
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Gravitational potential method and
its application to network optimization

Author:
Oleksa HRYNIV

Supervisor:
Prof. Yurii GOLOVATY

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences and Information Technologies
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
http://apps.ucu.edu.ua
http://apps.ucu.edu.ua

i

Declaration of Authorship
I, Oleksa HRYNIV, declare that this thesis titled, “Gravitational potential method and
its application to network optimization” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Gravitational potential method and
its application to network optimization

by Oleksa HRYNIV

Abstract

The primary goal of this research is to propose a novel spectral-based method of net-
work optimization, called the method of the gravitational potentials. The problem
under discussion is to locate several server-type nodes to optimize the service area
distribution and to minimize the total shortest path length for the network nodes.
We introduce the quantitative criteria of optimization, explain the intuition behind
the method, describe in detail all involved steps and justify the functionality of the
algorithm. We also demonstrate the performance of the algorithm on various graphs
and compare it with the optimal results. Complete implementation of the algorithm,
along with the graph models used in the experiments, can be found on the GitHub
repository [1].

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua

iii

Contents

Declaration of Authorship i

Abstract ii

1 Introduction 1

2 Network optimization problem 4
2.1 Overview of related approaches . 4
2.2 Problem statement . 5
2.3 Optimization criteria and metrics . 6

3 Spectral Methods for Complex Networks 9
3.1 Basic notions of the graph theory . 9
3.2 Spectral properties of graph Laplacian 10
3.3 The shortest path problem . 11

4 Gravitational Potential 13
4.1 Constructing the gravitational potential on a graph 13
4.2 Proof of Properties (P1)–(P3) . 14

4.2.1 Connected case . 15
4.2.2 Disconnected case . 17

4.3 Gradient flows and closest servers . 18
4.4 Clustering optimization . 18

5 Server location optimization 20
5.1 General idea . 20
5.2 Formulation of the approach . 21

5.2.1 Construction of the dissimilarity matrix ∆ 21
5.2.2 The MDS embedding . 22
5.2.3 Iterative improvement . 22

6 Formulation and performance of the algorithm 24
6.1 Performance of the algorithm . 24

6.1.1 Application of the algorithm on trees 25
6.1.2 Application of the algorithm on general graphs 27

Random Powerlaw Tree . 27
Tutte Graph . 28
Chordal Cycle Graph . 30

6.1.3 Application of the algorithm on large graphs 31

7 Conclusions 34

A Norming coefficient for load criterion 35

iv

List of Figures

2.1 City model with two server nodes and client allocations 5
2.2 Optimization criteria . 8

3.1 Gardner’s Map graph: shortest path is green, spectral method path is
red . 12

4.1 Gravitational potential model . 14

5.1 Path optimization example . 23

6.1 Initial server location, J = 0.520 . 25
6.2 Client-server optimization step . 26
6.3 Path optimization step . 26
6.4 The Powerlaw graph: initial server location, J = 0.263 27
6.5 Client-sever and path optimization steps 28
6.6 Initial server location, J = 0.686 . 29
6.7 Client-sever and path optimization steps 29
6.8 Initial server location, J = 0.366 . 30
6.9 Client-sever and path optimization steps 30
6.10 Initial locations of the servers . 31
6.11 Client-server optimization step . 32
6.12 Dependence between values of J and K for 3-r unbalanced tree graph . 32
6.13 Dependence between values of J and K for 3-r balanced tree graph . . 33

v

List of Tables

6.1 Scores for the near-ternary tree graph 26
6.2 Scores for the Powerlaw graph . 28
6.3 Scores for the Tutte graph . 29
6.4 Scores for the Chordal Cycle Graph . 31

1

Chapter 1

Introduction

In today’s data-driven world, network models and their graph representations have
become indispensable tools for analyzing complex systems and predicting their be-
haviour. Such complex systems are ubiquitous in everyday life, ranging from so-
cial or collaboration networks to transportation or computer networks. Although
diverse in their nature or origin, all such networks describe some actors and in-
teractions between them and can be modelled by graphs consisting of nodes (also
called vertices) connected by edges. In turn, these graph representations provide
convenient language to foster interdisciplinary collaboration between researchers
from diverse fields such as mathematics, computer science, physics, sociology, biol-
ogy etc. and allow them to share ideas and transfer methodologies between different
domains.

Graph representations of networks also offer a powerful mathematical frame-
work for understanding the internal structure of these networks, studying their evo-
lution, or even designing networks with required properties. Graph theory has de-
veloped special tools and concepts to analyze and uncover fundamental properties
and patterns in networks such as connectivity, paths, cycles, centrality etc. This, in
turn, allows researchers to design efficient algorithms for solving complex problems,
optimize resource allocation or performance of the networked systems. In view of
the vast contextual diversity of networks, there are numerous aspects that can be
optimized. For instance, one of the most important questions is finding the shortest
path in the network connecting two given nodes or detecting the edges that con-
tribute most to preserving network connectivity.

The main aim of this thesis is to study a class of network optimization problems
and to suggest a novel approach to their solution. In the context of computer net-
works, the task we address can be described as follows. Each node of the network
can be a server or a client; we need to place several servers and correctly allocate
the remaining clients between servers so that the server loads become balanced and
bottlenecks of client-server routes minimized, which in turn results in a boost of the
server’s efficiency of data processing, its overall speed and general performance. To
give a better understanding of the diversity and importance of the problems under
consideration, we list several further illustrative examples.

1. Location of the post offices. Post companies often face non-uniform distri-
bution of clients among their departments, leading to significant overload in
some areas and underload in others. To efficiently handle the flow of clients
within given department throughput constraints, it is essential to determine
the appropriate number of post offices, assign responsible service areas within
the region, and identify optimal locations within each designated area.

2. Petrol station location. The optimal location of petrol stations plays a signifi-
cant role in business and road safety. Additional rest places, where the driver

Chapter 1. Introduction 2

could take a nap and have a bite, and check the safety of his vehicle, will cer-
tainly decrease the number of road accidents. However, randomly locating
new petrol stations will only overburden some stations, while others will re-
main unused. Consequently, determining the optimal number of additional
stations, allocating service regions along the highways, and identifying suit-
able locations within these regions become significant questions.

3. Safeness of the ski resorts. The number of traumatic cases significantly in-
creased in large ski resorts recently. In order to prevent fatal consequences,
providing first aid on time and transportation of the injured to the closest hos-
pital is mandatory. Given the ski routes map and all possible passages between
them, it becomes essential to identify optimal locations for emergency rescue
posts, assign routes to each post, and determine the number of posts required
to ensure adequate safety measures within the resort.

4. Placement of the garbage cans. With the constant growth of the number and
size of megalopolises, efficient management of garbage disposal becomes a
major challenge. Merely increasing the number of garbage cans is not a good
approach, since it would result in delayed garbage collection, potential tank
overflow, and ecological issues. Optimal garbage can placement requires de-
termining the appropriate number of reservoirs that lead to efficient collection,
assigning specific regions to each garbage location based on resident distribu-
tion, and identifying suitable locations within each region to minimize total
distance from citizens’ houses.

5. Car rental companies. When travelling abroad, individuals may encounter
inconveniences with public transport or taxi services, such as limited routes,
long waiting times, unavailability during certain hours, etc. Car rental services
offer a flexible alternative to the traveller; however, a limited number of car
return places presents a major disadvantage. Suppose a car rental company
would like to expand their service. In that case, the natural questions are about
the optimal number and strategic locations of new facilities and the estimated
service area for clients.

6. Logistic problems. Consider a vast production network encompassing the
manufacturing of raw materials and the construction of finalized production-
ready items. Given the natural manufacturing regions (the location of which
is determined by the minerals, water resources, etc.), the questions are, what
the optimal number of factories is that would make the production stable and
secure, where should these factories be located, and from which manufacturers
the raw materials should be supplied?

Since network models may be of such a diverse structure, no algorithm can exist that
would solve the optimization problems for all such models exactly and determine
the best server locations and their areas of service. Also, real-world networks can
be enormous in size, so the brute-force approach of running through all possible
locations of the servers is extremely inefficient. A good alternative approach may
be to use approximation algorithms. Even though they do not always give optimal
results, their computational efficiency makes them worthwhile.

The aim of this thesis is to suggest new spectral approaches to the above net-
work optimization problem. Our primary motivation stems from the recent paper
by Steinerberger [10], in which eigenvectors for Laplacian matrices on graphs were

Chapter 1. Introduction 3

used to find efficiently the approximate shortest paths to a given vertex. We gen-
eralized that idea to the case of several distinguished nodes called servers and con-
structed the gravitational potential related to the eigenvectors of the corresponding
restricted Laplacian matrices. The network optimization algorithm we developed
essentially uses the gravitational potentials on each of the following steps.

1. Construct the gradient flow of the network, which is an analogue of the gradient
descent field for functions of many variables. The gradient flow helps to find
a path from a given network node to the closest server, which is nearly the
shortest one (Sec. 4.3).

2. The gradient flow for a fixed server placement determines the allocation of the
nodes between these servers. This allocation is typically unbalanced and leads
to sub-optimal server loads. We use the gravitational potential in the itera-
tive greedy-type method that improves client-server allocation and, in several
steps, leads to almost balanced clusters (Sec. 4.4).

