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Abstract

Object counting is the task of estimating the number of specific objects present in an
image. Similarly to other computer vision tasks, traditional object counting meth-
ods typically require a large training dataset and are not suited for counting novel
classes. Class-agnostic object counting, which is generally divided into few-shot
and zero-shot approaches, aims to count arbitrary object categories. Few-shot count-
ing requires manually labeled image patches depicting the object of interest, which
is impractical in real-world applications. Zero-shot counting is primarily focused
on using text prompts to specify the object without relying on manual annotations.
However, text descriptions can be ambiguous and may not precisely convey ob-
ject characteristics such as shape, texture, or size. Visual exemplars such as image
patches act as a more direct reference, which leads to better generalizability and ac-
curacy. In this work, we plan to explore the possibility of counting arbitrary objects
in a few-shot manner without having humans in the loop. In particular, we are in-
terested in utilizing a set of support images, which can be prepared in advance for
a given object category and later used for all the query images. This would allow to
accurately count specific objects without the need for extensive annotation.

HTTP://WWW.UCU.EDU.UA
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Chapter 1

Introduction

1.1 Background and Motivation

Object counting is a fundamental task in computer vision with diverse applications
ranging from crowd monitoring and traffic analysis to biological cell counting. It is
a challenging problem that requires reasoning about the number of object instances
that are present in an image while also addressing object scale and appearance vari-
ations. Despite being more niche than other computer vision tasks such as object
detection or segmentation, object counting has seen a rise in research in recent years.

Traditional object counting methods are typically class-specific, requiring exten-
sive labeled datasets for each target category. This approach is not scalable to a
large number of object categories due to the high cost and time involved in data
annotation. Recent advancements have introduced class-agnostic object counting
methods, which aim to count arbitrary objects at test time, significantly reducing the
need for extensive labeled datasets. However, these methods primarily utilize patch
exemplars or text prompts to specify the target objects, facing several challenges.
Patch-based methods rely on annotated bounding boxes for exemplars, which are
often impractical to obtain, while text-guided methods may suffer from ambiguities
in visual-textual alignment.

The goal of this work is to address these limitations by using the "external visual
prompts" for class-agnostic object counting. External visual prompts are images or
visual elements that provide information about the object of interest but are not part
of the query image. This approach allows the model to count objects from new cate-
gories with minimal manual annotation while preserving high accuracy. By utilizing
external visual prompts, we aim to enhance the scalability and applicability of ob-
ject counting methods, making them suitable for a wider range of scenarios. Our
primary motivation is to tackle the practical challenges of deploying object counting
methods in diverse applications.

1.2 Thesis Structure

This thesis is structured as follows:

• Chapter 1 outlines the motivation and the goal of this work.

• Chapter 2 reviews existing class-specific and class-agnostic object counting
methods, including weakly supervised, few-shot, and zero-shot approaches.

• Chapter 3 introduces the benchmark datasets used in object counting, high-
lights issues with the class-agnostic datasets, and presents a refined dataset. It
also describes the metrics used to evaluate model performance.
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• Chapter 4 discusses the limitations of state-of-the-art methods and presents
the proposed solution, including a novel model architecture and training pro-
cedure. It provides extensive evaluation results.

• Chapter 5 details the experimental setup, including backbone selection and an
ablation study to evaluate the impact of different architectural choices.

• Chapter 6 summarizes our findings, discusses the limitations of the current
approach, and outlines directions for future research.
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Chapter 2

Related Work

2.1 Class-Specific Object Counting

Class-specific methods focus on predefined categories such as humans, animals,
cells, or cars, which means they are limited to specific classes and require additional
data annotation for new object categories. Initial approaches were based on detec-
tion, where the count is just the number of detected object instances. Despite being
a straightforward method, counting by detection requires the model to learn a sig-
nificant amount of possibly redundant information, including the precise location
of object instances, which can be challenging when dealing with heavily occluded
objects. Counting by regression, on the other hand, generally performs well in the
presence of occlusions. Chan and Vasconcelos, 2009 proposed an effective way to
regress high-dimensional low-level features to the count values. This approach is
called "glancing" and is further explored by Chattopadhyay et al., 2017. The authors
showed that directly predicting image level counts from the CNN representations
outperforms the detection-based methods. While being easy to train and use, "glanc-
ing" is efficient only if the object count is small. To tackle this problem, Chattopad-
hyay et al., 2017 resort to "subitizing", a psychological term that means the ability
to instantly recognize the number of objects in a small group (typically 1-4) without
counting them one by one. Inspired by this concept, they proposed to divide the
image into non-overlapping cells, use "glancing" in each cell, and use addition to get
the total object count. Other regression-based methods mainly rely on generating
the density map, which is then used to obtain the object count, usually by summing
up the pixel values. In order to convert point-level annotations into a density map,
these methods make use of a Gaussian kernel. This begs the question: how to choose
the best kernel size, or is the Gaussian kernel even the optimal method to obtain a
density map from point annotations? Extensive analysis of the impact of different
density maps on the counting accuracy was conducted by Wan and Chan, 2019. The
authors also proposed to learn a density map representation via an adaptive density
map generator.

2.2 Weak-Supervised Object Counting

All the above methods require massive datasets with thousands or millions of anno-
tated object instances to be trained on. Collecting an enormous amount of training
data is not always practical or even possible. Weak-supervised methods, a subset
of class-specific counting, are focused on reducing the required level of supervision.
Laradji et al., 2018 presented a new architecture and a loss function to perform object
counting and localization with point-level annotations only. Yang et al., 2020 intro-
duced a method that does not rely on location supervision for training. The network
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is trained to count by exploiting the relationship among the input images, specif-
ically sorting them by their count values. Cholakkal et al., 2022 proposed a novel
method for density map estimation with image-level supervision, which counts the
number of instances within or beyond the subitizing range and does not require
location information.

FIGURE 2.1: Different targets in object counting task. a) Glancing:
directly regressing the number of objects. b) Detection-based: object
count corresponds to the number of the detected instances. c) Density
map prediction: object count is obtained by summing up the pixel

values.

