
Ukrainian Catholic University

Bachelor Thesis

Warehouse Layout Optimization for Order
Picking in E-commerce Industry

Author:
Maksym Kmet

Supervisor:
Oleh Lukianykhin

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Maksym Kmet, declare that this thesis titled, “ Warehouse Layout Optimization
for Order Picking in E-commerce Industry” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

“It is a capital mistake to theorize before one has data.”

Sherlock Holmes

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Warehouse Layout Optimization for Order Picking in E-commerce Industry

by Maksym Kmet

Abstract

This project focuses on the order picking process of a fulfillment center supplying
products of e-commerce websites. The fulfillment center employs a manual picker sys-
tem where pickers move on foot, collecting products from a batch of orders that were
requested. Efficiency of an order picking process is defined by the time the pickers
spend on collecting orders. This time can be separated into 2 components: orders
picking time and orders sorting time. The goal of this project is to reduce order
picking time by solving a storage location assignment problem (SLAP). The project
consists of two main parts: picking time prediction and picking time optimisation
by solving SLAP. As a result a Random Forest model was trained to predict orders
picking time based on storage location of products. This model was used to estimate
walking time change for new assigned product storage locations (new warehouse lay-
out). New product storage locations were generated using suggested heuristic based
on SHAP values obtained from the trained Random Forest model. The new layout
satisfies required constraints and can be implemented in the corresponding real world
warehouse, while being 23% more efficient in terms of order collection time.

• Project repository link:
https://github.com/MaxKmet/OrderPickingTimeOptimization

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I am very grateful to Andriy Slyusar, the owner of a fulfillment center, who told me
about opportunities for improvement in his job, so together we came up with an idea
for my project. He also shared the data with me, using which I did all my experiments.
I also want to say thank you to my supervisor Oleh Lukianykhin and Stepan Fedynyak,
for mentorship and valuable comments that helped me structure my work and gave
inspiration. Finally, I am grateful to Ukrainian Catholic University and the Faculty of
Applied Sciences for providing students with opportunities and bringing us together
to get knowledge, get inspired and make the world better.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Problem Background . 1
1.2 Problem Setup . 1
1.3 Project Goal . 3

1.3.1 Restrictions and assumptions 3

2 Related Works and Background Information 5
2.1 SLAP problem . 5
2.2 Random Forest . 5
2.3 SHAP values . 5

3 Data and Evaluation 7
3.1 Data description . 7

3.1.1 Orders in collections data . 7
3.1.2 Products list data . 8
3.1.3 Orders list data . 8

3.2 Data Pre-processing . 9
3.2.1 Filtering . 9
3.2.2 Transformation . 9
3.2.3 Splitting data . 10

3.3 Evaluation . 10

4 Predicting order picking time 11
4.1 Models . 11
4.2 Target transform . 11
4.3 Data splitting . 11
4.4 Features . 11
4.5 Ensembling . 13
4.6 Order picking time prediction results 14

4.6.1 All data experiment results . 14
4.6.2 Data split by number of orders results 15

<= 2 orders data split results 16
>= 3 orders data split results 17

4.7 Conclusion for order picking time prediction 18

vi

5 Optimization of order picking time 19
5.1 Methodology . 19
5.2 Approaches . 19

5.2.1 Alphabetical sorting . 19
5.2.2 Rows locations clustering . 19
5.2.3 SHAP based sorting . 20
5.2.4 Optimization of order picking time results 21

6 Summary 23

Bibliography 24

vii

List of Figures

1.1 warehouse map . 2
1.2 sub-cell photo . 3

4.1 location clusters . 13
4.2 correlation plot . 16

5.1 sorted location clusters . 20
5.2 SHAP example . 21

viii

List of Tables

3.1 Order in collections data values . 7
3.2 Order in collections data description 8
3.3 Products list data values . 8
3.4 Products list data description . 8
3.5 Orders list data values . 9
3.6 Orders list description . 9

4.1 Features . 12
4.2 Ensembling approaches . 14
4.3 All data experiment results sorted by performance 15
4.4 Experiment results for data with <= 2 orders 16
4.5 Experiment results for data with >= 3 orders 17

5.1 Optimization of order picking time results 22

ix

List of Terms and Abbreviations

Warehouse layout the way storage units (like shelves) and products are located in a warehouse
SKU Stock Keeping Unit, a single item of inventory
OPT Order Picking Time
SLAP Storage Location Assignment Problem
MAE Mean Absolute Error
SHAP SHapley Additive exPlanations

x

Dedicated to my parents, who always support me and provided
with everything I ever needed to grow personally and professionally.