3. Given the acceptable network clustering, we need to find the optimal place-
ment of a server within each cluster that minimizes the total path length from
all other cluster nodes. We suggest an iterative method that first initializes the
server placement near the cluster centroid and then updates it using the cor-
responding gravitational potential and the gradient flow paths. To locate the
centroid, we suggest an effective method to construct the dissimilarity matrix
between all nodes and then use Multidimensional scaling (MDS) to embed the
graph into Rd for d = 2 or d = 3 so that dissimilarities and obtained Euclidean
distances become as close as possible (Sec. 5.2).

As we demonstrated in extensive experiments, the developed network optimization
method performs well on diverse graph types.

The rest of the thesis is organized as follows. In the next chapter, we review
approaches and algorithms on graphs that address similar optimization tasks, then
formulate the main optimization problem of this work in more detail and introduce
the measures to use in objective functions. In Chapter 3, we first introduce the ba-
sic notions of graph theory and fix notations, establish several properties of graph
Laplacians used throughout the thesis, and then explain the main ideas and con-
structions of the paper [10]. In Chapter 4, the gravitational potential for a given
set of server locations is constructed and its main properties are established. This
gravitational potential defines the gradient flow on the network and thus performs
clusterisation of the graph into the service areas for these servers. We next introduce
the greedy-type algorithm that uses the gravitational potential to iteratively update
server placement to achieve well-balanced distribution of these clusters. Chapter 5
addresses the problem of optimal server placement within the given cluster to min-
imize the total path lengths from all other nodes (clients). We explain the basic con-
struction behind the MDS approach and then suggest the method that efficiently
replaces zero values in the adjacency matrix by positive dissimilarity values that
are close to the shortest path lengths. After identifying the initial server placement
via the MDS embedding centroid, we describe the iterative updating method that is
based on the gravitational potential and achieves a local optimum in a few iterations.
The whole pipeline is summarized in Chapter 6, which also presents the experimen-
tal results of algorithm validation on graphs of diverse structures and properties. A
summary of the whole thesis is given in the Conclusions, and, finally, the Appendix
contains the mathematical derivation of the norming constants for the J1 score.

4

Chapter 2

Network optimization problem

2.1 Overview of related approaches

Probably the most famous example of a network and the graph representing it dates
back to Euler’s solution of the problem known as the seven bridges of Königsberg.
Since then, the graph theory has developed into a separate branch of mathematics
and has proven very efficient in modelling real-world networks and analysing their
functioning, see e.g. the books [2, 3].

Many natural global or local characteristics of networks and graphs describe and
affect the global or local behaviour of processes in these network models. For in-
stance, maximal s-t flow determines the maximal traffic between the source s and
sink t in a network. Betweenness centrality [4] characterises the nodes that strongly
influence information spread in a network.

One of the most important tasks of graph theory that is related to the aims of
this thesis is that of clustering, i.e., division of the network into several parts that
are highly homogeneous. Spectral clustering is of the most popular and efficient
graph clustering methods; it is based on eigenvectors of the related graph Laplacian
matrix and is also used in dimensionality reduction tasks [5, 6]. For sparse networks
(i.e. those in which the vertex degrees grow slower than the total number N of
vertices), leading eigenvectors can be calculated in O(N2) steps, which makes the
method computationally attractive. Some other clustering methods are k-means [7]
and DBSCAN [8] but there objectives are different to those we need in this study and
the resulting clustering is often very inbalanced.

One of the most important tasks in network science is that of finding the shortest
path between two nodes. A classic Dijkstra algorithm [9, Sec. 24.3] finds shortest
paths from a given start node to all other nodes and results in the so-called shortest-
path tree. Its complexity is O(N2) in the worst case of unstructured and non-sparse
trees. However, for the task under study in this work, where K server-type nodes are
fixed, and for every node the closest server should be located and the shortest path to
it identified, one would need to run a Dijkstra algorithm for each server separately,
which is inefficient. The method of the paper [10], in which spectral approach to the
shortest path problem was suggested could be generalized to the case of multiple
starting points (servers), and that is the approach we adopted in this research work.

The principal problem we address in this thesis requires splitting the network
into several clusters of equal sizes and then determining optimal locations of server-
type nodes within each cluster to minimize the total shortest path lengths. We were
unable to find a single existing algorithm that would solve this task. Inspired by [10],
we developed an approach that is based on the spectral properties of the graph and
demonstrated its efficiency by extensive experiments.

Chapter 2. Network optimization problem 5

FIGURE 2.1: City model with two server nodes and client allocations

2.2 Problem statement

After thoroughly examining the apparently different at-first-sight cases, described
in Section 1, one may observe some similarities. All the networks can be represented
as a structure that is connected in some way. Among the elements of the structure,
two main types can be distinguished: the client and server types. Furthermore, the
concept of a distance between elements can be introduced, and for each server-type
node, the notion of its load can be defined.

Assuming that all servers have similar throughput, the criteria following which
a client will choose the server would be the distance between the client and server.
Therefore, after determining the clients for a particular server, that server should be
located in a place which minimizes the total distance to all its clients.

Let us introduce the idea in a more concrete example. Consider a model of a
city on Fig. 2.1, where an ellipse represents borders, the city centre is represented by
an inner circle, and lines represent the main roads. The task is to find the optimal
locations of public services and determine the regions which should correspond to
them.

The first image shows the importance of services’ locations: if both of the service
centres were located on one side of the semi-major axis, then people from all parts
of the city should travel to the side, which would increase the road load and would
make the services load unpredictable, as for people who travel from distant parts of
the city there is no apparent reason to chose one service centre apart from another.

The second image demonstrates the first-step solution: determine locations of
the service centres that will minimize the centre load. By determining the closest
centre to each client, we can set the group of clients handled by each service centre.

The last image in Fig. 2.1 shows the optimization, which should be made at the
last step: for the clients of each service centre, determine the location of the service
centre, which will minimize the distance among the clients, i.e., the centre of a clients
group. To summarize, the main problem considered in this thesis reads as follows.

Chapter 2. Network optimization problem 6

Given a complex network, determine the number of servers and their placement that
would optimize the network performance. This requires solving the following tasks:

(T1) Introduce the metrics to measure efficiency of network performance.

(T2) For each client-type element, determine the closest corresponding server.

(T3) Determine the optimal locations of server-type elements.

(T4) Establish the optimal number of servers, leading to the most efficient perfor-
mance.

The first task is discussed in the next subsection. In Chapter 4, we develop the
gravitational potential method inspired by [10] that allows to identify the server
that is typically the closest one, along with the corresponding path, thus providing
a solution to task (T2). Task (T3) on the optimal location of a server within a given
cluster of nodes is discussed in Chapter 5, and problem of determining the optimal
number of servers is experimentally studied in Chapter 6.

2.3 Optimization criteria and metrics

The measure of efficient distribution of client-type elements among server-type is
the load of the servers. The best theoretical allocation of clients is the uniform one
when each server receives an equal amount of clients (however, this distribution
may not be achieved, depending on the actual structure). Thus, we can compare the
load of each server with the optimal load and define the measure of goodness as the
maximum of the normed difference.

Although this criterion seems realistic and intuitive, for some cases (one of which
will be demonstrated in the next section), there are several locations with the same
values of load, but different client distributions. In some cases, different servers
have many clients in common, making client disposal inefficient. Therefore, an ad-
ditional criterion which shows how many clients different servers have in common,
i.e., server-clients group intersection, must be added.

After locating each server and determining specific clients for each, which will
form so-called hubs around the servers, we can optimize the distance for each hub
individually. As the clients are deterministically assigned for each server, moving
the server between the hub’s elements will not change the business or the server-
clients group intersection criteria value.

The most convenient representation of a network is via graphs (see Section 3). A
graph G = (V, E) consists of the set E of nodes (vertices), some of which are con-
nected by edges (elements of E) with prescribed positive weights. Each node can
be a client or a server, edges give possible connections between the nodes, and the
weights reflects how close the nodes are (e.g., in terms of the physical distance or the
travel time).

Among the N := |V| vertices of the graph, M are declared clients and K declared
servers, M + K = N. The set of all clients is denoted by V0 = {υ1, υ2, . . . , υM}, and
the set of all servers is denoted by R = {r1, r2, . . . , rK}; then V = V0 ∪ R.

In the ideal situation, for every client, there is a single closest server; however,
there could be cases when this is not the case and clients can not be assigned deter-
ministically to one server. In this case, it is natural to introduce the probability pij
that the i-th client υi is handled by the j-th server rj. This way, we define the allocation

Chapter 2. Network optimization problem 7

probability matrix

P =

 p11 · · · p1K
...

. . .
...

pM1 · · · pMK

 .

We note that the sum in each row of the matrix P is equal to 1,
K
∑

j=1
pij = 1, and the sum

in each column is equal to the load of the j-th server; in particular,
M
∑

i=1

K
∑

j=1
pij = M.

The optimal server loads, with no regard for the graph architecture, will be
achieved in the case of uniform client distribution among all servers, i.e., when all
server loads are equal to M/K. Since distinct graphs may significantly differ in size,
it is more natural to compare relative server loads, i.e., fractions of clients handled
by each server. Therefore, we use the mean squared error (MSE) between the actual
and optimal fractions of allocated clients as the measure of allocation efficacy:

J1 =
K

K − 1

K

∑
i=1

(
1
M

M

∑
j=1

pij −
1
K

)2

.

The norming factor K
K−1 was chosen for J1 to lie in the range [0, 1]; the proof is given

in Appendix A. The value of J1 shows how far from uniform is the network’s current
client-server distribution.

