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Abstract

Detecting changes in the meaning of text after paraphrasing or editing is a chal-
lenging and non-trivial task in natural language processing (NLP). It is implicitly
involved in other tasks such as translation, summarisation, and style transfer. Ap-
proaches to meaning change detection (or paraphrase identification) have evolved as
the field of NLP has developed. Today, deep learning BERT-based models and Large
Language Models (LLMs) provide state-of-the-art results. However, these methods
need more interpretability and control and are computationally expensive. There are
alternative methods based on linguistic and mathematical ideas that can overcome
the shortcomings of LLMs and DL methods or complement them.

We aim to investigate the possibilities and limitations of one such alternative ap-
proach compared to state-of-the-art solutions for the paraphrase identification task.
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Chapter 1

Introduction

Detecting changes in the ‘meaning’ of the textual data presents a unique challenge
in the field of Natural Language Processing (NLP). From a linguistic point of view,
the understanding of ’text meaning’ and its changes involves the analysis of syn-
tax, semantics, pragmatics and the evolving nature of language itself. In NLP, the
focus on detecting changes in text meaning primarily revolves around recognizing
the shifts that occur following editing or paraphrasing activities. It is interconnected
with other tasks such as translation, Grammar Error Correction (GEC), summariza-
tion, style transfer, paraphrasing, and others.

For example, in a translation task, recognizing changes in meaning is crucial
to ensuring that the translated text truthfully conveys the original meaning. Simi-
larly, in Grammar Error Correction (GEC), understanding the intended meaning is
essential for making appropriate corrections without altering the original message.
Summarization tasks depend heavily on identifying key ideas, requiring an acute
sense of how meaning can be condensed without loss or distortion. Style transfer
involves altering the tone or formality of a text while maintaining its original mean-
ing. Lastly, paraphrasing involves generating semantically equivalent alternatives
that maintain the original text’s tone, style, and intent.

All these tasks require that the output preserves the original meaning of the in-
put. This can be achieved implicitly or explicitly. When considered as a separate
task, meaning change detection (also known as paraphrase identification) can be for-
mulated as a classification task. It takes two versions of the text as input and outputs
either a binary yes/no or a score. Some examples are given in Fig 1.1. When imple-
mented, it can serve as an additional module in the corresponding NLP pipeline.
This module ensures that the meaning is not changed.

Approaches to meaning change detection have evolved with advances in ma-
chine learning and natural language processing. In general, there are two main
strategies for solving this problem Zhou, Qiu, and Acuna, 2022, which are illustrated
in Fig 1.2:

• Traditional approaches. Traditional approaches are largely based on syntax,
semantics, rule-based heuristics and statistical methods. This usually involves
obtaining a structural representation of the data, which is then followed by
some kind of matching algorithm.

• Deep Learning-based approaches. Deep learning-based approaches use neu-
ral network architectures and large datasets. They offer more context-aware
solutions, but lack interpretability and require significant computational re-
sources.

• LLM (Prompt)-based approaches. LLM-based approaches involve using the
prompting of the model, that is, providing it with an initial input or "prompt"
to guide its text generation or completion.
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FIGURE 1.1: Four paraphrased versions of an original sentence are
presented, each with a corresponding evaluation score. The examples
range from high fidelity (a and b) to significant deviation (d and e)

from the original input.

State-of-the-art (SOTA) results on relevant datasets for paraphrase identifica-
tion are provided by BERT-like deep learning models (such as BERT, RoBERTa and
ERNIE) Devlin et al., 2019, Liu et al., 2019, Sun et al., 2019. The SOTA results for
paraphrase identification are likely to be updated soon with the recent emergence
of GPT-based large language models (LLMs) such as LLAMA Touvron et al., 2023,
MISTRAL1, GPT42 and Anthropic3. While BERT-like and LLMs-based approaches
are impressive, they have their shortcomings. Most notably, they lack interpretabil-
ity and require significant computational resources.

Applied Category Theory (ACT) has recently emerged as a coherent approach to
many problems. Within the NLP domain, ACT proposes to extend the categorical
theory to model the structure and semantics of natural language by capturing its
compositionality Coecke, Sadrzadeh, and Clark, 2010. Applying these ideas to NLP
is still in its early stages and needs further development and validation.

DisCoCat Coecke, Sadrzadeh, and Clark, 2010 and its subsequent expansion
through DisCoCirc Wang-Mascianica, Liu, and Coecke, 2023 offer a concrete real-
ization of this idea. These frameworks combine category theory, linguistics, and
quantum mechanics to provide a mathematical and diagrammatic foundation for
understanding how meaning is composed in sentences and how different linguis-
tic elements interact. Additionally, such structural representation of the meaning
enables a more transparent view than large language models. Also, it lends itself
more naturally to processing NLP problems on quantum hardware once it is widely
accessible (more details are provided in the section 2.2 below). Consequently, it is
sometimes dubbed "Quantum Natural Language Processing" (QNLP).

We aim to investigate the possibilities and limitations of DisCoCirc compared to
state-of-the-art solutions for the paraphrase identification task.

The rest of the thesis is organized as follows: Chapter 2 is dedicated to the liter-
ature review; in particular, section 2.1 describes the main problem; section 2.2 gives
an overview of the Distributional Compositional NLP frameworks; section 2.3 dis-
cusses the data used in the investigation. Chapter 3 is dedicated to applying the
SOTA approaches to the solution of the PI task, and Chapter 4 is to the QNLP ap-
proaches. In particular, each sets its goals, describes the methods and tools used
for the experiments, and reports the results. The last 5th Chapter summarizes the
results and outlines the future work.