1

Chapter 1

Introduction

1.1 Problem Background

We are dealing with a fulfillment company, which handles product storage and deliv-
ery for multiple e-commerce websites. The processes inside different fulfillment centers
may vary, but the principles remain similar. In this project we are optimizing pro-
cesses of a particular fulfillment warehouse, located near Kyiv, whose owners provided
us their data, so our solution is based on the assumptions and principles described by
owners of this particular fulfillment company. This company owns several warehouses
in close locations and would like to distribute workers’ labor across them. One option
to do so is by minimizing time required for collecting orders in a warehouse. This way
the fulfillment company would be able to increase productivity of individual work-
ers, hire less people (or expand their e-commerce clients base), resulting in increased
revenue.

1.2 Problem Setup

Let’s discuss the processes happening inside our warehouse. The orders are collected
in bulk called “collection”. Usually there are several orders in one collection, and every
order may have several products. The collections are generated from orders that were
requested by e-commerce customers. In most cases several collections are generated
per day. The whole process of orders collection involves the following steps:

1. A number of orders that were requested during the day are waiting to be shipped.

2. A collection of 1-50 orders is generated.

3. A program generates a path to the cells where needed products for this collection
are located. The locations are provided to the picker in alphabetical order, and
the picker approaches the cells in that order. Usually a worker has to do the
whole walk in store along all the shelves to collect the orders. But in the case
of a low number of products some rows/cells might be skipped and these cases
are not possible to track using our data. The products for a current collection
are collected in a shopping cart all together. Picking time usually takes 30
mins-2hrs per collection. This picking time is our main point of interest and
object of optimization.

4. After the products are collected, they are sorted into individual orders on a
dedicated table. It takes 30 mins-1.5hrs.

5. The orders are then loaded to a truck and shipped via a delivery provider.

Chapter 1. Introduction 2

Product storage locations are grouped in rows. Every location (place) has a dedicated
number or letter. Some places have several levels (on different heights) and/or sub-
cells as you can see in the image. On one cell/level/sub-cell several different products
may be located. Locations with names starting with П are pallets and a location
named X is a refrigerator.

Figure 1.1: warehouse map

Chapter 1. Introduction 3

Figure 1.2: sub-cell photo

1.3 Project Goal

Time spent on collecting orders is defined by 2 components: orders picking time
and orders sorting time. Considering the needs of the fulfillment company, the main
objective of this project is to propose a new product storage assignment that will
require less time to pick orders on average than the current one. In order to do this,
the first step is to create a model that will estimate order picking time in existing setup
(relying on features, applicable to make time estimations in a new setup). The second
part of the project is suggesting a new warehouse layout (new product placement
locations) that will have better average order picking time estimates according to our
model than the original setup.

1.3.1 Restrictions and assumptions

After a discussion with a domain expert, who has been working in our warehouse, we
came up with a set of limitations and suggestions that we should consider during our
modeling:

1. Products stored in the warehouse are low volume, light weight and particular
products generally don’t cause delay in collection time (due to weight or else).
But some products have to be stored only on pallets or only in a refrigerator, so
accessing and locating these products requires special treatment. That is why
during our storage locations assignment step we decided to leave the products
stored on pallets and in the refrigerator in the same places as before.

2. Sometimes it happens that for 1-2 orders a new collection was generated and
processed, though generally collections contain 20-30 orders. Such collections
with low number of orders may require special treatment

3. Errors may occur during time logging (due to human factors or program bugs).
So it is important to filter out collections with anomaly order collection times.
Details of filtering will be discussed in further sections.

Chapter 1. Introduction 4

4. Every cell/ sub-cell has a particular number of unique products. We consider
that every cell/ sub-cell can store at most that number of products that are
placed there during the original setup.

5. There is no limits of products that can be stored in a pickers cart

6. Every unique product type is stored only in 1 place

7. Product required for picking is always available in the place it is stored

8. Order picking always starts and finishes from the place where pickers are shown
in the warehouse map

9. Set of products available in the warehouse is constant

5

Chapter 2

Related Works and Background
Information

2.1 SLAP problem

Warehouse optimization has been studied for more than 50 years and different ap-
proaches and case studies have been made. Most of them incorporate different heuris-
tics for product storage location assignment (SLAP), which we are mostly interested
in for our project. They include class-based clustering approaches [3] ,order quantity
and product popularity criteria for determining the location of stock items within a
distribution center [6], criterions based on complementarity, compatibility, popularity,
and size of products [7], clustering based on demand dependencies between SKUs [2].
Most of these approaches are very case specific and researchers use assumed walking
distance based measures instead of time (actual metric we want to optimize) to eval-
uate goodness of new storage layout. Still, some of these principles can be applied in
our project.

2.2 Random Forest

Our first task in this project is to build a model that will be able to estimate order
picking time regardless of the assigned storage locations. We will further use this
model to estimate improvement provided by new storage location assignment. The
features we are going to use include locations of products, number of different types
of products in the same cell, number of cells on different level of height etc. These
features have complex interrelations, so we need to use models that will be capable of
learning them. That is why we suggest using Random Forest.

