
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Multi-camera visual obstacle avoidance
for micro aerial vehicles

Author:
Mykola MORHUNENKO

Supervisor:
Ing. Matouš VRBA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Faculty of Applied Sciences
Department of Computer Sciences

Lviv 2022

https://ucu.edu.ua
http://mrs.felk.cvut.cz/members/phdstudents/matous-vrba
https://apps.ucu.edu.ua/computer-science/
https://apps.ucu.edu.ua

i

Declaration of Authorship
I, Mykola MORHUNENKO, declare that this thesis titled “Multi-camera visual obsta-
cle avoidance for micro aerial vehicles” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Science, my lad, is made up of mistakes, but they are mistakes which it is useful to make,
because they lead little by little to the truth.”

Jules Verne

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences
Department of Computer Sciences

Bachelor of Science

Multi-camera visual obstacle avoidance for micro aerial vehicles

by Mykola MORHUNENKO

Abstract

The 21st century is a time of innovation and exploration in the fields of ap-
plied science such as physics, medicine, biology, programming and robotics, as well
as their intersections and fusions. One of the research topics, that have recently
gained much popularity, are Micro unmanned Aerial Vehicles (MAVs). MAVs be-
came smaller, cheaper and more readily available. However, due to the rising pop-
ularity and utility of MAVs, some of their problems and limitations are highlighted.
MAVs often rely on the Global Navigation Satellite System (GNSS), but due to GNSS
inaccuracy in closed environments, the MAV requires an obstacle avoidance system
that is compact and reliable.

In this thesis, a compact and reliable visual multi-camera obstacle avoidance sys-
tem for MAVs is developed. Calibration of a non-planar stereo camera setup and ex-
traction of obstacle positions in an unknown environment from pairs of 2D images
are tackled in this work.

The proposed solution is designed to run onboard an MAV with a limited com-
putational power considering size, weight and payload limitations. Performance of
a prototype of the proposed solution was measured in laboratory experiments. The
result proved that the system is ready for on-drone deployment and real-life tests.

HTTPS://UCU.EDU.UA
https://apps.ucu.edu.ua
https://apps.ucu.edu.ua

iv

Acknowledgements
I would like to thank my supervisor Ing. Matouš Vrba and all CTU MRS Group

members for the opportunity to have an internship there for the last one and a half
year, all of them were kind, they helped me a lot with advice’s and shared their
experience, CTU FEE for interesting and useful for this thesis courses. I want to
admire that nothing during my studies would take place without my small fam-
ily - Ukrainian Catholic University, especially Applied Science Faculty, all teachers
and deanery for saving all students from all the worst sides of Ukrainian education
system and providing only the best quality education without corruption and pla-
giarism.

Especially, I want to thank all defenders of my Motherland, The Armed Forces
of Ukraine, who protect the whole Europe during the russo-Ukraian war at the cost
of their own lives to make it possible for all of us to live in peace and for me to write
this thesis.

Finally, I would like to thank my family who supported me during my whole
life, my mother Svitlana and my father Roman.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

List of Abbreviations ix

List of Symbols x

1 Introduction 1
1.1 Related Works . 2
1.2 Problem definition . 4

2 Preliminaries 5
2.1 Homogenous coordinate systems . 5
2.2 Pinhole camera model . 5

2.2.1 Camera coordinate system . 5
2.2.2 Camera matrix . 6
2.2.3 Projection matrix . 7
2.2.4 Skew-symmetric 3x3 matrix . 8

2.3 Epipolar geometry . 9
2.3.1 The epipolar constraint . 9

2.4 Stereo vision . 10
2.5 Reprojection error . 11

3 Methodology 12
3.1 Description of the optical setup . 13
3.2 Projection model of a camera and its calibration 13

3.2.1 The minimal problem for camera calibration 14
3.2.2 Distortion correction . 14

3.3 General multicamera pose calibration 15
3.3.1 Least-square estimation of transformation 15
3.3.2 PnP-based estimation of transformation 16

P3P . 17
P3P + RANSAC . 17

3.4 Feature extraction, matching and filtering 17
3.5 Feature position estimation . 18

vi

3.5.1 Shortest distance triangulation 18
3.5.2 SVD triangulation . 19

4 Implementation 20
4.1 Hardware . 20
4.2 Software tools . 21

5 Evaluation 24
5.1 Calibration quality . 24
5.2 Triangulation quality . 24

5.2.1 Experiment setup . 24
5.2.2 Distance to an estimated plane 26
5.2.3 Distance to a predefined plane 26

5.3 Rate testing . 27
5.4 Experiments summary . 28

6 Conclusion and future work 30

vii

List of Figures

1.1 A general scheme of the multi-camera obstacle detection problem. . . . 2
1.2 Ilustration of Structure from Motion. 3

2.1 The scheme of a pinhole camera model. 6
2.2 The pinhole camera model, y-z plane. 6
2.3 The pinhole camera model, x-y plane. 7
2.4 A scheme of a skewed pixel. 7
2.5 Transformation from world to camera coordinate frames. 8
2.6 A scheme of epipolar geometry. 9
2.7 Illustration of a typical stereocamera setup. 10
2.8 An example of an industrial stereocamera. 10

3.1 The proposed approach model. 12
3.2 An image from the camera before and after applying undistortion. . . 13
3.3 The calibration pattern using AprilTags. 15
3.4 Visualization of the P3P problem. 16

4.1 A prototype of the proposed solution. 20
4.2 The single camera calibration process. 21
4.3 The result of features detection, matching, and outliers filtering. 23

5.1 The setup for experiments . 25
5.2 The reprojection error. 26
5.3 Results from the first experiment: distance to the estimated plane. . . . 27
5.4 Results from the second experiment. 29

viii

List of Tables

4.1 daA1600-60um specifications. 21

5.1 RMS reprojection error. 24
5.2 Measured data delay and rate of the proposed system. 28

ix

List of Abbreviations

UAV Unmanned Aerial Vehicle
MAV Micro Unmanned Aerial Vehicle
ROS Robot Operating System
DoF Degree of Freedom
SLAM Simultaneous Localization And Mapping
SfM Structure from Motion
PnP Perspective n Points
FOV Field Of View
SVD Singular Value Decomposition
MRS Multi Robot Systems Group
fps frames per second
LiDAR Light Detection and Ranging
RMS Root Mean Squared

x

List of Symbols

t⃗ a column vector that reresents a point or a vector
AAA a matrix
AAA⊤ transpose of a matrix
RRR a rotation matrix 3x3, det(RRR) = 1,RRR⊤ = RRR−1

III the identity matrix
l a line
f focal length
x⃗ × y⃗ cross product of x⃗ and y⃗
[⃗x]× such matrix that [⃗x]×y⃗ = x⃗ × y⃗
λ any non-zero scalar
∥⃗a∥ the norm of the vector a⃗

1

Chapter 1

Introduction

Micro unmanned Aerial Vehicles (MAVs, also called drones or Unmanned Aerial Ve-
hicles, UAVs) recently saw a rise in usage across various fields. Drones are already
widely used in cinematography [1], advertising [2] and agriculture [3]. City emer-
gency departments also use MAVs - firefighters can see and evaluate the situation
from the sky, localize the source of fire and put it out [4]. Another field where MAVs
can be used in the nearest future is transportation. Fast parcel delivery [5] and con-
tent transportastions [6, 7] are quite promissing fields of MAV application together
with smart city concepts evolving [8]. Nowadays, even collaborative transportation
systems are becoming realistic - multi-robot swarming algorithms are better devel-
oped, and that allows their usage for the transportation of large objects [9] that one
drone alone can not lift. MAVs are also widely used in the military industry.

As drones are used so widely, there is a significant demand for an increase in
drone-related safety. Many commercially available drones are expensive and quite
heavy, so that accidents can be costly and dangerous to property and human health.
Even if a drone is controlled remotely, obstacles can be hard to spot and avoid when
the pilot flies far away. Similar limitations apply to flying in forests or cities (in
situations when it is legal, for example - emergency departments and moviemakers
can do it), where it may be hard to maintain the line of sight for the pilot. First-
person view glasses may be used in such situations to mitigate these limitations
to some degree, but still, only provide limited information about the surrounding
environment. Most of these systems only provide a field of view (FOV) smaller or
comparable to the FOV of a human eye (which is approx. a third of the full sphere
FOV [10]). In this sense, autonomous robots can sense and avoid obstacles much
better, but only if they have a well-designed system running onboard and enough
sensors to cover the area around the robot.

Automatic obstacle avoidance systems become especially important in closed en-
vironments with many obstacles, such as forests, cities, or indoor environments. To
ensure complete coverage of the surroundings of the MAV for the collision avoid-
ance system, it can be equipped with multiple sensors pointing in all directions.

