
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Displaying weather forecast using
generative art

Author:
Maryana MYSAK

Supervisor:
Yurii ARTYUKH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Maryana MYSAK, declare that this thesis titled, “Displaying weather forecast using
generative art” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Displaying weather forecast using generative art

by Maryana MYSAK

Abstract

This work is about generative art and its possibilities. The best way to show the
full beauty of generative art is to try to display something perfect. Nature or rather
weather conditions is a great choice. In this work was made a system, that displays
natural animated landscape, that should show in an accessible way the weather con-
ditions. The weather conditions were analyzed and a special landscape view was
prepared.

Every part of the full landscape composition was generated by the system with-
out using any libraries. Every part of landscape was made with inspiration and
love.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
Firstly, I want to thank my supervisor Yurii Artukh for always good advices.

I am deeply grateful to all my teachers from university, who showed me the
world of computer science.

I am thankful to my family for their support throughout all four years.
The special and the biggest thanks to Pavlo Berezin, the one, who made me do

this work.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Relevance of the topic . 1
1.2 Goal . 1
1.3 Objective . 2

2 Background 3
2.1 Generative art . 3
2.2 Procedural generation . 4
2.3 Fractals . 4

3 Program implementation 6
3.1 Tree . 6

3.1.1 Background . 6
3.1.2 Implementation . 6

3.2 Ground . 15
3.2.1 Background . 15
3.2.2 Implementation . 15

3.3 Sky . 19
3.3.1 Background . 19
3.3.2 Implementation . 19

3.4 Precipitation . 24
3.4.1 Background . 24
3.4.2 Implementation . 24

4 Experiments 27

5 Conclusion 29

Bibliography 30

vi

List of Figures

1.1 The scheme of landscape view. 2

2.1 The snow particle made with fractals. 5

3.1 The fractal tree with even branch length and the fractal tree with ran-
dom branch length. 9

3.2 The fractal tree with random colors of leaves and the fractal tree with
grouped leaves. 10

3.3 Illustration of the circle unit. 11
3.4 Quadratic bezier curve. 13
3.5 The tree leaf visualization with quadratic bezier curve. 14
3.6 Different ways to draw grass. 17
3.7 The grass pile implementation using quadratic bezier curve. 19
3.8 The implementation of the cloud with particles 22
3.9 The visualization of basic and inner particles 24
3.10 Generated snow particles with different opacities. 26

4.1 Sunny weather in the summer. 27
4.2 Windy weather in the summer. 27
4.3 Windy and rainy weather in the summer. 28
4.4 Cloudy weather in the autumn. 28
4.5 Snowy weather in the winter. 28

vii

List of Abbreviations

PCG ProceduralContent Generation
ACM Association for Computing Machinery’s
SIGGRAPH Special Interest Group on GRAPHics and Interactive Techniques

viii

Dedicated to the beauty of the nature

1

Chapter 1

Introduction

1.1 Relevance of the topic

The modern world is rapidly developing and causing changes in all parts of human
life activities. And the art is not an exception of such changes. Coming through the
ages, art had a lot of different forms depending on the development of the surround-
ing world. Today we have a great growth in technologies which causes new forms
in the art to arise. These forms were unavailable before because of the absence of
tools to realize them. Generative art is great and at the same time a beautiful way to
represent a new form of modern art. This is the type of art that is performed and dis-
played with the help of the machines. With the help of modern technologies, people
have an opportunity to take a look at art from a different perspective. Generative art
is a special kind of art because the creation of some art pieces is done by human and
machine together. In this case, the machine is represented by the autonomous sys-
tem, that can make some decisions based on the randomness and the rules, that was
set by human. That randomness can be controlled by human or can be organized
in the special order, that will provide some limits by a human. As a result, we have
a product of random limited by human restrictions, which is named as the art but
looks like controlled chaos. This form of art is getting popular among artists in the
modern art, pop-art, minimalistic art.

1.2 Goal

Generative art is a great example of the successful tandem of artist and machine.
The best way to demonstrate the power and beauty of generative art is to try to
reach perfection. And as we know, there is an assumption that nature is perfect. So
it can be a great challenge to trying to show nature as close to real life as it possible
with generative art. Nature is really multifaceted and wide, but one of the most
beautiful and exciting facets of nature is the weather. The phenomenon of weather
is independent of people, but people depend on the weather a lot. The weather has
a lot of different conditions and ways how those conditions can be represented with
the help of visualization. Also, there are a big amount of ways and nature rules
that can cause a change in weather conditions. This point makes generative art a
good way to demonstrate the beauty and wideness of weather. The demonstration
of weather conditions can use a lot of different forms, however, all of them need
to be located into the environment, which can reflect all conditions. The virtual
environment, that can show all weather conditions should be close in its appearance
to the natural look so it would be easy for a human to identify the real force, degree,
or condition of the weather properties.

2 Chapter 1. Introduction

1.3 Objective

The virtual environment is a way of weather conditions representation. What does
mean “virtual environment” term? The imaginary scene of nature, that will be able
to visualize weather conditions. All possible weather conditions have to be defined
to understand requirements for the virtual environment. The nature scene should
display all four seasons of the year, the cloudiness of the sky, the precipitation (snow
or rain), wind strength, and wind direction. The nature scene should have such
components, which will display all of these factors. The main component of the
landscape will be the tree. This component will be in the spotlight. The tree compo-
nent will show the strength and direction of the wind. Also, it will be able to display
the current season of the year. The tree component demands the ground component,
as the tree needs to be grounded. The ground will be a large wide grass field. This
component is able to display both the wind and the season. The only component,
that is able to display the cloudiness is the sky. This component should be included
in the landscape view. The last component is the precipitate. It will have a different
form in accordance with the season of the year. The approximate scheme of future
landscape view is shown in fig.1.1.

FIGURE 1.1: The scheme of landscape view.

3

Chapter 2

Background

2.1 Generative art

There is a common question: “what is generative art?”. Philip Galanter proposed a
great explanation, who said that there are three blind men, who feel different parts
of one elephant. The first man, who touches the elephant leg, exclaim that it is like
a tree trunk. The second man, who touches the elephant trunk says that it is like a
snake and the last man, who feels the elephant side believes that it is like a huge wall
(Galanter, 2003). The same trend is with generative art. People explain generative
art with those things, that they are doing on their own. However there is the most
widely used definition of this kind of art supposed by Philip Galanter: “Generative
art refers to any art practice in which the artist uses a system, such as a set of natural
language rules, a computer program, a machine, or other procedural invention, that
is set into motion with some degree of autonomy, thereby contributing to or resulting
in a completed work of art.”(Galanter, 2003)

For a better understanding of the term “generative art” there are some histor-
ical facts about it. Both terms “computer art” and “generative art” are closely in-
tertwined for a lot of time. The first generative art exhibition was held in 1965 in
Stuttgart (Nake, 2005). It was named “Generative Computergraphik”. The works
with generative art were represented by Georg Nees. Later he had made his Ph.D.
work, related to the generative art (Nees, 1969). George attended the exhibition
for several times when there was Frieder Nake with his works. Both artists called
their work as generative art, which meant that works were made with a partly au-
tonomous computer system(Boden, 2009). The first music piece composed with
computer system was the "Illiac Suite for String Quartet". Both Lejaren Hiller and
Leonard Isaacson were working on this project in 1957 (Hiller and Isaacson, 1958).
However, the key person in computer generated music was Iannis Xenakis, who had
made "Stochastic Music Program" and had articles on "Formalized Music"(Xenakis,
1971). Kenneth Martin was an abstract art artist, that is painted with simple geomet-
ric figures and with established rules. Later Martin added some randomness to his
works (Martin, 1951/54). Nowadays there is an annual conference in Milan, which
debuted in 1998. And Brian Eno is influencer and promoter of using generative art
(Eno, 1996).Generative art in music and art fields is now widely used. The genera-
tive art term is used to determine the system, which has a part of an autonomous
system and strict rules, that will limit the process of generation.