1https://mistral.ai/news/announcing-mistral-7b/
2https://openai.com/gpt-4
3https://www.anthropic.com/product

https://mistral.ai/news/announcing-mistral-7b/
https://openai.com/gpt-4
https://www.anthropic.com/product
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FIGURE 1.2: Three approaches to paraphrase identification. (a) Tradi-
tional approaches, (b) Deep-learning- and (c) LLM-based ones.



4

Chapter 2

Related Work

2.1 Paraphrase Identification

Paraphrase Identification (PI) is the task of determining whether two given sen-
tences express the same or very similar meaning despite potentially using different
words or structures. In some sense, it can be considered as a measuring tool of the
feasibility of a meaning change detection method.

PI is a crucial NLP task having implications in many other tasks like question
answering Dong et al., 2017, summarization Hardy and Vlachos, 2018, translation
Thompson and Post, 2020, plagiarism detection Wahle, Gipp, and Ruas, 2023, etc.
Zhou, Qiu, and Acuna, 2022. The last becomes especially important in light of the
intensive development of generative models Becker et al., 2023.

In general, there are two main strategies for solving the PI problem: traditional
and deep learning-based. The formers mostly use lexical structures and probabilis-
tic methods for getting meaning and capturing similarities. They include so-called
knowledge-based and corpus-based methods, focused on lexical and semantical text
knowledge, respectively. The latter techniques provide more accurate solutions and
are known to achieve state-of-the-art performance for detecting sophisticated para-
phrases Zhou, Qiu, and Acuna, 2022.

Nowadays, the best performance in PI tasks is obtained by transformers Becker
et al., 2023. Thus, a common approach is fine-tuning a pre-trained model on cus-
tom data. However, even well-performing state-of-the-art solutions can give un-
predictable results on even such simple tasks as identifying pairs of two identical
or randomly selected sentences Chen, Ji, and Evans, 2020; lack of efficiency is also
observed for plagiarism detection Foltýnek et al., 2020 and limited abilities for ques-
tions paraphrasing Ribeiro et al., 2020.

Considering all the above problems and the black-boxiness of DL models, the
alternative way to obtain a solution seems worth finding.

2.2 Distributional Compositional Models

There are two main approaches in NLP to understanding the meaning: composi-
tional and distributional. The former assumes that the meaning of the sentence is
determined by the meanings of its constituent parts and the way they are combined.
The latter relies on the idea that words that occur in similar contexts tend to have
similar meanings; that is, the distribution of words in a large corpus of text captures
semantic relations Salton, Wong, and Yang, 1975.
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FIGURE 2.1: The transformation of text into text circuits

FIGURE 2.2: Examples of how slight word reordering changes the
sentence meanings Zhang, Baldridge, and He, 2019

In Coecke, Sadrzadeh, and Clark, 2010, both approaches are unified and com-
bined with the category theory into a DisCoCat (Categorical Compositional Distri-
butional) framework, giving a mathematical foundation explaining how word in-
teraction determines the sentence meaning. It relies on diagrammatic calculus and
sentence string diagram representation.

DisCoCirc was formulated as the further DisCoCat improvement in Coecke, 2021.
It is also both compositional and distributive but additionally is able to track word-
meaning evolution through the text and to represent the meaning of the text, not
only single sentences. While DisCoCat represents the sentences in the form of string
diagrams, DisCoCirc represents text in the form of text circuits. DisCoCirc allowed
to build the correspondence between text and text circuits. In particular, the Text
Circuit Theorem builds a surjection between the set of texts and text circuits; as a
consequence – texts are equivalent if they have equal circuits ( the corresponding
text transformation chain is presented in Fig 2.1 Wang-Mascianica, Liu, and Coecke,
2023). The last statement potentially provides a solution to the PI task: sentences
with similar circuits must be paraphrases. Moreover, such a structural approach
gives more transparency in obtaining the solution compared to the DL one.

The formalism and ideas of DisCoCat and DisCoCirc are inspired by quantum
theory and consequently should be highly effective on quantum computers after
they become available Coecke, 2021.

2.3 Data Selection

It is difficult to overestimate the importance of data quality, quantity, and diversity
in solving NLP tasks. While machine-generated and annotated paraphrases become
more popular nowadays, according to Becker et al., 2023 human-authored ones still
appear to be more difficult, diverse and suitable. In this context, paraphrase identi-
fication is especially sensitive and needs careful data selection.

Most paraphrase datasets lack sentence pairs with high lexical similarity but dif-
ferent meanings Zhang, Baldridge, and He, 2019, which significantly affects method
efficiency. In particular, even state-of-the-art, well-performant models trained on
such datasets are not able to differentiate between sentences even with slight changes
in word order (see the relevant examples in Fig 2.2 Zhang, Baldridge, and He, 2019).
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TABLE 2.1: PAWS and QQP datasets

PAWS QQP

Train set 49401 384335

Test set 8000 9999

Validation set 8000 9999

All three sentences in the figure have high bag-of-words (BOW) overlap. How-
ever, (2) is a paraphrase of (1), while (3) has a very different meaning from (1).