2.3 Few-Shot Object Counting

2.3.1 Patch-Based Methods

Few-shot object counting methods aim to count arbitrary objects given a few exem-
plar patches as inference-time guidance. The pioneering work by Lu, Xie, and Zis-
serman, 2018 reformulated the counting problem as the matching one and proposed
a Generic Matching Network (GMN) architecture that can count in a class-agnostic
manner simply by specifying a bounding box containing the object of interest. GMN
features an explicit adapter module, which customizes the model to the target do-
main. This adaptation procedure, however, still requires hundreds of labeled ex-
amples. Ranjan et al., 2021 adopted a similar correlation matching approach and
presented a novel model, FamNet, along with a test-time adaptation scheme that
requires only a few bounding boxes around the object of interest. This adaptation
scheme tunes the model to the provided exemplars with a few gradient descent up-
dates.
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Subsequent advancements can be categorized into two streams. The first one
focuses on leveraging advanced visual architectures like vision transformers to im-
prove feature representation. Liu et al., 2022 introduced a Counting Transformer
(CounTR), a novel transformer-based architecture for class-agnostic object counting,
which explicitly captures the similarity between image patches using the attention
mechanism. Ðukić et al., 2023 used a transformer to fuse the exemplar shape and
appearance information with image features. Lin, Hong, and Wang, 2021 proposed
LaoNet, an effective transformer-based network named for one-shot object count-
ing, which achieves results comparable with few-shot methods while learning with
a high convergence speed.

The second stream aims to enhance the exemplar matching process by explicitly
modeling exemplar-image similarity or by further exploiting exemplar guidance.
Shi et al., 2022 argued that a fixed inner product, which is used to compare exem-
plars with query features, may be insufficient in modeling class-agnostic similarity
and introduced a learnable dynamic similarity metric. You et al., 2022 proposed a
similarity-aware feature enhancement block, which encourages the model to inspect
the query image by focusing more on the regions akin to the exemplars, leading to
much clearer boundaries between different objects. Lin et al., 2022 designed a Scale-
Prior Deformable Convolution Network (SPDCN) to extract features of objects with
specific size and thus take advantage of scale information. The scale information
is embedded into the deformable convolution so that its receptive field is adjusted
automatically, and the extracted features correspond to the scale of the given exem-
plars. This design significantly increases the counting accuracy because objects of
the same class typically have similar scale in an image.

A high-level architecture of a typical patch-based counting method is shown in
Figure 2.2.

FIGURE 2.2: High-level architecture of few-shot patch-based meth-
ods. The query image with bounding boxes around the object of in-
terest is passed as input. These bounding boxes, along with the image
features, are passed to the ROI pooling (or some other similar layer)
to extract object prototypes. The prototypes are then matched with
the image features, typically using a correlation or attention mecha-
nism. The resulting features are used to regress the density map. The
count is obtained by summing up the pixel values in the density map.
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2.3.2 Support-Based Methods

While the above methods require additional patch-level annotation depicting the
object of interest as inputs, Yang et al., 2021 explored a different strategy. They pre-
sented a model, Class-agnostic Fewshot Object Counting Network (CFOCNet), that
can count arbitrary objects provided a query image and a support set of object ex-
emplars that are not a part of the query image. These exemplars are referred to as
external. It is important to note that some patch-based methods, such as CounTR
(Liu et al., 2022), have the capability to incorporate external exemplars into their
input, even though they were not initially designed to do so. Jiang et al., 2023 pro-
posed a similar strategy termed cross-image counting, which allows the combination
of different reference and target images. Specifically, annotated exemplars from one
image can be used to count objects of the same class in other images. Sokhandan
et al., 2020 presented a class-agnostic counting architecture, where a reference pair
consisting of an image and its corresponding target density map is used to provide
information about the object of interest.

Although these methods are usually not distinguished as a separate category
from other few-shot methods, we will classify them as support-based. Another way
to think about this is to consider the origin of the information provided by the ex-
emplars. Patch-based methods utilize internal exemplars, meaning that they are
derived from within the query image itself or are annotated therein. Conversely,
support-based methods employ external exemplars, which are independent of the
query image. This distinction allows the model to count objects in new images with-
out the need for direct annotation within those images.

2.4 Zero-Shot Object Counting

2.4.1 Reference-Less Methods

Reference-less counting has recently gained attention as a promising approach for
class-agnostic counting without human annotation. Ranjan and Nguyen, 2023 pro-
posed an exemplar-free counting approach, which works by identifying exemplars
from the most frequent objects via a Repetitive Region Proposal Network (RepRPN).
The work by Hobley et al. Hobley and Prisacariu, 2022 expanded the idea of exemplar-
free counting and demonstrated that regression from vision transformer features
without point-level supervision or reference images is competitive with methods
that use reference images. Although reference-less methods do not require exem-
plars at test time, these methods simply count objects that belong to the category
with the highest number of instances present in the image. As a result, they are not
suitable for counting a specific class of interest and can be used only for images with
a single predominant object class.

2.4.2 Text-Guided Methods

Recent advances in object counting are focused on utilizing multimodal models to
use text prompts for specifying the object of interest. In particular, Xu et al., 2023
introduced the task of text-guided zero-shot object counting, where only the class
name is needed in inference time. They proposed a two-stage method, where they
first generate exemplar prototypes by using a text-conditioned variational autoen-
coder. Following that, these exemplar prototypes are passed into a regular few-shot
object counter trained with exemplar supervision. Extending this idea Jiang, Liu,
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and Chen, 2023 presented CLIP-Count, an end-to-end pipeline that employs text
guidance to estimate density maps for objects in the open vocabulary in a zero-shot
manner. By aligning text embedding with patch-level visual features, CLIP-Count
fully utilizes the pretrained knowledge in CLIP (Radford et al., 2021). Recently, Kang
et al., 2023 presented a way to substantially reduce the number of trainable parame-
ters and thus the memory cost of using visual-language models for object counting
task. Amini-Naieni et al., 2023 proposed CounTX, an open-world object counting
model that accepts an image and an arbitrary object class description and directly
uses these inputs to predict the object count. CounTX eliminates the need for an
exemplar-based counting model and also accepts a more detailed specification of
the target object to count rather than simply using a class name.

FIGURE 2.3: High-level text-guided zero-shot object counting archi-
tecture. A text prompt specifying the object is passed alongside the
query image. A multimodal encoder provides aligned image and text
embeddings. The text embeddings, representing the object of inter-
est, are matched with the image features and processed in a manner

similar to few-shot methods.

2.5 Summary

Originally, object counting focused on specific targets such as crowds, cells, animals,
and cars. It involved training specialized networks with extensive labeled samples
for each object class, which made scaling to a broader range of visual categories chal-
lenging. As a solution, weakly supervised approaches were developed. These meth-
ods reduce the reliance on detailed annotations by utilizing simpler forms of data
labeling, such as point annotations or image-level counts, enabling easier scaling to
new domains, though some supervision is still required. Reference-less methods
emerged as a first step towards class-agnostic counting. However, they generally fo-
cus on the predominant object class in an image, limiting the ability to count specific
objects.

Recently, significant progress has been made in counting arbitrary objects us-
ing human-annotated patch exemplars. Nonetheless, the dependency on manually
annotated bounding boxes during inference can be impractical for real-world appli-
cations.