However, the load metric J1 itself does not always offer a good optimal criterion:
in networks with symmetric patterns, many clients may be assigned to more than
one server, see Fig. 2.1. Therefore, we must also minimize intersections of client
clusters allocated to different servers, i.e., the number of common clients.

We say that the node i can be handled by server j iff pij > 0. Denote by Pi =
(pi1, pi2, . . . , piK) the probability distribution for server allocation for node i. Then
∥Pi∥1 := pi1 + pi2 + · · ·+ piK = 1. Let also

P0 = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . (0, 0, 0, . . . , 1)} = {π1, π2, . . . , πK}

be the set of singleton distributions.
A simple visualization in the 3D case is shown on the figure 2.2. The closest

probability distribution for node i is to the singleton one; in other words, we must
determine which of the elements of P0 is the closest one to the corresponding row Pi
of the matrix P. Therefore, the problem of minimizing the clients allocation intersec-
tions (an analogue of the intersection-over-union, IOU) can be formulated as that of
minimizing

J2 =
1
M

M

∑
i=1

dist(Pi,P0),

where
dist(Pi,P0) = min

j=1,...,K

K
(K − 1)

∥Pi − πj∥1,

and the factors are chosen to keep the values in the [0, 1] range.
Thus, we set the servers’ optimality measure J to be the average of the load J1

(MSE-type) and intersection J2 (IOU-type) measures,

J = 1
2 (J1 + J2),

Chapter 2. Network optimization problem 8

FIGURE 2.2: Optimization criteria

with values in the [0, 1] range, and the value 0 corresponding to the ideal distribu-
tion: all clusters are of equal size and not intersecting.

After determining the optimal clients’ distribution, i.e., determining K clusters
allocated to particular servers, there is a possibility to optimize the location of the
servers within their clusters. The optimal location should be somewhat close to the
“centroid” of the cluster to minimize the total travel cost from all allocated clients.
In other words, if we denote by {G1, G2, . . . , GK} the set of all server-clients groups,
we need to find the locations of the servers r1, r2, . . . , rK in respective groups that
minimize the sum of all path lengths from clients to the server in each group, i.e,

Li(ri) := ∑
υj∈Gi

dist(ri, υj),

where dist(ri, υj) is the length of the shortest path between the client υj and the
server ri.

In summary, we need to find a vector Υ = (υ1, υ2, . . . , υK), at which the function
L(r1, r2, . . . , rK) := L1(r1) + L2(r2) + · · ·+ LK(rK) assumes its minimum, i.e.,

Υ = arg min
ri∈Gi

L(r1, r2, . . . , rK).

The problem of optimal server location in the given cluster is discussed in Section 5.
As a measure of the optimal clients’ distribution accuracy, we compare the opti-

mal sum of all path lengths inside every cluster to the one found by the algorithm
using the mean absolute percentage error (MAPE) metrics:

MAPE =
K

∑
i=1

Li,act −Li,opt

Li,act
.

9

Chapter 3

Spectral Methods for Complex
Networks

3.1 Basic notions of the graph theory

In this section, we introduce the basic notion related to graphs and fix notations to
be used throughout the thesis.

A directed graph G is an ordered pair G = (V, E), with V = {υ1, υ2, . . . , υn} being
a set of nodes (vertices) (|V| = n), and E = {e1, e2, . . . , em} ⊆ V × V being a set of
edges (|E| = m). An edge e = (υi, υj) is said to connect node υi to υj, in which case υi
is connected (or adjacent) to υj; this will be denoted υi ∼ υj.

Graph G is simple if there are no loops or multiple edges connecting the same
nodes. G is called undirected if υi ∼ υj implies υj ∼ υj; edges are then identified
with two-element subsets {υi, υj} of V, and we write that {υi, υj} ∈ E. To simplify
notations, we will often denote by eij the edge connecting υi and υj and refer to a
vertex υi or υj as i or j, respectively.

In what follows, we will consider simple undirected graphs G = (V, E).
A function ω : E → R+ is called the weight; we denote by ωij the weight of an

edge eij ∈ E. The graph G with the weight function ω defined on its edges is called
weighted. Observe that an unweighted graph is a particular case of a weighted one,
with the constant weight ω ≡ 1; therefore, all graphs will be assumed weighted.

The adjacency matrix A of the (weighted) graph G = (V, E) is in an n × n sym-
metric matrix of the form

Aij =

{
ωij, if {υi, υj} ∈ E,
0, otherwise.

The degree di of the node υi is defined as the sum of the weights over all edges out-
going from it: di := ∑

j : υi∼υj

ωij. We denote by D the degree matrix of G, which is a

diagonal n × n matrix defined by:

Dij =

{
di, if i = j,
0, otherwise.

The weighted Laplacian matrix of the graph G is defined as L := D − A; thus

Lij =

di, if i = j,
−ωij, if υi ∼ υj,
0, otherwise.

Chapter 3. Spectral Methods for Complex Networks 10

By definition, L is a symmetric matrix whose rows sum to zero; therefore, L is sin-
gular and λ = 0 is its eigenvalue. It turns out that the Laplacian matrix has many
interesting and useful properties; in particular, it is positive and semi-definite, and
the dimension of its null-space of (i.e., the multiplicity of the eigenvalue λ = 0) is
equal to the number of connected components of the graph G. Proofs of these state-
ments are given in the next section.

3.2 Spectral properties of graph Laplacian

In this section, we discuss the main spectral properties of the graph Laplacian to be
used in subsequent sections and give arguments justifying them.

Proposition 1. The Laplacian matrix L always has a zero eigenvalue.

Proof. Let G be a graph of n vertices; we set 1 := (1, 1, . . . , 1)⊤ ∈ Rn. Recalling that
di = ∑

j :i∼j
Aij = ∑

j
Aij, we conclude that

(L1)i = (D1)i − (A1)i = di − ∑
j :i∼j

Aij = 0, i = 1, 2, . . . , n. (3.1)

Therefore, L1 = 0, i.e., 1 is an eigenvector of L with eigenvalue 0.

Proposition 2. The Laplacian matrix L is positive semidefinite.

Proof. Take any ϕ ∈ Rn; then, keeping in mind that A is symmetric and di = ∑
j

Aij,

we find that

ϕ⊤Lϕ = ∑
i,j

Lijϕiϕj = ∑
i,j
(diδij − Aij)ϕiϕj

= ∑
i

diϕ
2
i − ∑

i,j
Aijϕiϕj = ∑

i,j
Aijϕ

2
i − ∑

i,j
Aijϕiϕj

=
1
2 ∑

i,j
Aij(ϕ

2
i − 2ϕiϕj + ϕ2

j) =
1
2 ∑

i,j
Aij(ϕi − ϕj)

2 ≥ 0,

(3.2)

thus completing the proof. Here, δij is the Kronecker delta.

Proposition 3. The multiplicity of eigenvalue zero of the Laplacian matrix L is 1 if and only
if the graph G is connected.

Proof. Suppose that G is connected and let ϕ be any eigenvector corresponding to
the eigenvalue zero. Then, by (3.2),

0 = ϕ⊤Lϕ =
1
2 ∑

i,j
Aij(ϕi − ϕj)

2

showing that ϕi = ϕj for every pair of connected nodes i ∼ j. By connectedness of G,
we get ϕ ≡ const, so that the nullspace of L is of dimension 1.

Assume now that the graph G is disconnected and G1 ̸= G is a maximal con-
nected component of G. Consider the vector 1V1 , the indicator function of the set
V1 ⊂ V of vertices in G1, and let i ∈ V1. Since i ∼ j is only possible when j ∈ V1, we
find that, by analogy with (3.1),

(L1V1)i = di − ∑
j∈V1 : i∼j

Aij = di − ∑
j : i∼j

Aij = 0.

Chapter 3. Spectral Methods for Complex Networks 11

Similar arguments show that (L1V1)i = 0 for every i ∈ V \ V1; as a result, 1V1 is an
eigenvector of L with eigenvalue zero. Therefore, the nullspace of L contains two
linearly independent vectors 1 and 1V1 and thus is of dimension at least two.

Proposition 4. The number of connected components of the graph G is equal to the multi-
plicity of the eigenvalue zero of the Laplacian L.

Proof. Denote by k > 1 the number of connected components G1, G2, . . . , Gk of the
graph G and by V1, V2, . . . , Vk the corresponding subsets of nodes; let also np be the
cardinality of Vp. Since vi ∼ vj is only possible if the nodes vi and vj are from the
same subset Vp, by rearranging the nodes v1, . . . , vn in proper order, we make the
Laplacian L block diagonal with blocks L1, L2, . . . , Lk. Here, Lp is the Laplacian ma-
trix of the connected component Gp; therefore, Lp has eigenvalue zero of multiplicity
one due to Proposition 3. Recall that for a symmetric matrix S, the multiplicity of
an eigenvalue λ0 equals the multiplicity of λ = λ0 as a zero of the characteristic
polynomial det(λI − S). Since

det(λIn − L) = det(λIn1 − L1) · · · det(λInk − Lk),

we conclude that the multiplicity of the eigenvalue zero of the graph Laplacian L is
equal to k.

3.3 The shortest path problem

The main idea of our research is based on the paper of Steinerberger [10], where a
new spectral approach to the task of constructing the shortest path between vertices
of an undirected unweighted connected graph was proposed. We explain here the
main idea of the algorithm and briefly discuss the obtained results.