To resolve this issue, the authors of Zhang, Baldridge, and He, 2019 built a
dataset of non-paraphrase sentence pairs having high lexical overlap called PAWS
(Paraphrase Adversaries from Word Scrambling)1. Six models of different complex-
ities (BOW, BiLSTM, ESIMChen et al., 2017, DecAttParikh et al., 2016, DIINGong,
Luo, and Zhang, 2018, BERT) were tested for the ability to achieve a high sensitiv-
ity to the sentence structure during the training on PAWS. The initial accuracy on
PAWS for all of them was less than 40%. The training step revealed their possibili-
ties to learn and distinguish the structural features of the sentences: DIIN and BERT
performance increased significantly to 84% and 85%, respectively; BiLSTM, ESIM,
and DecAtt added from 23% to 34% to their accuracy; and BOW – only 1%, that is, it
learns nothing.

The paraphrases in PAWS are built based on the text data from Quora and Wikipedia,
and the dataset consists mostly of negative examples generated in 3 steps, includ-
ing controlled word swapping, back translation into German, and, finally, thorough
people judgments, thus making it a good choice. German was chosen because it
offers more word reorder options and translation quality than other languages.

Our initial intention was to consider only the PAWS dataset for the investigation.
However, the additional experiments with the Quora Question Pairs (QQP)2 dataset
revealed interesting, dependent on the data, differences in the models’ behaviors
(see Chapters 3, 4 for the details).

QQP consists of question pairs labeled 0s and 1s according to the duplication
criteria. On the one hand, as was mentioned above, PAWS was built based on text
data from Quora. On the other hand, PAWS is a more "refined" dataset, while QQP
is less processed and, thus, in some sense, more "natural".

We used the QQP partition from the Wang, Hamza, and Florian, 2017 but re-
duced the QQP train set to a size comparable to the PAWS.

The key statistics about both datasets are presented in Table 2.1, and examples
are provided in Tables 2.2 and 2.3, respectively.

1https://github.com/google-research-datasets/paws
2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

https://github.com/google-research-datasets/paws
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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TABLE 2.2: PAWS examples

Sentence 1 Sentence 2 Is Paraphrase

In Paris , in October 1560 ,
he secretly met the English
ambassador , Nicolas Throck-
morton , asking him for a
passport to return to England
through Scotland

In October 1560 , he secretly
met with the English ambas-
sador , Nicolas Throckmor-
ton , in Paris , and asked him
for a passport to return to
Scotland through England

0

When comparable rates of
flow can be maintained , the
results are high .

The results are high when
comparable flow rates can be
maintained .

1

Pluto was classified as the
planet when the Grand
Tour was proposed and was
launched at the time “ New
Horizons ” .

Note : Pluto was classified
as a planet when the Grand
Tour was launched and at the
time “ New Horizons ” was
proposed .

0

TABLE 2.3: QQP examples

Sentence 1 Sentence 2 Is Paraphrase

How do you start a bakery ? How can one start a bakery
business ?

1

What are the requirements to
build my own server ?

What do I need to build my
own server ?

0

Which programming Python
or Java learn first ?

Should I learn python or Java
first ?

1



8

Chapter 3

DL and LLM Experiments and
Evaluation

3.1 Motivation and Approach

Based on the fact that the most state-of-the-art results in NLP are achieved by apply-
ing DL models and LLMs, it is natural to consider their application to the PI task.

This chapter aims to investigate and compare these approaches. In particular, we
consider the RoBERTa to represent the DL approach and GPT-3.5-turbo and GPT-4.0
– the LLM ones.

The choice of the LLM model was motivated by its popularity and earlier release
compared to other similar models, and the RoBERTa was due to the success of the
BERT-like models in solving different NLP tasks.

Each approach will be applied and evaluated on two benchmark datasets: PAWS
and QQP. The selection of these datasets was based on their diverse characteristics
and wide usage in the PI research community, ensuring a comprehensive evaluation
of our models.

3.2 Evaluation Metrics

As we consider the PI the usual binary classification task, the standard four metrics
were chosen to evaluate and compare the performance of the used methods:

• Accuracy: The proportion of correctly identified paraphrase pairs out of the
total number of pairs.

• Precision, Recall, and F1 Score: These metrics provide insights into the mod-
els’ true positive rates, false positive rates, and the balance between precision
and recall, respectively. Precision indicates the accuracy of positive predic-
tions, recall shows the percentage of true positives captured by the model, and
the F1 score provides a harmonic mean of precision and recall.

3.3 DL Experiments and Evaluation

3.3.1 Problem Statement and Goals

As mentioned above, we selected the RoBERTa Liu et al., 2019 base as a concrete
representative of the DL model for our experiments. This decision was made due to
the following facts:

• The BERT-like models are significantly influential in NLP providing the DL-
based SOTA solutions for most of the NLP tasks.
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• In Zhang, Baldridge, and He, 2019, the superiority of the considered PAWS
dataset was reasoned by the estimation of the BERT model itself; in particu-
lar, the reported accuracy is 90.4%. So, it is natural to check the abilities of
RoBERTa, the direct BERT improvement, on this dataset.

RoBERTA is built above the BERT architecture with several modifications which
improve its performance and robustness. In particular, it was trained on the larger
and more diverse data with bigger batches. It had a longer training duration, the
static masking strategy was switched to the changing for each training epoch dy-
namic one, and the Next Sentence Prediction objective was removed from pre-training.
With such modifications, RoBERTa is reported to beat the BERT in all the conducted
experiments Liu et al., 2019.

Taking into account all the above, the following goals were stated:

• Fine-tune and evaluate the RoBERTa base model on the PAWS dataset and
compare the obtained accuracy with the one reported in Zhang, Baldridge,
and He, 2019.

• Fine-tune and evaluate the RoBERTa base model on the QQP dataset and com-
pare its performance to the obtained on PAWS.

