
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Extracting Text Representation from
Pretrained Language Models via Edit

Distance-based Loss Function

Author:
Yurii ANTENTYK

Supervisor:
Serhii HAVRYLOV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2024

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Yurii ANTENTYK, declare that this thesis titled, “Extracting Text Representation
from Pretrained Language Models via Edit Distance-based Loss Function” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Extracting Text Representation from Pretrained Language Models via Edit
Distance-based Loss Function

by Yurii ANTENTYK

Abstract

Transformers have proven themselves as versatile architecture for a wide range of
NLP tasks. Because of unsupervised pre-training on large text corpus and a drastic
increase in a number of parameters, both encoder and decoder architectures were
able to generalize well enough to show emergent abilities and achieve SOTA results
in many downstream tasks by prompting or fine-tuning.

This makes pre-trained language models tempting to be used for sentence em-
bedding, as the meaningful fixed-vector representation of text is crucial for good
performance of such tasks as text similarity, semantic search, etc. The topic has been
extensively explored, and the most successful approaches can be viewed as different
variations of extracting sentence representations from the hidden states of language
models, which have been fine-tuned using domain-specific datasets.

On the other hand, other works try to extract the embedding vector from the
pre-trained language model without altering its parameters, which opens the way to
turn the pre-trained language model into an embedding model without fine-tuning.
This is done by optimising the latent reparameterised sentence space, which is then
used as additional context while decoding the original sentence. While showing
promising recoverability results, this approach has been shown to suffer from expo-
sure bias, a discrepancy between the distribution of sequences that were observed
and generated by the model.

This work aims to study the way to condition a pre-trained language model
with a latent variable as well as to mitigate the exposure bias by incorporating Opti-
mal Completion Distillation loss, an alternative to Maximum Likelihood Estimation,
which minimises the edit distance between a sampled text from the model and a
ground truth sentences.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I would like to thank my dear mother for supporting my through this journey. Spe-
cial gratitude goes to my supervisor Serhii Havrylov, for his guidance, advices and
unfailing help in difficult moments.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Embeddings in Pre-Transformer Era . 1
1.2 Learning Embeddings using Transformers 1

2 Related Works 4
2.1 Language Modelling Setup . 4
2.2 Getting Embeddings from Language Models 4
2.3 Modelling Embeddings for Semantic Text Similarity 5
2.4 Unsupervised Approaches . 5
2.5 Tackling Semantic Search . 6
2.6 Learning Embeddings Directly from the Model 6

3 Methodology 8
3.1 Gap Analysis . 8

3.1.1 Averaging May Produce Bad Results 8
3.1.2 Limited use of Transformers in Some Downstream Tasks 8
3.1.3 Learning Embeddings Directly from the Model is Experimen-

tal and Challenging . 9
3.2 Research Questions . 9
3.3 Steering . 9
3.4 Exposure Bias . 10
3.5 Cross Entropy and Optimal Completion Distillation 11
3.6 Calculating Optimal Completion Policy 13

4 Model 15
4.1 Architecture . 15
4.2 Steering . 16

5 Experiments 17
5.1 Word-Level Language Modelling on Penn Treebank Dataset 17
5.2 Training Steering Embeddings on Penn Treebank Word-Level LSTM . 19
5.3 Estimating the Quality of MLE Steering Embeddings 21

6 Discussion 22
6.1 Difficulties of Learning OCD Steering Embeddings 22
6.2 On the quality of the resulting embeddings 22

vi

7 Future Work 24
7.1 Exploring Alternative Injection Locations 24
7.2 Altering Optimal Completion Objective Function 24
7.3 Further Evaluation of Steering Embeddings 24
7.4 Steering Transformers . 25
7.5 Direct Optimization of the Optimal Completion Objective Function . . 25

8 Conclusions 26

Bibliography 27

vii

List of Figures

3.1 Steering approach described in Subramani, Bowman, and Cho, 2019.
Embedding vector z is added to hidden state across all timestamps to
incorporate the conditioning of the input sentence x on the embed-
ding vector z. z is then trained to maximize the probability of input
sentence x. (bos stands for begining of sequence) 10

3.2 Steering approach from Subramani, Bowman, and Cho, 2019 + Opti-
mal Completion Distillation. We hypothesize that the quality of the
embedding z may be improved by conditioning on the samples from
the language model and using optimal completion policy πOC, which
determines optimal completion tokens based on the edit distance be-
tween sampled trajectory x̂<i and expected trajectory x. 12

3.3 Edit distance matrix for generated sequence "SATRAPY" (vertical) and
target sequence "SUNDAY" (horizontal). Set of optimal completion
tokens for each generated prefix is determined based on the continua-
tion of the target prefixes, which have the minimum edit distance with
the sampled prefix at the current timestamp. The figure is an adapta-
tion from Sabour, Chan, and Norouzi, 2018. (BOS and EOS stand for
begining and end of sequence respectively) 13

4.1 LSTM cell. Prediction for time stamp t is based on previous hidden
state ht−1, previous cell state ct−1 and current input xt. Cell state is
changed via "update" and "forget" gates. (original picture "LSTM Cell"
by Guillaume Chevalier, licensed under CC BY 4.0). 15

4.2 Visualization of the 1-layer LSTM language model (white cells) as well
as the chosen strategy of incorporating steering vectors into the frozen
pre-trained language model (green cells). Dropout layers after emb
and proj layers of the language model are omitted for clarity. 16

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
https://creativecommons.org/licenses/by/4.0/

viii

List of Tables

5.1 Experiment results for different configurations of word-level LSTM
language model trained on Penn Treebank Dataset. The model from
ptb-word-lstm-006 was chosen for training steering embeddings on. . 18

5.2 Comparison between different configurations of steering embeddings
trained on Penn Treebank dataset from a pre-trained LSTM language
model from ptb-word-lstm-006 . 20

5.3 The results of cross-evaluation of steering MLE embeddings versus
traditional embedding approaches on SST2 dataset 21

5.4 The results of cross-evaluation of steering MLE embeddings versus
traditional embedding approaches on SNLI dataset 21

ix

List of Abbreviations

NLP Natural Language Processing
RNN Recurrent Neural Network
LSTM language model Long short-term memory language model
MLE Maximum Likelihood Estimation
ELMo Embeddings from Language Models
BERT Bidirectional Encoder Representations from Transformers
MLP multilayer perceptron
SNLi dataset Stanford Natural Language inference dataset
SBERT Sentence BERT
BEIR Benchmarking-IR
OCD Optimal Completion Distillation
RL Reinforcement Learning
OC policy Optimal Completion policy
KL divergence Kullback-Leiber divergence
BOS token beginning of sequence token
EOS token end of sequence token

1

Chapter 1

Introduction

1.1 Embeddings in Pre-Transformer Era

The technique of encoding categorical entities into fixed-vector embeddings is still
used in various domains, such as recommender systems, graph representation learn-
ing, speech processing, natural language processing, etc. In Natural Language Pro-
cessing (NLP), in particular, the problem of learning highly informative dense em-
beddings for representing words / sentences / documents has been the subject of
long-term research with many architectures and approaches. While early methods
(word2vec Mikolov et al., 2013, glove Brochier, Guille, and Velcin, 2019) directly
optimize similarities/dissimilarities between word embeddings based on their sur-
rounding context, more recent approaches like variational autoencoders Kingma
and Welling, 2014 explore the idea of latent variable modelling, which assumes
the existence of a latent space, from which the observed data might be fully re-
constructed. Together with the introduction of recurrent neural networks, this has
laid the foundation of sequence-to-sequence architecture Sutskever, Vinyals, and
Le, 2014, which introduced an encoder-decoder architecture for learning a mapping
between sequences of arbitrary lengths . The original paper tackled the problem
of machine translation, while others have used the same architecture for language
modelling in a semi-supervised fashion, achieving comparable performance in text
classification Dai and Le, 2015 and sentence generation tasks Bowman et al., 2016.

Because Recurrent Neural Networks (RNNs) were known to suffer from a van-
ishing gradient problem Pascanu, Mikolov, and Bengio, 2013, they could not utilize
the bigger context when training, limiting their ability to capture long-term depen-
dencies Bengio, Simard, and Frasconi, 1994 and deal with longer sequences Cho et
al., 2014. The introduction of the attention mechanism Bahdanau, Cho, and Bengio,
2015 has allowed the decoder to access the outputs of the encoder at every times-
tamp, thus reducing the gradient path length and dependency on the latent variable
to model the output sequence.

1.2 Learning Embeddings using Transformers

The idea of using attention mechanism for temporal dynamics modelling was fur-
ther developed into a transformer architecture Vaswani et al., 2017, where self and
cross-attention are one of the few mechanics used to capture the semantics and tem-
poral structure of the input data. Despite implicit temporal dynamics modelling,
transformer-based architectures like T5 Raffel et al., 2020, BERT Devlin et al., 2019,
GPT Brown et al., 2020 and their derivatives still hold state-of-the-art results on mul-
tiple information retrieval downstream tasks, such as zero-shot text search, question
answering, fact-checking, etc.