To address this, zero-shot object counting was introduced, minimizing the de-
pendence on human labor. This approach employs natural language prompts to
specify the object of interest. However, utilizing natural language to guide object
counting introduces some challenges. Text prompts, unlike patch annotations, do
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not provide explicit descriptions of the object, leading to intrinsic ambiguity. Ad-
ditionally, effective semantic alignment between the textual and visual modalities
presents considerable difficulties.

Support-based methods combine the ease of text prompts with the accuracy of
patch-based methods. Similar to zero-shot text-guided methods, this approach also
relies on external prompts, but instead of text, it utilizes visual information akin to
patch-based methods. This strategy effectively mitigates the ambiguity associated
with natural language prompts and provides a more direct and reliable way to spec-
ify the object of interest without the need for extensive additional annotation.

A visual representation of the different class-agnostic approaches can be seen in
Figure 2.4.

FIGURE 2.4: Class-agnostic object counting approaches.
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Chapter 3

Datasets and Metrics

3.1 Class-Specific Object Counting Datasets

3.1.1 CARPK

The Car Parking Lot Dataset (Hsieh, Lin, and Hsu, 2017) consists of 89,777 cars in
high-resolution images captured by drones over various parking lots. Unlike other
parking lot datasets, CARPK is the first and largest to support object counting. Each
image in the dataset is annotated with bounding boxes around the cars.

3.1.2 ShanghaiTech

The ShanghaiTech dataset (Zhang et al., 2016) is a large-scale crowd counting dataset
with 1,198 annotated images, containing a total of 330,165 people with their head
centers marked. The dataset is divided into two parts: Part A includes images ran-
domly crawled from the Internet, while Part B comprises images taken from busy
streets in metropolitan Shanghai. The significant variation in crowd density between
these subsets makes accurate crowd estimation more challenging than with most ex-
isting datasets.

3.2 Class-Agnostic Object Counting Datasets

3.2.1 FSC-147

Introduced by Ranjan et al., 2021, the FSC-147 dataset establishes a benchmark for
class-agnostic few-shot counting tasks. It consists of 6135 images that span 147 di-
verse categories, including items like kitchen utensils, office supplies, vehicles, and
animals. The number of objects per image in this dataset ranges from 7 to 3731,
with an average of 56 objects per image. Each image is annotated with dots mark-
ing the approximate center of each object instance. Additionally, three randomly
selected object instances are designated as exemplars, each annotated with axis-
aligned bounding boxes. The dataset is partitioned into training, validation, and
test sets, with no overlap in object categories — 89 classes are allocated for training,
while 29 are reserved for each of the validation and test sets.

3.2.2 FSCD-LVIS

Despite FSC-147 containing images with numerous objects, the scenes are relatively
simple. In FSC-147, the class of the target object is presented with such clarity that
identifying which class of objects to count is straightforward, eliminating the need
for providing specific exemplars. To address this limitation for real-world deploy-
ment of few-shot counting and detection methods, Nguyen et al., 2022 introduced
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FIGURE 3.1: Sample images from FSC-147 and FSCD-LVIS datasets.

FSCD-LVIS. This new dataset features more complex scenes with multiple object
classes and instances as can be seen in Figure 3.1. Without providing the exemplars
for the target class, one cannot definitely guess which the target class is. The dataset
contains 6195 images and 372 classes. Unlike FSC-147, FSCD-LVIS includes box an-
notations for all objects, with three objects randomly selected as exemplars.

3.2.3 CA-44

Jiang et al., 2023 introduced a new benchmark for class-agnostic object counting,
named CA-44, which includes 30,085 images sourced from 44 distinct datasets col-
lected via Roboflow (Dwyer et al., 2024). The CA-44 benchmark primarily features
images with small and densely packed objects. These characteristics reflect the com-
mon attributes of scenes in the object counting task.

FIGURE 3.2: Sample images highlighting data redundancy in CA-44
dataset.
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3.2.4 Summary

The current benchmark dataset, FSC-147, provides only simple scenes that are not
representative of the real world. FSCD-LVIS, on the other hand, offers images con-
taining more than one object class with much more complex scenes. Nevertheless,
these two datasets are relatively small and do not cover enough domains. Although
CA-44 has a significantly larger number of images compared to the FSC-147 and
FSCD-LVIS datasets, it contains many nearly identical images. For example, aerial
views of sheep flocks comprise more than 10% of the dataset. Additionally, as shown
in Figure 3.2, a substantial portion of the dataset consists of mosaics, which means
that some image parts can be duplicated.

3.3 Unified Dataset

Each class-agnostic dataset we examined presents its own challenges, including the
issue of duplicate images, with some instances occurring across both training and
testing subsets. This duplication undermines the foundational purpose of having
separate splits for model evaluation. To remove the problems associated with the
existing datasets, we refined and combined them into one comprehensive dataset.
In addition to the three datasets previously mentioned, we incorporated additional
images from Roboflow (Dwyer et al., 2024), specifically targeting scenes with more
than 10 object instances to ensure relevance to dense-object counting scenarios.

FIGURE 3.3: Duplicate images detected by perceptual hashing. Im-
age A and Image B have minor variations, such as slight changes in
brightness and compression artifacts. The L1 distance heatmap high-

lights the differences between the two images.

After aggregating the images from all sources, our initial step was to eliminate
duplicates. We employed perceptual hashing to identify and remove such images.
This method, in contrast to direct pixel comparison, better withstands minor varia-
tions like compression artifacts, changes in brightness or contrast, and slight crop-
ping, as shown in Figure 3.3. We detected numerous duplicates both within and
across the different datasets. Moreover, to make the dataset more balanced, we lim-
ited the number of images each class can have, addressing an issue especially preva-
lent in the CA-44 dataset.

We also standardized and unified similar object class names to enhance consis-
tency and generalizability across the dataset. For example, classes labeled as "man-
darin_orange", "orange_(fruit)", and "oranges" in the original datasets were unified
under the "orange" class.

Our unified dataset contains 29,819 images, spanning 466 diverse object classes
ranging from kitchenware and sports equipment to vehicles and animals, with a
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Dataset Images Classes Instances
FSC-147 6,135 147 335,025
FSCD-LVIS 6,195 372 193,148
CA-44 30,085 79 1,171,061
Roboflow 984 11 62,267
Unified 29,819 466 1,263,251

TABLE 3.1: Comparison between the proposed and the existing few-
shot object counting datasets. Roboflow is a set of images we have

additionally collected.

total count of 1,263,251 objects. A detailed comparison with the original datasets is
provided in Table 3.1. We structured the dataset into training, validation, and test
splits, ensuring no overlap in object classes among them— 320 classes in the training
set, 73 in validation, and 73 in testing.

FIGURE 3.4: Statistics of the unified dataset. It covers a diverse range
of visual categories, including animals, plants, food, vehicles, cloth-

ing, tools, equipment, and people.