• Cross-evaluate the trained models on both datasets to get insights into the
model’s ability to generalize across datasets and explore its adaptability and
robustness, and also check the claim made in Zhang, Baldridge, and He, 2019
about the universality of the training on the PAWS dataset.

3.3.2 Training and Evaluation

For our experiments, the HyggingFace’s1 RoBERTa base distribution was chosen. In
particular, we used ’RobertaForSequenceClassification’ – the customized with the
"classification head" RoBERTa version2. This architecture modification allows the
model to make binary decisions regarding the meaning similarity of sentence pairs.

Each sentence pair was concatenated into a single text and tokenized using the
’RobertaTokenizer’ provided by HuggingFace. The sentences were separated using
a special token, ’<SEP>’. This format was necessary to transform the sentence pairs
into a single input sequence that the RoBERTa model could process effectively.

In order to conduct the experiments corresponding to the above research plan,
we started by training the RoBERTa model in the base configuration using the final
labeled version of the PAWS dataset, containing 49.401 training samples alongside
8,000 validation samples and 8,000 testing samples. Unfortunately, from all the se-
lected metrics, only accuracy was reported in the original PAWS paper for BERT (see
Table 3.1). Comparing it with our results, one can conclude that RoBERTa performs
better with the given setup.

Inspired by the above-obtained results, confirming the outperformance of RoBERTa
over the BERT, we continued with fine-tuning RoBERTa base on QQP data distribu-
tion, with a random selection of 50000 training samples each epoch and 9999 testing
and validation each.

The final metrics of all the experiments are reported in Table 3.2. Here, "PAWS on
QQP" denotes the evaluation of the QQP test dataset by the model trained on PAWS;
by analogy, the notation "QQP on PAWS" must be treated.

1https://huggingface.co/
2https://huggingface.co/docs/transformers/v4.40.2/en/model_doc/roberta

https://huggingface.co/
https://huggingface.co/docs/transformers/v4.40.2/en/model_doc/roberta
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TABLE 3.1: BERT’s accuracy vs. RoBERTa’s accuracy on PAWS

Accuracy

BERT 90.4 %

RoBERTa base 93.75 %

TABLE 3.2: RoBERTa experiments results on PAWS, QQP, and corre-
sponding cross-evaluations

Accuracy Precision Recall F1 score

PAWS 93.75 % 95.36 % 90.94 % 93.10 %

QQP 87.00% 86.10 % 87.68 % 86.88 %

PAWS on QQP 67.75 % 85.40 % 63.11 % 72.58 %

QQP on PAWS 46.86 % 89.96 % 44.95 % 59.95 %

3.4 LLM Experiments and Evaluation

3.4.1 Prompt Engineering

It is known that the relevance and quality of the LLM answer strongly depend on
the prompt used (White et al., 2023), and it is difficult to estimate the efficiency of
the prompts.

Our experiments used zero-shot prompting, relying on the models’ ability to
generalize based on their pre-existing knowledge. In particular, the two GPT models
were used: GPT-3.5-turbo3 and GPT-44. For the final testing phase, three distinct
prompts were formulated.

Generating the final prompts included the following steps:

• Defining the initial instruction. The initial prompt had a very base form that
clearly communicated the task to the models.

• Iterative Debugging and Modification. Through an iterative process, the ini-
tial prompt was refined and adjusted according to the GPT proposed strate-
gies5.

• Reformulation Based on Model Feedback. The final step entailed reformulat-
ing the prompt based on the model responses.

To debug the prompts, we used the paraphrases that were incorrectly predicted
by the trained RoBERTa model. These mispredictions helped us to identify weak
points in our prompts and make necessary adjustments to enhance their clarity and
precision. Examples of the mispredicted paraphrases are presented in Table 3.3.

We started from the simplest version of the prompt and iteratively changed and
formed it according to the several most relevant strategies recommended in the GPT
prompting guide, such as:

• Applying formatting

3https://platform.openai.com/docs/models/gpt-3-5-turbo
4https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
5https://platform.openai.com/docs/guides/prompt-engineering

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/guides/prompt-engineering
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TABLE 3.3: RoBERTa’s incorrect predictions examples on PAWS

Sentence 1 Sentence 2 Actual Predicted

The Chilean New Song
movement was encour-
aged in the late 1950s
and early 1960s by a
renewed interest in tradi-
tional Chilean music and
folklore.

The Chilean New Song
movement was fired by
the renewed interest in
traditional Chilean music
and folklore in the late
1950s and early 1960s.

0 1

The Culme family ac-
quired the sub-manor
of Great Champson in
Molland and held Canon-
sleigh Abbey after the
Dissolution of the Monas-
teries.

The Culme family ac-
quired the Great Champ-
son underground in
Molland and , after
the dissolution of the
monasteries , held the
Canonsleigh Abbey.

0 1

The first landing in Lae
Airfield was possessed by
Ernest Mustar on April
19 , 1927 in a De Hav-
illand DH.37 by Guinea
Gold Airways from Wau .

The first landing at Lae
Airfield was made on 19
April 1927 by Ernest Mus-
tar in a De Havilland
DH.37 owned by Guinea
Gold Airways from Wau .

1 0

• Including details in the query

• Adopting a persona

Our starting point was a straightforward instruction pattern:

Check if the following two sentences are paraphrases:
Sentence 1: ""
Sentence 2: ""

Testing this prompt on several samples quickly revealed incorrect predictions.
Table 3.4 shows examples of mismatches between the model’s output and the actual
labels.