2 Chapter 1. Introduction

This success owed much to the unsupervised pretraining and fine-tuning paradigm.
The particular implementation of the transformer model was first trained to do lan-
guage modelling on a large corpus of unlabeled data. These checkpoints were made
public, which simplified the process of replicating the experiments and adapting the
pre-trained model to solve the downstream task in an end-to-end fashion. The pro-
cess of fine-tuning takes much less time and computational resources compared to
training from scratch, with some works claiming to achieve comparable results by
fine-tuning only the biases of the model Zaken, Goldberg, and Ravfogel, 2022.

Even though input sequence embedding is not explicitly modelled by trans-
former architecture, learning fixed-vector representations is still important for a few
NLP downstream tasks, such as semantic search, semantic text similarity and natu-
ral language inference. Embeddings also lie at the core of vector databases, which
enable search for the relevant documents based on the semantics of the query, as
opposed to a traditional keyword-based search. This is made possible through tech-
niques like approximate nearest neighbours or locality-sensitive hashing, which as-
sume that a meaningful fixed-vector representation can be derived from the docu-
ment or a query.

With previous works, attempts have been made to tackle the problem of learn-
ing distributed representation for text using transformers in different ways. This in-
cluded solving semantic search via prompting (cross-encoder setup in Muennighoff,
2022), fine-tuning (bi-encoder setup in Muennighoff, 2022, Reimers and Gurevych,
2019) or altering the cross-attention mechanics of the transformer to learn sentence
embeddings explicitly Wang, Reimers, and Gurevych, 2021. However, with the
number of parameters of transformer models reaching hundreds of billions Brown
et al., 2020, this poses challenges to the fine-tuning approaches at this scale.

Additionally, as the computational capabilities of edge devices increase, employ-
ing embeddings at the edge presents new hurdles, such as the need to research the
methods for compressing Pansare et al., 2022 or binarization Shen et al., 2019 to
save memory space and computational resources (with dedicated binarization ap-
proaches needed to achieve comparable accuracy as opposed to binarizing the exist-
ing floating-point models/embeddings).

With the increasing number of parameters, the researchers observed the emer-
gent abilities in Large Language Models, such as in-context learning, instruction
following, and step-by-step reasoning Zhao et al., 2023, meaning that these models
have been able to capture the structure of the human language well enough to suc-
cessfully generalize in out-of-domain observations. This makes the idea of finding a
way to extract the sequence embedding without altering the pre-trained model ap-
pealing and worth researching. This idea was explored with the Long short-term
memory (LSTM) language model Subramani, Bowman, and Cho, 2019. The au-
thors showed the existence of the reparameterized sentence space and presented the
way to learn the sentence embedding without altering language model parameters,
showing promising recoverability results. Later, a similar approach was explored
Subramani and Suresh, 2020 on transformer-based language models. However, de-
spite the almost perfect recoverability of the sentences, the associated representa-
tions are limited in use. For example, they fall short of lexical methods tailored to
semantic similarity tasks and methods that finetune on natural language inference
datasets Subramani, Suresh, and Peters, 2022. We assume that this issue is due to
the fact that transformer-based language models are extremely powerful decoders
and there is no incentive for them to use the content of the vector representation
when the sentence context can be used instead. Hence, using the loss proposed in
this paper that creates this incentive should result in better representations.

1.2. Learning Embeddings using Transformers 3

The rest of the thesis is organised in the following manner: chapter 2 introduces
the objective of language modelling, as well as detailed review of recurrent and
transformer based architectures with the focus on embedding strategies. In chap-
ter 3 we formulate the list of research questions, introduce the chosen approach of
extraction of the embeddings from a pre-trained language model as well as the ob-
jective of optimal completion distillation. In 4 we describe the architecture of the
language model we will be experimenting with as well as the technical details of en-
corporating the embedding vector into the model. In chapter 5 we outline the setup
for the experiments, introduce the recoverability metrics as well as provide results
of the experiments. In 6 we analyze and discuss the results of the experiments. In 7
we suggest the directions for future work on the topic. Finally, in 8 we highlight our
contributions and summarize the findings, presented in the thesis.

4

Chapter 2

Related Works

2.1 Language Modelling Setup

Language modelling task aims to assign high probabilities to the sentences from the
given dataset D. Usually it is done by optimizing (eq. 2.1) likelihood function of the
dataset D given parametric model pθ(x), where x = (x1, x2, . . . x|x|) is a sample from
the dataset D and |x| is the length of a sentence. Such approach to learning is known
as a Maximum Likelihood Estimation (MLE).

θ̂ = argmax
θ

Ex∼D log pθ(x) (2.1)

Parametric model pθ(x) is usually decomposed using general product rule in a
way that conditions each token from the sentence by its previous context (eq. 2.2).

pθ(x) =
|x|

∏
t=1

pθ(xt|x<t) (2.2)

In practice, after pre-training a language model different methods of sampling
may be used. One of the most popular methods is a beam search Freitag and Al-
Onaizan, 2017. Because greedily picking the most likely continuation at each times-
tamp might not be optimal, beam search keeps k most likely branches at every times-
tamp and tries to expand each of them, leaving the k most probable branches at the
next step. The choice of k is a compromise between speed and correctness of choos-
ing the most likely continuation sequence (with k = 1 corresponding to greedily
picking the next most probable token and k = ∞ corresponding to an exhaustive
search of all possible continuations).

2.2 Getting Embeddings from Language Models

With multiple works that used RNNs for language modelling in the aforementioned
fashion, Embeddings from Language Models (ELMo, Peters et al., 2018) was the
first to propose a way of forming sequence embeddings from the trained language
model, as opposed to contextless embedding per word like word2vec of glove. The
authors trained forward and backward multi-layer LSTM language models using a
large text corpus and suggested several options for using the hidden states of the
LSTMs as embedding, with the simplest one being the concatenation of the top-
layer hidden states of the forward and backward LSTMs. The fine-tuned ELMo has
set state-of-the-art results for many downstream tasks at the time, such as question
answering, textual entailment, semantic role labelling, etc.

Like ELMo, Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019) builds upon the ideas of language modelling and pre-training

2.3. Modelling Embeddings for Semantic Text Similarity 5

using an encoder-only transformer. Because encoder self-attention is not masked, it
allows the model to look into future timestamps, which essentially breaks the idea
of language modelling. To address this, the authors suggest the idea of a masked
language model objective, which adds noise to the input sentence and trains the
model to restore the original token, not including the loss between unchanged to-
kens. Another contribution of BERT is adding two special tokens: [CLS] and [SEP].
[CLS] is prepended to each input sequence during pre-training, allowing the corre-
sponding output to be used for a classification downstream task, such as entailment
or sentiment analysis. [SEP] is used as a separator between two sentences that are
fed into BERT during pre-training. This allows using of BERT for downstream tasks
that use text pairs because apart from the masked language model, BERT was also
pre-trained on the next sentence prediction problem, which means that it can also
be used as a cross-encoder. Similarly to ELMo, the output of the hidden states of
the transformer at each position can be used as embeddings. The authors have com-
pared the feature-based approach with fine-tuning on the named entity recognition
task, with the concatenation of the last four hidden layers as features achieving re-
sults comparable to fine-tuning.

2.3 Modelling Embeddings for Semantic Text Similarity

Other works aim to learn meaningful sentence embeddings explicitly in a super-
vised fashion by solving semantic text similarity task, the objective of which is to
determine the degree of similarity (in either categorical or continuous manner) be-
tween pairs of input sentences. InferSent Conneau et al., 2017 uses the shared sen-
tence encoder to produce fixed-size embeddings for the pair of sentences, which are
then combined and used as input to an multilayer perceptron (MLP) to train on the
SNLI dataset Bowman et al., 2015, which consists of 570k sentence pairs, manually
annotated into three categories: entailment, contradiction, neutral. The authors ex-
periment with multiple encoder architectures and embedding strategies, with the
best one being a bidirectional LSTM with embedding obtained via max-pooling be-
tween hidden states at different timestamps. Glove word embeddings are used as in-
put features into the BiLSTM. The authors also evaluate the trained model on down-
stream tasks in a feature-based approach, where sentence embeddings are used as
features without fine-tuning the original model, with new state-of-the-art results for
some datasets at the time.

Sentence BERT (SBERT Reimers and Gurevych, 2019) addresses the problem of
computational inefficiency of BERT when it comes to clustering or nearest-neighbour
search since it is primarily used as a cross-encoder for a sentence pair. To account for
this, the authors fine-tune BERT in a siamese bi-encoder setup, with mean pooling
of the hidden states used as embeddings. Authors report SBERT embeddings being
better than the competitors in zero-shot setup across multiple semantic text similar-
ity datasets, with averaged BERT embeddings often being worse than average glove
embeddings.

2.4 Unsupervised Approaches

With the abundance of unlabeled textual data, efforts have been made to learn sen-
tence embedding without supervision. For example, TSDAE Wang, Reimers, and
Gurevych, 2021 uses an autoencoder approach with a transformer encoder and de-
coder. It modifies the key and value of the cross-attention mechanism to only access

6 Chapter 2. Related Works

the sentence embedding. Together with introducing noise into the input and expect-
ing the decoder to produce the original sequence, this puts the bottleneck on the
embedding and forces the encoder to produce an informative embedding vector.