The generative art phenomenon is popular mostly for music and computer graph-
ics with animations generation. The Markov chains were used to build the system,
which helps to analyze musical scores. (Schwanauer and Levitt, 1993). When the
gathered data was analyzed, the system was used to generate new music scores
based on previous scores. Today there are a lot of new ways to generate music with
a computer program, but the topic of this work is the visual generation. There is a

4 Chapter 2. Background

great number of different methods of visual generative art. One of them is Perlin
Noise (Perlin, 1985). This system is used to imitate human hair, animal fur, smoke
and etc. Also, the interesting approach is L-systems, that are used to make mostly
plant patterns(Prusinkiewicz and Hanan, 1990). There are a lot of different interest-
ing generative approaches described in the Association for Computing Machinery’s
(ACM) and Special Interest Group on Graphics and Interactive Techniques (SIG-
GRAPH) organizations (Galanter, 2016). There are a lot of sites with examples of
modern generation art (Intro to generative art).

To sum up, generative art is an art form that has been created wholly or partially
using autonomous systems. An autonomous system means that it doesn’t need hu-
man and can make decisions about features in artwork without human help. Some-
times human creators of the generative system claim that the system represents their
artistic idea, and in some cases, such claim is not provided. Generative art is mostly
created by using algorithms, however, it can be made with systems of biology, me-
chanics, chemistry, mathematics, symmetry, data mapping, and others.

2.2 Procedural generation

Procedural content generation (PCG) is an algorithmic generation, which is usually
used for game development. PCG has limited or even no human part. What is gen-
erated with PCG? All game content can be generated with procedural content gener-
ation. The game content is maps, vegetations, structures, rules, characters, dynamics
and a lot of other things, that depends on game possibilities(Togelius and Stanley,
2013). The great and relevant to the current topic example of PCG is the SpeedTree
system. This system is used as a generator of nature for commercial games. This
system can generate different vegetations: grass, tree, brushes, and others.

PCG is actually often used in the generation of vegetations. As vegetations usu-
ally have a similar structure, they can be formed with PCG approach(KELLY and
MCCABE, 2006). The big percentage of plants can be procedurally generated with
the help of fractals or L-systems(HENDRIKX and A, 2013). There is a system, that
growths the tree and takes to accordance the weather conditions to make the tree
more realistic(WEBER and PENN, 1995). Procedural content generation can also
make complex elements of nature. For example, clouds can be generated with Perlin
noise or other PRNG techniques(RODEN and PARBERRY, 2005).

To sum up, procedural content generation (PCG) is content generation, which is
performed by the program with a random or pseudo-random mechanism that al-
lows getting a large number of different possible forms of content. Random has a
big role in this due to the need of converting a few parameters into a great number
of possible forms of content that are being created. Word procedural means the type
of process, which performs some function. A good example of procedural genera-
tion is fractals, that are geometric patterns, which can repeat or textures and meshes.
Procedural generation can be also used in such an area as sound or music, espe-
cially in different genres of electronic music. The procedural generation also found
application in modern demoscene. It uses procedural generation to manage a large
number of audiovisual content in small computer programs.

2.3 Fractals

Fractal art is a representation of procedural generation, which is based on algo-
rithms. It is made by calculating fractal objects and visualizing it in different forms:

2.3. Fractals 5

images, animations or media. Fractal art is a genre of abstract art, that is actu-
ally composition with computer art and generative art. Usually, fractal art is made
by special software without the help of a human. Sometimes the result of fractal-
generating software can be modified with other graphics programs, the name of this
process is post-processing. There is an assumption that fractal art could never get so
popular and accessible for humans without computers and their ability to quickly
compute difficult calculations.

Fractals are the product of generation with iterations to solve non-linear and
polynomial equations. Fractals can take different irregular shapes and curves, that
repeats itself when it is decreased or increased in size(Fractal Packs). Fractals have
some special properties as infinitely self-similarity, iterations and detailed math con-
structs that have fractal dimensions(What is Fractal Management). A lot of such di-
mensions have been studied greatly and are already formulated. Fractals are used
not only to visualize beautiful patterns. For example, it can be used to show time
processes. Even more, fractals with different degrees of self-similarity were dis-
covered in structures, images, sounds, technologies, architecture, found in nature.
Fractals have a connection with chaos theory as the graphs of a big mount chaotic
processes have a form of fractals. The example of a fractal is illustrated in fig 2.1.

FIGURE 2.1: The snow particle made with fractals.

6

Chapter 3

Program implementation

3.1 Tree

3.1.1 Background

The developed systems main goal is to firmly represent the weather conditions in
any given moment and one of the best visual tool to achieve this is a tree component.
The ability of the tree to react to the wind in the most representative way can prove
this point. Exactly the tree is the main indicator of the strength of the wind because
of its location on the flat-rolled land. It can also be the best way to represent the
current season of the year by the color or absence of leaves on it. The tree is the
main and central component in the whole composition. Tree component also takes
the biggest number of calculations per second.

3.1.2 Implementation

For a better understanding of the component, its main parameters should be de-
clared and described here. As the most complicated and the biggest component tree
demands a lot of properties be set by the artist for the right configuration. Vari-
ables w and h contain the current screen height and width for further implemen-
tation of adaptive tree representation. This approach demands a specific depth of
the tree, that will define how many branches will be built from the trunk. The
maxDepth property is responsible for the depth of the tree. It means that the number
of branches from the trunk to any of ending branches will be equal to the maxDepth
number. This variable was set with 13, which is the optimal way to represent a lush
tree and avoid a lot of extra branches, that will not add to the visual part of the
component but will decrease its performance.

Every branch of the tree has its own specific branch length to achieve a more re-
alistic look. The maxBranchLenght and minBranchLenght variables define the max-
imum and minimum possible branch length. The maxBranchLenght variable is cal-
culated with Math.ceil(h/100)formula. In such a way the tree general height will
be greater on the bigger screens. Every branch (except the last branches) has two
other branches and they should have their own angle of incline, which is limited by
two variables: minAngle and maxAngle. The bendability property should always
be greater than 1 for the correct work of the component. The greater the value of
bendability, the more the thin branches will bend first. The tree structure is built
with a fractal method. As the tree structure is formed with the fractal approach
trunk should have its own x and bendability start coordinates. The x coordinate will
be formed automatically according to the current screen width, but y coordinate
should be set in the beginning according to the start line of the ground component.
As the ground component y coordinate of the start line is set to the h − 170, the tree

3.1. Tree 7

should be set a little bit lower to avoid any unexpected blank space between the
ground and tree. This value is set to treeStart variable.

The tree structure does not consist only from the branches, but also with leaves.
The leaves also need some properties to be set. The lea f Height variable defines the
height of leaves in the tree. The lea f Deviation variable defines the angle, that will
be used for further determination of leaves width. The more this value is, the wider
the leaf is. But it influences not only the width of the leaf but also its shape. The
more this value is, the more leaf will be more drop-like and vise versa. Leaves have
its own bendability indicator, which is defined in the lea f Bendability variable. The
bigger this value is, the more sensitive to the wind leaves become.