As the next improvement, we made the prompt to adopt the persona of a profes-
sional linguist. The resulting prompt had the following form:

You are a professional linguist

refined the instruction with:

with "True" if sentences have the same meaning and "False" otherwise.

and added an output validator:

Return the result for the following two sentences:

Testing this prompt version on the same samples showed that adding a persona
made the model’s answers "more human": they started coinciding with the actual
("human-annotated") labels (see the corresponding examples in Table 3.5).
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TABLE 3.4: Comparison of the predictions obtained by the initial
prompt and the actual values

Sentence 1 Sentence 2 Actual Prompt 1

On July 21, 2014, af-
ter his two success-
ful years at Las Pal-
mas in Spain, Chrisan-
tus signed a three-year
contract with the Turk-
ish Super Lig - Club
Sivasspor.

On July 21, 2014, af-
ter his two success-
ful years at Las Pal-
mas in Spain, Chrisan-
tus signed a three-year
contract with Sivasspor
at the Turkish Super
Lig.

0 1

Alice Hopkins, daugh-
ter of Thomas Hopkins,
married a merchant of
London.

Lee married Alice
Hopkins, daughter of
Thomas Hopkins a
merchant of London.

1 0

TABLE 3.5: Comparison of the predictions obtained by the two differ-
ent prompts and the actual values

Sentence 1 Sentence 2 Actual Prompt 1 Prompt 2

The Chilean New
Song movement
was encouraged in
the late 1950s and
early 1960s by a
renewed interest in
traditional Chilean
music and folklore.

The Chilean New
Song movement
was fired by the
renewed interest in
traditional Chilean
music and folklore
in the late 1950s and
early 1960s.

0 1 0

The Culme fam-
ily acquired the
sub-manor of Great
Champson in Mol-
land and held
Canonsleigh Abbey
after the Dissolution
of the Monasteries.

The Culme family
acquired the Great
Champson under-
ground in Molland
and , after the
dissolution of the
monasteries , held
the Canonsleigh
Abbey.

0 1 0

Several debugging iterations on the above-mentioned set of paraphrases allowed
the forming of the smallest prompt able to predict labels coinciding with the human
annotations. It had the following pattern:

You are a professional linguist who annotates pairs of sentences with
1 if sentences have the same meaning and 0 otherwise. Return
the result for the following two sentences:
Sentence 1: ""
Sentence 2: ""
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As the final improvement, we considered reformulating the obtained prompt
with words potentially more familiar to the model. We formed it by asking the
model and using the answer that was generated accordingly. In particular, we re-
quested a model in the following way: "Write a prompt for a language professional
deciding if two sentences have the same or different meaning". Thus, the third ver-
sion of the prompt used:

You are an expert in linguistic analysis tasked with evaluating whether
two given sentences convey the same or different meanings. Return 1
if the following two sentences convey essentially the same meaning and 0
if they convey slightly or substantially different meanings:
Sentence 1: ""
Sentence 2: ""

3.4.2 Tests

We ran the tests with different "prompt-model" combinations to compare the ap-
plicability of the above prompts for 500 samples from each dataset. The obtained
results for the PAWS and QQP datasets are presented in Tables 3.6 and 3.7, respec-
tively.

The first observation here is that, in general, both GPT-3.5-turbo and GPT-4.0
performed significantly better on QQP data. The most initial and intuitive conjecture
is that GPT is able to understand less ’cultivated,’ more straightforward in nature
data better.

Another interesting fact is that GPT-3.5-turbo on PAWS seems to be more sensi-
tive to the prompt’s complications than GPT-4.0, which behaves almost constantly.

On the QQP dataset, an increase in prompt complexity negatively impacted the
performance of both models, although the effect was more pronounced in GPT-3.5-
turbo.

One more thing worth mentioning is that, overall, on both datasets, GPT-3.5-
turbo showed stronger sensitivity to the prompt’s changes.

Basically, GPT model complexity is in some sense inversely proportional to prompt
complexity: GPT-3.5-turbo performs better on the more detailed prompts, while
GPT-4 shows the best results on the simpler prompts and loses the performance
with added instructions. This suggests that the more advanced GPT-4.0 can infer
complex tasks from minimal instructions, whereas GPT-3.5-turbo requires more ex-
plicit guidance.

TABLE 3.6: Evaluation results of prompts on the PAWS dataset

Accuracy Precision Recall F1 score

Prompt 1 gpt-3.5-turbo 66.80 % 92.76 % 57.75 % 71.18 %

Prompt 1 gpt-4 73.60 % 96.83 % 63.13 % 76.43 %

Prompt 2 gpt-3.5-turbo 63.40 % 85.97 % 55.56 % 67.50 %

Prompt 2 gpt-4 74.60 % 94.57 % 64.51 % 76.70 %

Prompt 3 gpt-3.5-turbo 76.20 % 64.25 % 78.02 % 70.47 %

Prompt 3 gpt-4 73.40 % 94.12 % 63.41 % 75.77 %
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TABLE 3.7: Evaluation results of prompts on the QQP dataset

Accuracy Precision Recall F1 score

Prompt 1 gpt-3.5-turbo 81.80 % 76.80 % 85.33 % 80.84 %

Prompt 1 gpt-4 80.20 % 68.00 % 89.95 % 77.45 %

Prompt 2 gpt-3.5-turbo 77.40 % 76.80 % 77.73 % 77.26 %

Prompt 2 gpt-4 78.40 % 61.60 % 92.77 % 74.04 %

Prompt 3 gpt-3.5-turbo 61.40 % 24.80 % 92.54 % 39.12 %

Prompt 3 gpt-4 78.00 % 60.40 % 93.21 % 73.30 %

3.4.3 Final Evaluation

As the final evaluation step for GPT as an LLM method of gaining the PI task so-
lution, the experiments were conducted on test partitions of both PAWS and QQP
datasets.

