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Abstract

With the rise of Industry 4.0, much attention is attracted to the field of automated vi-
sual inspection. Automation of the quality check in the production environment can
reduce labor costs significantly, therefore, especially with the rise of deep learning-
based algorithms, anomaly detection became one of the most researched topics in a
machine learning community. Visual anomaly detection aims to detect inconsisten-
cies in image data, which can be classified as anomalies. This can be used in many
areas apart from manufacturing, including the detection of abnormal areas in med-
ical imaging, surface inspection, or photo editing. This task becomes quite common
when we have access only to normal samples as anomalies are rare compared to
normal data and are usually hard to collect. Therefore, visual anomaly detection is
usually solved in an unsupervised setting, where we take advantage of only normal
data. One of the approaches to solving visual anomaly detection is image reconstruc-
tion. Recently, diffusion models became state-of-the-art in the image generation task,
being especially prominent in terms of image quality and diversity of the generated
samples. In this study, we leverage diffusion models to the task of visual anomaly
detection in a manufacturing setting, show its strengths and weaknesses as well as
compare it with other existing methods and provide extensive benchmarks on the
subject.
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Chapter 1

Introduction

We live in the Industry 4.0 era, which is about making use of information technol-
ogy to promote industrial transformation. And the core of the fourth industrial rev-
olution is intelligent manufacturing, which can be currently considered a trend in
building a manufacturing system. Intelligent manufacturing implies the production
process is smooth and information-based so that no production inputs are wasted
and no additional costs are spent. For example, intelligent manufacturing can be
used for capturing deviations in the production process. If any are present, the sys-
tem will process them immediately, and the producer can make quick adjustments
in no time. Such systems rely on artificial intelligence, which is nowadays the core
of intelligent manufacturing. By incorporating it into the production process, the
requirements for human resources, such as technical experts and quality monitor-
ing personnel, can be significantly reduced, therefore the original labor force can be
saved.

The traditional approaches for performing an inspection in the production pro-
cesses are based on subjective judgments of manual human evaluators, which does
not guarantee the accuracy of identifying deviations. With the rise of computer
image processing technology, many computational algorithms were proposed and
implemented for discovering abnormalities in the manufacturing process, which
rapidly formed a whole new field in machine learning known as AD (anomaly de-
tection) with the end goal of automating the visual inspection process.

AD is a very important task in machine learning. First of all, it deals with the
assumption of an open dynamic system, where the learning algorithms are expected
to infer abnormalities from normal data. Anomaly detection algorithms character-
ize and model available normal data and then develop anomaly detectors to check
for abnormal regions in the newly observed data. When the data samples are repre-
sented as images, then we deal with VAD (visual anomaly detection).

VAD can be applied to many possible scenarios. Except for the automation of
inspection in the manufacturing process, VAD can be also applied in the field of
medical analysis, for instance, in the detection of abnormalities in MRI or in the field
of intelligent security by inspecting the video recordings for any anomalous events.
Given its significance, a lot of research was attracted to the field of VAD. Worth
noticing, due to the limited number of anomaly samples and the labor-intensive
labeling process, detailed anomaly samples are not available for training. As a result,
most recent studies on visual anomaly detection have been performed without prior
information about the anomaly, i.e., unsupervised paradigm.

A new spike in research of VAD was caused in line with the development of deep
learning algorithms. That is mainly due to the fact that classical algorithms are un-
able to handle high-dimensional data such as images (the problem known as a curse
of dimensionality), while deep learning algorithms can model high-dimensional
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data very effectively. With the introduction of this paradigm, neural networks be-
came new SOTA approaches in the VAD task.

Starting with the seminal works [51, 20], diffusion-based generative models have
improved the generative modeling of artificial visual systems [14, 43, 26], becoming
SOTA models in image generation task. Due to the nature of these methods, they are
easily adaptable for image reconstruction tasks, which in its turn can be efficiently
used in the field of VAD.

In this study, we propose a model that can be used to capture defects in images
from industrial manufacture. This model can be incorporated into the manufac-
turing process to automate visual inspection by making it independent of manual
checks. Formally, we solve the unsupervised VAD problem by relying on diffusion-
based models using data that resembles the industrial setup. We split our work in
the following way. In Chapter 2 we provide an overview of the VAD problem it-
self and the common approaches to solving it as well as an overview of the current
state of diffusion-based models. In Chapter 3, we describe the proposed approach in
detail. In Chapter 4 we describe experiments conducted with our method, provide
results and compare them with other existing approaches. The implementation link
can be found in Appendix A.
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Chapter 2

Related works

2.1 Visual Anomaly Detection

VAD can be categorized mainly into two sections: supervised and unsupervised.
In many application scenarios, the collection of abnormal images requires massive
human and financial costs. In addition, anomalies can vary significantly in shape,
color, and size, and they don’t have stable statistical laws. These factors make it dif-
ficult for the supervised model to generate appropriate features for abnormal image
detection. Therefore, the state of current research focuses mostly on unsupervised
VAD, meaning that only normal samples will be included in the training set, while
testing will be performed on both normal and abnormal images.