Similarly to SBERT, cpt-text Neelakantan et al., 2022 uses an encoder transformer
in a bi-encoder setup, optimising the cosine similarity between embeddings of pairs
of sentences. The model is trained with in-batch negatives, with the pair of consecu-
tive sentences in the unlabeled text corpus considered as a positive and two random
sentences considered as a negative match. The last hidden state of the encoder trans-
former is used as a sentence embedding.

2.5 Tackling Semantic Search

Transformer Language Models have also been used in the problem of semantic search,
which is stated as follows: given the set of documents d and a query q, determine
the sorted set d∗ of documents that are relevant to the given query (with most rele-
vant document coming first). Using the neural networks, the problem is solved in a
supervised fashion, with the datasets containing the pairs of documents and queries
with different levels of annotation (e.g. relevant vs. non-relevant, highly relevant vs
partially relevant vs non-relevant, or even an integer score). Hence, the training can
be done in a classification or regression setup.

Because of high computational cost, cross-encoder transformer models often can-
not be used to compare the query with every document in the dataset. Despite that,
transformers are used as a part of the multi-stage retrieval system, with a traditional
bag of words model like BM25 Robertson and Zaragoza, 2009 selecting the initial set
of relevant documents and a transformer-based model performing re-ranking of the
selected subset of documents w.r.t. the given query. The combination of BM25 and
MiniLM Wang et al., 2020, a knowledge-distilled counterpart of BERT, is reported to
have the best zero-shot performance across most of the datasets in Benchmarking-IR
(BEIR Thakur et al., 2021) at the time of submission.

The limitation of using the transformer language model is addressed in SGPT
Muennighoff, 2022. The authors fine-tune the GPT-based encoder in an end-to-end
fashion to solve the semantic search problem. In a bi-encoder setup, documents
and query are encoded in a siamese fashion using a 5.8B parameters GPT encoder.
Embeddings are calculated via a position-weighted mean pooling. The model is fine-
tuned in a supervised manner using contrastive learning with in-batch negatives.
Only biases of the GPT model are being fine-tuned. The model set new state-of-the-
art results on five subsets of the BEIR dataset compared to other approaches.

2.6 Learning Embeddings Directly from the Model

Contrary to the approaches mentioned above, other works Subramani, Bowman,
and Cho, 2019; Subramani, Suresh, and Peters, 2022; Subramani and Suresh, 2020
study the problem of existence of the sequence representation space, the vectors
from which may be used to condition the pre-trained language model to recover the
original sequence without additional fine-tuning or architecture changes, with the
hypothesis being that the information that is needed to generate the sequence is al-
ready encoded in the language model parameters. Doing this may allow turning a
pre-trained language model into a universal embedding model without fine-tuning.
This is done by incorporating the projected context vector into the hidden state at ev-
ery timestamp of the LSTM language model Subramani, Bowman, and Cho, 2019 or

2.6. Learning Embeddings Directly from the Model 7

by altering the embedding of the first token of the decoder transformer model Sub-
ramani, Suresh, and Peters, 2022. The context vector is then optimized to maximize
the conditional log-likehood of the language model reconstructing the original in-
put, given the context. This approach shows promising recoverability results, how-
ever Subramani, Bowman, and Cho, 2019 reports difficulties of recovering larger
sequences, with the recoverability lacking at the point when the language model
begins generating incorrect words.

8

Chapter 3

Methodology

In this chapter we identify the gaps in the existing literature and formulate a list
of research questions. We then describe our chosen method for extracting a vector
representation from a fixed, pre-trained language model (steering) as well as optimal
completion distillation (OCD) objective function.

3.1 Gap Analysis

3.1.1 Averaging May Produce Bad Results

Given a pre-trained language model (either LSTM or transformer), there is no defini-
tive answer on how to use its hidden layer activations to form the resulting embed-
ding for the input sentence. The exact combination of hidden layers is not the same
across different downstream tasks and needs thorough validation and fine-tuning.
Without addressing this point, the quality may degrade significantly. For example,
embeddings retrieved from averaging the activations of the output layer of BERT
perform worse than Glove embeddings on semantic text similarity benchmarks as
reported in Reimers and Gurevych, 2019. A similar problem is present in the ELMo
language model Peters et al., 2018, where the authors recommend learning a sep-
arate set of layer weight coefficients for a particular downstream task for best per-
formance. This approach can no longer be regarded as universal, with the resulting
embeddings being different for each downstream task. Also, there seems to be no
clear mathematical ground, which justifies the strategy of forming the resulting em-
beddings.

3.1.2 Limited use of Transformers in Some Downstream Tasks

Despite transformers bringing advancements to multiple downstream tasks, they
are still limited in use in case an explicit embedding vector for the input sentence
is required (e.g. semantic search). Current state-of-the-art approaches either al-
ter the architecture to model embeddings explicitly Wang, Reimers, and Gurevych,
2021, use transformers only for reranking Muennighoff, 2022 or specifically train the
model for embedding purposes Cer et al., 2018. These approaches don’t help in case
we want to harness the knowledge of pre-trained large language models. Hence, the
procedure of extracting the embeddings without altering the model’s weights and
architecture sounds appealing, useful and worth researching.

3.2. Research Questions 9

3.1.3 Learning Embeddings Directly from the Model is Experimental and
Challenging

Despite its advantages and mathematical ground, the approach for learning sen-
tence embedding without fine-tuning the model described in is rather experimental
and not widely used. In particular, in Subramani, Bowman, and Cho, 2019 it was
presented as a proof of concept, without an extensive evaluation on multiple bench-
marks. Without this, further work is needed to estimate whether it can compete with
traditional approaches in terms of computational complexity and performance. In
addition to this, the approach has challenges with learning embeddings for longer
sequences as reported in Subramani, Bowman, and Cho, 2019, which may become
a problem when trying to apply it in real-life scenarios. Furthermore, additional re-
search is needed to estimate whether this approach easily transfers to other model
architectures.

3.2 Research Questions

Given the research gaps in the existing literature, we formulate the next list of ques-
tions, that will be studied in this work:

1. How well/easy does the approach of learning embeddings directly from the pre-trained
language model work? Since there is no code associated with Subramani, Bow-
man, and Cho, 2019, it’s important to know whether the details outlined in the
paper is enough to reproduce it.

2. What is the quality of the resulting embeddings? How does it compare to traditional
approaches? To understand the potential of the approach, further evaluation is
needed.

3. How can the problem of reconstructing longer sequences may be addressed? Since the
main advantage of transformer language model is to be able to tackle longer
sequences, it’s crucial to estimate the boundaries of the sequence length, which
can be successfully reconstructed using the resulting embedding as well as
suggest a potential solution to this problem.

3.3 Steering

In NLP, a large volume of tasks involve usage of a fixed-dimensional vector repre-
sentation. Available approaches usually encode the source sequence into a fixed-
length vector using a special encoder that has to be learnt from the data. Instead of
learning an encoder to obtain a representation, we consider a question whether it’s
possible to extract a vector directly from a pre-trained language model without any
additional data or modification to the architecture of the language model.

Namely, we define a sentence representation vector of a given sentence x as
zθ(x) ∈ Rd, where θ denotes parameters of a pre-trained language model and d
corresponds to the hidden dimensionality of the language model.

This vector is obtained by maximizing the probability of a given sentence x, con-
ditioned of zθ(x), while keeping the language model architecture unchanged:

zθ(x) = argmax
z∈Rd

log pθ(x|z) (3.1)

10 Chapter 3. Methodology

Since the weights of the pre-trained language model remain frozen, the tech-
nique of incorporating the conditioning on z depends on a particular model archi-
tecture. For example, in Subramani, Bowman, and Cho, 2019 authors add zθ(x) to
the hidden states of the LSTM language model on every timestamp (see 3.1). During
inference, zθ(x) is also used as an initial hidden state to steer the model to generate
the desired sentence x. Similar idea is used in Subramani and Suresh, 2020, where
authors experimented with adding zθ(x) to the hidden states of encoder transformer
architecture at different locations.

FIGURE 3.1: Steering approach described in Subramani, Bowman,
and Cho, 2019. Embedding vector z is added to hidden state across
all timestamps to incorporate the conditioning of the input sentence
x on the embedding vector z. z is then trained to maximize the prob-

ability of input sentence x. (bos stands for begining of sequence)

The aforementioned method of learning embeddings comes with its own set of
shortcoming and advantages, with the biggest upside being its independence from
requiring any additional data to find the embedding for a particular sentence. It
also eliminates the need for finetuning the language model for different downstream
tasks and allows for the reuse of the single embedding across them. It’s important
to acknowledge that the method also has its limitations. In particular, each sentence
requires an optimization problem (3.1) to be solved, which may require significant
amount of computational resources. It’s also worth noting that the problem of de-
termining the optimal embedding vector for different sentences is embarrassingly
parallel, with computation possible on a distributed system with very little inter-
communication.