Considering this context, a compact obstacle avoidance system is a perspective
field for research. Even though the idea is not new, there is no complete, publicly
available visual obstacle avoidance system for MAVs that can cover the whole space
around them with few sensors. One of the best is perhaps the Skydio system1 which
has six 4k 200◦ navigation cameras, and neural networks are used for the mapping,
obstacle avoidance and path planning [11]. It is available only for the US military.
The DJI Mavic 3 drone2 seems to be a better solution with eight cameras and an
infrared sensor at the bottom. Unfortunately, neither of these companies provide

1Skydio autonomy: https://www.skydio.com/skydio-autonomy
2DJI Mavic 3: https://www.dji.com/cz/mavic-3

https://www.skydio.com/skydio-autonomy
https://www.dji.com/cz/mavic-3

Chapter 1. Introduction 2

FIGURE 1.1: A general scheme of the multi-camera obstacle detection
problem.

any scientific publications, system specifications or implementation details, so we
can only conclude from the limited available information.

Figure 1.1 presents a scheme of the proposed system. In the figure, Tstatic is the
transformation between two cameras mounted onboard the MAV. Tstatic is obtained
with stereo pair calibration. At time t0, a new pair of images is captured by the cam-
eras. A feature detector extracts points of interest from the images. Points that lie in
the part of the images corresponding to a section of the cameras’ field of view that
overlaps are then selected (the red point cloud in Figure 1.1), and correspondence
matches between these points from the two images are found based on their feature
descriptors. A calibrated projection model of the cameras and the transformation
Tstatic are used to estimate 3D points from the matched point pairs. Then at time t1,
when a new pair of images is received, the same process is repeated. In parallel, an
incremental Structure from Motion (SfM) algorithm processes sequences of images
from each camera separately to estimate 3D points corresponding to nearby objects
in the environment. However, monocular SfM algorithms can generally only esti-
mate the environment up to an unknown scaling factor [12]. To address this prob-
lem, the red point cloud is used to find the scale of the points obtained using the
SfM algorithm from images captured at t0 and t1 (the blue and green point clouds in
Figure 1.1).

1.1 Related Works

There are many approaches to tackling MAV obstacle avoidance in the published
literature using various sensors. In most articles, a stereo pair of two parallel cam-
eras looking in the same direction (classical stereo pair) [13, 14, 15, 16] are used for
that, but there are also approaches relying on monocular vision [17, 18, 19] or 2D or
3D Light Detection and Ranging (LiDAR) sensors [20]. Distance sensors relying on
ultrasonic sound waves and time of flight sensors have low accuracy and are sen-
sitive to noise, which is why they are typically not used alone but in combinations
with other sensors [21, 22]. There are also convolutional neural network-based ap-
proaches for depth estimation from monocular cameras [18, 23, 24] and from stereo
cameras [16].

Chapter 1. Introduction 3

These sensors have various advantages and shortcomings, making them suit-
able for different applications [25, 26]. 3D LiDARs are relatively heavy and expen-
sive but can provide good precision and a 3D coverage of the environment. 2D
LiDARs, which are typically more lightweight and significantly cheaper, have suc-
cessfully been deployed on ground vehicles. However, they are not as suitable for
onboard deployment on MAVs because, unlike ground vehicles, MAVs can have
three degrees of translational movement, so a 2D LiDAR cannot cover all possible
directions of movement, making it unsuitable for robust collision avoidance. Stereo
camera sensors are generally more expensive and complex than monocular cameras
but can provide precise depth images. Industrial stereo cameras typically come with
a software development toolkit (SDK) and programming libraries, they are already
calibrated from the factory and ready to be deployed and used, which makes them
more user-friendly than a custom made stereo pair. However, it is infeasible to alter
the hardware specifications in most cameras, for example, changing FOV or cam-
era lenses. Such hardware limitations make it challenging to use in some research
applications. As already mentioned, ultrasonic and infrared sensors have a low pre-
cision, relatively short range, and are sensitive to noise. However, they are often
used because they are relatively small, cheap and light.

(A) Input images. (B) Output of an SfM algorithm.

FIGURE 1.2: Ilustration of Structure from Motion, source - https:
//github.com/Myralllka/CTU_3d_computer_vision/

Real-time Simultaneous Localization And Mapping (SLAM) systems can also be
used for obstacle avoidance [27]. These problems are closely related. SLAM keeps
track of the robot’s position while constructing and updating a map of an unknown
environment. At the same time, obstacle avoidance is a problem of detecting and
avoiding the nearest obstacles in an unknown environment to keep the robot safe
from harmful collisions. Both problems are related to making a 3D map of an un-
known environment, but the precision of distance measurements to the nearest ob-
jects is much more critical for obstacle avoidance. Sometimes SLAM can be a con-
siderable overhead because it usually includes saving, updating the map, and robot
localization in the map, while obstacle avoidance only needs real-time information
about the robot’s surrounding.

Structure from Motion (SfM) is another family of algorithms that may be used

https://github.com/Myralllka/CTU_3d_computer_vision/
https://github.com/Myralllka/CTU_3d_computer_vision/

Chapter 1. Introduction 4

to implement a system for avoiding obstacles. SfM is a method of 3D reconstruc-
tion from a continuous sequence of images as illustrated in Figure 1.2. Using this
approach, a dense point cloud as in Figure 1.2b can be computed, and obstacles can
be detected [28]. This algorithm alone has multiple problems. Firstly, it can not re-
cover information about such parts of an image as the robot’s shadow or any other
object moving with the same velocity in the same direction as the camera. Secondly,
it requires images from at least two different views to work. If there are moving ob-
jects, their correct position relative to a moving camera can not be obtained. These
problems can be tackled by combining SfM with other algorithms.

1.2 Problem definition

This thesis aims to design a visual obstacle avoidance system for MAVs, create a
physical device implementing the system and measure its performance. The pro-
posed solution assumes an MAV with a limited size and lifting force that constrains
the number, weight and size of its onboard sensory equipment. The MAV is thus
equipped with two calibrated cameras with a known transformation between them.
The fields of view of the cameras overlap enough to detect close obstacles. Framer-
ate of the cameras is sufficient to operate in real-time, and the frames are synchro-
nized in time. The MAV is also equipped with an onboard computer with enough
computational power to process the images at a rate sufficient for obstacle avoid-
ance. The flight environment is assumed to be well-lit and contains objects with
well-distinguishable visual features that the cameras can observe. These features
should be unique so that the same feature can be unambiguously matched in images
from the two cameras. The expected output is a reconstruction of the 3D environ-
ment around the drone in the form of a set of points representing the nearest objects.
Depending on the estimated distance, these are the possible obstacles that should
be avoided. The system can be integrated with the MAV control system to provide
obstacles, so the solution working rate on the MAV’s hardware should be sufficient
for agile manoeuvering and obstacle avoidance.

5

Chapter 2

Preliminaries

2.1 Homogenous coordinate systems

A homogenous coordinates system is a mathematical tool to simplify certain geo-
metrical operations by adding an extra dimension. For example, the general scaling,
rotation and translation are expressed in non-homogenous coordinates as:

m⃗1 = SSSRRRm⃗0 + t⃗, (2.1)

SSS =

[
sx 0
0 sy

]
, RRR =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, t⃗ =

[
tx
ty

]
, (2.2)

where m0 is the original point, m1 is the transformed point, SSS is a scaling matrix,
RRR is a rotation matrix and t⃗ is a translation vector.

The same operations can be expressed in a homogenous coordinate system using
only matrix multiplication as[

m⃗1
1

]
=

[
SSSRRR t⃗
0⃗⊤ 1

] [
m⃗0
1

]
= SSSHRRRHTTTH

[
m⃗0
1

]
, (2.3)

SSSH =

sx 0 1
0 sy 1
0 0 1

 , RRRH =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , TTTH =

1 0 tx
0 1 ty
0 0 1

 , (2.4)

where SSSH,RRRH and TTTH are homogenous transformation matrices.
So in the homogenous coordinate system, these transformations can be combined

and expressed as matrix multiplications.

2.2 Pinhole camera model

A pinhole camera, the canonical perspective camera model - is a model of a simple
camera without any optics. The first example is the camera obscura - a dark room
with a small hole through which the image from outside is projected on the opposite
wall. This model can be used to express camera geometry with a field of view angles
less than 180◦.

2.2.1 Camera coordinate system

In the physical implementation of the camera obscura, the projective plane is on the
opposite side from the projection center (or camera center C⃗ in the pinhole camera
model), and the image is reversed and mirrored. However, in most computer vision
literature, authors assume that it is on the same side as the object (see Figure 2.1).