According to the historical development of visual VAD works, the research can
be divided into two separate stages: pre-deep learning and after-deep learning. Be-
fore the deep learning era, the research was concerned with the following task. After
obtaining handcrafted features of the image, using, for instance, SIFT [28], SUFR [2],
and HOG [13] the struggle goes to developing detection algorithms relying on sta-
tistical and machine learning algorithms, including density estimators and one-class
classifiers. The developed models should represent the distribution of normal sam-
ples, then, if the test images or their features don’t meet the corresponding distribu-
tion of the model, they will be classified as anomalies. However, after the success
of convolutional neural networks in computer vision applications [18, 50, 66], the
attention of researchers on the VAD task shifted from classical machine learning ap-
proaches to deep learning methods, as their performance greatly surpasses that of
their predecessors.

In addition, we can consider the problem of VAD at two different levels of gran-
ularity, which can be represented by two categories: image-level and pixel-level AD.
The first one aims to determine whether the whole image is normal or abnormal,
whereas the second one aims to localize abnormal regions in the image. With the re-
lease of the MVTec AD [4], which is now considered a standard benchmark dataset
for unsupervised VAD, most methods try to solve both image-level and pixel-level
categories of VAD, as the dataset provides both anomalous masks and labels for test-
ing. In general, methods for solving the unsupervised VAD problem can be divided
into two categories: feature-embedding and reconstruction-based.

2.1.1 Image reconstruction

Image reconstruction implies compressing the input image into the latent space us-
ing an encoder network and then, reconstructing the original version of the image
from the latent space using a decoder network. During the training procedure, only
normal samples are fed to the model, which learns to compress and reconstruct
them. The anomaly detection mechanism of the reconstruction-based approaches
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is based on the following assumption: considering that the training was performed
only on normal samples, the model won’t be generalized to anomalies during infer-
ence, i.e., the reconstruction of abnormal images will not be as good as normal ones.
Finally, the reconstruction network will reconstruct the abnormal image in a manner
similar to the normal image by eliminating the anomalous regions from it. The dif-
ference between the input image and the reconstructed one can be used to generate
a prediction.

Autoencoders

Autoencoders are probably the most popular approaches for image reconstruction
tasks. The idea of autoencoder was proposed in [19] with the basic idea behind
it being redundancy compression and non-redundancy separation. Autoencoder
compresses the input data through the hidden narrow layer and then regenerates
the original input. As the hidden layer is very narrow, it is expected that the net-
work compresses the redundant information in the input data while retaining and
distinguishing the non-redundant information. [22] is the first to introduce the au-
toencoder into the field of AD with the assumption that redundant information in
normal data may not be redundant information in abnormal data and vice versa.
Following this work, [44] is a pioneer in utilizing the deep autoencoder for AD of
high-dimensional image data. The main direction of research that applies the AE
model for VAD goes to resolving the differences between the reconstructed image
and the original image. The most simple solution is to take the pixel-wise difference
between images. More recent methods account for higher-level differences instead
of just comparing individual pixels. For instance, [3] combines the Structure Sim-
ilarity Index Measure (SSIM) and L2 loss on AE reconstruction and anomaly seg-
mentation, leaving a lot of space for further research. Chung et al. [10] present an
Outlier-Exposed Style Distillation Network (OE-SDN) with the idea of style trans-
fer between the original image and the reconstructed one in order to reduce false
negative detections.

Many methods suggest increasing difficulties in image reconstruction. They
may include various transformations on the original input image, such as geometric
transformations, brightness adjustment, noise corruption, or inpainting. After these
transformations are applied, the AE is trained to reconstruct the original image from
the transformed one. For instance, RIAD [65] randomly masks patches of the train-
ing set image and reconstructs them using the AE network. During inference, RIAD
randomly creates multiple random masks to generate a reconstructed image, which
is then compared to the original image. DRAEM [64] is another popular AE-based
technique for VAD. It introduces synthetic abnormal images and reconstructs them
as normal, which has a positive effect on the reconstruction network’s generalization
capacity. In addition, DRAEM uses the additional segmentation network to predict
abnormal regions, significantly enhancing the model’s ability to segment anoma-
lous regions. Without applying transformations to the input, the common problem
was that AE models would generalize very well and reconstruct anomaly regions
in abnormal images even if they were not available at the training stage. Increasing
difficulties in image reconstruction by applying transformations greatly enhances
the capability of the model for anomaly detection as they effectively increase the
differences between normal images and abnormal ones after the reconstruction.
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Generative Adversarial Networks