3.4 Exposure Bias

Despite the advantages, the quality of the resulting embeddings still need further
assessment. For example, in Subramani, Suresh, and Peters, 2022 the embeddings
produced by steering a pre-trained GPT2 model were reported to outperform Glove
or the ones that are obtained by taking the activations from the last layer of GPT2.
On the other hand, in Subramani, Bowman, and Cho, 2019 the steering embeddings
obtained from LSTM language model are reported to have difficulties with recover-
ing longer sentences, which still leaves room for improvement.

3.5. Cross Entropy and Optimal Completion Distillation 11

We hypothesize that such subpar vectors are produced due to the phenomenon
which is known as exposure bias. Exposure bias is a problem that occurs when the
model is trained with ground-truth data, but has to generate its own data during in-
ference. This can lead to errors or degradation in the quality of the generated text. A
powerful autoregressive decoder has sufficient capacity to achieve good data likeli-
hood without using provided vector representation given the ground-truth context,
thus not all available information in the sentence is compressed into the vector form
when optimizing eq (3.1).

The problem is closely related to the issue of distributional shift in behavior
cloning, where the distribution of the observed states/actions produced by running
a policy pθ (sentences, generated from the pre-trained model) differs from an expert
one, which the policy was initially trained on (sentences from the train dataset). In
particular, LSTM steering embeddings in Subramani, Bowman, and Cho, 2019 are
reported to fail in achieving further recovery of the target sentence, once an error
arises at a specific position during generation.

3.5 Cross Entropy and Optimal Completion Distillation

The reason exposure bias exists is partially due to the way maximum likelihood
is being optimized when training the language model (solving eq. (2.1)) as well
as training embeddings via steering (solving eq. (3.1)). MLE is equivalent to cross-
entropy loss between the model’s probability distribution and the ground truth data.
Let’s consider the language modelling setup described in 2.1. For an input sentence
x and given timestamp t, we minimize the cross-entropy (and thus KL-divergence)
between pθ(xt|x<t) and I(xt|x<t), where pθ(xt|x<t) is a probability distribution of
the next token produced by the language model and I(xt|x<t) is a degenerate dis-
tribution where all probability is assigned to xt. Note that there is no conditioning
on the sentence generated by the model itself x̂<t, which allows for distributional
shift and makes the exposure bias possible. The same reasoning applies to using
cross-entropy loss to find steering embedding zθ(x) while solving eq. (3.1) (see 3.1).

One of the ways to mitigate the distributional shift in control is to use a dataset
aggregation technique (DAGGER Ross, Gordon, and Bagnell, 2011), where trajecto-
ries, sampled from a pre-trained policy (and hence being out of training distribu-
tion), are assessed by an expert to determine the best action in a current state. This
new data is then used to iteratively improve the initial policy. In the case of learning
steering embeddings, we need to define a way to determine the optimal action x∗t ,
which is reported by the expert, based on the sampled trajectory x̂<t and expected
tragectory x. This idea was explored in Sabour, Chan, and Norouzi, 2018, where the
choice of optimal x∗t in language modelling setup is determined to minimize the edit
distance between [x̂<t, x∗t , x̂∗] and x, where x̂∗ denotes optimal suffix(es) that are yet
to be generated by the model.

In this work we would like to apply similar approach to learning steering em-
beddings and propose an alternative objective function that eliminates the exposure
bias issue:

zθ(x) = argmin
z∈Rd

Epθ(x̂|z) [Dedit(x̂, x)] (3.2)

Here, x̂ represents a sentence sampled from the language model and x is a sentence
of interest for which one wants to obtain a representation vector. Dedit(x̂, x) is the
Levenshtein distance or edit distance between these two sentences. An important

12 Chapter 3. Methodology

property of this objective is that ground-truth sentence is only used to compare it
with the sampled sentence, thus the only way for the language model to know which
tokens to generate is to use a provided vector z. Because there is no information
leakage from the ground-truth sentence context during generation, the optimization
process should lead to a representation that is more informative in comparison to
the one obtained from eq. (3.1).

Inspecting the eq. (3.2) one can notice that it presents a challenge for direct opti-
mization, because the Levenshtein distance is non-differentiable function. One pos-
sible way to optimize it is using reinforcement learning (RL) approach, e.g. using
the REINFORCE Williams, 1992 algorithm. Tokens generated so far during the sam-
pling process correspond to the agent’s state, the agent’s action corresponds to the
symbol that should be produced next. Despite the recent successes of deep RL, ob-
taining acceptable levels of performance often requires an almost prohibitively large
amount of experience to be acquired by the agent. Another, more practical way, to
optimize this loss is to use policy distillation approach. If the expert policy exists,
the learning efficiency of the RL task can be drastically improved. In Sabour, Chan,
and Norouzi, 2018 the authors noticed that for the Levenshtein distance dynamic
programming can be used to efficiently compute such expert policy, which they call
the optimal completion (OC) policy πOC(·|x̂<t, x). In other words, given the gener-
ated prefix x̂<t at time step t and the original sequence x, we can determine what
symbol should be generated to minimise the edit distance (see 3.2). In NLP, such
expert policies are known as dynamic oracles Goldberg and Nivre, 2012. There is
great interest in the RL field in methods that enable knowledge transfer to agents
based on already trained policies Rusu et al., 2015 or human examples Abbeel and
Ng, 2004. One of the most successful techniques for knowledge transfer is policy
distillation Ross, Gordon, and Bagnell, 2010, where an agent is trained to match the
state-dependent probability distribution over actions provided by a teacher/oracle.
We use policy distillation as a proxy to optimize the eq. (3.2).

FIGURE 3.2: Steering approach from Subramani, Bowman, and Cho,
2019 + Optimal Completion Distillation. We hypothesize that the
quality of the embedding z may be improved by conditioning on the
samples from the language model and using optimal completion pol-
icy πOC, which determines optimal completion tokens based on the
edit distance between sampled trajectory x̂<i and expected trajectory

x.

3.6. Calculating Optimal Completion Policy 13

Usually, policy distillation is done by following updates in the gradient-like di-
rection:

Ex̂∼ρ

[
|x̂|

∑
t=1

∇θ DKL [πoc(·|x̂<t, x), pθ(·|x̂<t, z)]

]
(3.3)

The distribution ρ is known as a control policy and it is used to generate trajectories
over which the distillation process is performed. DKL is the Kullback–Leibler diver-
gence. In our work we use pre-trained language model as a control policy ρ = pθ .

3.6 Calculating Optimal Completion Policy

To understand how πOC is calculated, let us draw a connection between optimal
completion and the notion of optimal Q values in reinforcement learning. Given the
state-action pair (s, a) the optimal Q value Q∗(s, a) represents a maximum possible
future reward, assuming the agent will take optimal actions thereafter. In our case
the state s corresponds to the prefix x̂<t sampled by the model and action a cor-
responds to picking a particular token x̂t at time t. The reward value should be a
measure of similarity between sampled and ground truth sequences. Negative edit
distance was chosen in Sabour, Chan, and Norouzi, 2018 as a common task metric.
So for prefix x̂<t and every possible token x̂t from the language model vocabulary
V we need to find the maximum possible future reward, which translates to finding
the smallest edit distance Dedit([x̂<t, x̂t, x̂∗], x), where x is a target sequence and x̂∗ is
the optimal suffix that is yet to be generated by the model.

FIGURE 3.3: Edit distance matrix for generated sequence "SATRAPY"
(vertical) and target sequence "SUNDAY" (horizontal). Set of optimal
completion tokens for each generated prefix is determined based on
the continuation of the target prefixes, which have the minimum edit
distance with the sampled prefix at the current timestamp. The figure
is an adaptation from Sabour, Chan, and Norouzi, 2018. (BOS and

EOS stand for begining and end of sequence respectively)

14 Chapter 3. Methodology

Let’s consider a particular sampled prefix x̂<t = ”SAT” (see 3.3). Recall the
dynamic programming algorithm for calculating the edit distance between every
prefix of x̂ and x:

Dedit(x̂<i, x<j) = min

Dedit(x̂<i, x<j−1) + 1
Dedit(x̂<i−1, x<j) + 1
Dedit(x̂<i−1, x<j−1) + I(x̂i ̸= xj)

(3.4)

It’s easy to see that the edit distance Dedit([x̂<t, x̂t], x) is lower bounded by mt =
min

j
Dedit(x̂<t, x<j) regardless of the next generated token x̂t because of how the val-

ues in edit distance matrix are calculated. It is also shown in Sabour, Chan, and
Norouzi, 2018 that the smallest possible edit distance Dedit([x̂<t, x̂t, x̂∗], x) is achieved
by following the suffixes of the target sequence, which correspond to Dedit(x̂<t, x<j) =
mt (see optimal completions in 3.3). Hence, we can define Q∗(x̂<t, x̂t) = −mt if x̂t
is an optimal completion and Q∗(x̂<t, x̂t) = −mt − 1 otherwise. Then by applying
softmax with low enough temperature we can define πOC(·|x̂t, x) as a distribution,
where all probability is equally distributed between optimal completion tokens.