Consider a graph G = (V, E) and two vertices i and j, the shortest path between
which should be found. As the graph is undirected, the shortest path from i to j
travelled in the opposite direction gives the shortest path from j to i; we will regard
i as a destination node.

The algorithm suggested in [10] proceeds as follows. We construct the graph
Laplacian matrix L and then delete the i-th row and column from it, resulting in a
matrix denoted Li. Find an eigenvector ϕ associated with the smallest eigenvalue
of Li and consider this eigenvector as a function f : (V \ {i}) → R defined on all
graph vertices except for the destination vertex i. Setting f (i) = 0, we extend f to a
function V → R. This function has several properties: it is sign-constant (and thus
can be taken positive), vanishes only at the destination vertex i, and for every node
k there exists an adjacent node l such that f (l) < f (k).

The path between any node j and the fixed destination node i can be constructed
as follows. Starting from j, select a node adjacent to it where the function f assumes
the smallest value. Continue from that node until we reach the node i. It follows
from the properties of f that the algorithm cannot get stuck and will always produce
a path between the given vertices j and i.

As explained in [10], the constructed path from j to i may not always be the
shortest. However, there are many different types of graphs on which all pairwise
shortest paths are constructed by that spectral method: the Folkman Graph, the Gray
graph, the Harries-Wong Graph, the Ljubljana Graph, the Petersen Graph, the Line
Petersen Graph, Wells Graph etc [10].

Gardner’s Map is an example of a graph where the algorithm does not produce
the shortest path between every two vertices (see Fig. 3.1). The shortest path (shown

Chapter 3. Spectral Methods for Complex Networks 12

FIGURE 3.1: Gardner’s Map graph: shortest path is green, spectral
method path is red

in green) has length 17, and the spectral method leads to the path (shown in red)
of length 22. Nevertheless, the mean value of the path’s difference between two
randomly chosen vertices is only 0.08 steps longer than the shortest one. For a ran-
dom graph of 300 points sampled uniformly at random in the rectangular domain
[0, 3]× [0, 1], the shortest spectral path is, on average, only 0.05 steps longer.

We also want to emphasize that constructing the path on a graph according to
this spectral method by selecting the next vertex with the smallest value of the func-
tion f can be considered as a discrete analogue of the gradient descent method, the
main idea of which is to search for a local minimum of an objective function f in the
direction opposite to the gradient of f at the current point, i.e., in the direction of the
steepest descent. Approximating the function’s derivative by the scaled difference
of its values on the vertices, we select the next node with the biggest difference. Fur-
ther on, we will refer to this spectral path construction as to the construction using
gradient flows.

Inspired by the above spectral approach for the shortest path problem, we de-
veloped a spectral method for network optimization, which seeks the optimal place-
ment of several nodes (regarded as servers) that minimizes total travel costs for the
remaining network nodes (regarded as clients). It is based on the notion of gravita-
tional potential, which we introduce in the next chapter.

13

Chapter 4

Gravitational Potential

In this chapter, we introduce the notion of gravitational potential, on which our net-
work optimisation method is based. In particular, the gravitational potential con-
structed for the given number K of server-type nodes determines the partitioning
of the network into K clusters. It will be used in an iterative procedure to optimize
initial partitioning and then to determine the optimal placement of the servers to
minimize the total paths length in the next chapters.

4.1 Constructing the gravitational potential on a graph

Let G = (V, E) be a connected graph. Denote by L the corresponding weighted
graph Laplacian. In this section, we explain the construction of the gravitational
potential for a set of servers placed at vertices of the subset R ⊂ V, |R| = K.

For every server ri ∈ R, we remove the corresponding row and column of the
matrix L. The reduced matrix LR contains only entries of L for the client vertices V0.
To explain the main idea of the gravitational potential construction, we assume first
that the graph G remains connected after removing the server nodes R. In that case,
we denote by ϕ ∈ RM the eigenvector associated with the smallest eigenvalue µ1
of LR. We next extend ϕ to R by setting ϕ(ri) = 0 for each server ri ∈ R; so defined
ϕ can be interpreted as a function ϕ : V → R on the whole vertex set V. If the
case when removing the server vertices makes the graph disconnected, we apply a
similar procedure to each connected component separately, see Section 4.2.2.

The function ϕ has several useful properties:

(P1) ϕ can be chosen sign-constant (thus, we can assume it to be non-negative).

(P2) ϕ vanishes only on vertices of the server set R.

(P3) For any vertex υ /∈ R there always exists a neighbouring vertex ω, {υ, ω} ∈ E,
such that ϕ(ω) < ϕ(υ).

We will prove that such a function ϕ is unique under condition (P1). Consequently,
it is natural to think of this function ϕ as a potential of a gravitational field with
field sources at the server vertices, which exerts a force on client vertices. Therefore,
considering clients as elements with a mass, we expect each client to choose the
closest server, as the force exerted on it by the closest server will be the greatest.

A visual interpretation is given in Fig. 4.1, where balls represent servers, and the
grid height represents the value of the gravitational potential at client vertices.

Chapter 4. Gravitational Potential 14

FIGURE 4.1: Gravitational potential model

4.2 Proof of Properties (P1)–(P3)

The reduced Laplacian matrix LR is symmetric and positive semi-definite. Symme-
try of the matrix LR is clear from the construction and definition. We next prove
its positive semi-definiteness using variational principle [11]. Denote by x ∈ RM+N

and y ∈ RM any non-zero vectors, which we interpret as functions defined on the
vertices in V and V0, respectively. Then

λ1 := min
x ̸=0

⟨x, Lx⟩
∥x∥2 ≤ min

x ̸=0 : x(R)=0

⟨x, Lx⟩
∥x∥2 = min

y ̸=0

⟨y, LRy⟩
∥y∥2 =: µ1.

By the minmax property for eigenvalues, λ1 is the smallest eigenvalue of L and µ1
is the smallest eigenvalue of LR; as the full Laplacian L is positive semi-definite, we
get µ1 ≥ λ1 = 0.

We next show that µ1 > 0; thus LR is a positive definite matrix. Assume, on
the contrary, that µ1 = 0 and let y be a vector of norm one, ∥y∥ = 1, on which the
minimum of the quadratic form ⟨y, LRy⟩ is achieved. Extend y to a vector x on the
whole vertex set V by setting x(i) = 0 for each server i ∈ R; then, by (3.2),

0 = ⟨y, LRy⟩ = ⟨x, Lx⟩ = 1
2 ∑

i∼j
ωij
(
x(i)− x(j)

)2.

This implies that x is constant on every connected component of G. Since G is as-
sumed connected, x is constant on the whole vertex set V, and because x vanishes
at server vertices in R by construction, we conclude that x ≡ 0. This contradicts the
assumption that y is a vector of norm one and thus completes the proof that µ1 > 0.

We next construct the gravitational potential corresponding to the server set R ⊂
V. We recall that the quadratic form for the Laplacian matrix L is

⟨x, Lx⟩ = 1
2 ∑

i∼j
ωij
(
x(i)− x(j)

)2.

Chapter 4. Gravitational Potential 15

Consider the variational problem of minimizing the above quadratic form over all
functions f on V such that f (R) = 0 and ∥ f ∥2 = 1:

ϕ = arg min
f : f (R)=0

∑
vi∼vj

ωij
(

f (vi)− f (vj)
)2,

subject to ∑
v∈V

| f (v)|2 = 1.
(4.1)

Here and hereafter, f (R) = 0 is used as a shorthand notation for the property that
f vanishes on R, i.e., that f (r) = 0 for every r ∈ R. The existence of the minimizer
follows from the compactness of the unit ball ∥x∥ = 1 in Rn and the continuity of
the function to be minimized.

Equivalently to (4.1), we can restrict the function f to the client vertices v ∈
V0 only forming the function f0 and then minimize the quadratic form ⟨ f0, LR f0⟩
subject to ∥ f0∥ = 1. Recall that the matrix LR is obtained from L by removing the
ith row and column for each vi ∈ R; in terms of the graph G, this is equivalent to
removing from G every vertex vi ∈ R and all edges outgoing from it. After such a
removal, the graph either remains connected or becomes disconnected; the number
of disconnected clusters can be found using Proposition 4. Let us first investigate
the former case.

4.2.1 Connected case

In this subsection, we construct the gravitational potential in the case when the
graph G remains connected after removing the server nodes of R and establish prop-
erties (P1)–(P3).

For a function f on the vertex set V, we denote by f0 its restriction onto the
clients’ vertices in V0. Assume also that f (R) = 0 (i.e., that f vanishes on R); then

⟨ f0, LR f0⟩ = ⟨ f , L f ⟩ = 1
2 ∑

vi∼vj

ωij
(

f (vi)− f (vj)
)2.

Since LR is a symmetric matrix, by the variational principle the function f0 mini-
mizing ⟨ f0, LR f0⟩ over f0 satisfying ∥ f0∥ = 1 is an eigenvector corresponding to the
smallest eigenvalue µ1 > 0 of LR. We take such a minimizing function f0 and extend
it by zero on the server nodes vi ∈ R to form the function f ; then f is the solution to
the optimization problem (4.1). Set now g(·) = | f (·)|; since the value of g on every
element of the set R equals 0, the ℓ2-norm of g remains equal to 1.