Originally, each dataset featured its own approach to generating the target, re-
sulting in variations in the density maps across different datasets. To establish con-
sistency in the ground truth targets, we adopted the density map generation method
outlined by Zhang et al., 2016. Given the typically congested scenes characteristic of
object counting tasks, we utilized a geometry-adaptive kernel defined as:

f (x) =
N

∑
i=1

δ(x − xi)× Gσi(x), where σi = αd̄i

Here, for each object centroid xi in the ground truth δ, di represents the average
distance of k nearest neighbors. To generate the density map, δ(x − xi) is convolved
with a Gaussian kernel Gσi(x), where σi is the the standard deviation. In our case,
we used α = 0.3 and k = 3. By applying a Gaussian kernel to each object’s centroid,
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we obtained ground truth targets that accurately reflect the spatial distribution of
the objects.

FIGURE 3.5: Original image, object centroids, and the correspond-
ing density map obtained by convolving geometry-adaptive Gaus-

sian kernel.

3.4 Metrics

Object counting methods are usually evaluated using two widely recognized statis-
tical metrics: Mean Average Error (MAE) and Root Mean Squared Error (RMSE).
These metrics are defined as follows:

MAE =
1
N

N

∑
i=1

|Ci − C∗
i |

RMSE =

√√√√ 1
N

N

∑
i=1

(Ci − C∗
i )

2

Here, N is the total number of images in the evaluation set, Ci is the ground
truth count for the i-th image, and C∗

i is the predicted count. The MAE measures
the average absolute deviation between the predicted counts and the actual counts
across all observations, offering a straightforward and intuitive assessment of pre-
dictive accuracy. The RMSE, on the other hand, calculates the average of the squares
of these deviations, weighting larger errors more heavily. This characteristic makes
RMSE especially sensitive to outliers, thus providing a more conservative measure
of model performance. In essence, while MAE reflects the general accuracy of the
predictions, RMSE indicates their robustness.
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Chapter 4

Approach

4.1 Limitations of State-Of-The-Art

We are interested in an object counting method that can easily scale to handle a large
number of novel visual categories while maintaining the highest possible accuracy.
Few-shot patch-based methods assume the availability of accurate bounding boxes
for extracting patch exemplars during both training and inference, a requirement
that is often impractical in real-world applications. While both few-shot support-
based and zero-shot text-guided methods offer practical solutions to the challenges
posed by manual annotation, there are notable advantages associated with the for-
mer. Visual exemplars in the support set allow for a more direct comparison between
the exemplars and the objects in query images than text prompts can achieve. More-
over, the reliance on pretrained vision-language models for text-guided counting
may introduce biases, as these models might not adequately capture the nuances of
specific visual scenarios.

Scheme Method MAE RMSE

Patch-based
FamNet (Ranjan et al., 2021) 22.56 101.54

CounTR (Liu et al., 2022) 11.95 91.23
LOCA (Ðukić et al., 2023) 10.97 56.97

Reference-less
RepRPN-Counter (Ranjan and Nguyen, 2023) 26.66 129.11

RCC (Hobley and Prisacariu, 2022) 17.12 104.53
LOCA (Ðukić et al., 2023) 16.22 103.96

Text-guided
CLIP-Count (Jiang, Liu, and Chen, 2023) 17.78 106.62

VLCounter (Kang et al., 2023) 17.05 106.16

TABLE 4.1: Quantitative comparison of the state-of-the-art methods
on the FSC147 test set.

As can be seen in Table 4.1, text-guided methods generally underperform in
terms of counting accuracy compared to patch-based methods. Moreover, they have
similar or even inferior results compared to reference-less methods, highlighting dif-
ficulties in leveraging textual representations effectively. This performance discrep-
ancy could partly be attributed to the simplistic nature of the FSC-147 dataset, which
allows reference-less methods to easily identify the objects to count.

Given these observations, we believe that support-based methods should be a
better choice in terms of balancing accuracy and ease of use, as they combine the
strengths of both visual and external exemplars. However, there was not much re-
search done in this direction. To the best of our knowledge, only a few works have
explored this approach extensively. Nevertheless, they lack comprehensive techni-
cal details or evaluations on the FSC-147 dataset, making direct comparisons to other
class-agnostic methods challenging. Although some patch-based few-shot methods
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allow the use of reference images depicting the object of interest, this practice can re-
sult in biased object counts. The primary reason is that those methods were explicitly
trained with query image patches as exemplars, which have a distribution similar to
other objects in the query image. In contrast, external exemplars may originate from
varied sources, environments, and conditions, potentially leading to biased results.

4.2 Proposed Solution

To address the limitations identified in the current state-of-the-art for object count-
ing, we propose developing a novel model capable of integrating various forms of
external visual prompts as input. Each such prompt can contain visual exemplars,
which provide information about the object of interest but are not part of the query
image. We aim to count arbitrary objects based on visual guidance without manual
annotation.

Formally, the model is designed to accept a query image Q ∈ RH×W×3 and can
utilize one or more of the following types of external visual prompts:

• Prompt E (Reference Object Image): Contains one or more images E ∈ RH́×Ẃ×3

depicting the object of interest, each potentially providing different instances
or views. Having multiple images is useful in scenarios where the object of
interest might appear in different forms, orientations, or conditions.

• Prompt C (Cross-Image Counting): Contains one or more images C ∈ RH×W×3

with several bounding boxes BC ∈ Rb×4 per image that highlight the object of
interest. Each such pair can showcase the object of interest in different scenes
or amongst different surrounding objects.

• Prompt K (Reference Counting Result): Contains one or more pairs, each con-
sisting of an image K ∈ RH×W×3 and a corresponding target density map
DK ∈ RH×W . Each pair represents different counting contexts or different
object densities. For example, one pair might show a sparse arrangement of
objects, while another might depict a denser grouping.

The combination of these prompts can vary, providing flexibility in how much
contextual information is available. The objective is to estimate a density map DQ ∈
RH×W for the object specified by the prompts. The estimated object count could be
calculated by summing the values across the density map N = SUM(DQ). This
approach eliminates the need to annotate each query image, significantly reducing
labor and time costs while enhancing scalability and flexibility.

Moreover, we plan to evaluate the model using both newly proposed and ex-
isting benchmark datasets. This would allow us to directly compare the effective-
ness of our support-based method against patch-based and text-guided methods.
Through this approach, we aim to provide a more adaptable and efficient solution
for class-agnostic object counting that accommodates a wide range of applications
and minimizes reliance on labor-intensive manual annotations.
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4.3 Architecture

To implement our proposed solution, we introduce a novel transformer-based archi-
tecture. This model incorporates a feature extraction module specifically designed to
derive representations from both the query image and the visual exemplars. Taking
inspiration from LOCA (Ðukić et al., 2023) and CounTR (Liu et al., 2022), these repre-
sentations are subsequently processed by a feature interaction module. This module
refines the exemplars by incorporating contextual information from the query image
features. Following this, the enhanced exemplars are depthwise convolved with the
image features to generate a response map. This map is then passed to the density
prediction module, which further refines and upscales it to produce the final den-
sity map. Each component of this architecture is explained in detail in the following
sections.