It is worth mentioning that time complexity of computing policy πOC(·|x̂t, x)
is comparable to the time complexity of MLE in most cases. In MLE, we calcu-
late DKL for every timestamp of the target sequence, which yields O(|x| · |V|) time
complexity. For πOC(·|x̂t, x) we first calculate Dedit(x̂, x) and then calculate DKL for
every timestamp of the sampled sequence, yielding O(|x| · |x̂|+ |x̂| · |V|). Because
the length of the generated and target sequences is usually smaller than the vocab-
ulary size of the language model, we can conclude that time complexity of both
approaches is the same (additionally assuming that |x| ≈ |x̂|).

15

Chapter 4

Model

In this chapter we describe the architecture of the language model we will be exper-
imenting with as well as the strategies to incorporate learning an embedding vector
from a pre-trained language model.

4.1 Architecture

Similarly to Subramani, Bowman, and Cho, 2019, Long Short Term Memory (LTSM)
network (Hochreiter and Schmidhuber, 1997) is used to solve the task of language
modelling. It’s a type of Recurrent Neural Network (RNN) that has shown effective-
ness with input data of different lengths. This effectiveness is achieved by merging
an input vector with a state vector to create a new state vector that will be used for
the next input.

Because basic RNNs struggled to capture long-term dependencies in data, the
LSTM network was introduced. Its notable feature is the additional cell state, re-
sponsible for managing long-term dependencies. This cell state can be altered or
retained using "forget" and "update" gates. Predictions are then based on a combi-
nation of the cell state, hidden state, and current input vector (see 4.1).

FIGURE 4.1: LSTM cell. Prediction for time stamp t is based on pre-
vious hidden state ht−1, previous cell state ct−1 and current input xt.
Cell state is changed via "update" and "forget" gates. (original picture

"LSTM Cell" by Guillaume Chevalier, licensed under CC BY 4.0).

The full architecture of the LSTM language model is shown on fig 4.2. For
each token xi of the input sequence x we first convert it to a dense representation

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
https://creativecommons.org/licenses/by/4.0/

16 Chapter 4. Model

embxi ∈ Rdemb . The resulting dense vectors are then passed through a one-directional
(possibly multi-layer) LSTM network and the last layer hidden states hout

i ∈ Rdmodel

are received. The final layer of the model is a linear transformation that projects
the hidden states hout

i to the dimensionality of the language model vocabulary size
(projhout

i
∈ RV). After applying softmax we receive a probability distribution of the

next token conditioned on the previous input pθ(xi|x<t) (where θ are the parameters
of the language model). Additionally, to prevent overfitting and improve general-
ization capabilities of the model we use dropout after embxi and projhout

i
.

FIGURE 4.2: Visualization of the 1-layer LSTM language model
(white cells) as well as the chosen strategy of incorporating steer-
ing vectors into the frozen pre-trained language model (green cells).
Dropout layers after emb and proj layers of the language model are

omitted for clarity.

4.2 Steering

To study the conditioning of the pre-trained LSTM language model on a steering
vector z, we suggest three possible locations, where such vector can be injected (see
green cells in 4.2):

1. independently adding embedding vector zp ∈ Rdmodel to the hidden states of
the last LSTM layer before projection layer

2. providing embedding vector zh ∈ RL·dmodel as the first hidden state to the LSTM
(where L is the number of layers in LSTM)

3. providing embedding vector zc ∈ RL·dmodel as the first cell state to the LSTM

The final steering vector z for a particular sequence x is a concatenation of zp, zh, zc.
Since conditioning on zp, zh and zc is independent of each other, we can also drop
one of the locations (e.g. consider z to be a concatenation of zp and zh).

17

Chapter 5

Experiments

In this chapter we describe the setup for the language modelling and training steer-
ing embeddings experiments as well as present the target metrics and experiments
results.

5.1 Word-Level Language Modelling on Penn Treebank Dataset

To begin with, we train an LSTM language model on Penn Treebank dataset release 2
CDROM Prasad et al., 2008. It consists of a million words of 1989 Wall Street Journal
material, with part-of-speech tagging information. The sentences are preprocessed
in the following manner:

• all the punctuation is removed

• sentences are converted to lowercase

• all numbers are replaced with a special N token

• top 10k most frequent words are kept, all the other are replaced with <unk>
token

In our experiments we use Penn Treebank solely for language modelling pur-
poses, so only sentences part of the dataset is used. We utilize word-level tokeniza-
tion to preprocess the text data as a standard tokenization procedure for this par-
ticular dataset, subsequently training a word-level LSTM language model. This ap-
proach involves segmenting the text into individual words, each of which is treated
as a distinct token.

We use cross-entropy as a loss function to optimize the language model parame-
ters. For particular sentence x we minimize:

L(x) = −
|x|

∑
i=1

logpθ(xi|x<i)

where pθ(xi|x<i) is the predicted probability of the i-th word given the previous
words in the input sequence. We report perplexity as the main metric for a particular
split:

PP(split) =
1

|split| ∑
x∈split

exp(L(x))

The language model is optimized via gradient descent using Adam optimizer. To
achieve optimal results with simple LSTM architecture, we experiment with cosine

18 Chapter 5. Experiments

warmup learning rate scheduler as well as different combinations of dropout proba-
bility and weight decay L2 regularization. Because single-layer LSTM model is pow-
erful enough for such relatively small dataset as Penn Treebank, we did not observe
an improvement in model’s generalization abilities when using greater number of
layers. Hence we only consider single-layer LSTMs in our language model experi-
ments (see 5.1).

Exp Name Model Config Training Config
PP

Train
PP

Validation
PP

Test

ptb-word-lst-002

d_model=512
d_emb=256
num_layers=1
p_dropout=0.15

num_epochs=16
batch_size=1024
lr = 1e-2
lr_scheduler=None
weight_decay=0.0

28.8 960.6 527.4

ptb-word-lstm-003

d_model=512
d_emb=256
num_layers=1
p_dropout=0.15

num_epochs=16
batch_size=1024
lr = 1e-2
lr_scheduler=None
weight_decay=1e-4

30.7 269.6 257

ptb-word-lstm-005

d_model=512
d_emb=256
num_layers=1
p_dropout=0.15

num_epochs=32
batch_size=1024
lr = 1e-1
lr_scheduler=CosineWarmup
warmup epochs=4
weight_decay=1e-3

150.9 221.2 211.2

ptb-word-lstm-006

d_model=512
d_emb=256
num_layers=1
p_dropout=0.15

num_epochs=32
batch_size=1024
lr = 1.25e-2
lr_scheduler=CosineWarmup
warmup_epochs=4
weight_decay=1e-3

119.4 211.7 203.9

ptb-word-lstm-008

d_model=256
d_emd=256
num_layers=1
p_dropout=0.15

num_epochs=32
batch_size=1024
lr = 1.25e-2
lr_scheduler=CosineWarmup
warmup_epochs=4
weight_decay=1e-3

154.5 225.06 216.4

TABLE 5.1: Experiment results for different configurations of word-
level LSTM language model trained on Penn Treebank Dataset. The
model from ptb-word-lstm-006 was chosen for training steering em-

beddings on.

5.2. Training Steering Embeddings on Penn Treebank Word-Level LSTM 19

5.2 Training Steering Embeddings on Penn Treebank Word-
Level LSTM

Given a pre-trained language model from ptb-word-lstm-006 (see 5.1), we train the
steering embeddings for Penn Treebank dataset using the approach described in 4.2.
We experiment with different combinations of injection locations (zp, zh, zc) as well as
different optimization procedures (solving 3.1 via maximum likelihood vs. solving
3.2 via optimal completion distillation).

To estimate the training progress, we report perplexity of the split, conditioned
on the trained embedding vectors:

PP(split|zsplit) = − 1
|split| ∑

x∈split

|x|

∑
i=1

logpθ(xi|x<i, zθ(x))

Since both MLE and OCD optimization procedures aim to achieve perfect re-
construction of the original sentence, we also report the reconstruction metrics dis-
cussed in Subramani, Bowman, and Cho, 2019, namely exact match, BLEU and pre-
fix match.

Given a pre-trained language model with parameters θ, an input sequence x, a
sentence steering embedding zθ(x) and a sequence x̂, which was sampled by the
language model conditioned on zθ(x), we want to measure, how well the model is
able to recover the original sequence. For this we calculate the following metrics:

Exact match is defined as the average number of matching tokens between x and
x̂:

exact_match(x, x̂) =
|x|

∑
t=1

I(xt = x̂t)/|x|

While being suitable for perfect-recoverability setup, the exact match may degrade
significantly even when the differences between x and x̂ are minor
(e.g. exact_match((x1, x2, . . . , xn), (xn, x1, . . . , xn−1)) = 0 given unique tokens).

