable Dif-
fusion: denoising. ZT is a noisy latent vector at the denoising step T.
The ZT−1 is a latent vector after one denoising step. Z is the last de-
noised latent vector. D is a fixed VAE decoder, which projects from la-
tent to image space. τθ is a domain-specific encoder for text prompts.
E is an encoder for mapping control signal to the latent space. The
encoder is trained jointly with the ControlNet. c f is encoded control
signal. Detailed architecture of the ControlNet is presented in the Fig-

ure 2.7.
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ControlNet over Stable Diffusion. In our experiments, we investigated ControlNet
over SD. The training pipeline for ControlNet is presented in Figure 2.6. ControlNet
is a trainable copy of the U-Net used in SD, with its encoder consisting of the same
blocks as the U-Net’s encoder, while the decoder is composed of zero convolution
blocks. So, the encoders are visualized with the same colors, whereas the decoders
are shown in different colors.

Unlike Stable Diffusion, ControlNet incorporates an additional image condition -
Canny edges of the target image - referred to as the Control signal in Figure 2.6. This
control signal is encoded from the pixel space to the latent space using a specific en-
coder, which trains jointly with the ControlNet. Consequently, ControlNet receives
noise ZT, prompt embedding, and the encoded control signal c f to predict the noise
that should be subtracted from ZT to obtain the denoised version ZT−1. Similar to
SD, this process is repeated for T iterations, with the final generated denoised repre-
sentation Z ultimately being converted back to pixel space by the decoder.

With SD we can specify the breed of the dog, such as predicted image with "cute
corgi puppy" in the Figure 2.3. In contrast, ControlNet can generate a "cute corgi
puppy" with specific contours defined by the control signal, as shown in the pre-
dicted image in Figure 2.6.

The architecture of the ControlNet over Stable Diffusion is presented in the Fig-
ure 2.7.

FIGURE 2.7: ControlNet over Stable Diffusion architecture
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As we mentioned above, ControlNet has the same U-Net encoder layers as SD,
including the middle block, but has zero convolution layers, except decoder blocks.
And also an additional zero convolution layer for the middle block. As the input
ControlNet takes condition vector c f (encoded control signal) and combines it with
the noisy latent representation of the input image zt through the zero convolution
layer. The convolution layers initialized with zeros prevent adding any harmful
noise to the pre-trained features of the original model. Then the combined input goes
through encoder blocks, where it combines with encoded prompt ct and encoded
time (step) t in each block with the cross-attention mechanism ( Vaswani et al., 2017),
as it is done in the original SD model. After it passes through the encoder middle
block, it goes to the first zero convolution layer, which is connected to the SD middle
block, and then - to the next zero convolution layers, which are connected to the SD
decoder blocks. Finally, it returns noise for subtracting from the input latent vector
zt in this step.

The ControlNet trains using the learning objective that is presented in Equa-
tion 2.1

L = Ez0,t,ct,c f ,ϵ∼N(0,1)[||ϵ − ϵθ(zt, t, ct, c f )||22], (2.1)

where z0 is the input (target) image, for which the noise ϵ is added t times and we
get a noisy image zt. ct is a text-condition (prompt), c f is a task-specific condition,
e.g. Canny edges of the target image z0. ϵθ - the predicted by neural network noise.

2.5 Scaling laws

The term "Scaling laws" describes the functional relations between the characteris-
tics of the deep learning model quality (loss, performance metrics) and hyperparam-
eters, such as dataset size, model size, amount of compute, etc. They can be useful in
designing the optimal model architecture. Such experiments started long before the
deep learning era (Banko and Brill, 2001), focusing on the popular machine learning
models of that time. The empirical research on the impact of deep learning model
size on performance gained a focus a few years go (Hestness and al, 2017,Hestness,
Ardalani, and Diamos, 2019,Rosenfeld et al., 2019).

FIGURE 2.8: The scaling laws proposed by Kaplan et al., 2020. The
figure is from (Kaplan et al., 2020).

One of the most influential works in scaling laws was released by Kaplan et al.,
2020, who found power-law scaling for the Transformer (Vaswani et al., 2017) lan-
guage models using the cross-entropy loss. The experiments have shown that the
loss scales with the quantity of non-embedding parameters, dataset size, and com-
putational resources (see Fig. 2.8) whereas the model’s structural parameters such as
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depth and width do not have a notable impact. Another essential discovery is that
when increasing computational resources, the majority of these resources should
be allocated to expanding the size of the model. Moreover, larger models achieve
superior performance in less training time. The proposed scaling laws are similar
for autoregressive generative modeling (Henighan et al., 2020) and transfer learning
(Hernandez et al., 2021).

Hoffmann et al., 2022 focused on identifying the trade-off between the sizes of
the language model and the dataset while maintaining a fixed computational bud-
get. They have shown that for optimal performance, both the number of model
parameters and the number of tokens should be scaled proportionally. The resulting
Chinchilla model outperforms their previous Gopher model (Rae et al., 2021). But,
the Chinchilla has four times fewer parameters and was trained on a dataset four
times larger, while utilizing the same computational resources.