The main and important property of leaves is its colors. Colors of leaves will
help to determine the current season of the year. To reach a more realistic look
of the tree colors shouldn’t be fully randomly generated, but with the special or-
der. To implement it tree crown should be divided into few groups of branches
and then these groups should be colored in their own manner. To form the groups
in tree crown few branches should be chosen which will represent the start of the
group. All branches, that will be generated from the specific branch will be in one
group. To divide tree crown into approximately even groups it is needed to define
the depth, on which branches will become the start of groups. For the tree with
13 maximum depth, the optimal depth for start division is 10, which is defined in
the branchGroupDepth variable. The leavesGroupSize variable should be defined
for the further proper leaves coloring. It shows how many leaves there are on each
crown group. As each branch have two child branches(except the last branches) this
value can be calculated by bringing 2 to the power of depth of the group − 1. The
groupCounter variable will be used for further determination of the start of the new
crown branch. Also, there is a defined array of colors for leaves in lea f ColorArray
variable. This array should contain colors in a special order: from the darker colors
to lighter colors. This order should be followed to reorganize this array and save it
in the colors variable. The reorganization of the array consists of concatenating the
same but reversed array with the current one. As a result, there is an array of colors,
that starts with dark colors, in the middle with light colors and it goes to dark colors
again. The lea f ColorArrayLen variable defines the length of the array.

The treeCanvases and leavesCanvases are used to save already painted canvas to
optimize the process of drawing new canvases. The generatedBranches variable has
a function to store primarily generated properties of branches. Variables branches
and leaves are used as stores for the branches and leaves. The key features of those
storages are that both leaves and branches are stored under the key, which is equal to
the depth in the case of branches and color in the case with leaves. It stores canvases
in such a way for improving the performance of drawing the figures on canvas. The
branchCounter variable is used to iterate through the primary generated branches.

const w = window.innerWidth;
const h = window.innerHeight
const maxDepth = 13;
const maxBranchLenght = 8;
const minBranchLenght = 1;
const maxAngle = 20;
const minAngle = 15;
const bendability = 2;
const treeStart = 655;
const leafHeight = 20;

8 Chapter 3. Program implementation

const leafDeviation = 120;
const leafBendability = 17;
const branchGroupDepth = 10;
const leavesGroupSize = 2 ** (branchGroupDepth-1);
let groupCounter = 0;
let leafColorArray = [’#b8d23d’, ...];
const leafColorArrayLen = leafColorArray.length;
const colors = leafColorArray.concat(leafColorArray.slice(0).reverse());
let treeCanvases = {};
let leavesCanvases = {};
let generatedBranches = [];
let branches = {};
let leaves = {};
let branchCounter = 0;

After all needed properties are set it is time to implement tree structure. To begin
tree generation it is important to understand how this tree is going to be built. The
tree is going to be a fractal tree. A fractal tree is a structure, where the patterns are
repeating and every part of a tree is going to be repeated, but with smaller or bigger
scale. The tree is going to have a form of a binary tree. Each branch in the tree is
going to have two child branches, and the child branches are going to have their
own child branches. The exception is the head branch because it is going to be a tree
trunk, so it does not have any parent branches. And also exception is the last two
layers of branches in the whole tree. That is because the tree generates in such a way,
that the last branch is actually not a branch, but the leaf. The branches, that are going
to have as children leaves have only one child. In such a way every last branch has
only one leaf in the end. The goal of tree structure generation is to form the array
filled with branches parameters, that is rather properties of branches. Each branch
should have its own angle of incline, its own length, and color for leaves coloring.

The fractal tree structure is going to be generated recursively. The generate()
function is recursively calling and requires angle for the current branch, the current
depth of the tree and array as a store. The store array is gradually filling with three
properties for each branch. When the depth of the tree is not equal to 0 (the end of
the tree) and at the same time is more than 1 (not the last branch of the tree) function
generate() is calling twice to generate two child branches. In the other case it means
that it was the last branch and now is time to generate leaf, so function generate()
is calling only once. When the depth is equal to 0 it means that it is the end of tree
and recursion stops. To begin the recursion in the beginning the function is called
with such arguments: generate(−90, maxDepth, arr). The first angle is -90, as it is the
angle for the tree trunk and so it will always appear as straight vertical.

The angle for each next branch is formed by adding or subtracting the current
branch angle and random angle for the next branch. The angle for the new branch is
chosen randomly between defined limits in minAngle and maxAngle. When it is not
the last branch and function is called twice, the one call of the function should have
the sum of current and next angle as an argument and the other call of a function
should have the angles difference. In such a way two new child of the branch will
be aimed in the different ways relative to the current branch. In the case when it
was the last branch, the angle for the next branch, (which is actually a leaf) is the
same. Next property of each branch is its length, which is randomly chosen between
minBranchLenght and maxBranchLenght. This random length for tree branches is
used to achieve a more realistic look of the tree. The tree looks too symmetric and

3.1. Tree 9

unnatural when the branches have the same length. The difference between a tree
with branches of the same length and tree with random branches length is illustrated
in fig.3.1.

FIGURE 3.1: The fractal tree with even branch length and the fractal
tree with random branch length.

The third property, that should be generated, is color, which is used only when
leaves are painted. The tree coloring is quite a complicated task because of the need
to consider that the leaves colors are not random. If the leaves color will be random,
the tree would look like on fig.3.2. The color of tree leaf depends on many factors,
but one of the most important is the light. The leaves, that are in the deep of tree
crown have darker colors and leaves that are located on top of the tree have lighter
colors. Because of that, the crown of the tree is divided into groups. Each group of
tree crown is colored in the same way: in the middle, it is colored with the darker col-
ors and on the sides, it is colored with lighter colors. The fractal tree becomes more
natural when there are several groups inside of the tree crown. The groupCounter
variable is needed to implement the division of tree crown. This counter is increas-
ing by 1 every time when one leaf is generated. The value of counter resets to 0
when the generation of the new crown group starts. So it means that this counter
shows the number of current leaf in its crown group. Each crown group is verti-
cally divided into several parts, where each part will be colored into its own color.
Function divide(min, max, units, value) is used to determine in which part of the
crown current leaf is located. This function divides the interval between min and
max into smaller even intervals. The units is a number of intervals in which larger
interval should be divided. This function determines which of that intervals the
value belongs and returns the index of that interval. The formula inside the function
is min + Math. f loor(Math.random() ∗ (max + 1 − min)). The 0 and leavesGroupSize
will be as minimum and maximum for divide function, as the leavesGroupSize is a
number of leaves in one group. The number of parts in one group is equal to the
number of possible colors. The groupCounter will be used as value argument. The
result of the function call will be the index of the needed color in colors array. The
fractal tree will look like in fig.3.2 after dividing its crown into groups.

10 Chapter 3. Program implementation

FIGURE 3.2: The fractal tree with random colors of leaves and the
fractal tree with grouped leaves.

function generate(angle, depth, arr) {
let randomLeafColor = colors[divide(0, leavesGroupSize,

(leafColorArrayLen - 1) * 2, groupCounter)];

arr.push({
angle,
branchArmLength: random(minBranchLenght, maxBranchLenght),
color: randomLeafColor

});
if (depth === branchGroupDepth) { groupCounter = 0; }
if (depth === 0) { groupCounter++; }
if (depth != 0) {

if (depth > 1) {
generate(angle - random(minAngle, maxAngle), depth - 1, arr);
generate(angle + random(minAngle, maxAngle), depth - 1, arr);

} else {
generate(angle, depth - 1, arr);

}
}

}

The tree is not a static component as it can be changed by the wind. The branch
function role calculates new coordinates for branches according to new wind value.
It updates with every new wind value. This function is recursively implemented
in the same way as it is inside of generate() function. The function calculates only
coordinates for the end of a branch, as the coordinates for start of the branch is the
coordinates of the end of the parent branch. Each branch move is actually a circular
motion, which depends on its length, depth, angle, parents angle, wind strength,
and wind direction. To calculate new coordinates for the branch calcX(angle, r) and
calcY(angle, r) functions is used. These functions are made to determine x and y
coordinates for point (the orange point at fig.3.3), that is moving in the circular tra-
jectory. Both functions need to have two arguments: angle of incline to the x-axis (

3.1. Tree 11

in fig.3.3) and radius of the circle. To calculate coordinates of point it is needed to
multiplicate radius with the cosine of the angle or sine of the angle. So the formula
for calcX()isr ∗ Math.cos(angle) and formula for calcY() is r ∗ Math.sin(angle). In
the case of the tree branch, the radius of the circle will be the length of the current
branch multiplicated by current depth. Usually, a natural tree has its top branches
thinner and shorter than branches, that are near the trunk. The length of the branch
is multiplicated by the depth to make top branches smaller than branches below. If
all branches will have almost the same length, the tree would look too unnatural.