Relying primarily on accuracy and F1 score, according to our tests, the optimal
"prompt-model" combinations are "Prompt 2 gpt-4" and "Prompt 3 gpt-3.5-turbo"
on PAWS, and "Prompt 1 gpt-3.5-turbo" for QQP. Thus, for consistent comparison
using the same model version, "Prompt 3 gpt-3.5-turbo" on PAWS and "Prompt 1
gpt-3.5-turbo" on QQP were used as benchmarks. Table 3.8 presents the final results,
highlighting the comparative performance insights across datasets.

TABLE 3.8: Performance of GPT-3.5-turbo on PAWS and QQP test
subsets

Accuracy Precision Recall F1 score

Prompt 3 gpt-3.5-turbo
on PAWS

77.53 % 66.54 % 79.28 % 72.36 %

Prompt 1 gpt-3.5-turbo
on QQP

81.03 % 77.26 % 83.56 % 80.28 %

3.5 Conclusions

In the chapter, we systematically evaluated two SOTA solutions for the PI task: DL-
based and LLM-based ones. The results of the conducted experiments imply several
insights and observations:

• They one more time reaffirmed the superiority of RoBERTa over the BERT.

• Despite the inherent difficulty of PAWS, RoBERTa outperformed its perfor-
mance on QQP. This re-confirms the model’s ability to capture complex pat-
terns and represents the refined nature of the PAWS dataset.

• Cross-evaluation of the pre-trained models, in general, approved the benefi-
cial impact of the PAWS dataset in enhancing the model’s generalization ca-
pabilities stated in Zhang, Baldridge, and He, 2019: indeed, the pre-training
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on PAWS provided much higher accuracy on QQP than the converse case. At
the same time, these cross-evaluation results are much lower than the ones
obtained by the model trained on QQP; that is, PAWS are still not perfect in
generalizing, as could be expected.

• Confirmed an intuitive assumption about LLMs abilities: despite their capacity
and general-purpose capabilities, the LLM determines the paraphrases worse
than the fine-tuned DL model.

• Revealed an interesting distinction in the performance of both approaches:
RoBERTa learned better from the more complex and more refined PAWS dataset,
while GPT gave more relevant responses for simpler and more straightforward
QQP data.

• Detected some interesting behavior peculiarities and regularities of the consid-
ered GPT model versions, like differences in sensitivity to prompt-data combi-
nations or in reacting to the detalization of the prompt instructions.
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Chapter 4

QNLP Experiments and Evaluation

4.1 Problem Statement and Goals

Considering the complexity and black-box nature of the interpretation of gaining the
results of the above-mentioned SOTA approaches, the QNLP approach is addition-
ally considered an alternative and not-so-widespread potential solution.

This chapter aims to investigate this approach in order to compare it with the
previous ones. In particular, we consider the lambeq toolkit Kartsaklis et al., 2021 as
a concrete implementation of the QNLP processing.

4.2 Approach and Tools

There is a tendency to use quite a theoretical mathematical method of the Category
theory in different spheres of sciences and engineering. This approach is known as
an Applied Category theory.

Category theory is a branch of mathematics that studies the structures and re-
lationships between them in the most abstract way. In other words, it enables the
understanding of mathematical structures and their properties in a very general
and unified way by representing them in the form of objects (the essential elements
of the category) and morphisms or arrows (relationships or mappings) between
them. Each category possesses a binary associative operation of composition of
morphisms, and for every object, there exists an identity morphism, which is the
unit according to the composition operation.

A mapping between categories preserving identity morphisms and composition
of morphisms is called a functor.

Recent advances in this area possibly allow extending the list of solutions for the
PI task with the ones that are better interpretable and more intuitive. In other words,
the Applied Category Theory approach is able to model the structure and semantics
of natural language.

The general idea of this approach is to map the text into the text diagrams or,
by analogy, with the quantum theory, text circuits. Such an analogy with quantum
circuits is supposed to make this approach applicable and highly efficient while run-
ning on quantum computers. According to the most recent results in this direction
(see Wang-Mascianica, Liu, and Coecke, 2023), the text circuit represents text mean-
ing, and the sentences mapped into similar circuits should have similar meanings.
This fact makes it possible to apply this theory to the PI task.
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There are several frameworks and toolkits that realize these ideas, providing the
structural representation of the text data and allowing quantum natural language
processing. In particular, we considered lambeq1, DisCoPy 2, and DisCoCirc3.

As mentioned in the official documentation4, lambeq introduces the string dia-
grams as an abstraction, allowing the NLP design on quantum hardware. In par-
ticular, string diagrams operate in a monoidal category (a category equipped with
the associative monoidal or tensor product and an identity object), which perfectly
models the computations and processing on a quantum computer.

Despite being a perfect modeling abstraction of the quantum circuits, string dia-
grams are applicable to any hardware decisions5.

The lambeq toolkit provides several approaches to NLP processing: classical,
hybrid, and purely quantum. Each of them is accomplished with the correspond-
ing models, text converters, and simulations. Since the last one requires quantum
computations, only the first two were chosen for the investigation.