Random forest is a supervised learning algorithm which uses ensemble learning
method for classification and regression. In particular, random forest uses assembling
method called bagging, which involves training several independent predictors and
combining their predictions by some averaging techniques in order to reduce variance.
In random forest, an independent predictor is a decision tree. A decision tree is a
tree where each node represents a feature, each branch represents a rule and each leaf
represents an outcome(categorical or continuous value). This approach to modeling
is close to human thinking and considered good for learning complex, non-linear,
relations.[1]

2.3 SHAP values

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the
output of any machine learning model. As we have already mentioned, SHAP method

Chapter 2. Related Works and Background Information 6

attributes to each feature an importance value (named SHAP value) that represents
the contribution of that feature to the final outcome of the model. [4] Suppose for
example that we have a model f (x) and that we want to explain the prediction
of the model on a specific sample x∗. To do so, SHAP method decomposes the
prediction into the sum of the contributions of all the features, namely f (x∗) =
ϕ0 +∑M

j=1 ϕ∗
j where ϕ0 is the average model’s prediction. To compute each contribution

ϕj, SHAP method relies on a concept that comes from cooperative game theory, known
as Shapley value, which is defined as the average marginal contribution of a feature
value over all possible coalitions. Implementation of computing SHAP values for tree
based models is available in a python package called shap.

7

Chapter 3

Data and Evaluation

3.1 Data description

The data provided consists of 3 files that have primary keys allowing us to merge them.
The values ranges in the description are shown after filtering to be more informative.
The filtering itself is described in the following section.

3.1.1 Orders in collections data

name type values
collect_id Integer 2683 -17841
order_id Integer 169994 -381779
products_quantity Integer 1-424
collect_date Timestamp 2020-12-12 14:04:00 - 2022-04-23

15:03:00
num_orders Integer 1-103
created_at Timestamp 2020-12-12 12:25:08 - 2022-04-23

14:58:26
collect_time TimeDelta 0 days 00:00:30 - 0 days 05:39:31
approx_store_walk_end Timestamp 2020-12-12 14:04:00 - 2022-04-23

15:03:00
approx_store_walk_time TimeDelta 0 days 00:00:30 - 0 days 02:59:43

Table 3.1: Order in collections data values

Chapter 3. Data and Evaluation 8

name description
collect_id Unique identifier of a collection (primary key)
order_id Unique identifier of an order. One collection may

have several orders
products_quantity total number of products in order (considering some

products may appear several time in the order)
collect_date Time when collection was finished, meaning it was

picked from warehouse and sorted
num_orders Number of orders in collection
created_at Time when collection was generated. We consider

this time to be time when order picking started
collect_time collect_time - created_at
approx_store_walk_end Time when the first order of a collection was sorted.

We consider that this is approximately the time
when order picking was finished.

approx_store_walk_time approx_store_walk_end - created_at

Table 3.2: Order in collections data description

3.1.2 Products list data

name type values
product_id Integer 616-45851
sku_code Integer 181-17895
name String
place String

Table 3.3: Products list data values

name description
product_id Unique identifier of a product (primary key)
sku_code Code identifying a product. Not used in other ta-

bles
name Name of a product. May be in Ukrainian, English,

number or empty
place Storage location identifier in format <loca-

tion_number> - <level> - <sub_level> or
<location_letter>-<location_number>-<level> -
<sub_level>. Level and sub_level are optional.

Table 3.4: Products list data description

3.1.3 Orders list data

Chapter 3. Data and Evaluation 9

name type values
order_id Integer 169994 -381779
product_id Integer 616-45851

Table 3.5: Orders list data values

name description
order_id Unique identifier of an order (primary key)
product_id Unique identifier of a product. One order may have

several products

Table 3.6: Orders list description

3.2 Data Pre-processing

3.2.1 Filtering

A domain expert, who has been working in the warehouse as an order picker for a while,
provided us with limitations of time of order picking/sorting that we can consider as
top and bottom limits. Collections that don’t satisfy these limits were deleted because
they are considered errors in time tracking. This is the list of collections that were
deleted:

• collections with negative total collection time

• collections with 3+ hours of walk time

• collections with < 30 seconds of picking time

• collections with 3+ hours of sort time

3.2.2 Transformation

The following transformations are performed on the input data:

1. Transform time deltas from TimeDelta data type to seconds

2. Cubic root of target. Our target value (approx_store_walk_time) has a skewed
distribution. The skewness (Fisher-Pearson coefficient of skewness) is 1.675,
which is considered high. Some models, especially linear, may have difficulties
fitting to skewed data. That is why we compare predicting raw seconds of target
and predicting cubic root of target and transforming it back to seconds using
power 3 function. As will be presented later, this approach gave us improve-
ment in most cases compared to not applying cubic transform. Cubic transform
of approx_store_walk_time has a distribution with skewness 0.38 (fairly sym-
metrical). Also after applying cubic root transformation, Pearson correlation
between number of products in collection and target slightly raised from 0.59 to
0.65.