The angle for each branch is built by this formula angle+wind ∗windSideWayForce ∗
bendabiityO f CurrentBranch. The angle is each branch own angle, that was ran-
domly generated in generate() function. The wind is the strength of the wind. The
windSideWayForce variable is formed by (windX ∗ yy − windY ∗ xx)formula, where
windX and windY can be -1, 0 or 1. These variables are taken from wind con-
fig and define in which side wind is blowing. The xx and yy values are formed
bycalcX(dir, depth) and calcY(dir, depth) functions. In such a way windSideWayForce
shows the direction of the wind. The last factor for the branch angle is bendabiityO f CurrentBranch.
This value is extracted by this formula: (1− (depth ∗ 0.7)/(maxDepth ∗ 0.7)) ∗ ∗bendability.
This calculation is needed to make top branches bend stronger than lower branches
(the branches with less depth). As the thickness of the branch is formed according
to its depth, it makes thin branches be more sensible to the wind gusts.

The similar calculations are needed to determine the angle for leaves angle, but
there are some different points related to leaves depth. As the depth of leaves
is always equal to 0, the value of windSideWayForce will be equal to 0 too. In
such a way during the calculation of xx and yy values, there should be used 1 in-
stead of depth in calcX() and calcY()functions. Also, leaves own bendability force
lea f Bendability should be used instead of bendabiityO f CurrentBranch value. Both
leaves and branches are saved into new objects with specific keys. The depth is a
key for branches and the color is key for leaves.

FIGURE 3.3: Illustration of the circle unit.

12 Chapter 3. Program implementation

function branch(x1, y1, arr, depth, windConfig) {
if (depth != 0) {

dir = angle + wind * bendabiityOfCurrentBranch * windSideWayForce;
let x2 = x1 + calcX(dir, depth * branchArmLength);
let y2 = y1 + calcY(dir, depth * branchArmLength);
lines[depth].push([x1, y1, x2, y2]);

if (depth > 1) {
branch(x2, y2, arr, depth - 1, windConfig);
branch(x2, y2, arr, depth - 1, windConfig);

} else {
branch(x2, y2, arr, depth - 1, windConfig);

}
} else {

const leafAngle = angle + wind * windSideWayForce * leafBendability;
leaves[color].push([x1, y1, leafAngle]);

}
}

When all branches and leaves are generated its time to visualize it. The draw-
ing on the canvas is a quite time-consuming thing. There is an assumption, that
for better performance each canvas should have a specific limit of painted objects.
That is why tree branches and leaves are divided into two different canvases. Both
branches and leaves are saved into the object with special keys for another perfor-
mance optimization. The function beginPath() should be called to begin drawing
something on canvas and closePath()should be called after all drawing manipula-
tions are over. This two action takes a lot of time in the program process, so the
use of these two functions should be minimized. However, there is one problem
with avoiding using these two functions: the stroke color, fill color and stroke width
cannot be changed in the scope of one path. For example, two different paths are
needed to draw two similar rectangles, but with the different fill color. For that rea-
son branches were grouped and saved in the object by the depth (as the stroke width
depends on depth). Now it is easy to go through the object and draw all branches
with the same width in the scope of one canvas path. The code snippet below shows
the process of exactly drawing each branch. When there is an array of branches
with the same depth, the lineWidth variable can be defined for all of them. The pro-
gram starts to iterate through the array after the path was started. Each branch is
painted with a simple line, that has start coordinates and the end coordinates. After
all branches were painted path closes and all lines get stroked at the same time.

3.1. Tree 13

context.lineWidth = depth * 0.7;
context.beginPath();

while (lines.length) {
const [x1, y1, x2, y2] = lines.pop();
context.moveTo(x1, y1);
context.lineTo(x2, y2);

}
context.closePath();
context.stroke();

});

The leaves are implemented with a similar method of optimization. All leaves
are grouped by color and saved by color as a key. In addition to optimization, the
store of leaves should be sorted by the lightness of colors to draw light leaves in
the end. As light leaves have such light color because of the sun, they should be
not in the depth of a tree. Also, the process of leaves drawing is more complicated
because of its convex form. This shape of a leaf can be implemented with bezier
curves. Bezier curves can be formed with three, four or more control points. For
leaf is enough two quadratic bezier curves (Armstrong, 2005). This curve is formed
with three control points as it is in fig.3.4. Two points are responsible for the end
and start of the curve. The other one point is responsible for convex of the curve.
Each leaf is painted with four control points as for its implementation is needed
two quadratic bezier curves. There is an illustration on fig.4.5 of tree leaf, formed
with two quadratic bezier curves. Also, four control points that form tree leaf are
shown. The blue points show the start and end of the curves. The yellow points
are used to form convex of the curve. The canvas has already implemented func-
tion quadraticCurveTo(x1, y1, x2, y2), which is drawing quadratic bezier curve. This
function takes four arguments: the first two are coordinates of the control point, that
forms deviation of the curve and the next two arguments are coordinates of the con-
trol point, which indicates the end of the curve. The coordinates for the start of the
curve will be set at that point, where the previous curve has the end. In the case
when there is no previous curve the start of the current curve should be set with
canvas function moveTo(x, y) .

FIGURE 3.4: Quadratic bezier curve.

14 Chapter 3. Program implementation

FIGURE 3.5: The tree leaf visualization with quadratic bezier curve.

The control points for tree leaf depend on the leaf start coordinates, leaf angle,
leaf height, and shape. The start coordinates of the leaf are x and y. The next steps
of generation are to determine another three points, where x2 and y2 will be the
coordinates of the leaf end. The x3, y3, x4, and y4 are the coordinates of points,
that forms the curve convex. As the leaves are moving on the circular trajectory,
the calcX() and calcY() functions will help to define all needed control points. To
calculate coordinates for the leaf top, leaf height will be used as the radius and the
leafs angle will be used as an angle. The control points for curve convex is calculated
with half leaf height as a radius. These control points angle depends on the angle of
the leaf. The angle for one of that control points will be the angle + lea f Deviation.
The other control point will be calculated in the same way, but the angle will be
caluclated as angle − lea f Deviation. The lea f Deviation is the angle, that illustrated
at fig.3.5. To make the leaf more realistic line is painted, this line goes through whole
leaf height. In the end leaf is filled with its color. It also has a stroke, to color the
lines and leaf borders. The color of stroke is the next color in the palette. In such a
way borders of the leaf is always a little bit darker than the leaf itself.

context.fillStyle = color;
context.strokeStyle = strokeColor;
context.beginPath();

while (leaves.length) {
const [x, y, angle] = leaves.pop();
let x2 = x + calcX(angle, leafHeight),
y2 = y + calcY(angle, leafHeight),
x3 = x + calcX(angle + leafDeviation, leafHeight / 2),
y3 = y + calcY(angle + leafDeviation, leafHeight / 2),
x4 = x + calcX(angle - leafDeviation, leafHeight / 2),
y4 = y + calcY(angle - leafDeviation, leafHeight / 2);

context.moveTo(x, y);
context.quadraticCurveTo(x3, y3, x2, y2);
context.quadraticCurveTo(x4, y4, x, y);
context.moveTo(x, y);
context.lineTo(x2, y2);