FIGURE 4.1: High-level architecture of the proposed model.

4.3.1 Feature Extraction Module

The feature extraction module is specifically designed to efficiently handle all types
of external prompts, extracting rich representations of both image and exemplar
prototypes. It consists of two primary encoders: a Vision Transformer (ViT) and
a lightweight Convolutional Neural Network (CNN).

The ViT architecture excels in generating high-dimensional feature maps that
comprehensively capture relational information across the entire image. For our
purposes, we employ EfficientViT (Cai et al., 2022), a state-of-the-art transformer
architecture optimized for high-resolution dense prediction tasks. It incorporates
a multi-scale attention module that enables global receptive field capabilities and
multi-scale learning. These features are accomplished with minimal hardware de-
mands, making it ideal for our task. This encoder is used for processing images Q,
C, and K, which typically contain complex scenes with multiple objects and detailed
backgrounds. After feeding the images to the encoder, we obtain the corresponding
feature maps FQ, FC, FK ∈ Rh×w×d.
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FIGURE 4.2: a). Fused-MBConv block. We use a variant without the
Squeeze-and-Excitation block in the middle. b) CNN Encoder. The
encoder starts with a 1 × 1 convolution that projects the input image
into a higher dimensional space. This is followed by L repetitions
of the Fused-MBConv block, each succeeded by a 2 × 2 MaxPooling

layer.

Conversely, the CNN encoder is used for processing the image E, which depicts
a single object of interest. This encoder is optimized to efficiently extract object fea-
tures from these simpler images, focusing on key characteristics without the addi-
tional computational overhead. It consists of a pointwise convolution that projects
the RGB image into a high-dimensional space and a number of Fused-MBConv
(Gupta and Tan, n.d.) blocks followed by a max pooling operation as shown in Fig-
ure 4.2. The resulting feature map FE ∈ Rh́×ẃ×d captures the key characteristics of
the object of interest.

The extracted image features are then used to obtain object prototypes repre-
sented by high-dimensional vectors (embeddings). Specifically, CNN features FE go
through the Global Average Pooling layer (Lin, Chen, and Yan, 2013) resulting in the
PE ∈ Rd vector. FC with the corresponding bounding boxes BC are passed to the RoI
Align layer (He et al., 2017) with a single bin leading to the PC ∈ Rb×d tensor. For
FK, the features are element-wise multiplied with the density map DK to compute
a weighted average, represented by the formula PK = ∑(FK⊙DK)

∑ DK
, where ⊙ denotes

element-wise multiplication, producing the vector PK ∈ Rd.
Given that the object prototypes are derived from various types of prompts, they

inherently carry features with varying levels of abstraction and focus. To address
this variability, our architecture incorporates an additional projection module. This
module is designed to map the object prototypes from different sources into a unified
semantic space. The projection module consists of a fully connected layer coupled
with an activation function, followed by an Efficient Channel Attention (Wang et



18 Chapter 4. Approach

al., 2019) layer. This layer dynamically adjusts the importance of each channel in
the feature vector, thereby enhancing the most relevant features and suppressing
the less useful ones. The detailed scheme of this projection module can be seen in
Figure 4.3.

FIGURE 4.3: Object prototype projection module. Here, n represents
the number of prototypes, and d is the dimension of each prototype.
The input is first projected using a fully connected layer, followed by
GELU activation. The Efficient Channel Attention (ECA) then gener-
ates channel-specific weights by applying a 1D convolution that treats
each channel as an individual element in a sequence, focusing on
local inter-channel relationships within a fixed-size window. These
weights are normalized through a sigmoid function and element-wise

multiplied with the projected vector.

4.3.2 Feature Interaction Module

The Feature Interaction Module is designed to fuse the information from the query
image features with the object prototypes, enhancing the model’s ability to gener-
alize and specifically tune the exemplars to the contextual features of the query im-
age. It generalizes and specifically tunes the exemplars to the image features by
alternating self- and cross-attention layers. Self-attention is employed on the object
prototypes, enabling the model to consolidate information by analyzing the inter-
relationships among them. Subsequently, cross-attention is utilized to provide the
interaction between the prototypes and the image features. Here, the image features
serve as both the key and value in the attention mechanism, with the object proto-
types acting as the query. This setup enables the model to map and align prototype
features directly against the corresponding features in the query image, effectively
tuning the prototypes to be more contextually relevant to the specific image being
processed.

The module leverages a series of modified transformer encoder layers, which
comprise multi-head attention (Vaswani et al., 2017) followed by a feedforward net-
work. Its detailed diagram is presented in Image 4.4. Given tensors Q ∈ Rn×d,
K, V ∈ Rm×d as input, this layer performs the following transformations:

Q
′
= Q + Drop((MHA(LN(Q), K, V)))

Q
′′
= Drop(GELU(LN(Q

′
)W1 + b1))

Q
′′′
= Drop(Q

′′
W2 + b2)

Q∗ = Q
′
+ Q

′′′
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Here, LN represents layer normalization (Ba, Kiros, and Hinton, 2016), Drop de-
notes the dropout operation (Srivastava et al., 2014), and Q∗ is the output.

The combined object prototypes tensor P = P0 is formed by stacking PE, PC and
PK. When no prompts are provided, the model operates in a reference-less mode,
utilizing a single learned vector of tokens as a generalized object prototype, which
serves as P. The prototypes, along with the reshaped query features FQ ∈ Rhw×d,
pass through the feature interaction layers in the following sequence, where l = 1...L
indexes the layers within the module.

P∗
l = TransformerLayersel f

l (Q = Pl−1, K = Pl−1, V = Pl−1)

Pl = TransformerLayercross
l (Q = P∗

l , K = FQ, V = FQ)

FIGURE 4.4: a) The transformer layer incorporates a multi-head at-
tention followed by a feedforward network. b) Feature interaction
module comprises L blocks of self- and cross-attention transformer

layers.