Further feature transformations, related to individual experiments, are described in a
section dedicated that experiment.

Chapter 3. Data and Evaluation 10

3.2.3 Splitting data

Length of data (number of collections in the dataset) – 3097
Train and test set were randomly splitted in proportion 80/20.

During the experiments, additional splitting of the dataset was done to experiment
how training different models for different splits of data (with respect to number of
orders as suggested by domain expert) affects the quality of models performance. This
process will be explained in more detail in following sections.

3.3 Evaluation

Now that we understand the project goals and the data, let us define the key metrics
for measuring quality of order picking time prediction and changes in order picking
time provided by SLAP solution.

MAE – mean absolute error. This metric was chosen because it is less influenced
by outliers, which appear in the data due to human factor and other reasons, which
are not detectable from our data (for example someone called worker while order pick-
ing and it caused a delay, or some product appeared missing, which caused the delay).
Also this metric intuitively translates into real life values, in our case – number of
seconds. The lower the value of this metric, the better. We also use it as a criterion
in our Random Forest regressor.

MAE =
∑n

i=1 |yi − xi|
n

MAE = mean absolute error yi = prediction xi = true value n = total number of
data points

Percentage of collections in validation set with MAE less than 5 minutes. Af-
ter discussion with a domain expert about handling human factor which causes vari-
ance in results, we agreed to consider that collection times that are predicted with
error less than 5 minutes are considered to be predicted perfectly. That is why this
metric is also useful for monitoring.

Coefficient of determination R2 – is the proportion of the variance in the target vari-
able that is described from the independent variables by a model. The desired value
of the metric is 1, but in some cases of poor model fitting, computational definitions
may yield negative values.

Average order picking time improvement - average difference between order pick-
ing time predicted in an original setup and order picking time predicted in new setup
suggested by SLAP solution. This metric is used to measure changes in order picking
time provided by a suggested SLAP solution.

11

Chapter 4

Predicting order picking time

In order to predict order picking time, we performed several experiments involving
different approaches to data splitting, different models, target value transformation
and ensembling of previous results. Below we list models, target transform, data
splitting approaches and features which are later used in different combinations.

4.1 Models

1. Linear regression - actually linear regression assumptions (like homoscedasticity
and normally distributed residuals) were not met, but this is a common baseline
model to compare more complex models with.

2. Random forest – fine tuned using Grid Search with 5-fold cross-validation and
tested parameters { ’n_estimators’: [50, 100, 200], ’min_samples_split’:
[2, 10, 30, 0.02, 0.05, 0.1, 0.2], "criterion": ["absolute_error"’]}

4.2 Target transform

1. No target transformation

2. Cubic root of target. Motivation behind it described in Pre-processing section

4.3 Data splitting

1. No splitting

2. Separate modeling for collections with [1;2] orders (40% of all data) and [3; inf)
orders (60% of the data). This idea is based on a suggestion number 2 from a
domain expert described in Restrictions section.

4.4 Features

Every model was trained on a separate set of features out of the ones suggested
below. We did not use multiple suggested features at once because they are highly
correlated and might worsen the models performance. Still, in order to experiment
with combining different features, we used an ensemble of models trained on different
features. Here is a list of suggested extracted features:

Chapter 4. Predicting order picking time 12

feature_id feature explanation
1 Total number of products

in collections
A baseline feature, because it is not op-
timizable. You can’t change the num-
ber of products needed because it does
not depend on storage layout.

2 Number of products re-
quired to take from loca-
tions

The feature is a vector of 156 entries,
where each entry represents the num-
ber of products required to be taken
from a particular location. Sub-cell
and level on location is not encoded,
because then we have too low (number
of samples) / (number of features) pro-
portion and models fail to fit, return-
ing a negative R2 score. This feature is
the most valuable for optimization we
want to make in part 2 of our project,
because representation of a product lo-
cation assignment is straightforward in
this case.

3 Number of cells on differ-
ent level as a feature

The feature is a vector of 3 elements
because we have at most 3 levels of lo-
cation. If a level is not mentioned, we
consider the product to be placed on
level 2.

4 Number of product to
pick up from a particular
line (location cluster) in
warehouse

We identified 13 location clusters in
the warehouse which are shown in a
figure below. Every location cluster is
painted on a map in a different color.
Refrigerator was added to the cluster
with pallets because it appeared a low
number of times in the dataset, and we
decided not to create a separate cluster
for it to avoid creating a noisy feature.

5 Number of products to
pick up from cells with
many other unique prod-
ucts

In many cases different products are
located in the same location (sub-cells
and levels considered). In particular,
here are some statistics. 574 locations
have < 5 unique products located, 411
locations have [5;15] products, 129 -
(15;30] products, 83 - (30; inf] The fea-
ture itself is a vector with 4 entries,
each of which is the number of prod-
ucts from the current collection to be
picked up from a location falling into
one of 4 above mentioned categories.