}
context.closePath();
context.fill();
context.stroke();

As it was said earlier, the process of drawing on the canvas is quite complicated
and takes a lot of time. In spite of all previous optimization, there are still too many

3.2. Ground 15

calculations and drawings. To improve performance, there was a decision to save
already painted canvases. Canvas can be saved in a variable and can be used with-
out redrawing all content. As the redrawing of tree canvas depends on the wind,
the canvases will be saved in the object with wind values as a key. In such a way,
when the new wind is generated, the program will first look if there is already saved
canvas for such a wind value. If there is painted canvas, it will be used, but if there
is not such canvas it will be painted and saved. However, this approach has one
disadvantage. Some period of time should pass before all possible canvases will
be generated and saved. That is why at the beginning of program all canvases are
generating with all possible wind values, while the user sees loader on the screen.
It takes some time, but when the program starts, the user will see really smooth
drawing with a great performance. This optimization approach makes performance
works three times better than without it.

3.2 Ground

3.2.1 Background

Because the main weather representative is a tree component it needed someplace it
would look appropriate. The rolling field with grass cover is a good way to comple-
ment the tree component and visualize weather conditions in its own manner. The
grass on the field can show the same weather conditions as a tree but in the other
way. The grass field can perfectly represent the wind gusts by bending grass piles
on the field. Grass can also illustrate the current season of the year by changing the
color of grass piles and its structure. In the early spring, the grass is small and thin
with a pale color of grass piles. But till the end of the spring grass is going to be
tall and thick with saturated pile colors. Through the summer grass is not going to
change, but with the beginning of autumn in the grass will appear some yellow and
orange colors. Till the end of the autumn, all grass will become dry, thin and yellow.
The grass will also bend to the ground as it is natural for the tall grass in the field.
When winter will come and bring snow, the whole ground will become white and
some dry grass piles will stay above the snow.

3.2.2 Implementation

Ground implementation needs some properties to be set in the beginning. The vari-
able colors is 2d array, which contains groups of colors, that will be used to color the
grass. To achieve the feeling of a big rolled field with grass and avoid feeling that
there is one grass row right in front of the user display colors should be divided into
groups. The farthest layers of grass have to be painted in more smooth and light col-
ors and the closest layers of grass to be painted in more contrast colors. The smooth
transition should be provided between the most contrast and the most smoothed
groups of colors. In this particular case, the field is divided into six layers, which
is the optimal number for the field with such a height. This value is defined in the
f ieldAreas variable.

The h and w variables contain the values of the height and width of the current
user screen. All needed constant parameters for grass implementation is set below.
Two variables grassWidth and grassHeight will provide the width and height of each
pile of grass. The f ieldTopStart variable has a value, which indicates a point that will
be the start point of the field from the top. This value depends on the current user
screen height because of the grass field should have the same height independently

16 Chapter 3. Program implementation

to the user’s screen. That is why this point of field start is calculated byh − 170 .
The 170 number, in this case, is actually the field height. The f ieldBottomDeviation
will indicate how much space should be added to the bottom of the screen for the
formation of the grass fields bottom line. The number variable has a number of piles
of grass that will be generated on the grass field. This variable depends on the width
of the current screen. When the screen has 1440px, there will be approximately 4000
blades of grass on the grass field. In the nature piles of grass is rarely vertically
straight, so for the more realistic look of grass, each blade will have its own angle of
incline to the ground. So the maxAngleDeviation variable indicates the max angle
of pile incline. Usually, in a real grass field, every pile is moving in the wind with
different speeds. To achieve this feeling there are defined two variables minSpeed
and maxSpeed that will show max and min speed value for piles. Variable canvases
will be used to store already painted canvases. Variable grassDots will be used to
store x and y coordinates on the field of each pile of grass.

const colors = [["#7f9032", ...], ["#6b7f26", ...]];
const fieldAreas = 6;
const grassWidth = 3;
const grassHeight = 70;
const fieldTopStart = 650;
const fieldBottomDeviation = 40;
const number = 4000;
const maxAngleDeviation = 15;
const minSpeed = 2;
const maxSpeed = 6;
const canvases = {};
const grassDots = [];

When all the needed properties of grass are provided, the process of grass imple-
mentation starts. This process starts with generating every grass pile with its own
parameters. The generate()function will provide at its output the array of gener-
ated properties for each grass pile. Each pile should have such parameters as x, y,
color, angle, and speed. To achieve a more realistic look of the grass field each grass
pile will be located on the field randomly. That’s why the x coordinate is randomly
generated between the start and end of the screen and y coordinate is randomly gen-
erated in the space, which is limited by f ieldTopStart above and height of screen +
f ieldBottomDeviation value. Extra space for the field in the bottom of the screen is
provided to generate some grass piles below the user view. With such an approach,
the user will see in the tops of grass piles at the bottom of the screen, which will
achieve the feeling that the user is located right in the middle of the field. In addi-
tion, it will help to avoid having blank space on the ground.

As the common color of grass piles is changing vertically from smoothed to more
contrast there should be provided proper color for each grass pile according to its
location on the y-axis. If all grass piles would be chosen randomly without color lay-
ers the field will look unnatural as on fig. 3.6 The grass field should be conditionally
divided into some horizontal layers, where each layer will have its own group of col-
ors, that will color grass piles on that area. For the implementation of grass layers,
every pile of grass has to belong to one of the six layers. The function divide(min,
max, units, value) will help with the determination of the proper group of colors for
each pile. The work and implementation of this function are explained in the tree
component. This function will return the index of the needed color in the color array.

3.2. Ground 17

In the case of the grass field, the min and max arguments have to be the bottom and
top limits of the field. The units argument takes the number of parts in the field and
the argument value takes the y coordinate of the grass pile. When there is an index
of needed color group, color for a pile is chosen randomly from that group.

The next property of the grass pile is the angle of incline to the ground and
it’s generated randomly between −maxAngleDeviation and maxAngleDeviation be-
cause grass pile can be inclined into different sides. The last property for grass pile is
the speed of movement due to the wind and it is randomly chosen from the interval
between minimal and maximal speed value. When the array of piles properties is
generated it should be sorted by y coordinate from the smallest to the largest one.
The sorting of the array is needed for further grass piles drawing. When the array is
not sorted all piles are drawing in the random locations on the field as coordinates
of piles are generated randomly. In such a case, piles each other in the wrong order
and the field of grass is getting messy, which is illustrated infig. 3.7(b). However, if
the array will be sorted, the farthest piles will be painted first and the closest piles
will be painted last, which will make the field of grass looks closer to real life.

function generate(number) {
for (var i = 0; i < number; i++) {

var y = random(fieldTopStart, h + fieldBottomDeviation);
var x = random(0, w);

var colorGroup = divide(fieldTopStart, h + fieldBottomDeviation + 1, fieldAreas, y);
var color = colors[colorGroup][random(0, colors[colorGroup].length)];
var angle = random(-maxAngleDeviation, maxAngleDeviation);
var speed = random(minSpeed, maxSpeed);
dots.push([x, y, color, angle, speed]);

}
dots.sort();

}

(A) The grass without color layers. (B) The grass without sorting.

(C) The grass field.

FIGURE 3.6: Different ways to draw grass.