Noting that for all real numbers a and b it holds that |a − b| ≥ ||a| − |b||, we
conclude that

∑
vi∼vj

ωij
(

g(vi)− g(vj)
)2

= ∑
vi∼vj

ωij
(
| f (vi)| − | f (vj)|

)2

≤ ∑
vi∼vj

ωij
(

f (vi)− f (vj)
)2.

Since f was a function minimizing the above expression, the equality in the last
inequality must hold, whence

| f (vi)− f (vj)| = || f (vi)| − | f (vj)||

for all pairs of connected vertices vi ∼ vj. Therefore, on every pair of connected
vertices vi ∼ vj, the function f must have the same sign (or be zero). The only

Chapter 4. Gravitational Potential 16

possibility for f to be of different signs at some non-adjacent vertices vi and vj is
that every path vi ∼ u1 ∼ · · · ∼ uk ∼ vj from vi to vj must include a vertex ul on
which f vanishes. Since G remains connected after removing all server nodes ri ∈ R,
the above path can always be chosen to avoid the servers, whence such a ul can be
assumed not in R.

Assume now that a function f solving (4.1) changes its sign on V. As explained
above, f must vanish at some vertex ul not in R. By connectedness of G, we can
assume that ul has at least one neighbouring vertex on which f assumes a non-zero
value; otherwise, we can simply change ul to the last vertex on some path from ul to
some v with f (v) ̸= 0 on which f vanishes. We now prove that existence of such a
ul contradicts the assumption that g also solves the problem (4.1).

To this end, we observe that for any set of numbers x, x1, x2, . . . , xk ∈ R and any
positive numbers ω1, ω2, . . . , ωk, we get

k

∑
j=1

ωj(xj − x)2 ≤
n

∑
j=1

ωj(xj − x̄)2,

with the equality achieved if and only if x is equal to the weighted mean x̄ :=
∑j ωjxj/ ∑j ωj of xj. Therefore, by replacing the value of the function g at the node
ul by the (positive) weighted mean of its neighbours, we decrease the value of the
quadratic form in (4.1) and increase the ℓ2 norm of g. Taking the modified func-
tion g and scaling it to ℓ2-norm one, we get a function g̃ delivering a smaller value
of the functional in (4.1) than g, thus contradicting the fact that the function g is a
minimizer.

To summarize, we proved that the function f solving the optimization prob-
lem (4.1) does not vanish outside R and thus has a constant sign on the client ver-
tices V0. We can multiply f by −1 if necessary to make it non-negative on V, thus
completing the proof of (P1) and (P2).

Next we prove uniqueness of the solution to (4.1). Let f and h be two linearly
independent minimizers; by construction, they vanish on R. Since the restrictions f0
and h0 of f and h onto the clients vertices V0 are eigenvectors of the symmetric matrix
LR corresponding to its smallest eigenvalue µ1, any their linear combination is also
an eigenvector of LR. Thus f and h can be chosen orthogonal; as they both are sign-
constant on V0, their inner product can not be zero. This contradiction shows that a
minimizer f of (4.1) that is non-negative on V is unique. We denote this minimizer
by ϕ.

It remains to prove the third property (P3). Take υ ̸∈ R; then there are two
cases: either υ is connected to some server or not. In the first case, υ ∼ r for some
r ∈ R, and we have ϕ(υ) > 0 = ϕ(r) as claimed. In the second case, we use the
fact that the restriction ϕ0 of ϕ to the client vertices V0 is an eigenvector of LR for the
eigenvalue µ1 > 0, so that

(LRϕ0)υ = µ1ϕ0(υ) > 0. (4.2)

Assume now that ϕ(vi) ≥ ϕ(υ) for every vi adjacent to υ; observe that all vi are client
nodes and thus present in the matrix LR. Therefore,

(LRϕ0)υ = dυϕ(υ)− ∑
vi∼υ

wυ,vi ϕ(vi) ≤ ϕ(υ)
[
dυ − ∑

vi∼υ

wυ,vi

]
= 0,

which contradicts inequality (4.2). The derived contradiction shows that there must
be at least one vertex ψ adjacent to υ such that ϕ(ψ) < ϕ(υ), thus finishing the proof

Chapter 4. Gravitational Potential 17

Algorithm 1: Construction of the gravitational potential ϕ and detection of
the components Gi in a general case

Data: The truncated Laplacian matrix LR
Result: Components Gj, gravitational potential ϕ

1 initialize i := 1 and L1 := LR
2 while Li is non-empty do
3 calculate the smallest eigenvalue of Li and the corresponding normalized

eigenfunction fi;
4 set Vi to be the support of fi and Gi the corresponding subgraph of G;
5 set ϕ(v) = | fi(v)| for every v ∈ Vi;
6 remove from Li rows and columns corresponding to the vectices in Vi

and call the resulting matrix Li+1;
7 set i := i + 1

of (P3).

4.2.2 Disconnected case

Consider now the case when the graph becomes disconnected after removing the
server vertices ri and all edges from them. The resulting graph is therefore split into
m connected components G1, G2, . . . , Gm, m > 1, with n1, n2, . . . , nm vertices respec-
tively. We can rearrange the graph vertices so that n1 vertices from G1 are listed first,
then n2 vertices from G2 and so on. After such a rearrangement, the matrix LR be-
comes block-diagonal with submatrices L1, L2, . . . , Lm of sizes n1, n2, . . . , nm respec-
tively. We construct the gravitational potential on each component Gj separately. To
this end, we take the eigenfunction ϕj for the matrix Lj corresponding to the smallest
positive eigenvalue; by above, it can be chosen positive on the vertices of Gj. Denote
now by ϕ the function on V defined in the following way: ϕ(v) = 0 for every server
v ∈ R and ϕ(v) = ϕj(v) for every vertex v belonging to the component Gj. The
constructed function satisfies properties (P1) – (P3); in particular, it is positive on V0
and zero on R.

In the considered case of a disconnected graph GR, a natural question may arise
about detecting the blocks of the matrix LR. The above analysis suggests Algo-
rithm 1, which on the way also constructs the gravitational potential ϕ. This algo-
rithm succeeds because, on each step i, the smallest eigenvalue µi is an eigenvalue
of some of the remaining blocks in LR. As proved in the previous subsection, the
corresponding eigenfunction fi does not vanish on the component Gi of the graph
and can be taken as gravitational potential (after flipping the signs in fi if required).
The function fi must be zero on the remaining blocks, thus completely determining
Gi. Observe that even if µi is a multiple eigenvalue, this can only hold if two dis-
tinct components Gi and Gj of the graph G generate the same smallest eigenvalue
µi; the eigenfunction f will keep constant sign on Gi and Gj or can vanish on one of
them. In the latter case, the algorithm detects one of the components Gi or Gj and
the gravitational potential on it; in the former case, we add Gi ∪ Gj and determine
the gravitational potential ϕ on the union Gi ∪ Gj. Since the ultimate goal on this
step is to construct ϕ, this case creates no complications.

Chapter 4. Gravitational Potential 18

4.3 Gradient flows and closest servers

In the previous section, we explained how to construct the gravitational potential ϕ
for a graph with fixed server locations. As in [10], we can use this function to de-
termine the gradient flow from each node to one of the servers. Namely, take an
arbitrary client node υ, consider all nodes connected to it, choose ω ∼ υ with the
smallest value of ϕ(ω), and point the gradient flow from υ to ω. In the rare case of
several vertices with the smallest value of ϕ, we include in the gradient flow direc-
tions from υ to all of them.

According to Property (P3), at least one node connected to υ has the value of ϕ
smaller than ϕ(υ); thus we guarantee that ϕ(ω) < ϕ(υ). Therefore, the gradient
flow from the node υ corresponds to the steepest descent in the continuous case.
In several steps, this gradient flow reaches one of the servers. As experimentally
established in [10], in the case of a single server, this gradient flow chooses almost
the shortest path to it. This fact is also experimentally confirmed in Chapter 6 for
the case of several servers. Thus almost all gradient flows point to the closest server
from the given client node and produce almost the shortest paths to these servers.

The paths from each node to one of the servers constructed using gradient flow
generate clustering of the graph into K components consisting of the nodes corre-
sponding to respective servers. As this clustering may be unbalanced, we optimize
it in the next section with a greedy-type algorithm we developed based on gravita-
tional potentials.

4.4 Clustering optimization

We begin with the motivational example of a well-known problem that can be easily
solved using the greedy algorithm.

Suppose that hosting a radio show efficiently requires reaching listeners in k
country regions. A decision must be made on what stations to play it on to reach
all or most of those listeners. As it costs money to broadcast the show on each sta-
tion, the goal is to minimize the number of hosting stations, given a list of stations
and regions each station covers.

A greedy algorithm paradigm can be applied to this problem as follows:

1. Pick the station covering the largest number of regions that have not been cov-
ered yet.

2. Add it to the station lists and then continue with step 1 if not all regions have
been covered.

A straightforward analogy to servers’ efficiency optimization can be drawn as
follows. Assume we have K servers, which must be located at some of N nodes.
On each step, we pick the node with the largest value of the gravitational potential
among all nodes; if the graph is disconnected, we pick the node with the largest
value of the gravitational potential on the biggest connected component. According
to the property (P3) of the gravitational potential (4.1), vertices closer to the current
server have smaller values of the gravitational potential than the more distant ones.
Therefore, applying the greedy paradigm, we pay attention to a region with high
values of gravitational potential since it consists of nodes which are far from the
current server locations; we then move one of the servers in that region so that the
new server location takes over the largest portion of the clients that are currently too
far from the existing servers, thus levelling out the cluster sizes.