Sorscher et al., 2022 proposed a concept of data pruning, suggesting that a well-
designed small dataset beats larger dataset, which are not designed carefully, which
could result in exponential loss scaling with the pruned dataset size. They validated
this theory using ResNets (He et al., 2015) trained on ImageNet (Russakovsky et al.,
2014), CIFAR (Krizhevsky, 2009), and SVHN (Netzer et al., 2011). The central claim
asserts that pruning effectiveness lies in retaining examples that provide the most
information, measured by the rate of change of entropy concerning the amount of
data.

The scalability of ten language task architectures was investigated by Tay et al.,
2022. They note significant variations in the scaling exponent among different archi-
tectures, highlighting the vanilla transformer as having the most favorable exponent,
even though its performance may not consistently be the best. Moreover, the ex-
periments showed that certain models demonstrate suboptimal scalability and the
upstream loss does not consistently serve as an accurate predictor of downstream
performance when comparing diverse architectures.

Zhai et al., 2022 developed a saturating (with two additional constants) power
law for Vision Transformers (ViT) (Dosovitskiy et al., 2020) scaling.

Also, the scaling laws were researched in other fields such as Audio and Speech
Processing (Droppo and Elibol, 2021), Machine Translation (Gordon, Duh, and Ka-
plan, 2021,Bansal et al., 2022), Recommendation Models (Ardalani et al., 2022), Re-
inforcement learning (Gao, Schulman, and Hilton, 2023,Neumann and Gros, 2022).

2.6 Metrics for scaling laws

Metrics commonly used to evaluate discriminative models are also used for the scal-
ing laws of large language models, making experiments straightforward. These
metrics can be a cross-entropy loss, accuracy, perplexity (Kaplan et al., 2020, Tay
et al., 2022). Unlike the tasks above, image generation is harder to evaluate numer-
ically. Even for the tasks, where the ground truth is available (debluring, super-
resolution, etc), there are many metrics, which are at odds with each other (Vasu,
Thekke Madam, and Rajagopalan, 2018).

Such metrics include traditional image quality metrics such as peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM) (Wang et al.,
2004), as well as more goal-oriented metrics, like Fréchet inception distance (FID)
(Heusel et al., 2017) and Perceptual Loss (Johnson, Alahi, and Fei-Fei, 2016).
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However, for the diverse image generation model the "ground truth" is not avail-
able, as many variants of the generated image are acceptable. This makes the formu-
lation of scaling laws for condition-based image generation models even harder.
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Chapter 3

Methodology

3.1 Research goals

We aim to formulate scaling laws for ControlNet, which will show the relationship
between the dataset size and the quality of generated images. In addition, we evalu-
ate whether the scaling laws are task-specific or remain consistent for different con-
trol signals (such as contours and depth maps).

3.2 Research hypothesis

Hypothesis 1 The conditional image generation is of good quality and aligns with the con-
trol signal when the estimated contours/segmentation/etc on the generated image are the
same as the control signal itself. Such alignment can be estimated with task-specific metrics
and off-the-shelf models.

Hypothesis 2 Training the ControlNet on a larger dataset size is expected to result in an
improvement in the quality of the generated images.

Hypothesis 3 There exist simple functional relationships between the size of the dataset
and the performance metrics.

Hypothesis 4 Scaling laws are consistent across different types of control signals, such as
Canny edges and depth maps.

3.3 Experiment Setting

First, we performed experiments on a small-scale dataset, which is described in Sec-
tion 4.1. This synthetic dataset presents significantly simpler patterns to learn com-
pared to real-world data. Trainings with the small-scale dataset give a sense of how
the training is going and help ensure the model is working correctly in significantly
less time and with fewer computational resources than training on real data. Such
approach gave us the possibility to conduct numerous experiments and explore vari-
ous hyperparameters within the neural network. Beginning with the baseline model,
we iteratively experimented, leading to pre-validation of hypotheses 1, 2. This pro-
cess enabled us to obtain insightful results even before working with large-scale
dataset. Moreover, beyond providing clarity, it also allowed for more precise plan-
ning of experiments on a larger dataset.

Datasets of different sizes were created, with each smaller subset a precise frac-
tion of the larger set. These different subsets were used to train the ControlNet
keeping the maximum number of training steps constant.
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The hypothesis 4 implies to examine the consistency of experimental results
across various control signals, such as edges and depth maps, since each Control-
Net model is trained for a specific condition. The hypothesis was validated only on
the large-scale dataset; only models with edge control signals were trained on the
small-scale dataset. Extraction of the control signal from the image is accomplished
using off-the-shelf methods. We used the Canny edge detector ( Canny, 1986) as
implemented in OpenCV ( Bradski, 2000) for edges extraction from the images, and
the ZoeDepth model ( Bhat et al., 2023), as implemented by authors for generating
depth maps.