18 Chapter 3. Program implementation

After the process of generating all needed parameters for the grass piles, it’s
time to draw it on the canvas. Every grass pile consists of two quadratic bezier
curves (Armstrong, 2005). It is the same curves, that are explained in tree compo-
nent while drawing tree leaves. In the case of a grass blade, three control points
for each curve is enough for its visualization. Each grass blade is painted with five
control points as for its implementation is needed two quadratic bezier curves. On
the fig. 3.7 there are illustrated three different examples of drawing grass pile with
two quadratic bezier curves. On the picture is also shown that each grass pile has
five control points. The blue control points mark start and the end of the curves and
yellow control points form the deviation of curves. The canvas has already imple-
mented function quadraticCurveTo(x1, y1, x2, y2), which is drawing the quadratic
bezier curve. The work of this canvas function is already explained while the tree
leaves drawing. First, two arguments of the function are coordinates of the curved
end, and the second two arguments are coordinates of a point, that shows curve
convex.

In the process of visualizing blade of grass, some important factors came up,
that have an influence on its appearance: angle, wind, and speed. The angle and
speed are properties of each pile, generated in the beginning and wind contains
the value of actual wind in the current moment. This value is taken from the wind
config and is changing several times per second. When the value of wind changes all
canvas is re-drawn with new shapes of blades in such a way there is a feeling of the
moving of grass piles. To perform the proper movement for the top of the grass pile
(coordinates of the first curve end) the speed on the x-axis should be twice as large
as the speed of points, that form curve deviation. Also to improve the movement
of grass pile the changing of the y coordinate of the grass pile top is calculated. The
module is needed as the wind can have negative values, which is important for the x-
axis, but not for the y-axis. With such an improvement in the case of stronger wind,
the pile will not only move with the wind, but it also will incline to the ground,
which will make grass field movement more realistic.

context.fillStyle = color;
context.beginPath();
context.moveTo(x, y);
context.quadraticCurveTo(

x - wind * speed + angle,
y - grassHeight / 2,
x - grassWidth / 2 + wind * speed * 2 + angle,
y - grassHeight + Math.abs(wind * speed + angle)

);
context.quadraticCurveTo(

x - grassWidth - wind * speed + angle,
y - grassHeight / 2,
x - grassWidth,
y

);
context.fill();
context.closePath();

3.3. Sky 19

FIGURE 3.7: The grass pile implementation using quadratic bezier
curve.

The process of the grass field drawing is quite consuming as there are about 4000
grass blades on the field and every blade demands some calculations. All 4000 grass
blades are re-drawn with the new value of the wind to show the movement. In
addition, the process of drawing on the canvas takes some extra time. To improve
the performance of the grass field moving in the wind, the canvas store was imple-
mented as it was implemented with three components. It is a simple object, where
the keys are the value of the wind and the values are already painted canvases. In
such a way every time when the wind gets a new value the program will firstly look
for already painted and stored canvas and show it if it’s already present, which is
more efficient and much quicker then calculating and drawing new canvas every
frame of time.

3.3 Sky

3.3.1 Background

The landscape with ground and tree is incomplete without the sky component. The
sky is an important part of any landscape view. It is also important as a possible way
to represent current weather conditions. The sky can not show the current season
of the year, but it is the only component that can show how cloudy the weather
is. Clouds are a very important part of the weather conditions. The clouds can
also show wind strength and its direction. The sky look depends only on the index
of cloudiness. The clouds are very interesting natural phenomenon, as they have
strange shapes and specific way of movement.

3.3.2 Implementation

For a better understanding of how clouds are going to be implemented, all defi-
nitions should be explained. The w and h variables define the current screen width
and height. It is needed to make the view of component responsive. Every cloud has
its own canvas, that can overlay on each other and form bigger clouds. The sky is
actually one big canvas with a background gradient color of the current sky. The sky
canvas also contains the clouds canvases and draw them with drawImage() canvas
function. The cloudMinWidth and cloudMaxWidth variables define the minimum
and maximum possible cloud width. The same function has the cloudMinHeight
and cloudMaxHeight variables, but they define the minimum and maximum pos-
sible height of the cloud. In such a way each cloud has its own width and height.
The cloudCanvasWidth and cloudCanvasHeight variables contain the values of the
width and height of clouds canvases. All canvases of clouds have the same width

20 Chapter 3. Program implementation

and height, but clouds have different sizes, as they do not need to fill all canvas and
have their own parameters. The width and height of cloud canvases are bigger than
the maximum possible width and height of the cloud because of cloud will be not
static and will be changing its shape. The bigger size of the canvas will help to avoid
clouds go outside its canvas. The cloudWidth and cloudHeight variables are calcu-
lated by a random choice between their limits and define the width and height for
the current cloud.

The cloudsAmount variable defines the number of clouds on the sky. This vari-
able in app depends on the value from API, which shows how cloudy the weather
is. Both speedOnSky and speed variables show the speed for clouds. The clouds in
the sky usually move in some direction on the sky with some speed. This speed is
set to the speedOnSky variable. However, if to look closer to the clouds, there is more
movement than just across the sky. Each cloud is also always moving inside itself,
causing a change of its form. The speed variable defines the speed of movement
the cloud inside itself. Each cloud consists of particles, that will be moving in the
circular trajectory. Both these variables in the app depend on the wind strength. The
radius variables the radius of the circle movement for cloud particles.

As it was in previous components, the clouds have to be optimized too. That is
why we need the canvases variable, that will be store for already painted canvases.
However, the difference is that in previous components the process of saving the
keys for saved canvases was the wind value. In the case with clouds, the frame
variable will be the key for saved canvases. The cloud particles will be filled with
the image, which will improve the performance of the program. There are two types
of cloud particles, that will be colored into different images. The particle variable
stores the image for the main particle of the cloud and innerParticle variable stores
the image for inner particles.

const w = window.innerWidth;
const h = window.innerHeight;
const cloudMaxWidth = 200;
const cloudMinWidth = 80;
const cloudMaxHeight = 50;
const cloudMinHeight = 20;
const cloudCanvasWidth = 350;
const cloudCanvasHeight = 200;
const cloudWidth = random(cloudMinWidth, cloudMaxWidth);
const cloudHeight = random(cloudMinHeight, cloudMaxHeight);
const cloudsAmount = 15;
const speedOnSky = 0.1;
const speed = 1;
const radius = 10;
let frame = 0;
const canvases = {};
const particle = new Image();
particle.src = icons.cloud;
const innerParticle = new Image();
innerParticle.src = icons.innerCloud;

After all needed constants are defined becomes the time to generate the clouds.
The task of generateClouds() function is to produce the array filled with the proper-
ties for each cloud. This function needs only one argument: the number of clouds,

3.3. Sky 21

that should be generated. Each cloud should have three properties: the function,
that draws the cloud and coordinates of its location on the sky canvas. The first
argument is the call of cloud function, which generate the random cloud. The x co-
ordinate can be any point on the screen width and even outside the screen. This
causes the generation of clouds, that are not fully visible for user and it makes the
sky more natural. The y coordinate can be at any point between the top of screen
and cloud own height. Thus the clouds are located on a different height on the sky.