Chapter 4. Gravitational Potential 19

The exact solution to this problem for fixed k is NP-hard, and applying a greedy
approach reduces complexity to a polynomial one.

In other words, we propose the following iterative algorithm of servers’ cluster-
ing optimization using the gravitational potential method.

1. Firstly, we randomly initialize the server’s location and construct the corre-
sponding gravitational potential on the graph.

2. The gradient flow method of Section 4.3 then determines the (nearly) closest
servers for every client, thus performing initial clusterisation. We then form
the probability allocation matrix P and calculate the clustering scores J1, J2,
and their average J.

3. On the iterative step of the greedy algorithm, we take the server with the small-
est cluster size and move it to the node with the largest value of the gravita-
tional potential.

4. Recalculate the gravitational potential for new server locations and repeat steps
2.–4. until the optimization score J no longer decreases.

5. Return the location of the servers with the lowest score and the corresponding
clustering of the clients.

After completing this greedy clustering algorithm, we resolve server assignment
conflicts for the clients supported by several servers. The probability matrix P im-
mediately detects such clients since the corresponding rows include values differ-
ent from {0, 1}. We assign such clients deterministically to a server (or one of the
servers) with maximal allocation probability. After that, every client is assigned to
exactly one server.

20

Chapter 5

Server location optimization

5.1 General idea

Finding a “central” vertex v in a graph that minimizes the total paths’ length to v
from all other vertices is a problem not possessing an efficient algorithm that returns
the exact solution. The naive brute force approach suggests to iterate over all nodes,
for each node v calculate the shortest paths from v to all other nodes using Dijkstra
or any other shortest path algorithm, and finally to select the node v with minimal
total paths’ length. However, this approach is computationally very inefficient and
requires O(n3) operations. A natural improvement comes from the intuitive obser-
vation that “outer” nodes, which are on the “boundary” of the graph, can not be
optimal and thus can be discarded from the iteration process. Therefore, a natural
question arises, if there is a method to effectively determine such an “inner” part of
a graph containing the optimal “central” node.

However, many real-world networks (and the graphs representing them) have
very complicated internal structure and thus no natural or easily determined bound-
ary. Although in the Euclidean space the point minimizing the sum of squared dis-
tances to a fixed set of points x1, . . . , xN is their mean x = (x1 + . . . , xN)/N, even
if the network nodes are physically located in R3 or some higher-dimensional Eu-
clidean space, the weights of the edges often do not represent the actual distance in
that space and thus these locations cannot be used to determine the “central” ver-
tex. Also, the actual objective function is the total distance from a given point x to
x1, . . . , xN ,

f (x) =
N

∑
j=1

dist(x, xj);

the point minimizing f is known as the Fermat–Torricelli point, and there is no
closed-form formula to construct it from x1, . . . , xN explicitly, see [14]. In the con-
text of graphs, the additional obstacle appears that the edge weights may violate the
triangle inequality and thus be incompatible with any distance.

In this section, we suggest an approach giving a good initial approximation to
the central vertex; after several iterations, we then get a local minimum of the total
paths’ length that is a good candidate for the “central” point.

Namely, we use the Multidimensional Scaling (MDS) technique to find an em-
bedding Φ of the vertex set V in Rd some d ≥ 2 such that, for each pair of adjacent
vertices vi and vj, the distance between Φ(vi) and Φ(vj) is as close as possible to
wij. We observe that, usually, d = 2 or d = 3 is insufficient for complex graphs,
and that the MDS results in higher dimensions can not be visually interpreted; how-
ever, as shown in [15], the algorithm’s outcomes are very satisfactory even for rela-
tively small d. Moreover, we suggest a simple way of converting G into a complete

Chapter 5. Server location optimization 21

weighted graph G̃ so that, for every pair of i and j, wij is close to the shortest path
length between vi and vj and, in turn, to the distance between Φ(vi) and Φ(vj).

After a satisfactory embedding of a graph G has been found, we calculate the
mean x of the points xj = Φ(vj), determine the point xj that is the closest one to x,
and take the respective vertex vj as the initial approximation for the central point
of the graph G. We then test the nodes adjacent to vj for better candidates and stop
whenever no further improvements of the objective function is possible. As the ex-
periments show, the process typically stops after two or three iterations.

In the next two subsections, we give details of the initialization of the central
point and the iterative improvement method.

5.2 Formulation of the approach

The node that minimises the shortest paths’ sum to all other nodes in a graph should
be close to the graph’s centre in a geometrical sense as offered by the multidimen-
sional scaling. The multidimensional scaling (MDS) refers to a family of dimension-
ality reduction techniques used to represent high-dimensional data in low-dimensi-
onal space while approximately preserving the original distances [16]. The classical
multidimensional scaling approach is a useful alternative for graph drawing [16].

Let ∆ ∈ Rn×n denote a symmetric matrix of metric dissimilarities or distances
δij between some abstract elements i, j ∈ {1, . . . , n}. The goal of multidimensional
scaling is to find positions xi ∈ Rd in the d-dimensional space with d ≪ n such that
∥xi − xj∥ ≈ δij, i.e., such that the distances are well preserved in this low-dimensional
space.

The graph’s adjacency matrix can not be taken as a matrix of dissimilarities, be-
cause it has non-zero values only between vertices connected by an edge and is
often quite sparse. In graph drawing, the matrix ∆ usually consists of shortest-path
distances [15], computing which is costly for large graphs. We propose a simpler
approximation of the graph’s shortest-distance matrix, which we describe next.

5.2.1 Construction of the dissimilarity matrix ∆

Given a weighted graph G = (V, E), denote by A† an unweighted adjacency matrix,
i.e., a matrix with values 1 in entries where the original adjacency matrix A is non-
zero, and values 0 otherwise. We note the well-known fact from the graph theory
that the element ((A†)k)ij of the unweighted adjacency matrix A† raised to power k
gives the number of walks between the nodes i and j of length k. Consider now the
matrix C := AA† + A† A; the matrix multiplication shows that

cij = ∑
l : i∼l∼j

(aila†
l j + a†

ilal j) = ∑
l : i∼l∼j

(ail + al j)

is the total length of all two-step paths between i and j.
Thus we propose the following iterative method of constructing an approximate

dissimilarity matrix ∆ for the graph G:

1. Construct the matrix C = AA† + A† A

2. Divide non-zero elements of the matrix C by corresponding elements of the
matrix (A†)2 and denote the resulting matrix by Ã. The non-zero entries ãij of
Ã are the average lengths of two-step paths between i and j

Chapter 5. Server location optimization 22

3. Fill the non-diagonal zero entries of the matrix A with the corresponding ele-
ments of the matrix Ã

4. If the re-filled matrix A remains too sparse, we repeat the steps (1)–(3) to the
re-filled matrix A, inserting the average lengths of walks between the nodes of
the graph G up to four steps long on places with zero entries

5. For each non-diagonal entry in the resulting matrix that is still zero, replace it
with the maximum entry of the corresponding row and column of the current
matrix A, thus estimating the distance between i and j by the so-far longest
path from i or j

6. The resulting matrix is denoted ∆ and used as a dissimilarity matrix for the
MDS algorithm.

5.2.2 The MDS embedding

After constructing the dissimilarity matrix ∆, our task remains to find matrix X ∈
Rn×d with X = [x1, . . . , xn]T, such that δij ≈ ∥xi − xj∥. Observe that then

δ2
ij ≈ ∥xi − xj∥2 = (xi − xj)

T(xi − xj) = ∥xi∥2 − 2xT
i xj + ∥xj∥2,

whence it is natural to introduce the Gram matrix B = XXT of inner products bij =

xT
i xj. Assuming that the above relations are exact equalities, it can be shown that

bij = −1
2

(
δ2

ij −
1
n

n

∑
r=1

δ2
rj −

1
n

n

∑
s=1

δ2
is +

1
n2

n

∑
r=1

n

∑
s=1

δ2
rs

)
,

so that B can also be obtained by double-centering the matrix of squared dissimilar-
ities ∆(2).

The Gram matrix B is positive semidefinite and thus possesses the spectral de-
composition B = UΛUT, where Λ is the diagonal matrix of the eigenvalues of B

and U is the orthonormal matrix of its eigenvectors. Then the optimal choice of the
matrix X in the MDS algorithm is

X = U(d)Λ
1/2
(d) ,

where Λ(d) ∈ Rd×d is the diagonal matrix of the d largest eigenvalues of B and
U(d) ∈ Rn×d is an n × d matrix of respective eigenvectors.

5.2.3 Iterative improvement

After finding the MDS embedding V → Rd of the graph’s vertices vj as points xj
in d-dimensional space, we determine the centroid x of these points and find the
point xj that is the closest to the centroid. The corresponding node vj is considered
as an approximate central graph node c. To determine the actual node minimizing
the total paths’ length, we propose a simple greedy-type algorithm of checking the
adjacent nodes to the previously suggested centre c.

We begin with calculating all shortest paths from the centre node c using the
gravitational potential with source c. Next, we check if a node i adjacent to the
current centre c may have smaller total paths length. This can be done directly by

Chapter 5. Server location optimization 23

FIGURE 5.1: Path optimization example

re-calculating all shortest paths on the graph from i; however, we propose a simple
and less computationally expensive method instead.