Training ControlNet for 15000 steps, which involves processing 7680000 samples,
takes approximately 3 days on an A100 GPU. We trained ControlNets on nine differ-
ent dataset sizes (1k, 5k, 10k, 25k, 50k, 100k, 500k, 1M images) and for two different
control signals, Canny edges and depth maps. In total, we trained 18 models, which
required 54 GPU-days. Due to time and computational constraints, we focused on
two variations of control signals to validate our hypothesis 4. However, comparing
scaling laws for more than two control signals would be an interesting direction for
future work.

3.4 Evaluation

In (section 2.6), we discussed the difficulty of evaluating image generation tasks
quantitatively compared to assessing discriminative models and LLMs. Selecting
informative metrics is important for filling our key research gap. We considered
several metrics options for this. The most obvious option is a training and validation
loss of ControlNet ( Zhang, Rao, and Agrawala, 2023); see equation 2.1.

FIGURE 3.1: "Raw" (top) and smoothed (bottom) ControlNet training
loss.
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On the positive side, the training loss shows a slow decreasing trend during
training, which one can see after smoothing it (see Fig. 3.1). For example, Control-
Net that was trained on 1M images has 0.11 loss on the step 2k and 0.09 loss on the
step 12.5k. Another signal which one can get from the ControlNet loss, is when se-
vere overfitting starts to occur (more details in Section 5.2). On the negative side, the
ControlNet neither provides a signal about the quality of the generated image, nor
it tells much about how the generated image is following (or not) the task-specific
condition (control signal).

The second option is traditional image quality metrics, like PSNR, SSIM ( Wang
et al., 2004), FID ( Heusel et al., 2017) and PerceptualLoss ( Johnson, Alahi, and
Fei-Fei, 2016). They can be useful, but similarly to loss, they do not measure the
correspondence of the generated image to the control signal.

So, we propose an alternative option, as outlined in Hypothesis 1 – to explore
task-specific metrics for each type of the control signal, such as edge detection met-
rics for Canny edges, to assess the alignment between the control signal and its esti-
mated counterpart derived from the generated image (see Fig. 3.2).

FIGURE 3.2: Hypothesis 1: the conditional image generation is of
good quality and aligns with the control signal when the estimated
contours/segmentation/etc on the generated image are the same as
the control signal itself. Such alignment can be estimated with task-

specific metrics.

Task-specific (Canny edge) Evaluation metrics. We employed two evaluation met-
rics for ControlNet which used Canny edges as input conditions: Optimal Dataset
Scale (ODS) and Average Precision (AP) to compare the control signal with the pre-
dicted edges (see equations 3.1, 3.2). These metrics are usually used for evaluating
the quality of edge detection algorithms ( Xie and Tu, 2015).

AP =
∑t precisiont

count of thresholds
(3.1)

ODS = max
t

(F1t) (3.2)

where t : threshold.

The metrics are computed between the Canny edges of the target image (used
as the control signal) and the predicted Canny edges extracted from the predicted
image. The Canny edges in the target and predicted images are extracted using hard
Canny mode, resulting in two possible values after normalization: 0 for background
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and 1 for edges. It renders the thresholds useless in metrics calculations. Conse-
quently, the AP and ODS metrics become the standard precision and F1-score, re-
spectively. The precision score is computed as the ratio of correctly predicted edges
to all predicted edges, while recall is the ratio of correctly predicted edges to all tar-
get edges. F1-score, as usual, represents the harmonic mean between precision and
recall.

We also consider a variant employing blurred predicted edges in the metrics
computation to avoid penalization in metric assessments due to slight shifts (e.g.
couple of pixels) in edge positions. So, in this case, while the target Canny edges
images still consist solely of zeros and ones, the predicted edges are not. Therefore,
the thresholds are beneficial in this context. Thresholds are sequential values from
the range [0, 1) with the specified step when the edge image pixel values are nor-
malized from 0 to 1. Pixels above the threshold are classified as edges and set to a
value of 1, while those below the threshold represent the background and have a
value of 0. ODS (equation 3.2) is a maximum F1-score among all thresholds and AP
(equation 3.1) is the average precision among all thresholds.

FIGURE 3.3: Edge detection metrics for different target and prediction
pairs: top – unrelated images, center – similar, bottom – identical.

The Figure 3.3 shows the image examples and the ODS and AP metrics for 3
cases: unrelated images, similar and identical edges. The metrics improve appro-
priately as the similarity between the target and predicted edges increases, reaching
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optimal values when the edges are identical. The practical optimal values align with
the theoretical ones in this context.

The Figure 3.4 represents the same pairs, but when the predicted edges are blurred.
The metrics show slight variations in metrics compared to unblurred edges for dis-
similar and similar pairs, with higher ODSblur but lower APblur values for blurred
edges. In the case of identical images, the optimal achievable values are 0.45 for
ODSblur and 0.25 for APblur. But, the optimal values may vary slightly from one
image to another.