6 Number of products to
pick up from cells of a
particular class

By class here we mean: 1) a location
without subcell 2) a location with a
subcell 3) a pallet 4) a refrigerator.
The feature is a vector with 4 entries
each of which is the number of prod-
ucts from the current collection to be
picked up from a location falling into
one of 4 above mentioned categories.

Table 4.1: Features

Chapter 4. Predicting order picking time 13

Below is a visualization of location clusters described in feature 4. Locations
highlighted in different colors belong to different location clusters.

Figure 4.1: location clusters

4.5 Ensembling

After separate models were trained and we made train/validation predictions using
them, we used these predictions to experiment with combining outputs of models
trained on different features to test if it gives better validation results. In such way we
incorporate different features into one ensemble model. The approaches of ensembling
that were tried:

Chapter 4. Predicting order picking time 14

Method Explanation
Linear regression ensem-
bling

Use outputs of models trained on different features
as inputs and predict order picking time using them.
The features are highly correlated and we may not
need all of them so we did 2 things to avoid using
unnecessary features and make the most of what
we have: Use up to 4 features for 1 linear regression
ensemble model
Use L1 regularization, which allows penalizing un-
necessary features.

Random forest ensem-
bling

Use outputs of models trained on different fea-
tures as inputs and predict order picking time us-
ing them. All features are used for training the
model. Also GridSearch implementation with 5-
fold cross-validation from python library sklearn
is used to tune models parameters. The pa-
rameters tested are {n_estimators’:[50, 100, 200],
’min_samples_split’:[2, 10, 30, 0.02, 0.05, 0.1, 0.2],
"max_features":[0.4]}

Table 4.2: Ensembling approaches

Different combinations of the above mentioned configurations were tried. In total
we have 2 models, 2 target transforms, 2 data transformation approaches, 2 data
splitting approaches (1 of them involves repeating all experiments twice, one for each
subset of data), and 6 features. Also 2 sampling techniques were tried. So in total 2
* 2 * 2 * 3 * 6 + 2 = 146 experiments were performed.

4.6 Order picking time prediction results

Below are presented metrics for each of the models predicting order picking time.
They are sorted by validation (test) MAE.

4.6.1 All data experiment results

Chapter 4. Predicting order picking time 15

feature_id model_type train_mae val_mae
perc_lt
_5mins

6 Rand forest cbrt y preprocessing 18.11 9.47 0.46
6 Rand forest no preprocessing 18.06 9.64 0.45
5 Rand forest cbrt y preprocessing 17.55 9.85 0.46
3 Rand forest cbrt y preprocessing 16.66 10.0 0.44
4 Rand forest cbrt y preprocessing 16.49 10.32 0.41
5 Rand forest no preprocessing 17.52 10.39 0.42
6 Lin reg cbrt y preprocessing 21.21 10.97 0.29
3 Linreg cbrt y preprocessing 20.78 10.97 0.3
3 Rand forest no preprocessing 15.91 11.01 0.37
2 Rand forest cbrt y processing 14.36 11.1 0.35
5 Lin reg cbrt y preprocessing 20.78 11.15 0.32
4 Lin reg cbrt y preprocessing 21.02 11.35 0.26
4 Rand forest no preprocessing 15.41 11.67 0.35
2 Rand forest no y processing 13.89 13.2 0.26
10 Lin reg ensembling features: (0, 1, 6) 15.49 14.2 0.21
2 Lin cbrt y processing 19.03 14.24 0.28
11 Rand forest ensembling 6.61 15.07 0.27
5 Lin reg no preprocessing 21.59 15.13 0.11
6 Lin reg no preprocessing 21.71 15.29 0.1
3 Linreg no preprocessing 21.3 15.4 0.1
4 Lin reg no preprocessing 21.41 15.45 0.11
2 Lin reg no y processing 19.65 16.57 0.09
1 Rand forest no processing 16.78 17.49 0.36
1 Rand forest cbrt y 17.1 17.51 0.36
1 Lin reg x,y cbrt 17.47 17.6 0.31
1 Lin reg no processing 19.56 19.86 0.13

Table 4.3: All data experiment results sorted by performance

The best validation MAE, achieved by a Random forest model, is 9,47 minutes.
It corresponds to feature number 6 (number of products to pick up from cells of a
particular class) with target transformation using cubic root. The best parameters
found using GridSearch are { ’min_samples_split’: 0.05, ’n_estimators’: 50}. Cor-
responding train R2 for this experiment is 0.43.

4.6.2 Data split by number of orders results

In the Data splitting section we described an approach to splitting data into 2 datasets
and training models for them separately. The suggestion came from the domain
expert, but it was confirmed by observations when plotting data. As you notice from
plotting the number of products in order against the target, we have a concentration
of observations with just a few products in collection and very different picking times.
It makes us think that these collections with small amounts of orders may behave
differently than in other range, and require special treatment. As a reminder: 40% of
collections contain only 1-2 orders.