4.3.3 Density Regression Module

The refined object prototypes P∗ = PL are depth-wise correlated with the image
features FQ. Each prototype thus generates a multi-channel similarity tensor. The
individual n prototypes are then combined through a per-channel, per-pixel max
operation, forming a joint response tensor R∗ with the same dimensions as FQ. This
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response tensor is then processed by a decoder. The decoder consists of three up-
sampling blocks, each comprising a convolution layer followed by a 2× bilinear in-
terpolation. Following the final up-sampling block, a fully connected layer is em-
ployed as the density regressor. This layer outputs a one-channel density map DQ,
spatially corresponding to the input query image, which represents the estimated
distribution of objects within the image. The total count of objects is then estimated
by summing the values across this density map, expressed as N = SUM(DQ).

4.3.4 Implementation Details

We resize the input images Q, C, and K to the H = W = 512 pixels. The image E,
which is processed by the CNN encoder, is resized to the H́ = Ẃ = 64 pixels. For
the ViT encoder, we use the EfficientViT-SAM-L0 variation, which outputs a feature
map with 256 channels and has a spatial reduction of 8. This is why the decoder
in the density regression module has 3 up-sampling blocks with 2× interpolation.
Similarly, the CNN encoder also has 3 blocks, leading to the same 8× spatial reduc-
tion and producing the 8×8 tensor with 256 channels. The learned tokens for the
reference-less mode are initialized from a normal distribution.

The feature interaction module has 3 blocks, resulting in 6 alternating self- and
cross-attention transformer layers. The MHA inside the transformer layer consists
of 8 attention heads with a hidden dimension of 256, while the feedforward network
has the hidden dimension c = 1024. Dropout is applied with a probability of 0.1.

4.4 Training

4.4.1 Procedure

The proposed and benchmark datasets do not provide a fixed set of external exem-
plars for each query image. Consequently, our training procedure is designed to
dynamically generate these exemplars rather than relying on a predefined set. For
each query image, we randomly select a subset of images from the dataset that share
the same object class but are distinct from the query image. We then use this sub-
set to generate the prompts. This approach ensures the exemplars are both relevant
and varied, enhancing the model’s robustness by preventing overfitting to specific
exemplar instances.

The dataset already includes annotations for exemplar bounding boxes and den-
sity maps, which simplifies the process of generating prompts. Specifically, prompts
C and K are directly derived without additional processing steps. The images for
prompt E are produced by cropping around the object of interest using the exemplar
bounding boxes. Note that C, K, E are each sourced from different entries within the
dataset, ensuring that they feature distinct exemplars from different images.

4.4.2 Loss Function

Our model is trained using the normalized L2 loss between the predicted density
map DQ and the ground-truth map D. It is defined as:

L =
1
C
∥D − DQ∥2

2
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Here, C represents the number of objects in the batch. This normalization en-
sures that the loss emphasizes errors in images containing many objects, which often
present the most challenging scenarios due to high local object densities.

4.4.3 Augmentation

To enhance the robustness of our model, we apply standard data augmentation tech-
niques to both the query image and the images used for prompts. These techniques
include horizontal flipping and color jitter, which help the model generalize better
across varying visual conditions.

Furthermore, we implement additional augmentations targeting the objects within
these images. Specifically, we employ a random perspective transformation and ap-
ply color jitter individually to each object. This means that each object receives a
unique degree of augmentation. While object counting tasks typically assume that
objects within the same image should have a similar appearance, this additional
layer of augmentation is crucial for addressing challenges associated with using ex-
ternal exemplars. Since these exemplars can significantly differ from the objects in
the query image in terms of appearance, such augmentations ensure that our model
can reliably generalize from them despite their visual discrepancies.

FIGURE 4.5: Augmentation example.

4.4.4 Details

The parameters of the ViT encoder are frozen, while all other model parameters
are trained over 50 epochs using the AdamW (Loshchilov and Hutter, 2017) opti-
mizer with a weight decay of 10−3. The learning rate is set to 10−4 for the first 30
epochs and reduced to 10−5 for the remaining 20. We employ gradient clipping with
a maximum norm of 0.01 to stabilize training. The model is implemented in Pytorch
(Paszke et al., 2019) and is trained on a single A100 GPU, using a batch size of 8
in mixed precision mode, with the entire training process taking approximately 60
hours.

The types of prompts used are selected randomly for each batch. Given the
three types of prompts available C, K, E , there are seven possible combinations of
these prompts that can be utilized, plus an additional reference-less mode where
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no prompts are used. Each combination offers a different context and level of de-
tail about the target object, varying the information provided to the model. When
a particular type of prompt is not used in a batch, the specific model components
or weights that process this prompt do not receive training updates in that itera-
tion. By not consistently training on the same prompt types, the model may better
learn to handle varied input configurations and adapt to different kinds of informa-
tion about the objects. It encourages the model to not rely excessively on any single
prompt type, which can be beneficial in scenarios where the availability of certain
types of data may vary.

During both training and evaluation, the prompt E comprises 3 images, each
cropped from the same original image to provide multiple views of the object. The
prompt C includes 1 image that contains 3 bounding boxes, each highlighting an ob-
ject of interest within the scene. Meanwhile, prompt K consists of 1 image accompa-
nied by a corresponding density map, providing context on the spatial distribution
of objects. To get a fair and consistent evaluation, we fix the random seed during
the evaluation phase. This ensures that the same set of prompts is used for each
evaluation run, making the results comparable and reproducible.

4.5 Evaluation

4.5.1 Quantitative Results

To assess the performance of our model, we compute the Mean Average Error (MAE)
and the Root Mean Squared Error (RMSE) based on the predicted and actual object
counts. Specifically, we test our model in three modes: patch-based, support-based,
and reference-less. For our dataset, we trained the state-of-the-art methods accord-
ing to the procedures described in their original papers. For the FSC-147 dataset,
we used the reported metrics. Additionally, we trained the CounTR model using
reference object images as exemplars without changing the architecture.

In the patch-based mode, our model utilizes patch exemplars located within the
query image itself, denoted as prompt P . For this mode, the prototype extraction
process follows the same method as used for prompt C. In the reference-less mode,
instead of using object-specific prototypes, we employ learned tokens that represent
generic object features.