Goodfellow [16] proposed a new framework for estimating generative models via
an adversarial process, in which there are two simultaneously trained models: a
generative model G that captures the data distribution, and a discriminative model
D that estimates the probability that a sample came from the training data rather
than G. During training, D tries to discriminate between the original and generated
by G samples, while the goal of G is to maximize the probability of D making a
mistake. This framework corresponds to a minimax two-player game. [47] adopts
a generative adversarial network for VAD. The GAN model is trained on normal
images only. At the test stage, the anomaly can be detected by calculating the dif-
ference between the test image and the normal image that is the closest to the test
image. The closest normal image is determined using an iterative optimization pro-
cess. Firstly, the closest latent code for the test image in the GAN’s latent space
is found with the gradient descent strategy. Then, the generator model from the
pre-trained GAN is used to obtain the corresponding normal image. Due to the us-
age of an iterative search process, the efficiency of this approach is unsatisfactory
in practice. Some methods incorporate both adversarial and reconstruction loss for
improving performance. For example, [42] leverages autoencoder and adversarial
training simultaneously for VAD. In that work, generator G is represented as the
autoencoder and it tries to reconstruct a transformed/degraded input image. Sim-
ilarly to the autoencoders, the corruption of the original input image can increase
difficulties in the reconstruction of anomalous regions in abnormal images, which
will increase the anomaly scores and therefore improve the detection performance.

Summarizing the current state of image reconstruction for VAD, first of all, it is
very intuitive for pixel-level AD, as the anomalies are detected by taking the pixel-
wise difference between the original image and its reconstruction. Therefore, it is
expected that there will be no difference between a normal image and its reconstruc-
tion. However, high-quality image generation is currently a very challenging task
and most approaches struggle with reconstructing sharp edges and complex tex-
tures. This leads to the problem that normal images don’t get reconstructed well
enough in some regions, which leads to many false positive samples.

2.1.2 Feature-based approaches

While reconstruction-based approaches detect anomalies as the pixel-wise differ-
ence between the input image and its reconstruction, the feature-based approaches
detect anomalies in the feature space. Features used for detection can be either hand-
crafted [59, 7], or learned [23, 49]. Then, a machine learning model can be utilized
for modeling the feature distribution of the training data. If the test image features
deviate from the modeled distribution, this image will be classified as an anomaly.
Numerous categories of approaches are presented that utilize features of the images.

One-class classification

One-class classification on images is a task, which attempts to create a decision
boundary of the target class (normal images) using feature representations of the
input images. Classic approaches are one-class support vector machines OCSVM
[48] and support vector data description (SVDD) [48]. They try to fit a hypersphere
to distinguish normal features from abnormal ones during training. Then, at the
inference stage, they determine the level of abnormality of the input features based
on the relative position of these features to the fitted hypersphere. The advantage
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of these methods is that they don’t require large amounts of training data once the
relevant features are extracted. However, they are quite susceptible to the curse of
dimensionality. Usually, deep convolutional neural networks are used for extracting
features from the original images. For instance, [21] is a research on a one-class clas-
sification method based on transfer learning, which fine-tunes the pre-trained con-
volution network to extract discriminative image features and then takes the nearest
neighbor classification method to construct the one-class classifier.

Density estimation

The idea behind the density estimation is to fit the probability distribution to the
normal images or their features. The level of abnormality in the input image during
inference is determined by checking input against the established distribution. If the
likelihood of the input belonging to this distribution is lower than some threshold, it
means that the input deviates from the normal samples, therefore it will be classified
as an anomaly. A variety of methods can be used for density estimation, including
fitting parametric distributions, such as the Gaussian mixture model [36], and non-
parametric estimators, such as KDE or KNN. The predominant method for density
estimation used for VAD is Normalizing Flows (NF)-based approaches. Normaliz-
ing Flows [37] is a method for constructing complex distributions by transforming
a probability density through a series of invertible mappings. By repeatedly apply-
ing the rule for change of variables, the initial density ‘flows’ through the sequence
of invertible mappings. At the end of this sequence, we obtain a valid probability
distribution and hence this type of flow is referred to as a normalizing flow. In the
context of VAD, NF methods extract features from normal images using pre-trained
models, such as ResNet-based [17] or Transformer-based [56] models, and trans-
form the feature distribution into a multivariate Gaussian distribution. During the
test stage, those images that deviate from the Gaussian distribution after passing
through NF will be classified as anomalies. DifferNet [41] is the first research to use
NF to address the industrial image AD issue. FastFlow [62] is currently the best-
performing NF-based model for VAD. It stacks large and small convolution kernels
in the NF module to account for both global and local features of the image, achiev-
ing excellent results on the MVTec AD dataset.