To alleviate this, BLEU Papineni et al., 2002 metric is used as an alternative, ini-
tially proposed to evaluate the quality of machine translations by averaging the pre-
cision of n-grams of different lengths between candidate and reference sentences,
thus allowing us to capture both the accuracy and fluency of the reconstruction.

Additionally, we might be interested to investigate the limits of the perfect re-
construction length, with prefix match metric calculating the position of the first dis-
crepancy between x and x̂:

pre f ix_match(x, x̂) = argmax
t

(t · I(x<t = x̂<t))

The results of the experiments are presented in table 5.2. The best values of re-
construction metrics are achieved by using all three embedding locations together
with Maximum Likelihood Estimation.

The best training configuration for each combination of embedding locations and
optimization procedure was obtained via grid search. During hyperparameter tun-
ing we found that embeddings trained with OCD optimization procedure require
lower learning rate and greater number of epochs to converge. Hence the training
config is different for 005-phc-ocd as opposed to other experiments mentioned in 5.2
(see 6.1 for further discussion on this matter).

20 Chapter 5. Experiments

Exp Name 000-phc 002-ph 003-hc 005-phc-ocd

Embedding
Locations

z_p,
z_h,
z_c

z_p,
z_h

z_h,
z_c

z_p,
z_h,
z_c

Training Config
lr=1e-1
n_epochs=512

lr=1e-1
n_epochs=512

lr=1e-1
n_epochs=512

lr=1e-2
n_epochs=1024

Optimization
Procedure

MLE MLE MLE OCD

PP Train | z 2.164 3.089 26.4 -
PP Validation | z 2.586 4.071 36.7 9.6
PP Test | z 2.511 3.945 33.7 8.32
exact_match
Train

0.66 0.43 0.34 -

exact_match
Validation

0.61 0.38 0.33 0.45

exact_match
Test

0.62 0.37 0.34 0.46

prefix_match
Train

12.88 7.56 5.19 -

prefix_match
Validation

11.33 6.29 4.99 7.44

prefix_match
Test

11.47 6.27 5.11 7.67

BLEU score
Train

0.68 0.44 0.25 -

BLEU score
Validation

0.62 0.36 0.24 0.44

BLEU score
Test

0.63 0.37 0.25 0.46

TABLE 5.2: Comparison between different configurations of steer-
ing embeddings trained on Penn Treebank dataset from a pre-trained

LSTM language model from ptb-word-lstm-006

5.3. Estimating the Quality of MLE Steering Embeddings 21

5.3 Estimating the Quality of MLE Steering Embeddings

To estimate the quality of MLE steering embeddings, we cross-evaluate them on
a Stanford Sentiment Treebank (SST-2) dataset, which contains a collection of 70k
movie reviews together with binary sentiment labels. We use MLE steering embed-
dings from 000-phc as features and train a logistic regression. We report the resulting
accuracy.

We compare the resulting accuracy with traditional embedding approach, where
embedding of the sentence it determined via max/mean pooling of the hidden/cell
states of the LSTM part of the language model. We make sure the pooling embed-
ding vector has the same dimensionality as the steering embedding for the compar-
ison of logistic regression models to be fair. The results are presented in table 5.3.

Embedding Type Accuracy Train Accuracy Validation
Steering MLE 000-phc 62.37 61.58
Mean-pooling of the hidden states 66.99 67.08
Max-pooling of the hidden states 63.5 59.17

TABLE 5.3: The results of cross-evaluation of steering MLE embed-
dings versus traditional embedding approaches on SST2 dataset

Similarly to SST-2, we also cross-evaluate the MLE steering embeddings from
000-phc on the Stanford Natural Language Inference (SNLI) corpus. The SNLI dataset
contains more than 570,000 annotated pairs of sentences, with each pair being cate-
gorized as entailment, contradiction, or neutral. This extensive collection is specifi-
cally created to evaluate a model’s capacity to comprehend and deduce connections
between sentences, serving as a rigorous standard for assessing the quality of the
embeddings in tasks related to understanding natural language. The results are pre-
sented in table 5.4.

Embedding Type Accuracy Train Accuracy Validation Accuracy Test
Steering MLE 000-phc 50.65 50.33 49.88
Mean-pooling of the hidden states 54.71 54.87 54.32
Max-pooling of the hidden states 51.71 51.19 51.92

TABLE 5.4: The results of cross-evaluation of steering MLE embed-
dings versus traditional embedding approaches on SNLI dataset

22

Chapter 6

Discussion

6.1 Difficulties of Learning OCD Steering Embeddings

Contrary to our hypothesis, learning steering embeddings using optimal completion
distillation objective did not improve the likelihood of the input sentence, when
conditioning the language model with the steering vector (see 5.2). Despite training
OCD embeddings for more number of epochs, the likelihood of the input sentence
remained bigger as opposed to the embedding trained with MLE approach. We also
noticed that OCD required lower learning rate to converge as opposed to MLE.

Because OCD is trained on sequences sampled from the model, these sequences
change throughout the process of optimizing the embedding vector zθ(x). This
forces embedding vector zθ(x) to store the information about optimal completions
of multiple generated sequences, effectively reducing the embedding vector capacity
to learn how to reconstruct the original sentence x from zθ(x). This may also explain
why OCD requires lower learning rate to converge, since with bigger learning rate
generated sequences x̂ might have been changing too quickly, possibly turning into
a sequence of "random" sentences for a single embedding vector zθ(x) to learn.

It is also worth noting that despite time complexity of OCD is the same as MLE,
there are some performance considerations that should be taken into account. Be-
cause OCD is trained on sequences generated from the model, sampling is required.
This greatly limits our ability to use fused implementation of the LSTM, effectively
degrading performance. In addition to this, edit distance matrix is calculated on
cpu, which requires transferring model’s generated sequence from gpu to cpu and
πOC values from cpu back to gpu. Since latency associated with transferring data to
the gpu may become a bottleneck, custom CUDA implementation of edit distance
algorithm may be required for the OCD to work optimally.

6.2 On the quality of the resulting embeddings

We have shown, that the quality of the resulting MLE steering embeddings is com-
parable to the ones that are obtained by max-pooling the hidden states of the LSTM.
However, it falls behind when comparing to mean-pooling of the hidden states. We
suspect it may be related to the nature of SST2 dataset itself, since it is straightfor-
ward enough that only a keyword detector is needed to understand the sentiment of
a sentence. And because the steering embedding zθ(x) contains information about
the order of the words in a sentence, it falls behind in estimating sentiment.

Another explanation of why MLE steering embeddings perform worse com-
pared to mean pooling may be because of how zh and zc steering vectors are incor-
porated into the LSTM language model (see 4.2). Because zh and zc are only injected

6.2. On the quality of the resulting embeddings 23

on the first timestamp, the usage of information from these vectors on later times-
tamps is fairly limited due to the lack of direct injection, which limits the amount of
knowledge from the input sequence that could be "learnt into" zh and zc. As a con-
firmation of this hypothesis, from the results of training steering embeddings with
MLE in 5.2 we can see that zp injection location is crucial for reconstruction metrics
to be high.

24

Chapter 7

Future Work

7.1 Exploring Alternative Injection Locations

As discussed in 6.2, the current way of injecting zh and zc parts of the steering vector
into the pre-trained LSTM language model may be suboptimal. To account for this,
we may try to inject zh and zc at every timestamp (similarly to how it is done for zp
in 4.2). Doing this should improve zh and zc parts of the resulting embedding vector
and potentially lead to better evaluation results.

7.2 Altering Optimal Completion Objective Function

To account for the difficulties in learning OCD steering embeddings described in 6.1,
we suggest two possible directions for future work:

1. focusing on optimal completions of the first tokens of the sentence instead of all
tokens. Because generated sequences x̂ is subject to change when optimizing
zθ(x) with OCD, it may be suboptimal to include the optimal completions later
in the sequence into the loss function, since the end of the generated sequence
is more likely to change in the next iteration. Hence, reducing the number of
prefixes we optimize pθ(·|x̂t, z) for will help to focus on early corrections of the
generated sequence.

2. as a continuation of the previous point, another way to reduce the number
of sequences for vector zθ(x) to learn is to combine MLE and OCD objective
functions. Doing this will ensure that the likelihood pθ(x|z) will remain high
as well as allow for the model to find optimal completion token once the model
has made a mistake during reconstruction.

7.3 Further Evaluation of Steering Embeddings

Another direction for future works would be to further evaluate the quality of the
steering embeddings on more complex downstream tasks. Sent-eval benchmark
Conneau and Kiela, 2018 may be used for this purpose. It offers a collection of sev-
enteen downstream tasks as well as the requirements for probing architectures, that
use sentence embedding in a feature-based approach, such as classification, seman-
tic text similarity, semantic relatedness and others. The evaluation metric depends
on the downstream task, accuracy is used for classification tasks and Pearson and
Spearman correlations (and their combination) are reported for tasks where relation
between pairs of sentences needs to be estimated.