Chapter 2. Preliminaries 6

FIGURE 2.1: The scheme of a pinhole camera model.

FIGURE 2.2: The pinhole camera model, y-z plane.

In Figure 2.1 a camera with camera center C⃗ in a coordinate system with origin at
C⃗ and basis vectors (⃗ex, e⃗y, e⃗z) is observing a human. Each point X⃗ = (x, y, z)⊤ in a
world coordinate system has a projection m⃗ = (u, v)⊤ on a plane π which is located
at distance f from the camera center (refer to Figure 2.2). The optical axis O⃗ is a ray
perpendicular to plane π, and on the image the point O⃗ ∩ π = o⃗ is the center of the
image, see Figure 2.3.

2.2.2 Camera matrix

The camera calibration matrix is a matrix that includes the camera’s intrinsic pa-
rameters - focal length, pixel skew angle θ (illustrated in Figure 2.4) and principle
point coordinates o⃗ = (u0, v0) (see Figure 2.3). The camera calibration matrix can be
expressed as

KKK =

 fx − fx cot(θ) u0
0 fy v0
0 0 1

 , units: [fx] = px, [fy] = px, [u0] = px, [v0] = px,

(2.5)
where fx = f

∥⃗eu∥ and fy = f
∥⃗ev∥ sin θ

represents the focal length of a camera in the
horizontal and vertical image units. e⃗u and e⃗v are the image basis vectors (refer to
Figure 2.4) and f is a focal length, [f] = m .

Most modern digital cameras have no skew and square pixels, so in most cases,
the camera matrix can be simplified to:

Chapter 2. Preliminaries 7

FIGURE 2.3: The pinhole camera model, x-y plane.

FIGURE 2.4: A scheme of a skewed pixel. e⃗u and e⃗v are the image basis
vectors, where ∥⃗eu∥ = ws

wim
, ∥⃗ev∥ = hs

him
, ws and hs are physical width

and height of a camera sensor, wim and him are the image width and
height in pixels. e⃗′v is an edge of the skewed pixel and θ is the skew

angle.

KKK =

 fx 0 u0
0 fy v0
0 0 1

 . (2.6)

2.2.3 Projection matrix

The image projection matrix PPP is used to translate a point from a world coordinate
frame to an image coordinate frame. The canonical projection matrix PPP0 assumes
that the camera is in the world coordinate center and that the calibration matrix
KKK = III. PPP0 is expressed as

PPP0 =
[
III | 0⃗

]
=

1 0 0 0
0 1 0 0
0 0 1 0

 . (2.7)

However, this case is impractical. The canonical projection matrix is not used in
practice because each real camera is different. Instead, the image projection matrix
PPP is used with a camera matrix KKK to transform the canonical PPP0 to the specific PPP:

Chapter 2. Preliminaries 8

FIGURE 2.5: Transformation from world to camera coordinate frames.

PPP = KKK
[
III | 0⃗

]
=

 fx 0 u0 0
0 fy v0 0
0 0 1 0

 . (2.8)

The world coordinate center is usually not located at point C⃗ as illustrated in
Figure 2.5. It may be rotated using a rotation matrix RRR and translated by a vector t⃗
where RRR is a 3x3 matrix with det(RRR) = 1 and RRR−1 = RRR⊤. Therefore, in the general
case the projection can be expressed as

PPP = KKK
[
RRR | t⃗

]
= KKK

[
RRR | −RRRC⃗

]
, (2.9)

where C⃗ is the camera’s position in the world reference frame.
Image point m⃗ = (u, v)⊤ can be obtained from a 3D point X⃗ using the projection

matrix PPP as

λ

u
v
1

 = PPP


x
y
z
1

 , (2.10)

λ

[
m⃗
1

]
= PPP

[
X⃗
1

]
, (2.11)

where λ > 0 is a free scaling parameter.

2.2.4 Skew-symmetric 3x3 matrix

A skew-symmetric or antisymetric matrix of vector b⃗ = (b1, b2, b3)⊤ is defined as

[⃗b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 . (2.12)

This matrix has several useful properties, but the most important in this thesis is
that it generalizes a cross product as matrix multiplication:

a⃗ × b⃗ = [⃗a]×⃗b. (2.13)

The notation is taken from [29], p. 581.

Chapter 2. Preliminaries 9

2.3 Epipolar geometry

FIGURE 2.6: A scheme of epipolar geometry.

Figure 2.6 shows a scheme of two cameras with different optical centers C⃗1 and
C⃗2 connected with a base vector b⃗ = C⃗2 − C⃗1. Both of the cameras observe the same
3D point X⃗. Projections of this point to π1 and π2 are m⃗1 and m⃗2, respectively. Points
C⃗1, C⃗2 and X⃗ form an epipolar plane σ. The lines σ ∩ π1 = l1 and σ ∩ π2 = l2 are
epipolar lines. The epipolar line l1 passes through an epipole e⃗1 and through point m⃗1,
where λ[⃗e1|1]⊤ = PPP1C⃗2. Similarly, line l2 passes through an epipole e⃗2 and through
point m⃗2, where λ[⃗e2|1]⊤ = PPP2C⃗1.

2.3.1 The epipolar constraint

Having a set of two cameras, the relationship between them and the constraints on
them can be expressed by two matrices: the essential matrix EEE ∈ R3x3, (rank(EEE) = 2),
and the fundamental matrix FFF ∈ R3x3, (rank(FFF) = 2). Matrix EEE is obtained as

EEE = RRR2[C⃗2 − C⃗1]×RRR
⊤
1 = [−⃗t21]×RRR21 = [⃗b]×RRR21, (2.14)

and matrix FFF as

FFF = KKK−T
2 RRR2[C⃗2 − C⃗1]×RRR

⊤
1 KKK

−1
1 = KKK−T

2 [−⃗t21]×RRR21KKK
−1
1 = KKK−T

2 EEEKKK−1
1 , (2.15)

whereRRRi and t⃗i are rotation and translation of the i-th camera in the worls coordinate
frame, i ∈ {1, 2}, RRR21 = RRR2RRR

⊤
1 is a relative camera rotation and t⃗21 = −RRR2⃗b =

t⃗2 −RRR21⃗t1 is a relative camera translation.
An algebraic expression of the important properties of matrix FFF using notation

from section 2.3 are:

l1 = FFF⊤
[

m⃗2
1

]
, (2.16)

l2 = FFF

[
m⃗1
1

]
, (2.17)

Chapter 2. Preliminaries 10

FFF

[⃗
e1
1

]
= FFF⊤

[⃗
e2
1

]
= 0, (2.18)

[
m⃗2 | 1

]
FFF

[
m⃗1
1

]
= 0. (2.19)

Matrix FFF maps points from π1 to epipolar lines on π2 and vice versa (eqs. (2.16)
and (2.17)); epipoles e⃗1 and e⃗2 are basis vectors of the right and left nullspaces of
FFF, respectivly (eq. (2.18)). Epipolar constraint described by eq. (2.19) means that a
point and its correspondent line are on the same plane (see Figure 2.6).

2.4 Stereo vision

FIGURE 2.7: Illustration of a typical stereocamera setup. Two cameras
have optical centers at C⃗1 and C⃗2 and projection planes π1 and π2.
The base vector between the camera centers is shown as a vector b⃗ =
C⃗2 − C⃗1. Both cameras have parallel optical axes O⃗1 and O⃗2. The

common area visible by both cameras is marked as Ψ.

FIGURE 2.8: An example of an industrial stereocamera Intel Re-
alsense D455.

A typical digital image represents 2D information about a scene projected onto
the image plane as in Figure 2.1. Computer stereo vision is a process of extracting a
depth image from a pair of images of the same scene. Such depth images are often
used in SLAM, obstacle avoidance, or detailed reconstruction of the environment
in robotics. In chapter 1, the most common methods of stereo vision are described.

Chapter 2. Preliminaries 11

Among the scene depth estimation approaches, there are the computationally ex-
pensive neural network-based monocular approaches and costly LiDAR sensors. A
typical stereo camera is a tradeoff between price and processing complexity.

Usually, a stereo camera has a pair of cameras located at a distance ∥⃗b∥ pointing
in the same direction, similarly to the human eye (a scheme is in Figure 2.7). Some-
times, a fusion of multiple cameras and other sensors is used, such as in the case
of the Intel Realsense shown in Figure 2.8 that has two IR cameras, a color sensor,
and an infrared projector to project some features onto the environment in there are
insufficient features already present (for example when observing a white wall).