FIGURE 3.4: Blurred edge detection metrics for different target and
prediction pairs. Top – unrelated images, center – similar, bottom –

identical

Task-specific (Depth map) Evaluation metrics. We have tried nine popular metrics
to estimate the similarity between the target depth map and the predicted one. In
our experiments, we used ZoeDepth ( Bhat et al., 2023) to generate depth maps as
a control signal, so we applied the metrics used by Bhat et al., 2023 to evaluate the
quality of the generated depth maps. All metrics are computed for every pair of
target yi and predicted ŷi pixels, and then these values are averaged across all N
pixels of the depth map.

There are two relative errors: Absolute Relative Error (ARE) (equation 3.3) and
Squared relative error (SRE) (equation 3.4). They represent how well the predicted
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depth map ŷi aligns with the target depth map yi.

ARE =
1
N

N

∑
i=1

|yi − ŷi|
yi

(3.3)

SRE =
1
N

N

∑
i=1

|yi − ŷi|2
yi

(3.4)

The next metrics are Root Mean Squared Error (RMSE) (equation 3.5) and Root
Mean Squared Error Log scale (RMSELog) (equation 3.6), which show the variance
in the residuals. RMSE exhibits scale variance, while RMSELog demonstrates scale
invariance properties.

RMSE =

√√√√ 1
N

N

∑
i=1

|yi − ŷi|2 (3.5)

RMSELog =

√√√√ 1
N

N

∑
i=1

| ln(yi)− ln(ŷi)|2 (3.6)

The Absolute Log10 error (ABSLog10), as described in equation 3.7, shares a simi-
lar concept with RMSELog but employs slightly different mathematical calculations.

ABSLog10 =
1
N

N

∑
i=1

| log10(yi)− log10(ŷi)| (3.7)

Another metric is Scale Invariant Log error (SILog) (equation 3.8), that was firstly
proposed by Eigen, Puhrsch, and Fergus, 2014. It shows the difference between
average of squared errors and squared average of errors, where errors are calculated
in the log scale, and is independent of the absolute global scale.

SILog = 100 ∗

√√√√ 1
N

N

∑
i=1

| ln(ŷi)− ln(yi)|2 − | 1
N

N

∑
i=1

ln(ŷi)− ln(yi)|2 (3.8)

The threshold accuracy (δn) (equation 3.9) represents the percentage of pixels
where the relative difference between the true yi and predicted ŷi pixels falls within
the scale factor of 1.25n. The scale factor determines how close the estimated depth
needs to be to the ground truth depth for it to be considered accurate.

δn = % of pixels s.t. max(
yi

ŷi
,

ŷi

yi
) < 1.25n, for n = 1, 2, 3 (3.9)

Three of the target and prediction depth maps pairs are shown in Figure 3.5. The
upper depth maps are completely unrelated (although bottom part of both images
are closer the the camera than the top part), which leads to high errors and low
threshold accuracy. In the middle pair prediction repeat some patterns of the target
image, so the metrics are better. And the lower images are identical, so the best pos-
sible values of all metrics are achieved. They coincide with best possible theoretical
values of each metric.



18 Chapter 3. Methodology

FIGURE 3.5: Depth map metrics for various target and prediction
pairs: top – unrelated, center – similar, bottom – identical.
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Chapter 4

Data

4.1 Small-scale fill50k dataset

Training dataset. The small-scale synthetic dataset is provided by the authors of the
ControlNet Zhang, Rao, and Agrawala, 2023. It consists of 50k examples, namely
circle lines as control signals, filled circles with colors as target images, and prompts,
which describe the colors (see Fig. 4.1).

FIGURE 4.1: Training examples of the fill50k dataset

The task of the ControlNet model is to learn to color the circle indicated as a
control signal, based on the given prompt (see Fig. 4.2).

FIGURE 4.2: Training sample from small-scale experiment on fill50k
dataset
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4.2 Large-scale dataset

We start with the LAION5B dataset Schuhmann et al., 2022, a huge collection of 5.85
billion image-text pairs filtered with CLIPRadford et al., 2021, making it one of the
largest publicly available datasets at the time of starting doing this work (October
2023). The just meta-data (URLs and captions) takes around 10 terabytes of disk
space.

The LAION5B dataset consists of three subsets: Laion2B-en, Laion2B-multi, and
Laion1B-nolang. The first subset includes captions only in English, while the other
two contain captions in multiple languages. We used only the first subset. Consider-
ing our available resources (disk space, GPUs and time), we estimated the number of
images we could download and use for training purposes to be around 160 million.
This subset was randomly selected from Laion2B-en.

The dataset itself does not contain images themselves, but the URLs, from where
the images could be downloaded. Some URLs are obsolete, but the most of them
are still valid. The dataset was utilized for Stable Diffusion Rombach et al., 2022
training.
Stanford CSAM report. The dataset online access has been revoked after December
2023, when David Thiel published an report (Thiel, 2023) revealing that the original
dataset urls contained images of child sexual abuse material (CSAM). For the safety
reasons, the report does not tell, which urls are those are.