As the clouds are not static components, they need to have recalculation function
for their coordinates. TheupdateCloud()function updates the coordinates for each
cloud canvas according to its new location on the sky. The updateCloud()function
makes the clouds to move across the sky. This function is quite simple. It just
adds the speedOnSky to the current x coordinate of the cloud canvas or subtracts
speedOnSky from the x coordinate of the cloud canvas according to the wind direc-
tion. This makes the clouds move. When the cloud is going outside the right side
of screen, its x coordinate becomes −cloudWidth. When the cloud is going outside
the left side of the screen its y coordinate is. So, when the cloud goes outside the
one side of the screen it appears on the other side of the screen. It appears outside
the other side of the screen and with wind goes inside the screen. In such a way all
clouds are repeating, what is good for program performance.

function generateClouds(amount) {
const clouds = [];
for (let i = 0; i <= amount; i++) {

const getCloudCanvasFn = cloud();
const startinPosX = random(-cloudWidth, w);
const startinPosY = random(0, cloudHeight);
clouds.push([getCloudCanvasFn, startinPosX, startinPosY]);

}
return clouds;

The process of generation each cloud is not very complicated. As it was said,
each cloud consists of particles. There are two types of particles: basic particles and
inner particles. The difference is in the look of those particles. The basic particles
have a light color and are located in the whole cloud area. The inner particles are
darker and are located at the bottom part of the cloud area to make an illusion of
the cloud shadow. The amount of particles depends on the area of the current cloud.
The particles and innerParticles variables define the number of basic particles and
inner particles. The number of inner particles should be smaller, than the number
of basic particles. The particles of the cloud should be properly located on the cloud
canvas. The inner movement of the cloud is represented by moving these particles.
While the cloud canvas is moving the whole cloud on the x axes, the particles have
their own circular trajectory of movement. Thus each particle should have its circleX
and circleY coordinates, that are not actually coordinates of the particle. The particle
will be moving around this point. The properties, needed for particles drawing are
angle, x and y. The angle of the particle is generated randomly. Because of the
random angle for each particle, they will move like a random. In spite of the same
radius and speed, it will look chaotic because of different angles. Some particles will
be moving to the bottom and some will be moving to the top at the same time. These
coordinates are calculated in such a way, that the particle can be located in any place
inside the cloud area and not go away outside this area.

The generateParticles() function below is the function for generating an array
with properties for basic particles. There is the similar function generateInnerParticles()

22 Chapter 3. Program implementation

, but it is for inner particles. The difference between these functions is that circleX
and circleY are calculated in different ways. That is because basic particles should
be located on the whole cloud area and inner particles should be located on the bot-
tom cloud part. In that reason, coordinates for basic particles are calculated with
random(radius, cloudWidth/cloudHeight). The radius was used as a minimum to
avoid particle falling outside the canvas. The same coordinates for inner particles
are calculated with random(40, 40 + cloudWidth/cloudHeight). The 40 is a top and
the left margin of the cloud. In such a way only basic particles will be on the top and
the left side of the cloud. These manipulations with cloud particles are needed to
achieve the effect of cloud shadow and cloud inner movement, which is illustrated
in fig.3.8. As the particles have to move on the circle trajectory, the only one thing,
that should be changed is the angle. There is a recalculateParticlePosition()function,
that adds to the angle the speed variable. In such a way the particles are moving
with the same speed.

const particles = (cloudHeight * cloudWidth) / 250
const innerParticles = (cloudHeight * cloudWidth) / 330

function generateParticles(cloudWidth, cloudHeight) {
const cloud = [];
for (var i = 0; i < particles; i++) {

var circleX = random(radius, cloudWidth)
var circleY = random(radius, cloudHeight)
var angle = random(0, 360)
cloud.push([angle, circleX, circleY]);

}
return cloud;

}

FIGURE 3.8: The implementation of the cloud with particles

3.3. Sky 23

const particles = (cloudHeight * cloudWidth) / 250
const innerParticles = (cloudHeight * cloudWidth) / 330

function generateParticles(cloudWidth, cloudHeight) {
const cloud = [];
for (var i = 0; i < particles; i++) {

var circleX = random(radius, cloudWidth)
var circleY = random(radius, cloudHeight)
var angle = random(0, 360)
cloud.push([angle, circleX, circleY]);

}
return cloud;

}

The process of drawing cloud particles is very simple. As the particles are mov-
ing on the circular trajectory, there is a need to calculate the x and y coordinates
of the particle position. These coordinates are calculated with the use of calcX()
and calcY() functions. These functions were explained in the tree implementation
subchapter. To get the proper coordinates of the point is needed to pass the angle
and radius properties. The circle center coordinates should be added to the results
of functions in accordance. When the coordinates of the particle are calculated it
should be painted as an image with drawImage(img, x, y) function. The two differ-
ent particles were generated and saved into images. Both basic particle and inner
particles were generated with createRadialGradient() context function. The differ-
ences between these two particles are the color and circle center. The inner particle
has a darker color and shifted the circle center to the right bottom corner. The exam-
ples of both particles are shown in the fig.3.9.

function drawCloud([angle, circleX, circleY], img, context) {
var newX = calcX(angle, radius);
var newY = calcY(angle, radius);
const x = newX + circleX;
const y = newY + circleY;
context.drawImage(img, x, y);

}

24 Chapter 3. Program implementation

FIGURE 3.9: The visualization of basic and inner particles

The cloud implementation has the same optimization with canvas saving as the
previous grass and tree components. However, there is one difference. As each
cloud has its own canvas, all those canvases should be saved inside each cloud func-
tion. As the inside cloud movement is independent of the wind, there is a frame
variable, that will be the key for canvases. This variable is calculated with every
canvas update with (f rame + speed)%360 f ormula. In such a way the frame value
will go from 1 to 360 and then again becomes the 1. So, when all particles have
made the full circle all canvases will be already saved. Also, a lot of time in clouds
generation takes gradient generation. That is why it was made the decision to gen-
erate the particles gradient, make images from it and use only gradient image. This
improvement made the program performance faster in several times.

3.4 Precipitation

3.4.1 Background

The last, but very important visual component is precipitation. The visualization of
weather conditions will be incomplete without displaying current precipitation. It is
the only component that can show the precipitation index on the screen. However, it
can also show the current season of the year, as in the winter precipitation change its
form. So, there are two types of precipitation: rain in the warm weather and snow
in the cold weather. The precipitation also can show the direction of the wind, as its
particles are falling down in the wind direction.

3.4.2 Implementation

The snow is the first type of precipitation, that will be explained. There are some
constants, which should be defined before the generation process. There are w and
h variables, that define the current width and height of the screen. The particles ar-
ray has a role of the snow particles store. The particlesAmount variable defines how
much snow particles are painted on the screen. This value depends on the snow
index from API in app implementation. As the snow particle is actually a circle, it
should have a radius. The minRadius and maxRadius values define the minimum

3.4. Precipitation 25

and maximum possible radius for snow particle. The minXSpeed and maxXSpeed
variables have values of minimum and maximum possible speed for snow parti-
cle. When the particle falls outside the screen it will appear again in the top of the
screen. The snow particle will be generated a little bit higher than the screen top to
avoid sudden particle appearance in the middle of the sky. The particleStart vari-
able defines the value, which indicates how much higher than the screen particle
will appear. The particles should be generated not only along the screen width but a
little bit wider. Because of wind particles may be falling in one direction, the screen
sides may be empty. The sidesDeviation variable is used to avoid such situations.

w = window.innerWidth;
h = window.innerHeight;
var particles = [];
var particlesAmount = 500;
const minRadius = 0.5;
const maxRadius = 5;
const minXSpeed = -3;
const maxXSpeed = 3;
const particleStart = -50;
const sidesDeviation = 0.5;

The function below shows the process of snow particles generation. Each particle
should have its coordinate on x and y axes. The x coordinate is calculated according
to the current screen width. The possibility of snow particles to appear wider than
a screen with is also taken into account. The y coordinate is calculated in the same
way according to the current screen height. Snow particles also have different color
opacity, which is chosen in the generation process. Each particle should have its
own radius, which is randomly chosen between minRadius and maxRadius. Snow
particle is always falling down with a specific speed, that defined in YSpeed variable.
This speed depends on the radius of the particle. In such a way bigger particles
will be falling down faster, than small particles. It will help to achieve a feeling,
that bigger and faster particles are located closer to the screen like in the 3-d scene.
Particles are not falling straight vertically, so they need to have XSpeed too. This
one is calculated by a random choice between its maximum and minimum possible
values.