The initial idea of applying the QNLP approach to the PI task was motivated
by the results obtained inWang-Mascianica, Liu, and Coecke, 2023, stating that texts
having similar diagrammatic representations should convey similar meanings. The
authors additionally announced the implementation of the latest framework, Dis-
CoCirc, extending the previously released DisCoPy by enabling the creation of the
circuit representations not only for separate sentences but also for texts.

Relying on the above facts, the general solution plan had the following steps:

• Use DisCoCirc to convert paraphrase datasets into circuits

• Train and evaluate the hybrid model using lambeq’s PennyLaneModel

• Train and evaluate the classical model using lambeq’s PytorchModel

• Compare the results with the DL and LLM ones

4.3 Implementation Details

The implementation of the above-mentioned plan appeared not as smooth as ex-
pected and was adjusted correspondingly:

• Implementation of the first step showed that the DisCoCirc framework seems
to need to be more mature for the proposed approach. It is indeed able to gen-
erate the circuits for text, but we were not able to make them compatible with
the models. As a result, we switched to using the sentence converters of the
previously released DisCoPy framework, which must also be suitable as most
of the paraphrase samples from the datasets contain precisely two sentences.

• The lambeq’s hybrid approach consists of direct use or customization of the
PennyLaneModel class on text circuits. Unfortunately, we did not manage to
instantiate the model for running the pipeline due to toolkit errors, which were
present in its different release versions.

1https://github.com/CQCL/lambeq/tree/main
2https://github.com/discopy/discopy
3https://github.com/CQCL/text_to_discocirc/tree/main
4https://cqcl.github.io/lambeq/string-diagrams.html
5https://cqcl.github.io/lambeq/glossary.htm

https://github.com/CQCL/lambeq/tree/main
https://github.com/discopy/discopy
https://github.com/CQCL/text_to_discocirc/tree/main
https://cqcl.github.io/lambeq/string-diagrams.html
https://cqcl.github.io/lambeq/glossary.htm


18 Chapter 4. QNLP Experiments and Evaluation

• For the classical pipeline, we customized and trained the model implementa-
tion provided in the lambeq’s documentation6.

The final implementation is provided in the GitHub7.

4.4 Model Customization

The initial model8 takes two diagrams as an input and outputs the predicted binary
label. Under the hood, it additionally has a simple neural network with two linear
layers:

nn.Sequential(
nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1),
nn.Sigmoid()
)

Due to the inability to instantiate the hybrid model, we changed the base class
from PennyLaneModel to PythorchModel.

The initial training of this model on the PAWS and QQP subsets provided an
accuracy of 52% and 55%, respectively. These results are significantly lower than
those obtained by the model we based on: 88%. As a result, we doubled the number
of parameters of the linear layers in the underlying neural network:

nn.Sequential(
nn.Linear(4, 20),
nn.ReLU(),
nn.Linear(20, 1),
nn.Sigmoid()
)

Although our model did not manage to achieve the same performance, addi-
tional parameters showed increasing in accuracy.

We assume that lower performance is due to the complexity of the PAWS and
QQP datasets samples and possibly because the hybrid model approach is more
effective than the classical.

4.5 Sentence Diagrams Generation

Each sentence goes through the following four steps to become an amenable model
input (see Fig 4.1):

• Tokenization with the SpacyTokenizer, which is, according to the lambeq doc-
umentation, based on the NLP package SpaCy9.

6https://cqcl.github.io/lambeq/examples/pennylane.html
7https://github.com/irynapast/thoth
8https://cqcl.github.io/lambeq/examples/pennylane.html
9https://spacy.io

https://cqcl.github.io/lambeq/examples/pennylane.html
https://github.com/irynapast/thoth
https://cqcl.github.io/lambeq/examples/pennylane.html
https://spacy.io
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• Convertion to the string diagram of the tokenized sentence via the provided
parser BobcatParser. On the one hand, string diagrams model the abstraction
of quantum computations and data processing. On the other - they represent
compositional relations between words in the sentence10. Some examples of
the parsed sentences are provided in Figs 4.2, 4.3.

• Rewriting the diagram to a simplified and proper form using the RemoveSwap-
sRewriter. In general, the rewriting is a diagram transformation to a simpli-
fied and suitable form aimed at reducing resource usage and reducing training
time.

• Mapping the string diagram via ansatz to the more low-level, but concrete
representation, suitable for further model training and experiments11. In gen-
eral, ansatz converts the diagram to the tensor or quantum representation with
a specified number of qubits or dimensionality of the wires, respectively. Ac-
cording to our model choice, TensorAnsatz should be used; the resulting dia-
gram representations are presented in Figs 4.4, 4.5.

FIGURE 4.1: Sentence-to-tensor transformation

FIGURE 4.2: Sentence diagram with connection types

To form the datasets for experiments, we applied this flow to the subsets of the
PAWS and QQP datasets. It is worth mentioning that a part of the samples failed to
be converted to diagrams.

Moreover, there is a distinction between failure rates among the datasets. In par-
ticular, from the total parsed 8167 and 9367 samples of PAWS and QQP, respectively,
nearly 2% of sentence pairs did not succeed in diagram conversion for PAWS, and
almost 15% for QQP.

Despite all the diagrams being built with the same conversion pipeline, some of
the diagrams obtained incorrect structures and were not suitable for model training,

10https://cqcl.github.io/lambeq/string-diagrams
11https://cqcl.github.io/lambeq/tutorials/parameterise

https://cqcl.github.io/lambeq/string-diagrams
https://cqcl.github.io/lambeq/tutorials/parameterise
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FIGURE 4.3: Sentence diagram

FIGURE 4.4: Tensor diagram with dim=2

FIGURE 4.5: Tensor diagram with dim=2

which added one more filtration step to the data selection: nearly 1% of data was
removed from both datasets.