After considering different options and a consultation with a lawyer we decide
to perform an automatic filtering of the dataset, and that the using a filtered version
of the dataset for the scaling laws estimation purpose does not generate a risk of
abuse. To be on the safe side, we decided to remove all the images, depicting people,
altogether.
Two-iteration Filtering. Given the dataset issue mentioned earlier, we decided
to remove all images containing at least one person to ensure that our dataset re-
mains free from potentially hazardous content. It’s important to note that images
containing people do not contribute significantly to the ControlNet’s ability to learn
the control signals which we use in our project, namely Canny edges and depth
maps. And we do not require high-quality images of people in our results. Before
applying the filter, we needed to download images using the dataset containing im-
age URLs that we possess. The process of downloading images was enabled by the
img2dataset library Beaumont, 2021, designed specifically for efficiently converting
large-scale image URL datasets into image datasets within a reasonable timeframe.
To identify objects within the images, we applied a popular and near the state-of-
the-art object detection model known as the DEtection TRansformer (DETR)Carion
et al., 2020 trained on MS COCO dataset.

The first iteration of the pipeline proceeded as follows:

1. Downloading images and resizing them all to a resolution of 256x256 before
saving. This choice of a smaller resolution aimed to speed up the object detec-
tion process;

2. Assigning object-detection labels with images using DETR and saving files that
match image URLs to their respective labels;

3. Filtering out URLs of images containing people, and deleting these images.

4. Downloading images with a resolution of 512 from the filtered URLs for sub-
sequent use in the ControlNet training.
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After the final step was done, we have discovered a bug in our preprocessing for
the DETR model. The issue arose from resizing all images to a resolution of 256x256
with added borders. This consequently caused us to deviate from the default resiz-
ing method utilized by the DETR processor in Hugging FaceHugging Face Team,
2024, resulting in degradation of the model accuracy. Given the we care more about
the deleting all the images containing people, and less about false positives, we de-
cided to repeat the procedure on the higher resolution images, which survived the
first stage. These images were then used for the second iteration of filtering. The
default DETR processor was applied for resizing them before giving to the DETR
model.

The label distribution of the initial 160M dataset after two-iteration filtering is
shown in Figure 4.3. 33 million images containing people were filtered out during
the first iteration, followed by an additional 2 million during the second iteration.
Additionally, 53 million images were not downloaded due to errors related to urls
being obsolete. 52 million images are left, where no objects were detected and 20
million images with labels other than ’person’. So, in total, we have a dataset com-
prising 72 million images in total.

FIGURE 4.3: Distribution of initial 160M dataset after images down-
loading and two-iteration filtering by DETR labels

Training dataset. The distribution of the sizes of the images in the 72M dataset is pre-
sented in the Figure 4.4. Approximately 90% of the images have widths and heights
ranging from 128 to 512 pixels. There is a noticeable shortage of high-resolution
images sized 1024 pixels and above, as we resized images to 512 pixels while main-
taining their aspect ratio.

We used the ZoeDepth model Bhat et al., 2023 to generate depth maps, which
were cached to ensure the efficiency of the training process. The pre-processing of
images for depth prediction consists of resizing images to 512 while maintaining the
aspect ratio, then center cropping them to 512x512, and resizing them to 256x256.
This resizing strategy ensures consistency between depth maps and images through-
out ControlNet training. Before training, preprocessing also involves resizing and
center cropping images to 512x512 pixels. The depth maps are stored in a 256x256
size to save disk space. The depth maps are upscaled back to 512x512 at the train-
ing time. The Canny edge method Canny, 1986 as implemented in OpenCVBradski,
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FIGURE 4.4: The size distribution of images in the 72M dataset

2000 works fast, so we opted to calculating them on-the-fly during the training. Ex-
amples of images from the training data with the appropriate depth maps, Canny
edges and captions presented on the Figure 4.5, Figure 4.6 and Table 4.1 respectively.

FIGURE 4.5: Training images examples with respective depth maps

Finally, we have created at series of the subsets of the 72 million image dataset:
1k, 5k, 10k, 25k, 50k, 100k, 250k, 500k, 1M, 2.5M, 5M, 10M, 25M, 50M and 72M. Each
smaller subset is fully contained in the bigger sets.

The training on them is performed consecutively, starting from the smallest, due
to resource constraints. Specifically, training on A100 for 15k steps - (corresponds
to model seeing 7680000 samples) takes around 3 days. At the time of submission,
we have got results up until the 1M subset, which corresponds to 27 GPU-days in
total, and the bigger ones are in process. We plan to continue training the models
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FIGURE 4.6: Training images examples with respective Canny edges

and publish updated results on arXiv.
The distribution of image sizes in the so-far-processed 1 million-image dataset

presented in this work closely matches that of the 72 million-image dataset. It is
shown in the Figure 4.7.