2.5 Reprojection error

In an ideal case, when the calibration matrix KKK has no error and the estimated trans-
formation between the two cameras of the stereopair is accurate, rays d⃗1 and d⃗2 cor-
responding to the 3D projections of m⃗1 and m⃗2 (refer to Figure 2.6) intersect in the
point X⃗. However, calibration only estimates the parameters up to some precision
because of noise, measurement errors, the limited resolution of the cameras etc. The
reprojection error is used to measure this precision.

After the 3D position of a point is computed based on its projections to the two
cameras, to measure its reprojection error, it is projected back to an image, and a
distance of this reprojection from the original projection was used to obtain the 3D
position estimate is computed. Consider a general projection matrix PPPi as

PPPi =

(p⃗i,1)
⊤

(p⃗i,2)
⊤

(p⃗i,3)
⊤

 . (2.20)

The reprojection error is defined as

e2(X) =
2

∑
c=1

[(
uc − (p⃗c,1)

⊤X
(p⃗c,3)⊤X

)2
+

(
vc − (p⃗c,2)

⊤X
(p⃗c,3)⊤X

)2
]

, (2.21)

where mc =

[
uc
vc

]
, X =

[
X⃗
1

]
and c corresponds to the camera index.

12

Chapter 3

Methodology

FIGURE 3.1: Ilustration of the proposed approach. C⃗1, C⃗2 are op-
tical centers of two cameras with projection planes π1 and π2. O⃗1
and O⃗2 are the corresponding optical axes. The 3D point X⃗ is in the
cameras’ overlapping field of view, m⃗1 and m⃗2 are its projections on

corresponding image planes.

The main task of this thesis is to create a compact obstacle avoidance system
such that it can be mounted on MAVs with size and weight restrictions. The pro-
posed method is related to SfM or optical flow algorithms as well as standard stereo
matching algorithms.

Firstly, synchronized images from both cameras are captured. Features are de-
tected using the ORB feature extractor [30] in the areas of these images that cor-
respond to the overlapping part of their fields of view. These features are then
matched using the brute-force matcher, described in section 3.4. The 3D position
of each of these features relative to the cameras is estimated using a calibrated pro-
jection model and known relative transformation between the cameras. Finally, the
obtained 3D positions are the output of this algorithm.

The quality of the 3D point estimation depends on the cameras’ relative trans-
formation, the calibration of their projection model, the keypoint (feature) extractor,
and the matcher. The obtained 3D points can be used to estimate the scale in an SfM
algorithm that runs parallel to the described method (refer to Figure 1.1). The esti-
mated distance to nearby objects can be used in a feedback loop inside the MAV’s
control system to correct path planning, considering the obstacles found.

This chapter describes the mathematical model of the problem and all algorithms
used in the process: calibration of the projection model, calibration of the relative

Chapter 3. Methodology 13

transformation between the cameras, feature extraction, feature matching, and esti-
mation of the 3D position of the matched features.

3.1 Description of the optical setup

The optical setup assumed by the proposed method is shown in Figure 3.1. There
are two cameras with optical centers at C⃗1 and C⃗2 with a known static translation t⃗21
and rotationRRR21 between coordinate frames of the cameras. The rotation represented
by RRR21 is assumed to be close to a 90◦ rotation in the epipolar plane (marked as σ in
Figure 2.6). As described in section 1.2, parameters of the mathematical projection
model of the two cameras are assumed to be known. In practice, these are obtained
using a calibration process described in the next section. Furthermore, it is assumed
that the images coming from the cameras are synchronized and that the FOVs of
both cameras have an intersecting zone. Let us denote images from the two cameras
as I1 and I2, a point in the environment X⃗ and its images in the two cameras m⃗1 in
image I1 and m⃗2 in image I2.

3.2 Projection model of a camera and its calibration

(A) Original image with radial distortion. Ob-
jects with straight edges appear curved in the

image due to the distortion.

(B) Image with no distortion. Edges that are
straight in 3D are straight in the image.

FIGURE 3.2: An image from the camera before and after applying
undistortion.

Camera calibration is the process of empirically estimating the camera calibra-
tion matrix KKK (refer to eq. (2.6)) and distortion parameters of the camera’s optical
system for the pinhole camera model described in section 2.2. Usually, this is done
with some pattern with predefined parameters like a chessboard or more advanced
markers (ChArUco and ArUco [31] etc).

The camera calibration is necessary for geometrical image correction, distortion
elimination, obtaining metric information, and further distance estimation (see Fig-
ure 3.2).

In the real world, lenses have distortion (see Figure 3.2a). To compensate that
distortion, a polynomial model is often used with coefficients k1, ..., k6 for radial dis-
tortion and p1, p2 for tangential distortion.

Chapter 3. Methodology 14

3.2.1 The minimal problem for camera calibration

It is the problem of obtaining a projection matrix PPP given n = 6 correspondences of
3D scene points and 2D image points {(X⃗i, m⃗i)}n

i=1. Let the projection matrix PPP be

PPP =

q⃗⊤1 q14
q⃗⊤2 q24
q⃗⊤3 q34

 . (3.1)

The equation (2.11) can be expanded to

λiui = q⃗⊤1 X⃗i + q14, λivi = q⃗⊤2 X⃗i + q24, λi = q⃗⊤3 X⃗i + q34, (3.2)

where m⃗i =

[
ui
vi

]
is an image point, λ ∈ R+, i ∈ {1, 2, ..., 6}. After elimination of λi,

we obtain
(⃗q⊤3 X⃗i + q34)ui = q⃗⊤1 X⃗i + q14, (3.3)

(⃗q⊤3 X⃗i + q34)vi = q⃗⊤2 X⃗i + q24. (3.4)

AAAq⃗ =


X⃗⊤

1 1 0⃗⊤ 0 −u1X⃗⊤
1 −u1

0⃗⊤ 0 X⃗⊤
1 1 −v1X⃗⊤

1 −v1
...

...
...

...
...

...
X⃗⊤

k 1 0⃗⊤ 0 −ukX⃗⊤
k −uk

0⃗⊤ 0 X⃗⊤
k 1 −vkX⃗⊤

k −vk





q⃗1
q14
q⃗2
q24
q⃗3
q34

 = 0⃗, (3.5)

so for k = 6, AAA ∈ R12×12, q⃗ ∈ R12. If AAA has rank 12, there is no non-trivial null space
for AAA.

Equation (3.5) can be solved by the so-called Jack-Knife estimation. Let us denote
a matrixAAA with the i-th row removed asAAAi. The Jack-Knife estimation iterates through
i ∈ 1, . . . , 12. In each iteration, if the right null-space of AAAi is not empty, the matrix
PPPi can be decomposed to KKKi RRRi and t⃗i. Minimisation of the reprojection error from
section 2.5 for i ∈ {1, . . . , 12} then can be used to find the best estimate of PPP.

3.2.2 Distortion correction

After the matrix PPP is obtained, parameters of the distortion can be found as well.
The equation (2.10) can be rewritten using the relation from equation (2.9) as

λ

u
v
1

 = KKK[RRR|⃗t]


x
y
z
1

 . (3.6)

Let us now redefine this equation to consider the distortion. A 3D point in the cam-
era frame can be expressed as

xc
yc
zc

 = [RRR|⃗t]


x
y
z
1

 . (3.7)

Chapter 3. Methodology 15

The distortion model is then defined as

x′′ =
xc

zc

1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + p1(r + 2x′) + 2p2
xcyc

z2
c

, (3.8)

y′′ =
yc

zc

1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + 2p1(
xcyc

z2
c
) + p2(r + 2y′), (3.9)

where x′ = (xc
zc
)2, y′ = (yc

zc
)2, r = x′ + y′. Then, the corresponding undistorted

point will be u
v
1

 = KKK

x′′

y′′

1

 . (3.10)

Considering eq. (2.6), the image of a point X⃗ seen through the calibrated camera
with a projection matrix PPP is obtained using eqs. (3.6) to (3.10). Firstly, the point is
projected to an abstract projection plane (eq. (3.7)). After that, distortion compen-
sation is applied using the model described by equations (3.8) and (3.9). Finally, the
point is transformed from the metric system of the abstract projection plane to the
image coordinate system (eq. (3.10)).

3.3 General multicamera pose calibration

FIGURE 3.3: The calibration pattern using AprilTags that was used
for the stereopair calibration.

Stereo pair calibration is a process of estimating the essential matrix EEE (defined
in section 2.3) for a camera pair, which also expresses the relative rotation matrixRRR21
and relative translation vector t⃗21 of a camera pair.