We assume that diagram failures were caused due to the structural diversity and
complexity of the considered datasets.

The statistics for the final datasets are presented in Table 4.1; the datasets can be
downloaded by the link12.

12https://drive.google.com/drive/folders/1USbV37zwPJvs3KzeGQmfdNC4gt3qOVUg?usp=
sharing

https://drive.google.com/drive/folders/1USbV37zwPJvs3KzeGQmfdNC4gt3qOVUg?usp=sharing
https://drive.google.com/drive/folders/1USbV37zwPJvs3KzeGQmfdNC4gt3qOVUg?usp=sharing
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TABLE 4.1: Data for QNLP experiments in numbers

Train Validation Test

PAWS 4955 1494 1487

QQP 4939 1477 1479

4.6 Training and Evaluation

In our experiments, we stuck to quite a similar training strategy with only a few
minor parameter changes as for the base model: with Adam optimizer, Binary cross
entropy loss function, and early stopping if the validation accuracy did not improve
after 20 epochs.

Similar to other experiments, the standard evaluation metrics (accuracy, preci-
sion, recall, f1) were used.

We conducted the experiments on both PAWS and QQP subsets. Unfortunately,
the model failed to learn enough from the data to be able to perform well on our
data. The main observation is that it is not able to determine the paraphrases cor-
rectly on PAWS at all; on QQP, the performance is significantly higher, which is quite
an intuitive behavior due to the considerable complexity of PAWS sentences, but it
is still too low compared to the previous methods. The corresponding results are
presented in Table 4.2.

TABLE 4.2: QNLP experiments results

Accuracy Precision Recall F1 score

PAWS 54.90 % 1.21 % 30.77 % 2.33 %

QQP 66.3 % 60.0 % 56.0 % 57.9 %

4.7 Conclusions

This chapter was meant to investigate the possibility of solving the PI task with the
QNLP approaches. Despite not fully achieving our initial goals and the quality of the
obtained solution being lower compared to DL and LLM, the experiments yielded
numerous insights and valuable experiences in the categorical NLP.

We assume that the obtained results can be significantly improved by picking up
more suitable model architectures. The model we based on provided 88% accuracy,
but on a really simple dataset consisting of sentences related to only two topics and
having quite a simple and similar structure, while the QQP and PAWS sentences are
complex in structure and relate to very different topics. Another possible reason for
decreasing the obtained accuracy could be the change in the model type: we man-
aged to use only the classical approach, while the model taken as the base example
was a hybrid one.

Besides, applying more advanced data preprocessing and training on bigger
datasets can potentially improve the solution. And finally, the purely quantum ap-
proach should definitely be tried as a future work.
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Chapter 5

Conclusions and Future Work

The thesis investigates the problem of detecting changes in the meaning of the tex-
tual data by the precise consideration of the Paraphrase Identification task.

We aimed to approach and compare the solutions with different NLP methods:
the widespread ones, such as DL-based techniques and prompting LLMs for the
solution, and an alternative one, QNLP, that only enters the active phase of develop-
ment and is becoming common.

An additional experiment diversity was gained by running them on two different
structure and complexity datasets: one containing only sentences that are questions
and another ’cultivated’ specifically for the PI task.

Investigation of the DL-based approach approved the superiority of RoBERTa
over BERT. The experiment results on both datasets reaffirmed its ability to effec-
tively learn and capture complex syntactic structures; cross-evaluation analysis demon-
strated the beneficial impact of the PAWS dataset compared to QQP in enhancing the
model’s generalization capabilities.

Overall, the DL-based approach demonstrated remarkable performance in solv-
ing the PI task. It does not seem to need any further investigation unless exploring
larger versions such as RoBERTa large or other BERT-like models.

Although both explored GPT models did not manage to approach the RoBERTa’s
performance level, experimenting with them revealed several non-obvious insights
and behavior patterns, like less sensitivity to the prompt complications of the later
version of the model or a surprising inverse proportionality between the complexi-
ties of the prompt and the model.

It is clear that the LLM’s performance is highly dependent on the quality of the
prompt, which suggests potential directions for future improvement. In particular,
using a few-shot learning prompts, which is known for improving models’ perfor-
mance, is a great candidate for future work. Fine-tuning the GPT models and ex-
ploring other LLMs could also be the options.

Experimenting with the QNLP approaches appeared to be the most unexpected
and unsuccessful in terms of achieving a satisfactory accuracy level on the one hand
but the most challenging and exciting on the other.

The initial investigation plan was adjusted several times due to the inability to
compile and run the needed tools. However, we still managed to experiment with
the categorical approach in NLP. Although these experiments provided the lowest
results compared to the two previous methods, they have the most significant im-
provement potential. In particular, the first obvious steps to take are picking up
more suitable model architectures and applying more advanced data preprocessing
and training on the more extensive dataset. Using hybrid and purely quantum mod-
els is definitely the very next candidate for future work. Finally, as QNLP evolves,
continuous innovations will likely generate new methodologies to apply to the PI
task.
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In conclusion, the thesis results are essential for understanding the methods of
solving the PI task as well as their limitations. In particular, they imply the following:

• With the rapid development of LLMs, the more traditional LM, such as RoBERTa,
is still the better choice for this particular task and datasets.

• The QNLP approach (at least in the settings we considered) is not yet ready
for practical use and falls short in terms of accuracy compared to LLM and
Roberta-based models.
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