FIGURE 4.7: The size distribution of images in the 1M dataset - the
largest subset, we have finished training on, at the time of submission

Test dataset We created a test dataset comprising 1000 images. Among them, 89 are
our personal images that have never been on the internet, at least, before December
2023, ensuring they are entirely absent from the Stable Diffusion training data, or
LAION5B. The remaining 911 images are from Laion2B-en, filtered using the same
approach as the training data. All images were resized to 512x512 pixels. Captions
were produced using the BLIP-2 model, developed byLi et al., 2023a, which takes an
image as input and generates a textual description for it. The examples of the images
and their caption from the test set are presented in the Table 4.2. The Figure 4.8
contains all 1000 images from the test set.
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Image Caption Image Caption Image Caption

Suite As-
cend Resort
Collection
Bluegreen
Vacations
Big Bear
Village

Maxwell Bar
Stool (Set
of 4) Finish:
Gray

3 Bedrooms
End Of
Terrace
House for
sale in Eaton
Avenue,
Slough,
Berkshire

1000 best
Macarons
images
on Pinter-
est Boxes,
Desserts and
Food

Unleash cool
bedroom
ideas #bed-
room #paint
#color

Medique
40061 First
Aid Kit,
61-Piece by
Medique

Clothes 240
blue jeans
trousers
0003.jpg

Blue Black
Red Green
by Ellsworth
Kelly

Western
Digital
Red 3.5
SATA III 2To
(WD20EFRX)

TABLE 4.1: Training images examples with captions

Image Caption Image Caption Image Caption

a wooden
deck with
a patio and
a wooden
porch

a building
with many
windows
and bal-
conies

shark in the
aquarium

a lizard is
sitting on
a cement
wall next
to a snow
covered
street

a balcony
with a fire
hydrant and
a plant pot

a statue of
a lizard lay-
ing on the
ground

a porch
with rocking
chairs over-
looking the
mountains

variety
greeting
card pack
- greeting
cards cards

the
kawasaki
motorcycle
is parked
on a white
background

TABLE 4.2: Test images examples with BLIP2 (Li et al., 2023a) gener-
ated captions
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FIGURE 4.8: Entire test set of 1000 images
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Chapter 5

Experiments

5.1 Small-scale dataset

Task-specific metrics validation. Research hypothesis 1 is confirmed on a small-
scale dataset with the AP metric. The AP metric represent correspondence between
the predicted image and target image edges. Also, the metrics display a sudden con-
vergence phenomenon, described in the ControlNet paper Zhang, Rao, and Agrawala,
2023, when the model suddenly starts to follow the control signal after a certain step
(see Fig. 5.1).

FIGURE 5.1: Correlation between AP metric and generated images
correspondence to the target image. The metric also shows a so-called

sudden convergence phenomenon.

Dataset Sizes Experiment. We conducted experiments varying the sizes of the
training datasets to validate our second hypothesis. We employed subsets of the
original dataset, ensuring that the smaller subset precisely constituted a portion of
the larger subset, all while maintaining consistent training times. We compared the
AP metric and training loss at the 3150 training step, which corresponds to 4 epochs
on the full 50k dataset, for different dataset sizes, such as 500, 2.5k, 5k, 12.5k, 25k,
and 50k. The obtained results confirm the second hypothesis, namely the larger the
dataset size - the higher AP metric. The training loss doesn’t represent this depen-
dence. The results are shown in the Figure 5.2.

The two control signals from the validation set with predictions for them are
shown in the Figure 5.3. The shown predicted images were generated by Control-
Nets, trained with different dataset sizes, where 100% corresponds to the full dataset
consisting of 50k images, 50% to 25k images, etc. Additionally, the trained models
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FIGURE 5.2: Correlation between metrics, such as AP and training
loss, and different dataset sizes of the fill50k dataset.

were evaluated in a ’no prompt’ mode to confirm whether the model truly learned
to follow the control signal. The examples in the Figure 5.3 show that it does.

FIGURE 5.3: Validation-generated images from experiments with
varying dataset sizes, predicted with prompt and in a ’no prompt’

mode.
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5.2 Large-scale dataset

Task-specific metrics validation. We confirmed the validity of our Hypothesis 1
using two types of control signals that the ControlNets were trained on, specifi-
cally Canny edges and depth maps. All task-specific metrics and validation losses
were estimated on the test dataset contains of 1k images, which described in the
Section 4.2.

The Figure 5.4 illustrates the correspondence of edge detection metrics, including
AP, ODS, AP blur, and ODS blur, to the target image, throughout the training process
using 1M images. All metrics clearly display a sudden convergence phenomenon,
described in the ControlNet paper Zhang, Rao, and Agrawala, 2023, when the model
suddenly starts to follow the control signal after a certain step. In our experiments
with ControlNets, which utilizing Canny edges as condition, this occurred around
steps 2k-3k, resulting in significantly improved similarity between the predicted and
target images. Furthermore, the AP and ODS metrics demonstrate a noticeable up-
ward trend following the sudden convergence, indicating an improvement in the
quality of the predicted images. In contrast, the trends in AP blur and ODS blur
metrics are less distinct. Additionally, metrics for the blurred versions of the condi-
tioned images exhibit lower values for a good alignment between targets and pre-
dictions than non blurred metrics, especially AP blur. Thus we believe that using a
shift-robust metrics is not important in practice.

The AP and ODS metrics plots are highly similar and moreover has a similar
range, so they are both good to use.