There are multiple algorithms implementing stereo pair calibration. Usually, a
calibration pattern is used as the one shown in Figure 3.2 for a standard stereo cam-
era with parallel or converging optical axes. Most algorithms assume that the whole
pattern is seen in both images. However, this is a disadvantage for cameras with
a small overlapping zone and diverging optical axes. For this reason, it is better to
use some other pattern, for example, a set of AprilTags [32] which can be detected
separately. The pattern used in this work is shown in Figure 3.3.

3.3.1 Least-square estimation of transformation

The first approach assumes that an initial estimate of the relative pose of the cameras
is obtained using a manual measurement. The only necessary step is to correct the
pose of one camera with respect to the other. If there is no initial pose provided, the

Chapter 3. Methodology 16

first camera pose is considered the world coordinate frame, and the relative trans-
formation of the second camera is obtained. Firstly, corresponding parts of the cali-
bration patterns are detected in I1 and I2, and their 3D positions are computed. The
AprilTag markers [32] were used in this thesis, which also provides a unique iden-
tification of the markers and an estimate of their full relative pose. In this way, two
sets of 3D poses are obtained, each corresponding to the detected markers in one
image. Then, transformation parameters between the two point sets are estimated,
and the correction transformation TTTc is computed, where

TTTc =

[
RRRc t⃗c
0 1

]
. (3.11)

The algorithm is based on the analysis of the covariance matrix ∑ab ∈ R3×3 of
the input sets a and b. It estimates parameters RRRc and t⃗c such that

1
n

n

∑
i=1

∥bi − (RRRcai + t⃗c)∥
2

(3.12)

is minimized, where n equals to size of a and b. All details with derivation are avail-
able in [33]. A correct pose of the second camera then can be obtained by applying
TTTc to RRR21 and t⃗21.

3.3.2 PnP-based estimation of transformation

FIGURE 3.4: Visualization of the P3P problem. C⃗ is the camera center,
vectors v⃗1, v⃗2 and v⃗3 are vectors pointing to 3D points X⃗1, X⃗2, and X⃗3,
respectivly. The mutual position of the 3D points is known and ex-
pressed by vectors d⃗12, d⃗23, and d⃗13. Scalars z1, z2, and z3 are absolute
distances from each 3D point to the camera center in world coordi-

nate units (meters).

Another, the more general approach is based on solving a Perspective-n-Point
(PnP) problem. PnP is the problem of estimating a camera pose (translation and
rotation) given a known set of n 3D points and their respective 2D projections to an
image of a calibrated camera. Mathematically, the situation can be expressed as

λi

[
m⃗i
1

]
= KKKRRR(X⃗i − C⃗), i ∈ {0..n}. (3.13)

Chapter 3. Methodology 17

No initial pose estimation is needed for this algorithm, but it can accelerate the solver
if there is one.

P3P

The situation when n = 3 is the minimal amount of points to solve the PnP prob-
lem. This specific variant of PnP is called P3P. Firstly, let us define a vector v⃗i ∈ R3

corresponding to a projection of a point in the image m⃗i as v⃗i = KKK−1
[

m⃗i
1

]
. From eq.

(3.13), the following relation can be obtained:

λiv⃗i = RRR(X⃗i − C⃗). (3.14)

If there is no rotation, the situation will look like in Figure 3.4 where vectors d⃗i are
known, so eq. (3.14) simplifies to a system of three equations with three unknowns
(vector C⃗). If there is a non-zero rotation, it can be eliminated first. Let us define a
helper variable zi as the distance of a point X⃗i from C⃗i:

|λi| · ∥v⃗i∥ = ∥X⃗i − C⃗∥ = zi. (3.15)

Considering only angles between v⃗i and applying the cosine law per △C⃗X⃗iX⃗j, for
i, j ∈ {1, 2, 3}, i ̸= j, the relation

∥d⃗ij∥ = z2
i + z2

j − 2zizjcij (3.16)

may be obtained, where ∥d⃗ij∥ = ∥X⃗j − X⃗i∥, cij = cos(̸ v⃗iv⃗j). After solving the sys-
tem of three equations with three unknown zi, there will be up to 4 solutions. Each
solution should be either verified on additional points [34] or sorted by reprojec-
tion error (refer section 2.5). Having this, C⃗ can be found by trilateration (3 sphere
intersection) from X⃗i and zi; then λi from eq. (3.15) and RRR from eq. (3.14).

P3P + RANSAC

RANSAC stands for Random sample consensus. It is an iterative method of estimat-
ing the parameters of a model from a set of observed data that contains both inliers
and outliers. The more general PnP task can be solved as a combination of P3P and
RANSAC algorithms.

At each iteration, 3 points out of n are randomly sampled, and RRR and t⃗ are com-
puted. Then, the obtained transformation is confirmed on all n points using the
reprojection error described in section 2.5. In the next iteration, the same process is
repeated. If the maximum number of iterations is reached or the change in relative
error is insufficient, RRR and t⃗, which provided the smallest error, are considered to be
the result.

In practice, more sophisticated methods are employed, as in [35, 36].

3.4 Feature extraction, matching and filtering

In computer vision, features typically refer to representations of unique pieces of
information from the image scene, such as points, edges, and objects. A feature
detector is an algorithm for extracting features from an image. There are many such
algorithms, but the ORB feature extractor is used in this thesis. The authors in [30]

Chapter 3. Methodology 18

claim that ORB has comparable accuracy as the state-of-the-art SIFT detector while
being a few times faster, which is also supported by other research [37].

The next step of the proposed method is mutually associating features in images
from the two cameras, corresponding to the same physical objects in the environ-
ment. This is done by a feature matcher, which compares descriptors of the features
provided by the feature detection algorithm. Some feature matching algorithms per-
form a brute-force comparison of all combinations of features, others use nearest
neighbors approximations or even neural networks [38].

A brute-force matcher is one of the simplest matchers, and it is used in the pro-
posed solution. It takes one descriptor from one set, computes its similarity to all
descriptors from the second set, and matches it with the most similar feature. This
process is repeated to maximize the overall similarity between the two sets.

Even after this process, there are typically some outliers. Distance from features
to the corresponding epipolar lines can be used to filter them. This distance can be
computed using the equation (2.19). If the distance of the matched feature from the
corresponding epipolar line in the other image is larger than a specified threshold,
the match is dismissed as an outlier.

3.5 Feature position estimation

Positions of the observed 3D points in the scene can be computed from pairs of
correspondent points taken by calibrated cameras with a known relative pose. This
process is called triangulation. Correspondences for triangulation are received as a
result of feature detection, matching, and filtering.

3.5.1 Shortest distance triangulation

One triangulation method is based on finding the shortest distance between two
rays. According to the epipolar geometry properties described in section 2.3 and
visualized in Figure 2.6, vectors d⃗1 and d⃗2 intersects at the 3D point X⃗. However, in
the real world, the rays can be at some distance from each other due to imperfect
stereo pair calibration, so X⃗ is estimated as the point closest to both lines.

It is possible to compute d⃗1 and d⃗2 in a common coordinate frame from m⃗1 and
m⃗2, since the relative pose of the cameras is known. Then, let us define two lines d1
and d2 in a vector form:

d1 : p⃗1 = C⃗1 + td⃗1, (3.17)

d2 : p⃗2 = C⃗2 + sd⃗2, (3.18)

where d⃗1 and d⃗2 are directional vectors, C⃗1 and C⃗2 are 3D points located on the re-
spective lines (camera centers in this case), s ∈ R and t ∈ R are free parameters
that uniquely define points p⃗1 and p⃗2. Distance between the two lines is minimal
at the point where the vector l⃗ = p⃗2 − p⃗1 is orthogonal to d1 and d2, which can be
expressed using a dot product as

l⃗ · d⃗1 = 0, (3.19)

l⃗ · d⃗2 = 0. (3.20)

After substituting eqs. (3.17) and (3.18) to these equations, a system of two equations
with two unknowns s and t is obtained. This system has a unique solution unless

Chapter 3. Methodology 19

the rays are parallel. Using s and t, the points p⃗1 and p⃗2 can be obtained and then X⃗
is calculated as X⃗ = p⃗1+ p⃗2

2 .

3.5.2 SVD triangulation

Triangulation using Singular Value Decomposition (SVD) is another method that is
more precise and widely used. It computes 3D points from 2D correspondences
using the camera matrices PPP1, PPP2. This method is derived and described in detail in
[29], p.312. Here, a short summary is provided.