7.4. Steering Transformers 25

7.4 Steering Transformers

Since significant portion of current research and computational power in the field
of machine learning is dedicated to the Transformer architecture, investigation of
steering strategies for this architecture would be a natural next step. Despite the
fact that it was explored in Subramani, Suresh, and Peters, 2022, we were unable to
reproduce the results mentioned in the paper. We have found that learning steering
embedding vector using MLE is sensitive to learning rate, steering vector injection
location and the way zθ(x) is initialized.

7.5 Direct Optimization of the Optimal Completion Objec-
tive Function

One of the question not considered in this work is whether it’s feasible to optimize
eq. (3.2) directly. Since Levenstein distance is not differentiable function, it’s not
feasible to calculate the gradient with respect to it. One of the possible approaches
might be to use policy gradient, where the gradient is estimated in Monte Carlo fa-
sion via sampling, which provides an unbiased estimator. However, it’s important to
assess the issue of high variance to evaluate its impact on the reliability and stability
of the results. One of the possible options for reducing the variance of an estimator
is to incorporate optimal completion distillation as a form of control variates, though
the precise mathematical formulation and practical implementation of this method
requires additional investigation.

Another approach to directly solving eq. (3.2) would be to modify the definition
of the Levenstein distance itself to allow for differentiation. In this case, the prop-
erties of such new distance function should be thoroughly assessed before proceed-
ing. It’s also possible to consider other distance functions. An important property
for such a function should be an existence of the completion policy, which should
output the set of extension tokens for any prefix sampled from the langauge model.

26

Chapter 8

Conclusions

In this work we explored an alternative approach for learning embeddings from
pre-trained language model without altering its architecture or parameters. We for-
mulated the objective of learning steering embeddings via maximum likelihood es-
timation (eq. 3.1) as well as presented the results of its particular implementation
on a pre-trained LSTM language model. From our experiments we conclude the
following:

1. for the LSTM language model injection of steering embedding should be done
at every timestamp

2. injecting embedding vector into the projection layer (see zp in 4.2) is crucial for
steering approach to work (i.e. steering embeddings having good recoverabil-
ity results)

3. the quality of the resulting embeddings may be improved further by injecting
additional steering vector at LSTM hidden/cell states at every timestamp

We state that there is no standardized approach for injecting steering vectors if
we were to consider different language model architecture, with no guarantee that
successful injection location for one architecture automatically leads to a success in
a completely different architecture.

We also showed that even with not entirely optimal injection approach, the qual-
ity of the steering embeddings is comparable to the ones obtained by taking max-
pooling of the activations of the pre-trained LSTM language model, with a potential
for achieving even better quality as described in 7.1. However, the low number
of downstream tasks steering embeddings were evaluated on does not allow us to
make a definitive statement on their general applicability and quality.

Independently to Subramani, Bowman, and Cho, 2019 we verified, that the limit
of perfect reconstruction of the original sequence using steering embeddings ap-
pears to be quite low (see prefix_match results in 5.2). To account for this, we sug-
gested learning steering embeddings using an alternative objective function (eq. 3.2)
via Optimal Completion Distillation (OCD) loss, which focuses on distilling knowl-
edge of optimal completion for the sequence, that was generated from model, con-
ditioned on the steering embedding (see 3.2).

From our experiments we conclude that OCD loss is more challenging to opti-
mize as opposed to MLE objective. OCD does not improve recoverability out of the
box and needs additional modifications to work properly (see 7.2).

27

Bibliography

Abbeel, P. and A. Ng (2004). “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine learn-
ing. URL: https://api.semanticscholar.org/CorpusID:207155342.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. URL: http:
//arxiv.org/abs/1409.0473.

Bengio, Yoshua, Patrice Y. Simard, and Paolo Frasconi (1994). “Learning long-term
dependencies with gradient descent is difficult”. In: IEEE transactions on neural
networks 5 2, pp. 157–66. URL: https://api.semanticscholar.org/CorpusID:
206457500.

Bowman, Samuel R. et al. (2015). “A large annotated corpus for learning natural
language inference”. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015. Ed. by Lluís Màrquez et al. The Association for Computational Linguistics,
pp. 632–642. DOI: 10.18653/V1/D15-1075. URL: https://doi.org/10.18653/
v1/d15-1075.

Bowman, Samuel R. et al. (2016). “Generating Sentences from a Continuous Space”.
In: Proceedings of the 20th SIGNLL Conference on Computational Natural Language
Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016. Ed. by Yoav Goldberg
and Stefan Riezler. ACL, pp. 10–21. DOI: 10.18653/V1/K16-1002. URL: https:
//doi.org/10.18653/v1/k16-1002.

Brochier, Robin, Adrien Guille, and Julien Velcin (May 2019). “Global Vectors for
Node Representations”. In: The World Wide Web Conference. WWW ’19. ACM. DOI:
10.1145/3308558.3313595. URL: http://dx.doi.org/10.1145/3308558.
3313595.

Brown, Tom B. et al. (2020). “Language Models are Few-Shot Learners”. In: Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Hugo Larochelle et al. URL: https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Cer, Daniel et al. (2018). “Universal Sentence Encoder”. In: CoRR abs/1803.11175.
arXiv: 1803.11175. URL: http://arxiv.org/abs/1803.11175.

Cho, Kyunghyun et al. (2014). “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches”. In: Proceedings of SSST@EMNLP 2014, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25
October 2014. Ed. by Dekai Wu et al. Association for Computational Linguistics,
pp. 103–111. DOI: 10.3115/V1/W14-4012. URL: https://aclanthology.org/W14-
4012/.

Conneau, Alexis and Douwe Kiela (2018). “SentEval: An Evaluation Toolkit for Uni-
versal Sentence Representations”. In: Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,

https://api.semanticscholar.org/CorpusID:207155342
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://api.semanticscholar.org/CorpusID:206457500
https://api.semanticscholar.org/CorpusID:206457500
https://doi.org/10.18653/V1/D15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/V1/K16-1002
https://doi.org/10.18653/v1/k16-1002
https://doi.org/10.18653/v1/k16-1002
https://doi.org/10.1145/3308558.3313595
http://dx.doi.org/10.1145/3308558.3313595
http://dx.doi.org/10.1145/3308558.3313595
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175
https://doi.org/10.3115/V1/W14-4012
https://aclanthology.org/W14-4012/
https://aclanthology.org/W14-4012/

28 Bibliography

2018. Ed. by Nicoletta Calzolari et al. European Language Resources Association
(ELRA). URL: http://www.lrec-conf.org/proceedings/lrec2018/summaries/
757.html.

Conneau, Alexis et al. (2017). “Supervised Learning of Universal Sentence Represen-
tations from Natural Language Inference Data”. In: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017. Ed. by Martha Palmer, Rebecca Hwa, and
Sebastian Riedel. Association for Computational Linguistics, pp. 670–680. DOI:
10.18653/V1/D17-1070. URL: https://doi.org/10.18653/v1/d17-1070.

Dai, Andrew M and Quoc V Le (2015). “Semi-supervised Sequence Learning”. In:
Advances in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio.
Association for Computational Linguistics, pp. 4171–4186. DOI: 10.18653/V1/
N19-1423. URL: https://doi.org/10.18653/v1/n19-1423.

Freitag, Markus and Yaser Al-Onaizan (2017). “Beam Search Strategies for Neu-
ral Machine Translation”. In: Proceedings of the First Workshop on Neural Machine
Translation. Association for Computational Linguistics. DOI: 10.18653/v1/w17-
3207. URL: http://dx.doi.org/10.18653/v1/W17-3207.

Goldberg, Yoav and Joakim Nivre (2012). “A Dynamic Oracle for Arc-Eager De-
pendency Parsing”. In: International Conference on Computational Linguistics. URL:
https://api.semanticscholar.org/CorpusID:1195002.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”.
In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. URL: http://arxiv.org/abs/1312.6114.

Mikolov, Tomás et al. (2013). “Efficient Estimation of Word Representations in Vec-
tor Space”. In: 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. URL: http://arxiv.org/abs/1301.3781.

Muennighoff, Niklas (2022). “SGPT: GPT Sentence Embeddings for Semantic Search”.
In: CoRR abs/2202.08904. arXiv: 2202.08904. URL: https://arxiv.org/abs/
2202.08904.

Neelakantan, Arvind et al. (2022). “Text and Code Embeddings by Contrastive Pre-
Training”. In: CoRR abs/2201.10005. arXiv: 2201.10005. URL: https://arxiv.
org/abs/2201.10005.

Pansare, Niketan et al. (2022). “Learning Compressed Embeddings for On-Device In-
ference”. In: Proceedings of Machine Learning and Systems 2022, MLSys 2022, Santa
Clara, CA, USA, August 29 - September 1, 2022. Ed. by Diana Marculescu, Yue-
jie Chi, and Carole-Jean Wu. mlsys.org. URL: https : / / proceedings . mlsys .
org/paper_files/paper/2022/hash/72988287eb4acead9fe584bff6c488c5-
Abstract.html.