FIGURE 5.4: Correlation between edge detection metrics and gener-
ated images correspondence to the target image during the training
process using 1M images with Canny edges as control signals. The

metrics clearly show a "sudden convergence: phenomenon.
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The experiments conducted with ControlNet, trained on depth maps of 1M im-
ages and corresponding depth metrics akin to Canny edge experiments, demon-
strate a distinct sudden convergence phenomenon, as illustrated in Figure 5.5. But,
the subsequent decreasing trend of the RMSE Log metric post-convergence is not as
evident.

FIGURE 5.5: Correlation between RMSE Log metric and generated
images correspondence to the target image during the training pro-
cess using 1M images with depth maps as control signals. The met-

rics clearly represent a sudden convergence phenomenon.

Moreover, the plots of all metrics used for depth maps correspondence estima-
tion exhibit a high degree of similarity to each other. Specifically, the plots where
lower values are preferable are similar, as are those where higher values are prefer-
able. They are shown in the Figure 5.6. The difference is only in the scale of the
metrics.

Additionally, we examined the validation losses at corresponding steps to those
used for task-specific metrics. The outcomes are shown in Figure 5.7. Overall, there
is a decreasing tendency for the loss; however, loss appears to be more unstable
compared to the task-specific metrics. Furthermore, while the large spikes in the
task-specific metric plots indicate sudden convergence and substantial differences
in correspondence of predicted image to target, the spikes in losses appear more
random. For instance, the loss for the depth condition exhibits a sharp decrease
followed by a sharp increase between 5k and 10k steps, potentially indicating over-
fitting and suggesting an early stopping in the training process at this point. But,
examining the RMSE Log for the same steps reveals a relatively stable pattern. The
visual inspection of generated results is in agreement with RMSE than a loss.

The training loss can be valuable for detecting overfitting in the ControlNet. Both
the training losses and their corresponding validation losses are illustrated in Fig-
ure 5.8. The pink plots (upper) represent models trained on 1M images, while the
green plots (lower) represent those trained on 1k images for the same amount of
steps. When the training losses are rapidly decreasing, as shown in the lower-left
chart, it is a clear indicator of overfitting. This can be confirmed firstly by exam-
ining the predicted image at the 12k step, which exhibit low quality and pixela-
tion. Secondly, the validation loss demonstrates a consistent increase. Conversely,
non-overfitted training losses, depicted in the upper-left chart, remain stable or ex-
hibit slow decreases, indicating the model’s learning process without overfitting.
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FIGURE 5.6: Full range of depth metrics utilized for establishing cor-
respondence in depth maps during training on a 1M dataset. Their

plots are highly similar, while the scale of the metrics is different.

Although the validation loss may show some spikes, it also remains relatively sta-
ble.
Dataset Sizes Experiments. In order to confirm Hypothesis 2 and accomplish our
primary research objective of establishing scaling laws for ControlNet, we performed
experiments using various dataset sizes. These experimental datasets included: 1k,
5k, 10k, 25k, 50k, 100k, 250k, 500k, and 1M images, with each smaller subset com-
pletely included within the larger sets.

The Figure 5.9 displays the AP metric for ControlNet trained with Canny condi-
tions across various dataset sizes. Similarly, the Figure 5.10 showcases the RMSE Log
metric for ControlNet trained with depth map conditions across different dataset
sizes. The plots indicate significant variations in metrics across different dataset sizes
throughout the training process. These differences are more noticeable for smaller
datasets and reduce for larger ones.

When we possess metrics for the ControlNet trained across varying dataset sizes,
we can graph the scaling laws line using these metrics. Our methodology involves
selecting the best task-specific metric achieved by the model throughout training.
Additionally, we visualize the relationship between validation losses at the selected
checkpoints, chosen by best task-specific metric, for comparison purposes.

The AP metric for the ControlNet with Canny condition depending on the dataset
sizes are depicted in Figure 5.11. The AP metric is monotonically increasing across
all dataset sizes, which simplifies the formulation of scaling laws. Whereas the val-
idation loss shows instability, posing challenges for formulating scaling laws based
on the loss.

We selected two metrics for assessing the scaling laws for Controlnet with the
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FIGURE 5.7: Comparison of task-specific metrics and validation
losses. Task-specific metrics look more stable, while the validation

loss exhibits random spikes.

depth condition: RMSE Log, where lower values indicate better performance, and
threshold accuracy A1, where higher values indicate better performance. These met-
rics are shown in Figure 5.12. The situation with validation loss resembles Con-
trolNet with Canny conditions. But, the task-specific metrics do not exhibit a fully
monotonically increasing trend; notably, the values for the 500k dataset are worse
than those for the 250k dataset.
Scaling Laws. Based on the metrics specific to the task, we can fit a parametric
formula and establish scaling laws. We developed equations for both logarithmic
and linear scales of dataset sizes. The given results are presented in the Figure 5.13
for ControlNet with Canny condition, in the Figure 5.14 for ControlNet with Depth
condition.