The projection equation (2.10) can be rewritten as

λi

ui
vi
1

 = PPPi

[
X⃗
1

]
, (3.21)

where PPPi decomposes as in eq. (2.20), and λi ̸= 0, i ∈ {1, 2}. After eliminating λ1, λ2
we obtain the following set of equations:

DDD

[
X⃗
1

]
= 0⃗, DDD =


u1(p⃗1,3)

⊤ − (p⃗1,1)
⊤

v1(p⃗1,3)
⊤ − (p⃗1,2)

⊤

u2(p⃗2,3)⊤ − (p⃗2,1)
⊤

v2(p⃗2,3)⊤ − (p⃗2,2)⊤

 , DDD ∈ R4×4. (3.22)

The result of the triangulation is the eigenvector corresponding to the smallest
eigenvalue. The eigenvectors and eigenvalues are obtained using SVD decomposi-
tion of DDD⊤DDD, which is a solution of an equation

UUUSSSVVV⊤ = DDD⊤DDD, (3.23)

where UUU and VVV are orthogonal matrices and SSS is a non-negative diagonal matrix.
Let the eigenvector corresponding to the smallest eigenvalue as h⃗ = (x′, y′, z′, w′)⊤.

The triangulated point then can be expressed as

X⃗ =

 x′
w′
y′
w′
z′
w′

 . (3.24)

The improved version of this algorithm called "The Golden Standard Triangula-
tion Method" is more widely used in practice. It combines SVD triangulation with
Sampson correction (description is available in [29], p. 314).

20

Chapter 4

Implementation

This chapter describes the implementation of the solution. The used hardware is
presented in section 4.1, the software tools and integration of all parts together in
section 4.2. The code can be found on GitHub: stereo pair driver1 and the main
module2.

4.1 Hardware

(A) The CAD model of the prototype. (B) The printed prototype

FIGURE 4.1: A prototype of the proposed solution.

A CAD model of a camera mount was created in the Fusion360 software con-
sidering the requirements of a 90◦ rotation between cameras and distance of the
cameras close to the average MAV size. A picture of the design from the CAD soft-
ware is in Figure 4.1a. The 3D-printed prototype with the cameras mounted is in
Figure 4.1b

Basler daA1600-60um cameras were chosen for this project because they have a
global shutter which is important when deployed onboard a fast-moving platform,
good image quality, and high framerate, making them suitable for the proposed
method based on the assumptions defined in section 1.2. More details regarding
camera parameters are in Table 4.1.

1https://github.com/Myralllka/UAV_basler_stereopair_driver
2https://github.com/Myralllka/UAV_localisation_from_cameras

https://github.com/Myralllka/UAV_basler_stereopair_driver
https://github.com/Myralllka/UAV_localisation_from_cameras

Chapter 4. Implementation 21

Parameter Value
Lens mount type S-mount
Data transfer protocol USB 3.0
Max. frame rate 60 fps
Resolution (HxV) 1600 px x 1200 px
Resolution 2 MP
Price 289.00 EUR

TABLE 4.1: daA1600-60um specifications.

Lenses of the cameras were chosen so that the resulting horizontal FOV is ap-
proximately 120◦, which provides a sufficient overlapping zone to detect features in
Ψ (see Figure 2.7).

The solution was developed and tested on the Lenovo ThinkPad X280 with In-
tel(R) Core i7-8550U CPU and 16Gb RAM. Intel NUC with Intel(R) Core i7-10710U
CPU and 16Gb RAM is used as the onboard computer for the MAV. No dedicated
GPU is needed.

4.2 Software tools

The proposed solution uses the Robot operating system (ROS) [39] as a middleware.
ROS is an open-source ecosystem with hundreds of already implemented algorithms
and libraries to interact between different parts of a robot’s system, such as sensor
drivers, image processing algorithms, planners, controllers etc. The AprilTag detec-
tor and a driver for Basler cameras used in this thesis are based on publicly available
modules from the ROS community.

The MRS UAV system [40] is used as a drone control environment. It is based on
ROS, but it is a unique framework for MAVs to implement and test path planning,
control, computer vision, object tracking, and many more MAV-related problems.

The OpenCV3 open-source computer vision library and the Eigen4 open-source
library for efficient linear algebra were used for the implementation. PCL5 which
stands for Point Cloud Library is an open-source library used for point cloud pro-
cessing. All of the software presented in this thesis was implemented in C++.

FIGURE 4.2: The single camera calibration process.

3https://opencv.org/
4http://eigen.tuxfamily.org
5https://pointclouds.org/

https://opencv.org/
http://eigen.tuxfamily.org
https://pointclouds.org/

Chapter 4. Implementation 22

Calibration of parameters of the camera projection and distortion models (de-
scribed in section 3.2) was performed using the ROS Camera Calibration package6.
A chessboard pattern is used for the calibration, and its physical parameters must
be specified to the calibration program. The calibration process itself is done interac-
tively using a graphical user interface (shown in Figure 4.2). The interface displays
the progress of the process to the user, and when a sufficient dataset is obtained, the
user can trigger the parameter optimization. Results of the optimization are then
saved to a file for later use.

The two calibration methods described in section 3.3 were both implemented
to use an AprilTag calibration pattern, shown in Figure 3.3. The main reason why
this pattern was chosen is that each tag can be detected individually, so there is no
need to have all of them simultaneously in the overlapping zone. The first method,
described in subsection 3.3.1, is implemented using the "Least-square estimation of
transformation between two point sets" [33] implementation from Eigen. Measure-
ments from the CAD model of the camera mount were used as the initial estimate
of the cameras’ relative poses. The second method, described in subsection 3.3.2, is
implemented using the OpenCV PnP solver. Because the publicly available imple-
mentation of the AprilTag detector outputs only 3D poses of detected tags, the detec-
tor was modified to output also 2D coordinates of corners of the detected markers,
which is needed for the PnP algorithm and during the debug session for computing
the reprojection error.

After both cameras and the stereo pair are calibrated, the following steps are
feature detection, matching, and filtering, described in section 3.4. The example
from a real-world experiment is in Figure 4.3.

The synchronization is done on a stereo pair driver level. As described in sec-
tion 3.4, the ORB features detector and a brute-force matcher implementations from
the OpenCV were used for feature detection and matching. The next step is recon-
structing the 3D scene from the obtained feature pairs. The method described in
subsection 3.5.1 is implemented from scratch, and the implementation of triangula-
tion described in subsection 3.5.2 is taken from OpenCV.

6http://wiki.ros.org/camera_calibration

http://wiki.ros.org/camera_calibration

Chapter 4. Implementation 23

FIGURE 4.3: The result of feature detection, matching, and outliers
filtering. There are cropped segments of images from the left camera
(left half) and right camera (right half). Detected and filtered features
are marked as colored circles, and matched correspondence pairs are

connected with lines of the same color as their points.

24

Chapter 5

Evaluation

5.1 Calibration quality

Another tool from the same ROS Camera Calibration package is used to compute the
camera calibration error. It outputs a reprojection RMS (Root Mean Squared) error
for each frame, which is defined as

RMS(x) =

√
∑N

i=1 (xi − x̂i)2

N
(5.1)

where x stands for detected poses of chessboard’s corners in the frame, x̂ is a ground-
truth pose of chessboard corners in 3D coordinate system and N stands for the num-
ber of such corners. The pattern was moved in front of each camera to obtain RMS
error for different positions and orientations. The mean and variance of 200 frames
were taken to analyze the quality of the computed camera parameters. The reprojec-
tion error varies depending on the pose of the chessboard but, in general, is relatively
stable, see Table 5.1.

Left camera Right camera
Mean of RMS reprojection error [px] 0.06323214286 0.05357391304
Variance of RMS reprojection error [px] 0.00001159968 0.00002222914

TABLE 5.1: RMS reprojection error.

5.2 Triangulation quality

Two experiments were conducted to measure the triangulation quality. The same
pattern with visible feature points in a featureless environment was used. The pro-
cess of the experiment is shown in Figure 5.1.

5.2.1 Experiment setup

The reprojection error is not a good metric to evaluate the triangulation performance.
The disparity variance decreases with increasing the distance (see Figure 5.2b), which
means that feature points are closer together in the image, and the reprojection error
decreases (see Figure 5.2a). Another approach was chosen to measure the quality of
distance estimation. A pattern with multiple features was attached to a white wall in
a corridor within a featureless environment. The camera prototype on a tripod was
placed at different distances from the wall and was set up so that its Y − Z plane was

Chapter 5. Evaluation 25

FIGURE 5.1: The setup for experiments. The designed prototype is lo-
cated on a tripod, at distance d from the plane Ω with visual features.
The with Y − Z plane of the cameras’ common coordinate frame is
parallel with Ω. A set of 9 A4 papers with features was used to make

Ω distinguishable.

parallel to the wall as in Figure 5.1. Based on this, we assume that the ground-truth
position of all observed 3D points lies on a plane whose orientation and distance
from the coordinate frame’s origin are known. Then, several measurements were
made, and the obtained data were collected and saved to post-process separately,
analyze and obtain plots.