Chapter 4. Predicting order picking time 16

Figure 4.2: correlation plot

<= 2 orders data split results

feature_id model_type train_mae val_mae perc_lt_5mins
6 Rand forest cbrt y preprocessing 15.1 7.26 0.61
6 Rand forest no preprocessing 14.79 7.39 0.61
3 Rand forest cbrt y preprocessing 14.62 7.52 0.65
5 Rand forest cbrt y preprocessing 14.68 7.73 0.62
4 Rand forest cbrt y preprocessing 13.67 8.01 0.54
5 Rand forest no preprocessing 14.31 8.14 0.58
3 Rand forest no preprocessing 14.12 8.16 0.57
6 Lin reg cbrt y preprocessing 16.96 8.49 0.38
4 Rand forest no preprocessing 13.61 9.57 0.41
2 Rand forest cbrt y processing 12.34 9.92 0.43
4 Lin reg cbrt y preprocessing 16.23 10.71 0.39
2 Rand forest no y processing 12.3 12.5 0.33
10 Lin reg ensambling features: (10, 18, 19) 16.7 12.86 0.17
5 Lin reg cbrt y preprocessing 16.24 13.29 0.37
6 Lin reg no preprocessing 18.93 13.71 0.09
3 Linreg no preprocessing 18.76 14.09 0.09
5 Lin reg no preprocessing 18.66 14.18 0.07
4 Lin reg no preprocessing 18.63 14.29 0.07
11 Rand forest ensambling 6.67 15.48 0.34
1 Rand forest cbrt y 13.13 15.78 0.56
1 Rand forest no processing 12.7 15.89 0.54
1 Lin reg x,y cbrt 13.37 16.24 0.45
3 Linreg cbrt y preprocessing 16.52 17.07 0.39
1 Lin reg no processing 16.17 19.5 0.09
2 Lin reg no y processing 16.47 20.87 0.18
2 Lin cbrt y processing 14.13 27.16 0.33

Table 4.4: Experiment results for data with <= 2 orders

Chapter 4. Predicting order picking time 17

>= 3 orders data split results

feature_id model_type train_mae val_mae perc_lt_5mins
6 Rand forest cbrt y preprocessing 20.61 10.94 0.36
5 Rand forest cbrt y preprocessing 20.08 11.68 0.32
4 Rand forest cbrt y preprocessing 16.68 12.11 0.3
3 Rand forest cbrt y preprocessing 17.23 12.29 0.27
5 Lin reg cbrt y preprocessing 23.03 12.38 0.24
2 Rand forest cbrt y processing 15.21 12.57 0.27
6 Rand forest no preprocessing 18.82 12.58 0.28
3 Linreg cbrt y preprocessing 22.49 12.72 0.2
6 Lin reg cbrt y preprocessing 22.95 12.73 0.22
4 Lin reg cbrt y preprocessing 22.95 12.96 0.2
5 Rand forest no preprocessing 18.39 13.39 0.23
3 Rand forest no preprocessing 17.19 13.45 0.23
4 Rand forest no preprocessing 16.46 13.66 0.25
2 Rand forest no y processing 11.51 14.9 0.2
10 Lin reg ensambling features: (1, 2, 7) 10.99 15.09 0.25
2 Lin cbrt y processing 19.84 15.29 0.2
11 Rand forest ensambling 3.16 15.68 0.24
5 Lin reg no preprocessing 23.35 16.02 0.14
6 Lin reg no preprocessing 23.3 16.47 0.11
3 Linreg no preprocessing 22.63 16.76 0.09
4 Lin reg no preprocessing 22.7 16.87 0.11
2 Lin reg no y processing 20.17 19.26 0.09
1 Lin reg x,y cbrt 19.51 21.29 0.21
1 Rand forest cbrt y 19.4 21.67 0.22
1 Rand forest no processing 18.66 22.0 0.19
1 Lin reg no processing 21.04 22.02 0.15

Table 4.5: Experiment results for data with >= 3 orders

The performance of models on data split should be calculated together using wait-
ing. Since the data was split in proportion 40/60, metric = metric_for_split1 * 0.4
+ metric_for_split2 * 0.6. The best combination of models by this “weighted” vali-
dation MAE is 9.45 minutes. Corresponding train R2 is 0.43. Weighted percentage of
collections in validation set with MAE less than 5 minutes is 46%.

For split 1 (<= 2 orders): Random forest model, feature number 6 (number of
products to pick up from cells of a particular class) with target transformation using
cubic root. The best parameters found using GridSearch are { ’min_samples_split’:
0.1, ’n_estimators’: 100}.

For split 2 (>= 3 orders): Random forest model, feature number 6 (number of
products to pick up from cells of a particular class) with target transformation using
cubic root. The best parameters found using GridSearch are { ’min_samples_split’:
0.2, ’n_estimators’: 100}.