Let i be one of the nodes adjacent to the current centre candidate c. All vertices
v ∈ V \ {c, i} can be split into two groups: v belongs to the first group, if the shortest
path from v to c passes through i; for v in the second group, the shortest path from
v to c avoids i. By moving the centre from c to i, we decrease the shortest paths to
the centre from v in the first group by wic. For v in the second group, the shortest
path to the new centre can increase by at most wic. Therefore, the cardinalities of the
two groups predict if moving the current centre c to i can decrease the total shortest
paths length and by what amount, thus suggesting the next iteration.

For a better understanding of the general idea, consider the unweighted graph in
Fig. 5.1. Moving the centre from c to i will decrease the length of the shortest paths
to the new centre for the vertices coloured grey by no less than one and will increase
the length of the shortest path to the new centre by no more than one for the vertices
coloured blue. Therefore, the total path sum will decrease by no less than three.

After selecting the vertex j having the minimum approximated total shortest
paths’ length among all vertices adjacent to c, we consider this vertex j the new cur-
rent centre c. The procedure described above should be continued until no further
improvement is possible.

To sum up, we proposed an algorithm for optimizing the total shortest paths
length, which consists of two main steps, finding the approximate centre of the
graph based on the MDS algorithm and iterative improvement of the current centre
candidate. The iterative part of the algorithm can not make more than d/2 iterations
(where d is the diameter of the graph) in the highly unlikely case of very poor initial
centre approximation. The extensive experiments we conducted for various graph
configurations demonstrate that it typically takes no more than three iterations to
find the local optimum.

24

Chapter 6

Formulation and performance of
the algorithm

In the previous chapters, we described the two main steps of the general network
optimization pipeline. One is that of finding nearly the shortest paths to the closest
servers using the gravitational potential approach; this automatically suggests the
allocation of the clients to the closest servers. The second step discussed above is
that of finding the nearly optimal server locations within the corresponding clusters
using the initial guess suggested by the MDS and its iterative improvement. In this
chapter, we want to combine all of the network optimization steps into one algo-
rithm and evaluate its performance on different graphs.

After performing the deterministic assignment of clients to the servers in Sec-
tion 4.4, the only final step left is to choose the optimal locations of servers. Every
server with the clients allocated to it is considered a separate subgraph (whose ad-
jacency matrix is formed by taking the corresponding rows and columns from the
original one), and we perform the procedure of path optimization described in detail
in Chapter 5 for every such subgraph separately.

The entire algorithm of network optimization can be described in the following
pseudocode:

Algorithm 2: Network optimization algorithm
Data: Adjacency matrix of the graph, number of servers (k)
Result: Indices of servers’ locations

1 Random initialization of server;
2 while criteria minimum is not achieved do
3 construct gravitational potential;
4 construct gradient flows;
5 build probability matrix and calculate criteria;
6 interchange the node with the biggest criteria value with the node, where

gravitational potential assumes its local maximum on the largest
disconnected part of the graph

7 Perform path optimization

6.1 Performance of the algorithm

In this section, we demonstrate the performance of the developed network opti-
misation algorithm and compare its performance with that of the optimal solution
obtained by the brute-force method. The comparison is with respect to the two main
tasks.

Chapter 6. Formulation and performance of the algorithm 25

FIGURE 6.1: Initial server location, J = 0.520

Firstly, from all possible servers’ locations on the graph, we select the one with
the lowest value J and compare it to the J score of our optimization algorithm.

Afterwards, for the fixed splitting into subgroups, we find the optimal locations
of the servers. This is done separately for each group, by running over all nodes in
the group and choosing the node v with the smallest total paths length to v from all
other nodes in the group; this value is compared to the one obtained by the path
optimisation procedure. We report the mean shortest path length as it offers better
interpretability of the results.

We want to emphasize that due to the present randomness of the algorithm, the
results may vary depending on the starting conditions; thus, it is natural (especially
for large graphs) to run this algorithm several times with different initial conditions
and take the average value as the performance score.

As was observed in the experiments, the weights of the graph only slightly in-
fluence the server-client group distribution but may influence the the path optimiza-
tion procedure, final server localizations, and mean shortest path length. This is well
seen on the examples of tree-structured graphs 6.1.1.

6.1.1 Application of the algorithm on trees

Consider a graph created from a balanced ternary tree with a slight modification of
the edges 6.1. We locate the servers initially at the nodes 16, 17, 18 (marked red),
which are far from the optimal distribution. Let us compare the performance of the
algorithm on the same graph with identical initial conditions, but different edges
weights. For the weighted graph, we randomly select weights from range [0.5, 1].

Chapter 6. Formulation and performance of the algorithm 26

(A) Unweighted tree, J = 0.010 (B) Weighted tree, J = 0.010

FIGURE 6.2: Client-server optimization step

As can be seen from Fig. 6.2 above, the values of the J-score for both weighted
(Fig. 6.2a) and unweighted (Fig. 6.2b) graphs are the same, but the server locations
differ. The visualization of the final step of path optimization can be seen on Fig. 6.3.
As expected, adding graph weights did not change the server-client groups’ distri-
bution, but did change the allocation of the servers.

(A) Unweighted graph (B) Weighted graph

FIGURE 6.3: Path optimization step

Table below contains the results obtained by our algorithm and the optimal brute-
force search:

Unweighted graph Weighted graph
Obtained Optimal Obtained Optimal

J 0.010 0.010 0.010 0.010
Blue cluster mean path 1.571 1.571 1.097 1.020
Red cluster mean path 1.615 1.615 1.157 1.138

Green cluster mean path 1.692 1.538 1.228 1.220

TABLE 6.1: Scores for the near-ternary tree graph

For this graph, our algorithm achieved optimal result of server efficiency opti-
mization and does not change the score after including the weights. However, in the
latter case the performance of the path optimization algorithm got slightly lower.
The MAPE score between the clusters’ mean path, obtained by the algorithm and
optimal ones for the unweighted graph was 0.0303, and for weighted one it became
0.0308.

Chapter 6. Formulation and performance of the algorithm 27

6.1.2 Application of the algorithm on general graphs

In this subsection, we want to demonstrate the algorithm efficiency on graphs of
diverse structures.

Random Powerlaw Tree

The graph is generated from a power law degree sequence, where elements are
swapped with new elements from a powerlaw distribution until the sequence makes
a tree [17]. Initially, the servers are located at the nodes 5, 10, 20, 34 (marked red). As
could be predicted, due to the tree-structure of the graph, the path optimization
achieved the optimal result. The obtained result for the server efficiency optimiza-
tion is greater from the optimal one by 7.9%.

FIGURE 6.4: The Powerlaw graph: initial server location, J = 0.263

Chapter 6. Formulation and performance of the algorithm 28

(A) J = 0.051 (B) Server location

FIGURE 6.5: Client-sever and path optimization steps

Performance of the algorithm is summarized in Table 6.2 below.

Random Powerlaw Tree
Obtained Optimal

J 0.051 0.047
Blue cluster mean path 3.231 3.231
Red cluster mean path 1.556 1.556

Green cluster mean path 0.944 0.944
Gray cluster mean path 0.900 0.900

TABLE 6.2: Scores for the Powerlaw graph

Tutte Graph

The Tutte graph is a cubic polyhedral, non-Hamiltonian graph, which has 46 nodes
and 69 edges. [18]

We initially located the servers randomly at the nodes 1, 2, 20, 41 (marked red).
The algorithm achieved the optimal result for server efficiency optimization, while
the path optimization step attained a 0.105 MAPE score in comparison with the op-
timal one.

Chapter 6. Formulation and performance of the algorithm 29

(A) J = 0.343

FIGURE 6.6: Initial server location, J = 0.686

(A) J = 0.014 (B)

FIGURE 6.7: Client-sever and path optimization steps

Summary of the performance is described in Table 6.4.

Tutte Graph
Obtained Optimal

J 0.014 0.014
Blue cluster mean path 1.917 1.750
Red cluster mean path 2.727 2.091

Green cluster mean path 1.818 1.636
Gray cluster mean path 2.0 2.0

TABLE 6.3: Scores for the Tutte graph

Chapter 6. Formulation and performance of the algorithm 30

Chordal Cycle Graph

The Chordal Cycle graph is a cycle graph on n nodes with chords joining each vertex
to its inverse modulo n, where n is a prime number [19].

We initially located the servers randomly at the nodes 3, 5, 23 (marked red). The
algorithm achieved optimal result for server efficiency optimization and the path
optimization part attained a 0.061 MAPE score in comparison to the optimal one.

(A) J = 0.366

FIGURE 6.8: Initial server location, J = 0.366

(A) J = 0.008 (B)

FIGURE 6.9: Client-sever and path optimization steps

Summary of the performance is described in the table:

Chapter 6. Formulation and performance of the algorithm 31

Chordal Cycle Graph
Obtained Optimal

J 0.008 0.008
Blue cluster mean path 1.667 1.667
Red cluster mean path 2.684 2.632

Green cluster mean path 2.895 2.421

TABLE 6.4: Scores for the Chordal Cycle Graph

6.1.3 Application of the algorithm on large graphs

Another exciting demonstration of the performance of our algorithm is its applica-
tion to large graphs. As for those graphs, we can not compute the optimal result;
it is wise to construct such graphs with known structure so that we can predict the
optimal allocations of the servers. Thus, in this chapter, we will illustrate the perfor-
mance of the algorithm’s first part (server efficiency optimization).