Let us define the wall plane as Ω, the distance from the origin of the stereo pair’s
common frame to the wall as d, an estimated plane as Ω′, and an estimated distance
to the plane as d′. The main goal of the experiments was to measure the precision of
triangulation and compare it with the theoretical error, introduced in [41] as a func-
tion of the distance based on the geometrical and optical parameters of the setup.
The theoretical error is defined as

eZ =
Z2δ

b f
, (5.2)

where Z is the real distance, δ is the matching error in pixels, f is the focal length and
b = ∥⃗b∥ (see Figure 2.7). To compute the theoretical error for the current prototype,
the following values was used: δ =1 px, f =38 mm and b =14.5 mm.

Chapter 5. Evaluation 26

(A) Stereo pair setup RMS reprojection error. (B) Average disparity for all detected keypoints.
Disparity is a difference between coordinates of

two matched feature points in an image pair.

FIGURE 5.2: Green lines represent the median for n measurements at
a distance d. A box marks an interval from the first quartile to the
third quartile. The whiskers go from each quartile of the measured
values to the lower and upper fences. Black points represent outliers.

5.2.2 Distance to an estimated plane

To find the distance d′, Ω′ should be estimated using the triangulated feature points.
In this experiment, for each set of 3D points corresponding to a specific distance d,
Ω′ is estimated using RANSAC to filter outliers (an implementation from PCL was
used). The error is defined as

e =
1
k

k

∑
j=0

|d − d′j|, (5.3)

where d′j is the estimated distance to Ω′ for each measurement and k is the number
of measurements.

In this experiment, the absolute error e was measured for each distance d from
1 m to 5 m with a step of 0.5 m. The result of this experiment is shown in Figure 5.3a.
According to the figure, the distance deviates significantly after 3 m, and the error
grows much faster than the theoretical caused by the camera’s limited resolution. In
Figure 5.3b a top view of the experiment is shown for d = 4 m. It can be seen that
the plane can not be estimated correctly at this distance using RANSAC anymore
because of the too large error in distance estimation for each triangulated point.

5.2.3 Distance to a predefined plane

With increasing the distance d, feature points become less distinguishable due to the
limited resolution of the camera. The estimated plane Ω′ is inaccurate from a certain
distance because of high noise in the X direction of the points and low spread of the
points in the Y − Z direction (see Figure 5.3b), but still, the points are close to the
actual plane Ω. That is why the second experiment was constructed.

Chapter 5. Evaluation 27

(A) The first experiment results. The red line rep-
resents the theoretical error for the given setup.
Green lines represent the median for n measure-
ments at a distance d. A box marks an interval
from the first quartile to the third quartile. The
whiskers go from each quartile of the measured
values to the lower and upper fences. Black points

represent outliers.

(B) Top view of the experiment. The grid’s cell
size is 1 m×1 m. The colored axes represent the
stereo pair’s coordinate system. Red color stands
for X axis, green for Y and blue for Z. The point
cloud (white dots) represents the 3D points recon-
structed from feature points seen by both cameras.

FIGURE 5.3: Results from the first experiment: distance to the esti-
mated plane.

The experiment was done using the same setup as described in subsection 5.2.1.
The difference is that Ω′ is not estimated using the least squares RANSAC method
to fit the plane to the points, but as the plane parallel to Ω on a distance e′i, that is
defined as

e′ =
1
k

k

∑
j=0

|p′j|, (5.4)

where k is the total number of detected points at each d and |p′j| is the absolute
distance from point p⃗′j to Ω.

The ground-truth distance d for the current experiment was from 1 m to 8 m as
the maximum distance at which key points can be detected (empirically found) with
a 0.5 m step. The result of the second experiment is shown in Figure 5.4, where the
measured error corresponds to the theoretical error up to d = 4 m with a slight de-
viation. After 4 m, the difference between the theoretical and measured error grows
larger with a larger variance. One possible cause of this difference is an error in
camera calibration and fixed focal length, so detected patterns on longer distances
are blurred and less accurate.

5.3 Rate testing

To ensure that the obstacle detection is practical for real-world deployment, not only
triangulation quality is important, but also the rate at which the MAV can receive
the data from the obstacle avoidance module and the delay of the data. The data
rate, maximal and minimal delays averaged over 5 min are shown in Table 5.2.

Chapter 5. Evaluation 28

Parameter Value
Minimal delay 0.042 s
Maximal delay 0.196 s
Average rate 10.607 Hz

TABLE 5.2: Measured data delay and rate of the proposed system.

5.4 Experiments summary

The quality of the distance estimation to obstacles was demonstrated in the two
experiments. The first experiment, described in subsection 5.2.2, shows that the pre-
cision of the proposed method is relatively high for distances up to 3 m, and the
second experiment, described in subsection 5.2.3 provided further insight into the
statistics of the error over longer distances. The estimated distance error on 3 m is
less than 3 %. The maximum distance at which 3D points could be reliably estimated
is 8 m with an error of up to 1.5 m. On longer distances, feature points can not be
reliably detected anymore. The proposed solution works with an average frequency
of 10 Hz.

Chapter 5. Evaluation 29

FIGURE 5.4: Results from the second experiment. The Red line rep-
resents the theoretical error for the given setup. Green lines represent
the median for n measurements at a distance d. A box marks an inter-
val from the first quartile to the third quartile. The whiskers go from
each quartile of the measured values to the lower and upper fences.

Black points represent outliers.

30

Chapter 6

Conclusion and future work

A multi-camera vision-based obstacle avoidance system for MAVs was presented in
this thesis. Its main advantage is the reduced number of cameras to cover a bigger
area and the usage of multiple monocular cameras, which can provide data for an-
other algorithm running onboard the MAV. It needs only a CPU to process data at
a fast rate; no GPU is required. The proposed solution consists of a working pro-
totype and two ROS packages: the stereo pair driver and the package for obstacle
detection. The obstacle detection package also has scripts to check the stereo pair
calibration quality using epipolar error (used for data filtering after keypoints de-
tections, described in section 3.4) for debugging, data collection and collected data
analysis.

The proposed solution was evaluated in a laboratory experiment, described in
chapter 5. The experiment demonstrates that the working distance for the proposed
setup is up to 8 m, while recommended distance is up to 3.5 m. The working fre-
quency is not high enough to fly at high speed, so it is one of desired directions
for development. The possible way to solve this issue is to change the image syn-
chronization part of a stereo camera driver to remove inefficiencies due to image
copying.

The future steps in this project’s development are to integrate the proposed so-
lution with the MRS MAV control system, test it in a real-life experiment and extend
the number of cameras to four to cover the whole area around the MAV.

To increase the number of detected key points (refer to Figure 1.1, red point
cloud), a bigger overlapping field of view is needed. This can be achieved by select-
ing more appropriate lenses for the cameras to obtain a larger field of view. Instead
of the pinhole camera model used in this approach (refer section 2.2), the fish-eye
camera model and 180◦ lenses can be used in that case [42]. A 90◦ overlapping field
of view could be achieved using this approach instead of 30◦, so the 360◦ MAV’s
horizontal FOV would be covered with only four cameras.

Another possible approach is to combine the proposed method with SfM. Im-
ages from the cameras can be used separately to make 3D points using SfM, but
using the output from the current solution, SfM results from different cameras can
be combined, and the scale estimation can be simplified and improved.

This thesis aimed to design a visual multi-camera lightweight obstacle avoid-
ance system for MAVs. This assignment was satisfied, and the developed prototype
has shown good performance, as was demonstrated in real-world experiments. The
method has a potential for future research and improvements and combination with
other algorithms, onboard deployment and real-world experiments.

31

Bibliography

[1] I. Mademlis, N. Nikolaidis, A. Tefas, I. Pitas, T. Wagner, and A. Messina, “Au-
tonomous UAV cinematography,” ACM Computing Surveys, Sept. 2020.

[2] F. Ullah, F. Al-Turjman, S. Qayyum, H. Inam, and M. Imran, “Advertising
through UAVs: Optimized path system for delivering smart real-estate adver-
tisement materials,” International Journal of Intelligent Systems, Mar. 2021.

[3] J. Kim, S. Kim, C. Ju, and H. I. Son, “Unmanned aerial vehicles in agriculture: A
review of perspective of platform, control, and applications,” IEEE Access, 2019.

[4] V. Pritzl, P. Stepan, and M. Saska, “Autonomous flying into buildings in a fire-
fighting scenario,” in 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), IEEE, May 2021.