Papineni, Kishore et al. (July 2002). “Bleu: a Method for Automatic Evaluation of Ma-
chine Translation”. In: Proceedings of the 40th Annual Meeting of the Association for

http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
https://doi.org/10.18653/V1/D17-1070
https://doi.org/10.18653/v1/d17-1070
https://proceedings.neurips.cc/paper_files/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/w17-3207
https://doi.org/10.18653/v1/w17-3207
http://dx.doi.org/10.18653/v1/W17-3207
https://api.semanticscholar.org/CorpusID:1195002
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://proceedings.mlsys.org/paper_files/paper/2022/hash/72988287eb4acead9fe584bff6c488c5-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2022/hash/72988287eb4acead9fe584bff6c488c5-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2022/hash/72988287eb4acead9fe584bff6c488c5-Abstract.html

Bibliography 29

Computational Linguistics. Ed. by Pierre Isabelle, Eugene Charniak, and Dekang
Lin. Philadelphia, Pennsylvania, USA: Association for Computational Linguis-
tics, pp. 311–318. DOI: 10.3115/1073083.1073135. URL: https://aclanthology.
org/P02-1040.

Pascanu, Razvan, Tomás Mikolov, and Yoshua Bengio (2013). “On the difficulty of
training recurrent neural networks”. In: Proceedings of the 30th International Con-
ference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. Vol. 28.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 1310–1318. URL:
http://proceedings.mlr.press/v28/pascanu13.html.

Peters, Matthew E. et al. (2018). “Deep Contextualized Word Representations”. In:
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers). Ed. by Marilyn A.
Walker, Heng Ji, and Amanda Stent. Association for Computational Linguistics,
pp. 2227–2237. DOI: 10.18653/V1/N18-1202. URL: https://doi.org/10.18653/
v1/n18-1202.

Prasad, Rashmi et al. (Jan. 2008). “The Penn Discourse TreeBank 2.0”. In.
Raffel, Colin et al. (2020). “Exploring the Limits of Transfer Learning with a Unified

Text-to-Text Transformer”. In: J. Mach. Learn. Res. 21, 140:1–140:67. URL: http:
//jmlr.org/papers/v21/20-074.html.

Reimers, Nils and Iryna Gurevych (2019). “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019. Ed. by Kentaro Inui et al. Association for Computational Linguistics,
pp. 3980–3990. DOI: 10.18653/V1/D19-1410. URL: https://doi.org/10.18653/
v1/D19-1410.

Robertson, Stephen and Hugo Zaragoza (Jan. 2009). “The Probabilistic Relevance
Framework: BM25 and Beyond”. In: Foundations and Trends in Information Re-
trieval 3, pp. 333–389. DOI: 10.1561/1500000019.

Ross, Stéphane, Geoffrey J. Gordon, and Drew Bagnell (2011). “A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learning”. In:
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. Ed. by Geoffrey
J. Gordon, David B. Dunson, and Miroslav Dudík. Vol. 15. JMLR Proceedings.
JMLR.org, pp. 627–635. URL: http://proceedings.mlr.press/v15/ross11a/
ross11a.pdf.

Ross, Stéphane, Geoffrey J. Gordon, and J. Andrew Bagnell (2010). “A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning”. In:
International Conference on Artificial Intelligence and Statistics. URL: https://api.
semanticscholar.org/CorpusID:103456.

Rusu, Andrei A. et al. (2015). “Policy Distillation”. In: CoRR abs/1511.06295. URL:
https://api.semanticscholar.org/CorpusID:1923568.

Sabour, Sara, William Chan, and Mohammad Norouzi (2018). “Optimal Completion
Distillation for Sequence Learning”. In: ArXiv abs/1810.01398. URL: https://
api.semanticscholar.org/CorpusID:52909749.

Shen, Dinghan et al. (2019). “Learning Compressed Sentence Representations for
On-Device Text Processing”. In: Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers. Ed. by Anna Korhonen, David R. Traum, and Lluís Màrquez.

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
http://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.18653/V1/N18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://api.semanticscholar.org/CorpusID:103456
https://api.semanticscholar.org/CorpusID:103456
https://api.semanticscholar.org/CorpusID:1923568
https://api.semanticscholar.org/CorpusID:52909749
https://api.semanticscholar.org/CorpusID:52909749

30 Bibliography

Association for Computational Linguistics, pp. 107–116. DOI: 10.18653/V1/P19-
1011. URL: https://doi.org/10.18653/v1/p19-1011.

Subramani, Nishant, Samuel R. Bowman, and Kyunghyun Cho (2019). “Can Uncon-
ditional Language Models Recover Arbitrary Sentences?” In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by
Hanna M. Wallach et al., pp. 15232–15242. URL: https://proceedings.neurips.
cc/paper/2019/hash/48c8c3963853fff20bd9e8bee9bd4c07-Abstract.html.

Subramani, Nishant and Nivedita Suresh (2020). “Discovering Useful Sentence Rep-
resentations from Large Pretrained Language Models”. In: ArXiv abs/2008.09049.
URL: https://api.semanticscholar.org/CorpusID:221186910.

Subramani, Nishant, Nivedita Suresh, and Matthew E. Peters (2022). “Extracting La-
tent Steering Vectors from Pretrained Language Models”. In: ArXiv abs/2205.05124.
URL: https://api.semanticscholar.org/CorpusID:248693452.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. Ed. by Zoubin Ghahramani et al., pp. 3104–3112.
URL: https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-
Abstract.html.

Thakur, Nandan et al. (2021). “BEIR: A Heterogenous Benchmark for Zero-shot Eval-
uation of Information Retrieval Models”. In: CoRR abs/2104.08663. arXiv: 2104.
08663. URL: https://arxiv.org/abs/2104.08663.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et
al., pp. 5998–6008. URL: https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Wang, Kexin, Nils Reimers, and Iryna Gurevych (Nov. 2021). “TSDAE: Using Transformer-
based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embed-
ding Learning”. In: Findings of the Association for Computational Linguistics: EMNLP
2021. Ed. by Marie-Francine Moens et al. Punta Cana, Dominican Republic: As-
sociation for Computational Linguistics, pp. 671–688. DOI: 10.18653/v1/2021.
findings-emnlp.59. URL: https://aclanthology.org/2021.findings-emnlp.
59.

Wang, Wenhui et al. (2020). “MiniLM: Deep Self-Attention Distillation for Task-Agnostic
Compression of Pre-Trained Transformers”. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle et al.
URL: https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Williams, Ronald J. (1992). “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning”. In: Machine Learning 8, pp. 229–256. URL: https:
//api.semanticscholar.org/CorpusID:2332513.

Zaken, Elad Ben, Yoav Goldberg, and Shauli Ravfogel (2022). “BitFit: Simple Parameter-
efficient Fine-tuning for Transformer-based Masked Language-models”. In: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022. Ed. by
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Association for Com-
putational Linguistics, pp. 1–9. DOI: 10.18653/V1/2022.ACL- SHORT.1. URL:
https://doi.org/10.18653/v1/2022.acl-short.1.

https://doi.org/10.18653/V1/P19-1011
https://doi.org/10.18653/V1/P19-1011
https://doi.org/10.18653/v1/p19-1011
https://proceedings.neurips.cc/paper/2019/hash/48c8c3963853fff20bd9e8bee9bd4c07-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/48c8c3963853fff20bd9e8bee9bd4c07-Abstract.html
https://api.semanticscholar.org/CorpusID:221186910
https://api.semanticscholar.org/CorpusID:248693452
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.findings-emnlp.59
https://doi.org/10.18653/v1/2021.findings-emnlp.59
https://aclanthology.org/2021.findings-emnlp.59
https://aclanthology.org/2021.findings-emnlp.59
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://api.semanticscholar.org/CorpusID:2332513
https://api.semanticscholar.org/CorpusID:2332513
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://doi.org/10.18653/v1/2022.acl-short.1

Bibliography 31

Zhao, Wayne Xin et al. (2023). A Survey of Large Language Models. arXiv: 2303.18223
[cs.CL].

https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Embeddings in Pre-Transformer Era
	Learning Embeddings using Transformers

	Related Works
	Language Modelling Setup
	Getting Embeddings from Language Models
	Modelling Embeddings for Semantic Text Similarity
	Unsupervised Approaches
	Tackling Semantic Search
	Learning Embeddings Directly from the Model

	Methodology
	Gap Analysis
	Averaging May Produce Bad Results
	Limited use of Transformers in Some Downstream Tasks
	Learning Embeddings Directly from the Model is Experimental and Challenging

	Research Questions
	Steering
	Exposure Bias
	Cross Entropy and Optimal Completion Distillation
	Calculating Optimal Completion Policy

	Model
	Architecture
	Steering

	Experiments
	Word-Level Language Modelling on Penn Treebank Dataset
	Training Steering Embeddings on Penn Treebank Word-Level LSTM
	Estimating the Quality of MLE Steering Embeddings

	Discussion
	Difficulties of Learning OCD Steering Embeddings
	On the quality of the resulting embeddings

	Future Work
	Exploring Alternative Injection Locations
	Altering Optimal Completion Objective Function
	Further Evaluation of Steering Embeddings
	Steering Transformers
	Direct Optimization of the Optimal Completion Objective Function

	Conclusions
	Bibliography