Chapter 4. Predicting order picking time 18

4.7 Conclusion for order picking time prediction

The best quality of order picking prediction was achieved by combining 1) data split-
ting into 2 categories (<=2 orders and >=3 order), 2) using the number of products
to pick up from cells of a particular class as a feature 3) applying cubic root trans-
form to target during training 4) and using Random forest models with appropriate
reported parameters. This approach might be the best of explored for predicting
picking time itself, but it is not very suitable for part 2 of our project - optimization
by solving storage location assignment problem, because this feature considers only
location classes, not the locations themselves.
So for part 2 of our project we will use the best approach for order picking time predic-
tion using feature 2 - number of products required to take from locations, because it
directly deals with locations of products, and therefore can be optimized using SLAP.
Best MAE involving feature 2 is 11.4 mins. Corresponding percentage of collections
in validation set with MAE less than 5 minutes is 0.34.
As for the reasons why location classes gave slightly better performance than loca-
tions themselves, we explain it by a relatively small size of the warehouse, which made
spacial features slightly less important than information about location of products
in the context of one place.

19

Chapter 5

Optimization of order picking time

In this part of the project we use the model trained to predict order picking time in
the previous part, in order to estimate improvement achieved by solving the SLAP
problem with different methods.

5.1 Methodology

We use the same validation set that was used for measuring validation metrics in the
first part of the project but for a different purpose. First we save validation predictions
from our model for original setup features (original product storage locations). Then
we solve the SLAP problem using one of the suggested approaches (change product
storage locations) and generate validation predictions for a new setup. After that we
compare the two predictions using the average order picking time improvement metric
explained in the Evaluation section.

5.2 Approaches

5.2.1 Alphabetical sorting

A domain expert explained, the program they use for generating collections returns
locations where these products are located, sorted in alphabetical order. Then order
picker approaches these locations in given order to pick up the needed products, Based
on that, our first approach is the following:

1. Sort products by number of orders in which they appear in train set

2. Assign more frequently appearing products to locations starting from first prod-
ucts coming in alphabetical order

Note: We fill every location with at most the number of products that were located
there in an original setup to address restriction 4 in the Restrictions section.

5.2.2 Rows locations clustering

Every row in the warehouse has a particular distance from the exit of the warehouse.
Based on that knowledge (from a map visualization) we sorted rows in the warehouse
based on that distance and intuition and started placing popular products starting
from rows closer to exit, within the rows products are placed on locations in alpha-
betical order. In the picture below we marked rows of cells with order in which they
start being filled (yellow to red). Indexes are also added next to each cluster in order
which they start being filled, starting from 1. Palettes and the refrigerator are left
blank on purpose because the locations of products placed there are not altered.

Chapter 5. Optimization of order picking time 20

Figure 5.1: sorted location clusters

5.2.3 SHAP based sorting

As explained in the Related works and Background Information section, SHAP values
represent the contribution of individual features to the final outcome of the model.
Intuition behind them is they show how individual features shift the predicted value
from the average prediction. In our case, the feature is a number of products required
to take from individual locations, so we have 156 features corresponding to locations
on map and SHAP values related to them. We have 2 Random Forest models trained
on different data splits, so we have different SHAP values for them. Each of this
models has different average prediction value and different magnitude of SHAP values
prediction, so the SHAP value vectors need to be normalized (transformed to a unit
length) so that they can be compared or combined.

Below is an example visualization of SHAP values for Random Forest model,
trained of second data split (>=3 orders). They are ordered by their effect on predic-
tion. SHAP values were calculated using TreeExplainer class provided by shap python
library. In this example feature 75 corresponds to number of products in place 84,
feature 98 - number of products in place A-3, feature 26 - number of products in place
33.

Chapter 5. Optimization of order picking time 21

Figure 5.2: SHAP example

Every little dot represents an observation. The horizontal axis represents the
SHAP value, while the color of the point shows us if that observation has a higher
(red) or a lower (blue) value, when compared to other observations.[5]
In this example, higher values for feature 98 have a negative impact on the prediction,
while lower values have a positive impact. Intuitively it means that it takes less time
to take products from place A-3.
The suggested algorithm using SHAP values looks like this:

1. Calculate SHAP values for every feature for both Random Forest models (for 2
data splits)

2. Normalize both SHAP vectors to unit norm

3. Create a combined SHAP vector by weighting 2 original vectors proportionally
to data split size on which their models were trained. The final SHAP vector is
calculated SHAP_vect1 * 0.4 + SHAP_vect2 * 0.6.

4. Sort locations by their related SHAP values

5. Assign products by popularity, placing more popular products to locations with
lower SHAP value.

5.2.4 Optimization of order picking time results

Below are the results of the described experiments sorted by average order picking
time improvement.