[5] R. She and Y. Ouyang, “Efficiency of UAV-based last-mile delivery under con-
gestion in low-altitude air,” Transportation Research Part C: Emerging Technologies,
Jan. 2021.

[6] A. Gupta, T. Afrin, E. Scully, and N. Yodo, “Advances of UAVs toward fu-
ture transportation: The state-of-the-art, challenges, and opportunities,” Future
Transportation, Sept. 2021.

[7] M. Aloqaily, O. Bouachir, I. A. Ridhawi, and A. Tzes, “An adaptive UAV posi-
tioning model for sustainable smart transportation,” Sustainable Cities and Soci-
ety, 2022.

[8] S. Ortiz, C. T. Calafate, J.-C. Cano, P. Manzoni, and C. K. Toh, “A UAV-based
content delivery architecture for rural areas and future smart cities,” IEEE In-
ternet Computing, Jan. 2019.

[9] T. Bacelar, J. Madeiras, R. Melicio, C. Cardeira, and P. Oliveira, “On-board im-
plementation and experimental validation of collaborative transportation of
loads with multiple UAVs,” Aerospace Science and Technology, Dec. 2020.

[10] M. F. Deering and S. Microsystems, “The limits of human vision,” in Sun Mi-
crosystems, 2nd International Immersive Projection Technology Workshop, 1998.

[11] J. Jang, “Ai-powered autonomous drone for organic, unit-level isr.” White Pa-
per from Skydio. available at http://www.blowinglotsofweirdstuffup.
com/guide.htmlhttps://pages.skydio.com/rs/784-TUF-591/images/
Skydio-x2d-ai-powered-autonomous-drone-defense-white-paper.pdf
(2020-05-25).

[12] M. Westoby, J. Brasington, N. Glasser, M. Hambrey, and J. Reynolds,
“"structure-from-motion" photogrammetry: A low-cost, effective tool for geo-
science applications,” Geomorphology, 2012.

http://www.blowinglotsofweirdstuffup.com/guide.htmlhttps://pages.skydio.com/rs/784-TUF-591/images/Skydio-x2d-ai-powered-autonomous-drone-defense-white-paper.pdf
http://www.blowinglotsofweirdstuffup.com/guide.htmlhttps://pages.skydio.com/rs/784-TUF-591/images/Skydio-x2d-ai-powered-autonomous-drone-defense-white-paper.pdf
http://www.blowinglotsofweirdstuffup.com/guide.htmlhttps://pages.skydio.com/rs/784-TUF-591/images/Skydio-x2d-ai-powered-autonomous-drone-defense-white-paper.pdf

BIBLIOGRAPHY 32

[13] H.-Y. Lin and X.-Z. Peng, “Autonomous quadrotor navigation with vision
based obstacle avoidance and path planning,” IEEE Access, 2021.

[14] B. Ruf, S. Monka, M. Kollmann, and M. Grinberg, “Real-time on-board obstacle
avoidance for uavs based on embedded stereo vision,” ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Sept. 2018.

[15] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoidance using em-
bedded stereo vision for mav flight,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015.

[16] S. Back, G. Cho, J. Oh, X.-T. Tran, and H. Oh, “Autonomous UAV trail naviga-
tion with obstacle avoidance using deep neural networks,” Journal of Intelligent
& Robotic Systems, Sept. 2020.

[17] L. Mejias, S. McNamara, J. Lai, and J. Ford, “Vision-based detection and track-
ing of aerial targets for UAV collision avoidance,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, Oct. 2010.

[18] Z. Zhang, M. Xiong, and H. Xiong, “Monocular depth estimation for UAV ob-
stacle avoidance,” in 2019 4th International Conference on Cloud Computing and
Internet of Things (CCIOT), IEEE, Dec. 2019.

[19] C. Bills, J. Chen, and A. Saxena, “Autonomous mav flight in indoor environ-
ments using single image perspective cues,” in 2011 IEEE International Confer-
ence on Robotics and Automation, 2011.

[20] S. Ramasamy, R. Sabatini, A. Gardi, and J. Liu, “LIDAR obstacle warning and
avoidance system for unmanned aerial vehicle sense-and-avoid,” Aerospace Sci-
ence and Technology, Aug. 2016.

[21] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and collision avoid-
ance for a uav with complementary low-cost sensors,” IEEE Access, 2015.

[22] E. M. Nor, S. B. M. Noor, M. R. Bahiki, and S. Azrad, “Implementation of high-
gain observer on low-cost fused IR-OS sensor embedded in UAV system,” IOP
Conference Series: Materials Science and Engineering, dec 2017.

[23] H. Yu, R. Hong, X. Huang, and Z. Wang, “Obstacle detection with deep convo-
lutional neural network,” in 2013 Sixth International Symposium on Computational
Intelligence and Design, 2013.

[24] B. Park and H. Oh, “Vision-based obstacle avoidance for UAVs via imitation
learning with sequential neural networks,” International Journal of Aeronautical
and Space Sciences, Feb. 2020.

[25] S. Huang, R. S. H. Teo, and K. K. Tan, “Collision avoidance of multi unmanned
aerial vehicles: A review,” Annual Reviews in Control, 2019.

[26] W. G. Aguilar, V. P. Casaliglla, and J. L. Pólit, “Obstacle avoidance for low-cost
uavs,” in 2017 IEEE 11th International Conference on Semantic Computing (ICSC),
2017.

[27] M. A. Moreno-Armendariz and H. Calvo, “Visual SLAM and obstacle avoid-
ance in real time for mobile robots navigation,” in 2014 International Conference
on Mechatronics, Electronics and Automotive Engineering, IEEE, Nov. 2014.

BIBLIOGRAPHY 33

[28] D.-J. Lee, P. Merrell, Z. Wei, and B. E. Nelson, “Two-frame structure from mo-
tion using optical flow probability distributions for unmanned air vehicle ob-
stacle avoidance,” Machine Vision and Applications, June 2008.

[29] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2004.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alterna-
tive to SIFT or SURF,” in 2011 International Conference on Computer Vision, IEEE,
Nov. 2011.

[31] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-
Jiménez, “Automatic generation and detection of highly reliable fiducial mark-
ers under occlusion,” Pattern Recognition, June 2014.

[32] D. Malyuta, C. Brommer, D. Hentzen, T. Stastny, R. Siegwart, and R. Brockers,
“Long-duration fully autonomous operation of rotorcraft unmanned aerial sys-
tems for remote-sensing data acquisition,” Journal of Field Robotics, Aug. 2019.

[33] S. Umeyama, “Least-squares estimation of transformation parameters between
two point patterns,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Apr. 1991.

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus,” Communications
of the ACM, June 1981.

[35] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate o(n) solution to
the PnP problem,” International Journal of Computer Vision, July 2008.

[36] J. A. Hesch and S. I. Roumeliotis, “A Direct Least-Squares (DLS) method for
PnP,” in 2011 International Conference on Computer Vision, 2011.

[37] H. Sharif and M. Hölzel, “A comparison of prefilters in ORB-based object de-
tection,” Pattern Recognition Letters, July 2017.

[38] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learn-
ing feature matching with graph neural networks,” in 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2020.

[39] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,” in Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source
Robotics, May 2009.

[40] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The
MRS UAV system: Pushing the frontiers of reproducible research, real-world
deployment, and education with autonomous unmanned aerial vehicles,” Jour-
nal of Intelligent & Robotic Systems, Apr. 2021.

[41] C. Chang and S. Chatterjee, “Quantization error analysis in stereo vision,” in
[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Sys-
tems Computers, 1992.

[42] K. Kanatani, “Calibration of ultrawide fisheye lens cameras by eigenvalue min-
imization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Related Works
	Problem definition

	Preliminaries
	Homogenous coordinate systems
	Pinhole camera model
	Camera coordinate system
	Camera matrix
	Projection matrix
	Skew-symmetric 3x3 matrix

	Epipolar geometry
	The epipolar constraint

	Stereo vision
	Reprojection error

	Methodology
	Description of the optical setup
	Projection model of a camera and its calibration
	The minimal problem for camera calibration
	Distortion correction

	General multicamera pose calibration
	Least-square estimation of transformation
	PnP-based estimation of transformation
	P3P
	P3P + RANSAC

	Feature extraction, matching and filtering
	Feature position estimation
	Shortest distance triangulation
	SVD triangulation

	Implementation
	Hardware
	Software tools

	Evaluation
	Calibration quality
	Triangulation quality
	Experiment setup
	Distance to an estimated plane
	Distance to a predefined plane

	Rate testing
	Experiments summary

	Conclusion and future work