In the case of the Canny condition, the empirical and fitted values alignment
appear quite close, whereas for depth, they are not as closely aligned. One possible
explanation for this disparity could be the unexpected values observed with the 500k
dataset size. Additionally, the experimental and regression lines for RMSE Log and
A1 metrics resembles each other, if one of them will be flipped. So, the fitted para-
metric estimates support the Hypothesis 3. However, the it might be that different
parameterization of the scaling law, compared to the commonly used ones would be
more suitable.
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FIGURE 5.8: Significant decrease in ControlNet training loss might be
an indication of the overfitting. This both can be observed in valida-
tion loss graph (going up), and the visual inspection of the generated

images. The model is trained on 1k dataset

FIGURE 5.9: Canny edge condition: AP metric on the test set for Con-
trolNet trained on various dataset sizes throughout the training pro-

cess
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FIGURE 5.10: Depth condition: RMSE Log metric for ControlNet
trained on various dataset sizes throughout the training process.

FIGURE 5.11: Canny edge condition: AP metric and validation loss
depending on the dataset sizes.
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FIGURE 5.12: Depth condition: metrics depending on the dataset
sizes for the ControlNet. Top: RMSE Log and validation loss, bot-

tom: a1 (threshold accuracy).

FIGURE 5.13: Canny edge condition: scaling laws for ControlNet
based on AP metric
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FIGURE 5.14: Depth condition: scaling laws for ControlNet, with
RMSE Log metric (top) and a1 (bottom)) metrics



36

Chapter 6

Conclusions

6.1 Discussion

The four research hypotheses were created and explored for this project. The first
hypothesis posited that using task-specific metrics is reasonable in estimating align-
ment between target and predicted control signals. The second hypothesis focuses
on the notion that larger dataset sizes lead to better generated images and metrics.
The third hypothesis proposes a functional relationship between dataset size and
performance metrics. Lastly, the fourth hypothesis examines the consistency of scal-
ing laws across various control signals. Initially, the first two hypotheses (Hypothe-
sis 1 and Hypothesis 2) were validated using a small-scale (synthetic) dataset which
led to gaining valuable insights even before working with a larger dataset. Our find-
ings indicate that task-specific metrics are reasonable indicators of the image quality
and how the generated image follow the conditions, and models trained on larger
datasets yield improved outcomes.

We have created a dataset for ControlNet training, comprising 72 million images
containing target images, depth maps, and captions. Due to constraints in computa-
tional resources and time, the hypotheses were validated using only 1M images so
far.

The Hypothesis 1 was confirmed with the 1M dataset, similarly as it was for
the small-scale data. Both metrics used for edge detection tasks and depth map es-
timation tasks demonstrate validity. It indicates, that the task-specific metrics are
useful for estimating quality of the ControlNet predictions. Additionally, we con-
ducted an exploration of the ControlNet loss, evaluating its utility and alignment
with task-specific metrics. The ControlNet loss can be used for identifying overfit-
ting and monitoring the training process, but it is not suitable for estimating scaling
laws. Hypothesis 2 was validated across nine diverse datasets of varying sizes, with
larger datasets contain smaller ones entirely. The results demonstrate a clear corre-
lation: as dataset size increases, there is a noticeable enhancement in the quality of
generated images and task-specific metrics. The confirmation of Hypothesis 3 oc-
curred through fitting formulas using task-specific metrics, which were got during
experiments of varying dataset sizes.

We estimated scaling laws for the AP metric in the ControlNet trained under
the Canny condition, as well as for the RMSE Log and A1 metrics in the ControlNet
trained under the Depth condition. From the practical point of view, we recommend
250k as a dataset size sweet spot between resulting generated image quality, and the
effort of gathering the dataset.

Validation of the fourth Hypothesis 4 turns out challenging due to the utilization
of diverse metrics with distinct value ranges across different condition types. On
the one hand, the estimated numerical scaling laws are numerically different for the
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different control signals and metrics. On the other hand, they all start to saturate at
dataset size 250k, showing the agreement in that regard.

6.2 Future Work

We plan to further train the ControlNet using larger datasets, specifically the 72M
dataset that has already prepared for training. Also, as we have obtained meta-
data for the entire LAION5B dataset and established the filtering pipeline for it, we
can potentially increase the dataset size to the extent permitted by available com-
putational resources. Another interesting area for exploration is valuating how data
augmentation (commonly used in many computer vision tasks, but not image gen-
eration) influence the dependence of the quality on the dataset size.

Additionally, ControlNet can be trained using a wide range of diverse control
signals, such as scribbles, human poses, segmentation masks, which can also be ex-
plored for further investigation. Moreover, since ControlNet can utilize various neu-
ral network blocks beyond just Stable Diffusion, it would be interesting to explore
whether scaling laws remain consistent across different diffusion model architec-
tures.

The findings from the proposed research project can be valuable for predicting
the performance of the ControlNet for efficient utilization of resources. Considering
the common application of scaling laws for LLMs and the increasing popularity of
diffusion models, the outcomes are likely to benefit both the research community
and the industry. Exploring the identified research gap in performance metrics for
estimating ControlNet results opens the possibility for further investigation in other
condition-based image generation models.
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