Chapter 5. Optimization of order picking time 22

Approach Average OPT improvement
(minutes)

Average relative OPT im-
provement (percentage)

SHAP based sorting 5.3 0.23
Rows locations clustering 3.2 0.14
Alphabetical sorting 0.005 0.0

Table 5.1: Optimization of order picking time results

Average order picking time predicted in the original setup is 22.8 minutes. The
best average order picking time predicted in a new setup achieved by SHAP based
sorting is 17.5 minutes. It gave us 5.3 minutes of absolute improvement and 23% of
relative improvement.

23

Chapter 6

Summary

A new products locations assignment was created for our warehouse, that is expected
to give 23% improvement in order picking time, according to our model. It takes into
account constraints requested by warehouse owners such as location capacity limita-
tions and special dedicated places for some products.

The project was divided into 2 parts: predicting order picking time and solving a
storage location assignment problem. Evaluation of improvement by part 2 was done
using a model created during part 1.

We tried predicting order picking time from 6 suggested features using Linear Regres-
sion, Random Forest with different target preprocessing and data splitting approaches.
The best validation metrics were demonstrated by Random Forest predicting cubic
root of order picking time using the number of products to pick up from cells of a
particular class as a feature, trained on 2 separate data splits. However, for evaluation
of SLAP solutions in part 2 we used a different model. The model used was Random
Forests predicting the cubic root of the number of products required to take from lo-
cations as a feature trained on 2 separate data splits. The reason for using a different
model is that it does not have a big difference in validation metrics from the best ap-
proach, but that is more important, it uses features that can be optimized using SLAP.

The best average order picking time improvement, according to our model, was
achieved by using SHAP based sorting approach for solving SLAP. It gave us 5.3
minutes of absolute improvement and 23% of relative improvement compared to the
original warehouse setup. This means a proportional decrease of costs and the corre-
sponding potential increase of revenue.

The new storage locations satisfy all the constraints discussed with domain experts
and can be implemented in real life. This approach can be also used for optimizing
other fulfillment warehouses that have similar work processes set up.

24

Bibliography

[1] Afroz Chakure. Random Forest Regression - The Startup. Mar. 2022. url: https:
//medium.com/swlh/random-forest-and-its-implementation-71824ced454f.

[2] Monika Kofler et al. “Robust Storage Assignment in Warehouses with Correlated
Demand”. In: Studies in Computational Intelligence (2015), pp. 415–428. doi:
10.1007/978-3-319-15720-7\{_}29.

[3] René de Koster, Tho Le-Duc, and Kees Jan Roodbergen. “Design and control of
warehouse order picking: A literature review”. In: European Journal of Opera-
tional Research 182.2 (2007), pp. 481–501. doi: 10.1016/j.ejor.2006.07.009.

[4] Mukund Sundararajan. The many Shapley values for model explanation. Aug.
2019. url: https://arxiv.org/abs/1908.08474.

[5] Vińıcius Trevisan. Using SHAP Values to Explain How Your Machine Learn-
ing Model Works. Mar. 2022. url: https://towardsdatascience.com/using-
shap- values- to- explain- how- your- machine- learning- model- works-
732b3f40e137.

[6] Hoyt G. Wilson. “Order Quantity, Product Popularity, and The Location of Stock
in a Warehouse”. In: A I I E Transactions 9.3 (1977), pp. 230–237. doi: 10.1080/
05695557708975151.

[7] D. Daryl Wyckoff and Ronald H. Ballou. “Business Logistics Management”. In:
Journal of Marketing 37.4 (1973), p. 119. doi: 10.2307/1250368.

https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f
https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f
https://doi.org/10.1007/978-3-319-15720-7\{_}29
https://doi.org/10.1016/j.ejor.2006.07.009
https://arxiv.org/abs/1908.08474
https://towardsdatascience.com/using-shap-values-to-explain-how-your-machine-learning-model-works-732b3f40e137
https://towardsdatascience.com/using-shap-values-to-explain-how-your-machine-learning-model-works-732b3f40e137
https://towardsdatascience.com/using-shap-values-to-explain-how-your-machine-learning-model-works-732b3f40e137
https://doi.org/10.1080/05695557708975151
https://doi.org/10.1080/05695557708975151
https://doi.org/10.2307/1250368

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem Background
	Problem Setup
	Project Goal
	Restrictions and assumptions

	Related Works and Background Information
	SLAP problem
	Random Forest
	SHAP values

	Data and Evaluation
	Data description
	Orders in collections data
	Products list data
	Orders list data

	Data Pre-processing
	Filtering
	Transformation
	Splitting data

	Evaluation

	Predicting order picking time
	Models
	Target transform
	Data splitting
	Features
	Ensembling
	Order picking time prediction results
	All data experiment results
	Data split by number of orders results
	<= 2 orders data split results
	>= 3 orders data split results

	Conclusion for order picking time prediction

	Optimization of order picking time
	Methodology
	Approaches
	Alphabetical sorting
	Rows locations clustering
	SHAP based sorting
	Optimization of order picking time results

	Summary
	Bibliography