On the proposed dataset, our model is compared with FamNet, LOCA, and
CounTR. In the few-shot patch-based mode on the validation set, our model achieves
performance comparable to LOCA, albeit with a slightly higher RMSE. On the test
set, it shows a slight underperformance, with a 7.67% and 21.93% reduction in MAE
and RMSE, respectively, compared to the best-performing model. This discrepancy
is attributed to the fact that other methods leverage additional techniques tailored
to the patch-based scenario, such as integrating information from bounding box co-
ordinates or implementing post-hoc error correction routines. In the reference-less
mode, our model once again matches LOCA, achieving state-of-the-art results. It
performs slightly better on the validation set but exhibits worse performance on
the test set. For the support-based mode, we assess all possible combinations of
prompts. We use the same number of exemplars as during training. When utilizing
all three types of prompts (C, K, and E ), our model surpasses the best patch-based
method on the validation set and achieves similar results on the test set. When each
prompt type is used separately, the model achieves its best performance with the C
prompt, having 13.91 MAE and 6.2 RMSE. Utilizing the K prompt results in a 15.7%
and 9.36% increase in MAE and RMSE, respectively, compared to the C prompt
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Scheme Method
Prompts Val Set Test Set

P C E K MAE RMSE MAE RMSE

Patch-based

FamNet + - - - 27.61 65.51 32.52 79.78
CounTR + - - - 15.34 38.23 15.22 40.04
LOCA + - - - 13.11 30.56 14.91 34.42
Ours + - - - 13.6 34.23 16.16 44.09

Support-based

CounTR - - + - 17.23 48.11 18.58 52.11
Ours - + + + 12.78 30.09 15.3 39.42
Ours - + + - 12.92 31.22 15.1 39.95
Ours - + - + 13.72 35.96 16.01 40.23
Ours - - + + 14.59 38.77 15.99 46.34
Ours - + - - 13.91 35.66 16.2 44.51
Ours - - + - 15.7 40.13 17.04 49.98
Ours - - - + 16.5 45.78 18.8 55.02

Reference-less
LOCA - - - - 19.04 59.2 21.13 63.06
Ours - - - - 18.55 54.98 22.24 65.72

TABLE 4.2: Comparison with state-of-the-art on the proposed dataset.

on the validation set. This performance drop can be attributed to the fact that K
contains only one exemplar, placing the model in a one-shot setting. Relative to
CounTR, our model shows a 10-15% improvement on the same inputs. The results
are summarized in Table 4.2.

On the FSC-147 dataset, we observe similar results, presented in Table 4.3. Our
model matches the state-of-the-art in the reference-less mode. In the patch-based
mode it performs on par with CounTR. In the support-based mode our model out-
performs CounTR and achieves the results close to the patch-based. However, the
gap between patch-based and support-based is larger here than on the proposed
dataset. This is probably due to the smaller dataset size, so our model underfits and
does not generalize enough.

Scheme Method
Prompts Val Set Test Set

P C E K MAE RMSE MAE RMSE

Patch-based

FamNet + - - - 24.32 70.94 22.56 101.54
CounTR + - - - 13.13 49.83 11.95 91.23
LOCA + - - - 10.23 32.56 10.97 56.97
Ours + - - - 13.45 39.37 11.82 66.13

Support-based

CounTR - - + - 14.87 55.42 13.58 92.37
Ours - + + + 13.64 46.22 12.39 77.81
Ours - + + - 13.51 44.34 12.91 83.75
Ours - + - + 14.22 51.67 14.17 89.46
Ours - - + + 14.59 49.41 13.93 82.07
Ours - + - - 14.05 57.08 13.78 84.19
Ours - - + - 15.01 58.13 14.51 93.82
Ours - - - + 16.33 67.52 15.05 105.86

Reference-less
LOCA - - - - 17.43 54.96 16.22 103.96
Ours - - - - 17.01 72.84 16.17 102.02

TABLE 4.3: Comparison with state-of-the-art on the FSC-147 dataset.

We also examine our model’s performance based on the type of the prompt used
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and the size of the objects within those prompts. For prompts E and C, we calcu-
late the size as the average area of their respective exemplar bounding boxes. For
prompt K, we compute the average area of all objects within the image. Objects
are categorized based on the area: small (less than 0.5% of the image), medium (be-
tween 0.5% and 5%), and large (greater than 5%). As indicated in Table 4.4, the
performance varies significantly with the size of the object and the type of prompt.
Cross-image counting using prompt C is most effective with large object exemplars,
whereas the use of reference object images (prompt E ) performs best with small ex-
emplars. This variation can be attributed to the influence of surrounding context in
the feature maps. For small objects, this context can disproportionately affect the
feature representation, leading to biased embeddings. In contrast, reference object
images typically contain minimal contextual information beyond the object itself.

Prompt
Average Object Size

Small Medium Large
C 15.93 13.05 12.55
E 14.02 16.01 15.47
K 15.57 17.48 14.59

TABLE 4.4: MAE by prompt type and object size category on the val-
idation set of the proposed dataset.

Furthermore, we assess the cross-dataset generalization capabilities of our model
following the methodology described by Ranjan et al., 2021. Specifically, we train
our model on the FSC-147 dataset and subsequently evaluate it on the CARPK dataset.
This latter dataset comprises aerial images of parking lots used for car counting,
which presents a context considerably different from that of FSC-147. To avoid any
overlap in object classes between the training and testing datasets, we ensure that
car images are excluded from the FSC-147 training set. According to the approach
used by Ranjan et al., 2021, we select twelve exemplars from the CARPK training
set, which serve as reference object images, constituting prompt E. The performance
of our model on this dataset, as reported in Table 4.5, demonstrates state-of-the-art
cross-dataset generalization. This result underscores that current few-shot methods
are generally not designed nor trained to work effectively with external prompts.

Method MAE RMSE
FamNet 28.84 44.47
LOCA 9.97 12.51
Ours 8.62 10.84

TABLE 4.5: Cross-dataset generalization comparison on the CARPK
dataset.

4.5.2 Qualitative Results

Figure 4.6 presents the qualitative results of our model applied to the cross-image
counting task using prompt C. In the displayed example, we compare the predicted
density maps for the same query image using various exemplars. Despite notice-
able differences in appearance between the objects in the query image and those in
the prompts, the model accurately estimates counts that are very close to the actual
numbers. The predicted density maps visually align well with the ground truth,
demonstrating the model’s precision in spatially localizing objects within the scene.
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FIGURE 4.6: Qualitative results in the cross-image counting task.

4.5.3 Complexity

As illustrated in Table 4.6, our proposed architecture has nearly the same total num-
ber of parameters as LOCA and half as many trainable parameters, while its com-
putational complexity is comparable to other state-of-the-art methods. Despite in-
corporating the Vision Transformer (ViT) as a backbone, which is typically resource-
intensive, the overall complexity is not largely affected. It’s important to note that
during training, the ViT encoder processes additional images from the C and K
prompts, significantly increasing computational demands. However, during infer-
ence, the complexity is reduced as the features from the prompts can be precom-
puted and used directly. This optimization also applies to the CNN encoder and the
object prototype projection modules, which may not be utilized during inference,
further reducing computational load.