As the particles are always changing their coordinates, they need to have some
update function, which will recalculate particles coordinates. This function adds to
the current x particle coordinate XSpeed+wind. The x movement of the particle also
depends on the wind to make the snow go to the wind direction. The y coordinate
is calculated by adding YSpeed to it. When the y coordinate of the particle becomes
more than screen height, the location of this particle should be re-generated. The x
coordinate generates at the same way, as it was ingenerate()function, and y coordi-
nate has a particleStart value. In such a way particle appears on the top of the screen
again.

function generate() {
for (var i = 0; i < particlesAmount; i++) {

var r = random(minRadius, maxRadius);
particles.push({

x: random(0 - sidesDeviation, 1 + sidesDeviation) * w,
y: Math.random() * h,
opacity: Math.random(),

26 Chapter 3. Program implementation

radius: r
YSpeed: r,
XSpeed: random(minXSpeed, maxXSpeed),

});
}}

The snow particle is actually a simple circle, but with a radial gradient fill and
specific opacity. The gradient for snow particle is made withcreateRadialGradient()
canvas function. It consists of three different colors, that are created with the opacity
variable. The circle for snow particle is implemented with arc(x, y, radius, 0, Math.PI ∗
2, f alse)canvas function, which requires x and y coordinates of the circle, the circle
radius, start angle, end angle, and clockwise argument. When the circle is painted,
it will be filled with an already generated gradient. The result is shown in fig.3.10.

FIGURE 3.10: Generated snow particles with different opacities.

Another type of precipitation is rain. The rain implementation has a similar
structure as the snow implementation. However, there are some differences. The
rain consists of particles too, but these particles are lines. As the drops are falling
from the sky, the user can see something similar to the line instead of drop. Each
particle of the rain should have the same parameters as the snow particle, but in-
stead of opacity and radius, there is length property. This property defines the
length for each line. The particle’s movement on the sky implemented in the same
way as it was with snow particles. Each particles is painted with moveTo(x, y) and
lineTo(x2, y2) canvas functions. The coordinates for moveTo() function are x and y
particle properties. The x2 and y2 coordinates for lineTo() function are calculated
with x + length ∗ XSpeed + wind and y + length ∗YSpeed formulas in accordance. In
such a way The line will be directed into the same way as the wind. The implemen-
tations of both precipitations are quite similar.

27

Chapter 4

Experiments

There are some landscape views shown below to display all the components to-
gether. Examples demonstrate different seasons and weather conditions.

FIGURE 4.1: Sunny weather in the summer.

FIGURE 4.2: Windy weather in the summer.

28 Chapter 4. Experiments

FIGURE 4.3: Windy and rainy weather in the summer.

FIGURE 4.4: Cloudy weather in the autumn.

FIGURE 4.5: Snowy weather in the winter.

29

Chapter 5

Conclusion

The goal of this work was the implementation of a landscape view, that will repre-
sent weather conditions with generative art. There were determines separate land-
scape components, that had to be implemented: tree, precipitations, ground, and
sky. All of them had to be not only generated but also animated in accordance with
the current weather conditions. As a result, all of those components were imple-
mented successfully. As a result, there is a completed system, that is able to display
any of the possible weather conditions in a quite accessible way. The visual land-
scape components have enough natural look to inform the human about the current
weather outside.

Generative art is a really powerful method of visualization animated things. It
can make the live tree only with math formulas, which is actually magic. The ani-
mated landscape visualization represents all weather conditions, that were required
at the beginning. However, there are a lot of things, that can be improved as nature
has no limits in its perfection.

This work is about generative art and its possibilities. The best way to show
the full beauty of generative art is to try to display something perfect. Nature or
rather weather conditions is a great choice. In this work was anal made a system,
that displays natural animated landscape, that should show in an accessible way the
weather conditions. The weather conditions were analyzed and a special landscape
view was prepared. Every part of the full landscape composition was generated
by the system without using any libraries. Every part of landscape was made with
inspiration and love.

30

Bibliography

Armstrong, Jim (2005). “Quadratic Bezier Curves”. In: TechNotes in Macromedia Flash.
Boden M.and Emonds, Ernest (2009). What is generative art?’ Centre for Cognitive

Science, University of Sussex, Creativity Cognition Studios, University of Tech-
nology, Sydney.

Eno, B (1996). “Generative Music: Evolving metaphors, in my opinion, is what artists
do.” In:

Fractal Packs. https : / / fractalfoundation . org / fractivities / FractalPacks -
EducatorsGuide.pdf.

Galanter, Philip (2003). “What is Generative Art?” In: Interactive Telecommunications
Program.

— (2016). Generative Art Theory.
HENDRIKX M., MEIJER S. VAN DER VELDEN J. and IOSUP A (2013). “Procedural

Content Generation for Games: A Survey”. In:
Hiller, L. and L. (1958) Isaacson (1958). “Musical Composition with a High-Speed

Digital Computer”. In: Journal of the Audio-Engineering Society.
Intro to generative art. https://dev.to/aspittel/intro-to-generative-art-2hi7.
KELLY, G. and MCCABE (2006). “A survey of procedural techniques for city gener-

ation”. In: ITB Journal.
Martin, K (1951/54). “Abstract Art”. In: AIA exhibition catalogue.
Nake, F. (2005). “Computer Art: A Personal Recollection”. In: Proceedings of the Fifth

Conference on Creativity and Cognition.
Nees, G (1969). “Generative Computergraphik”. In: Siemens AG.
Perlin, Ken (1985). “An Image Synthesizer”. In: SIGGRAPH Computer Graphics.
Prusinkiewicz Przemyslaw, Aristid Lindenmayer and James Hanan (1990). “The Al-

gorithmic Beauty of Plants”. In: New York: Springer Verlag.
RODEN, T. and PARBERRY (2005). “Clouds and stars: efficient real-time procedural

sky rendering using 3d hardware”. In: ACE ’05.
Schwanauer, Stephan M. and David A. Levitt (1993). “Machine Models of Music”.

In: Cambridge, MA: The MIT Press.
Togelius J., Champandard A. Lanzi P.L. Mateas M. Paiva A. Preuss M. and Ken-

neth O. Stanley (2013). “Procedural Content Generation: Goals, Challenges and
Actionable Steps”. In:

WEBER, J. and J PENN (1995). “Creation and rendering of realistic trees”. In: SIG-
GRAPH Annual Conference on Computer graphics and Interactive Techniques.

What is Fractal Management. https : / / davidboje . com / fractal / Chapter % 201 %
20What%20is%20Fractal%20Management.htm.

Xenakis, I (1971). Formalized Music: Thought and Mathematics in Composition. Bloom-
ington, Indiana University Press.

https://fractalfoundation.org/fractivities/FractalPacks-EducatorsGuide.pdf
https://fractalfoundation.org/fractivities/FractalPacks-EducatorsGuide.pdf
https://dev.to/aspittel/intro-to-generative-art-2hi7
https://davidboje.com/fractal/Chapter%201%20What%20is%20Fractal%20Management.htm
https://davidboje.com/fractal/Chapter%201%20What%20is%20Fractal%20Management.htm

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Relevance of the topic
	Goal
	Objective

	Background
	Generative art
	Procedural generation
	Fractals

	Program implementation
	Tree
	Background
	Implementation

	Ground
	Background
	Implementation

	Sky
	Background
	Implementation

	Precipitation
	Background
	Implementation

	Experiments
	Conclusion
	Bibliography