For example, consider an unbalanced tree-based graph with a fraction of branches
power approximately 3:2:1 (6.10a). It is evident that for six servers, every one of them
should be allocated to a different branch. As can be seen from the figure 6.11a, the
algorithm does so.

(A) J = 0.525

FIGURE 6.10: Initial locations of the servers

Chapter 6. Formulation and performance of the algorithm 32

(A) J = 0.006

FIGURE 6.11: Client-server optimization step

After examining the algorithm’s performance, a natural question arises if we can
use the values of criteria in order to determine the possible number of servers for
efficient optimization. In many cases, adding extra servers does not improve the
network performance, as due to the network architecture, some servers will not be
used effectively. Also, after exceeding some maximum number of servers, expand-
ing their number will only worsen the overall functioning of the network.

Consider the same unbalanced graph as in the previous example. After testing a
different number of servers, we obtain the following dependency, see Fig. 6.12.

FIGURE 6.12: Dependence between values of J and K for 3-r unbal-
anced tree graph

As we can see, the optimum is achieved for K = 6 and increasing the server number
only makes the J value bigger. As the graph has 82 vertices, making a significant
number of servers will increase the number of common clients between the servers
and, therefore, will increase the J value.

Chapter 6. Formulation and performance of the algorithm 33

Consider now a large graph with 1000 vertices based on a 3-r balanced tree. It
is natural to assume that optimum should be achieved for values of K, which are
multiples of three.

FIGURE 6.13: Dependence between values of J and K for 3-r balanced
tree graph

As we can see from Fig. 6.13, the first optimum is achieved for K = 3, then for K = 6,
K = 15, K = 21 and K = 24, which agrees with the prediction that K must be
multiple of 3.

34

Chapter 7

Conclusions

The main aim of this thesis work was to study the network optimization task to
find the best locations for several servers in the nodes of the network. The ultimate
goal is to minimize the total path lengths that the clients should cover to reach the
service point and reach uniform server loads. This task involves several optimiza-
tion subtasks of different nature, and we are aware of no single algorithm that could
efficiently solve them.

In this thesis, we developed a novel approach for solving this problem, which we
called the gravitational potential method. It is based on the spectral properties of the
related graph Laplacian and is inspired by the paper [10], where a spectral approach
to the shortest path problem for unweighted graphs was suggested. We showed how
the gravitational potential helps to determine a balanced clustering of the network
into service areas and then to place the server in each in the nearly optimal way.
Although the suggested approach is not guaranteed to result in the optimal solution,
finding the latter would require the brute-force search at least on some stages and
is doomed inefficient. On the contrary, we showed that the information carried by
gravitational potential helps to achieve local minima just in a few iteration steps and
produce solutions that are nearly optimal. The experiments conducted on networks
of various types and sizes confirm efficiency of the developed algorithm.

35

Appendix A

Exact value of the norming
coefficient for the load criterion

We need to find the maximum value of the function f (x) =
k
∑

i=1

(
xi − 1

k

)2
, subect to

the constraints xi ≥ 0, i = 1, 2, . . . , k, and x1 + · · ·+ xk = 1.
Applying the Lagrange multipliers method, we construct the Lagrangian:

L(x, λ, µ) = λ0
1
2

k

∑
i=1

(
xi −

1
2

)2

+ λ1

(
k

∑
i=1

xi − 1

)
+

k

∑
i=1

µixi.

The necessary condition for the maximum reads:

∇xL(x, λ, µ) = 0 =⇒

λ0
(
x1 − 1

k

)
+ λ1 + µ1 = 0

...
λ0
(
xk − 1

k

)
+ λ1 + µk = 0

k

∑
i=1

xi = 1,

µixi = 0, i = 1, 2, . . . , k.

It is clear that λ0 > 0; otherwise, −λ1 = µ1 = · · · = µk are either zero, in which
case the Lagrangian is identically zero (which makes no sense), or x1 = x2 = · · · =
xk = 0, and the above system is inconsistent. For convenience, set λ0 = 1; then we
obtain the following system:

∇xL(x, λ, µ) = 0 =⇒

x1 − 1

k + λ1 + µ1 = 0
...

xk − 1
k + λ1 + µk = 0

k

∑
i=1

xi = 1,

µixi = 0, i = 1, 2, . . . , k.

Multiplying the ith equation in the above system by xi, we get:

∇xL(x, λ, µ) = 0 =⇒

x2

1 −
x1
k + λ1x1 = 0

...
x2

k −
xk
k + λ1xk = 0

Appendix A. Norming coefficient for load criterion 36

Assuming that at the point x of maximum exactly m components of the vector x
are non-zero, m < k, we deduce that all non-zero components are then equal, and
the constraint ∑k

i=1 xi = 1 implies that they are equal to 1
m . It remains to determine

the value of m that maximises the function f (x) =
k
∑

i=1

(
xi − 1

k

)2
under the derived

constraints on xi; namely, the task is

f (x) = m
(

1
m

− 1
k

)2

+ (k − m)
1
k2 → max .

Since

m
(

1
m

− 1
k

)2

+
k − m

k2 =
1
m

− 1
k

,

the maximum is achieved for m = 1.
Therefore, we conclude that the maximal value of f (x) under the imposed re-

strictions is equal to k−1
k .

37

Bibliography

[1] GitHub Repository

[2] Barabási, Albert-László. Network Science, Cambridge University Press, Cam-
bridge, 2016.

[3] M. E. J. Newman, Mark. Networks: An Introduction, 2nd ed., Oxford University
Press, Oxford, 2018.

[4] Freeman, Linton. "A set of measures of centrality based on betweenness". So-
ciometry 40(1) (1977): 35–41.

[5] Shi, Jianbo and Malik, Jitendra. “Normalized Cuts and Image Segmentation",
IEEE Transactions on PAMI, 22 (8) (2000): 888–905.

[6] Ng, Andrew Y., Jordan, Michael I., and Weiss, Yair. “On spectral clustering:
analysis and an algorithm", Advances in Neural Information Processing Systems, 2
(2002): 1–8.

[7] Sieranoja, Sami and Fränti, Pasi. “Adapting k-means for graph clustering”,
Knowledge and Information Systems, 64(1) (2022): 115–142.

[8] Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, and Xu, Xiaowei. “A density-
based algorithm for discovering clusters in large spatial databases with noise”,
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), (1996): 226–231.

[9] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clif-
ford. Introduction to Algorithms (4th ed.), MIT Press, Oxford, MA, 2022.

[10] Steinerberger, Stefan. “A spectral approach to the shortest path problem." Linear
Algebra and its Applications 620 (2021): 182–200.

[11] Gallier, Jean. "Spectral theory of unsigned and signed graphs. Applications to
graph clustering: a survey." arXiv preprint arXiv:1601.04692 (2016).

[12] Chung, Fan R. K. Spectral graph theory, CBMS Regional Conference Series in
Mathematics, 92, American Mathematical Society, Providence, RI, 1997.
Spectral graph theory (revised and improved), Chapter 1: Eigenvalues and the
Laplacian of a graph

[13] Marsden, Anne. “Eigenvalues of the Laplacian and their relationship to the con-
nectedness of a graph." University of Chicago, REU (2013).

[14] Kupitz, Yaakov S., Martini, Horst, and Spirova, Margarita. “The Fer-
mat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach.” J. Op-
tim. Theory Appl. 158 (2013), 305–327.

https://github.com/PhantomOfTheOpera/GravitationalNetworkOptim.git
https://mathweb.ucsd.edu/~fan/research/cb/ch1.pdf
https://mathweb.ucsd.edu/~fan/research/cb/ch1.pdf

BIBLIOGRAPHY 38

[15] Klimenta, Mirza, and Ulrik Brandes. "Graph drawing by classical multidimen-
sional scaling: new perspectives." Graph Drawing: 20th International Symposium,
GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected Papers
20. Springer Berlin Heidelberg, 2013.

[16] Brandes, Ulrik, and Christian Pich. "Eigensolver methods for progressive mul-
tidimensional scaling of large data." Graph Drawing: 14th International Sympo-
sium, GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers 14.
Springer Berlin Heidelberg, 2007.

[17] Random Powerlaw Tree, in NetworkX package documentation

[18] Tutte Graph, in NetworkX package documentation

[19] Chordal Cycle Graph, in NetworkX package documentation

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.small.tutte_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.expanders.chordal_cycle_graph.html

	Declaration of Authorship
	Abstract
	Introduction
	Network optimization problem
	Overview of related approaches
	Problem statement
	Optimization criteria and metrics

	Spectral Methods for Complex Networks
	Basic notions of the graph theory
	Spectral properties of graph Laplacian
	The shortest path problem

	Gravitational Potential
	Constructing the gravitational potential on a graph
	Proof of Properties (P1)–(P3)
	Connected case
	Disconnected case

	Gradient flows and closest servers
	Clustering optimization

	Server location optimization
	General idea
	Formulation of the approach
	Construction of the dissimilarity matrix
	The MDS embedding
	Iterative improvement

	Formulation and performance of the algorithm
	Performance of the algorithm
	Application of the algorithm on trees
	Application of the algorithm on general graphs
	Random Powerlaw Tree
	Tutte Graph
	Chordal Cycle Graph

	Application of the algorithm on large graphs

	Conclusions
	Norming coefficient for load criterion