Method GFLOPs
Number of parameters
Trainable Total

FamNet 55 760K 26M
CounTR 91 99M 100M
LOCA 80 11M 37M
Ours 102 6M 36M

TABLE 4.6: Computational complexity and the number of parame-
ters.
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Chapter 5

Experiments

5.1 Backbone Selection

Selecting an appropriate backbone is crucial for optimizing the performance of our
model. Prior to finalizing the model’s architecture and initiating full-scale training,
we conducted an analysis of various pretrained backbones. We specifically evalu-
ated four different options:

1. EfficientNet-50 SwAV. SwAV (Caron et al., 2020) is a self-supervised learning
algorithm that generates rich features that are well-suited for transfer learning on
downstream tasks. We tested the CNN model EfficientNet-50 (Tan and Le, 2019)
with SwAV weights, which is also employed as the backbone in LOCA.

2. EfficientViT-L0 SAM. EfficientViT (Cai et al., 2022) is a series of lightweight,
high-resolution Vision Transformer models. We tested the L0 variant with an 8×8
patch size, pretrained for as backbone in the Segment Anything Model (Kirillov et
al., 2023), a state-of-the-art zero-shot segmentation model. We believe the features
learned for zero-shot segmentation are highly effective for our few-shot object count-
ing task.

3. ViT-L DINOv2. DINOv2 (Oquab et al., 2023) is a family of models trained in a
self-supervised manner, which produce robust visual features and achieve state-of-
the-art results in downstream tasks. We tested a distilled ViT-L variant with a 14×14
patch size.

4. ViT-H I-JEPA. I-JEPA (Assran et al., 2023) is another self-supervised approach
that excels in learning highly semantic image features. It achieves results compara-
ble to DINOv2 but is more effective at capturing low-level image details. We tested
a ViT-H model with a 16×16 patch size.

FIGURE 5.1: Evaluation of different backbones.

We used these models as backbones in our architecture and performed training
on a small subset of our proposed dataset for a fixed number of steps. The over-
all architecture did not differ much from the final variant, only missing the object
prototype projection modules. Additionally, we adjusted the number of blocks in
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the density regression module to match each backbone’s spatial reduction — three
blocks for EfficientViT and EfficientNet, and four blocks for ViT models, with the
last block in the DINOv2 setup featuring an upsampling factor of 1.75.

The training was performed on 10% of the dataset for 12 epochs without the val-
idation and test sets, meaning we only analyzed the behavior on the training set. We
analyzed the convergence speed and execution time of each backbone. As depicted
in Figure 5.1, all backbones delivered comparable MAE scores, with EfficientViT and
EfficientNet showing slightly better results. However, the ViT-L and ViT-H models
exhibited up to 13.5× longer execution times.

Given our time and computational constraints, we opted not to proceed with the
regular ViT transformer models. The final decision was between EfficientNet and
EfficientViT, both offering similar performance. We ultimately selected EfficientViT
due to its multi-scale feature capabilities.

Our approach to selecting a backbone has both strengths and limitations. Test-
ing different backbones using a consistent, scaled-down version of the architecture
allows for a more rapid and resource-efficient comparison of their impacts on the
model’s performance. This is crucial when resources are limited or when a quick
decision is needed. However, this method does not assess how changes in the back-
bone might interact with different architectural adjustments, such as projection mod-
ules or feature interaction components.

5.2 Ablation Study

We finally analyze the architectural design choices and examine the influence of the
input resolution. The experiments are performed on the proposed dataset using all
three external prompt types. The model is trained on an A40 GPU with a batch size
of 4, maintaining the constant learning rate of 3 × 10−5 for 50 epochs.

We first examine the significance of maintaining a high input image resolution.
Upon reducing the resolution from 512×512 to 448×448 pixels, we observe a 5% de-
crease in performance. Further reduction in resolution to 384×384 pixels results in
an 11% drop in MAE and a 15% drop in RMSE compared to the baseline. The results
are presented in Table 5.1.

Resolution 384 448 512
MAE 14.56 13.77 13.11
RMSE 39.29 35.86 34.15

TABLE 5.1: Impact of the input image resolution.

Next, we evaluate the importance of the object prototype projection modules. We
test three alternative configurations: one without any projection module, one with a
projection module that excludes the Efficient Channel Attention (Wang et al., 2019)
layer, and one where the ECA is replaced with a Squeeze-and-Excitation (Hu et al.,
2017) block.

No projection Only FC ECA SE
MAE 13.78 13.53 13.11 12.98
RMSE 37.02 35.34 34.15 34.54

TABLE 5.2: Ablation of the object prototype projection module.
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As shown in Table 5.2, removing the projection layer or excluding the ECA leads
to the 5% and 3% performance drop, respectively. The SE block achieves results
almost identical to those with the ECA, having a slightly better MAE. However, the
ECA is still preferred for being more lightweight.

Additionally, we explore the impact of varying the number of blocks in the fea-
ture interaction module, where each block consists of one self-attention and one
cross-attention transformer layer. Results, displayed in Table 5.3, indicate that using
three blocks provides the optimal balance between performance and model com-
plexity.

# Blocks 1 3 5
MAE 15.01 13.11 12.99
RMSE 43.72 34.15 36.35

TABLE 5.3: Ablation of the feature interaction module.
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Chapter 6

Conclusions

6.1 Discussion

This work addresses the challenge of class-agnostic object counting. We conducted a
comprehensive analysis and comparison of current state-of-the-art methods. Exist-
ing approaches primarily leverage either patch exemplars or text prompts to specify
the target objects, each one presenting its own set of challenges. Our research fo-
cuses on few-shot object counting using external visual prompts. This approach
requires the model to count objects from new categories in an image, aided by a few
exemplars not originally part of that image.

We have developed a novel network designed to efficiently utilize various types
of external prompts. The model incorporates a multi-scale feature extractor and a
feature interaction module that effectively manages both intra-relations and inter-
relations among the features. Additionally, we address the limitations of current
class-agnostic benchmark datasets by introducing a unified and refined dataset that
better meets the needs of this domain.

Our experiments demonstrate that our model achieves results comparable to ex-
isting few-shot patch-based methods. Notably, on the CARPK dataset, our model
exhibits state-of-the-art performance in cross-dataset generalization, underscoring
its robustness and the effectiveness of our approach in real-world scenarios.

6.2 Limitations and Future Work

While our model demonstrates strong performance across various settings, it is not
without its limitations. Currently, the effectiveness of the model heavily relies on
the quality and relevance of the external prompts provided, which can vary signif-
icantly across different datasets and scenarios. Future work could explore various
strategies or adaptive mechanisms for exemplar selection to enhance robustness and
accuracy. Additionally, while the computational requirements of our model are not
excessively high, they could still limit deployment in resource-constrained environ-
ments. Optimizing the model to reduce computational demands without sacrificing
performance would be a beneficial direction.

Further, we envision adapting the proposed approach to few-shot object detec-
tion. This adaptation would require enhancements in the model’s ability to not only
recognize and count but also precisely localize objects within an image. It would
involve more sophisticated handling of spatial relationships and potentially inte-
grating additional features from exemplars.
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