Student-Teacher

Similarly to other feature-based approaches, student-teacher heavily depends on
pre-trained models such as ResNet and or Transformers. The selection of the ideal
teacher model is crucial. Commonly, student-teacher works the following way: the
pre-trained backbone model serves as a fixed parameter teacher and is used for fea-
ture extraction. During training, the student model learns to mimic the teacher’s
output. During inference, in case the image is normal, the outputs of the teacher
network and student network should be similar, whereas if the input image is abnor-
mal, the outputs of the networks should be distinct. The anomaly map is generated
by comparing the feature maps generated by the two networks. This anomaly map
could be rescaled to the size of the image in order to obtain anomaly segmentation.
[5] is the first to introduce a student-teacher approach into the field of AD. MKD [45]
explores that lighter student architecture leads to better performance of the model.
RSTPM [61] uses a mechanism for feature transfer from the teacher network to the
student network in order to enhance feature reconstruction. Student-Teacher meth-
ods are among the predominant approaches in terms of performance for VAD.
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Memory bank

Memory-based methods require two components: a powerful pre-trained network
for feature extraction and additional memory space. These models are constructed
very quickly as they don’t require the training procedure. The idea behind them
is to utilize this additional memory for storing normal image feature embeddings,
previously extracted by the pre-trained network. At the test stage, features of the
test image are compared to features stored in this additional memory called mem-
ory bank. The abnormality is checked by comparing the distance between test fea-
tures and those stored in the memory bank. Semantic Pyramid Anomaly Detection
(SPADE) [12] utilizes a memory bank for storing a multi-resolution feature pyra-
mid to obtain pixel-level anomaly segmentation results. PatchCore [40] is one of the
most significant advancements in industrial VAD that relies on a memory bank, sig-
nificantly raising the performance of MVTec AD. In PatchCore, the memory bank is
subsampled using a coreset-subsampling strategy, which decreases inference time
yielding much better results than random subsampling. The level of abnormality
of the test image is determined by calculating the distance between the test sam-
ple’s nearest neighbor features in the memory banks. As for now, memory-bank
approaches show the best performance for unsupervised VAD tasks.

In general, feature-embedding methods are more studied and used for the task
of unsupervised VAD, as they have superior performance over the reconstruction-
based approaches and similar inference time. As of April 2023, the first reconstruction-
based method used for VAD in the MVTec AD dataset is 13th in terms of the AU-
ROC detection metric and is released in 2021. This shows that attention to the
reconstruction-based approaches for unsupervised VAD tasks gradually declines.

2.2 Diffusion models

Denoising diffusion probabilistic models are a new class of generative latent vari-
able models inspired by nonequilibrium thermodynamics. Generally speaking, de-
noising diffusion probabilistic models (which can be called “diffusion models” for
brevity) are parametrized Markov chains trained using variational inference to pro-
duce samples matching the data after a finite time. Transitions of this chain are
learned to reverse a diffusion process, which is a Markov chain that gradually adds
noise to the data in the opposite direction of sampling until the signal is destroyed.

In the pre-diffusion era, the most effective approaches to image generation prob-
lems were GANs, as the quality of generated images was superior to that of alterna-
tive approaches such as Autoencoders and Normalizing Flows. However, GANs are
notorious for their unstable training and little diversity in the generated samples. In
addition, GANs don’t model the likelihood function of the generated samples ex-
plicitly. They allow only to sample new data, without calculating its likelihood. In
comparison, Autoencoders and Normalizing Flows model optimize explicitly the
likelihood function of the data, but the quality of the generated samples is not com-
parable to that of GANs. Diffusion models are likelihood-based approaches and
were first mentioned in [51, 53], but a huge amount of attention was attracted to them
with the study of denoising diffusion probabilistic models [20]. In this work, the au-
thors managed to achieve SOTA results in terms of the FID metric on the CIFAR10
[27] dataset in the image generation task, surpassing the performance of GANs and
also achieving high-quality generations on other datasets with a performance com-
parable to GANs.
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FIGURE 2.1: Trade-offs between different classes of generative mod-
els

2.2.1 Background

The essential components of DDPMs are the forward diffusion process (the stochas-
tic process where the signal gets corrupted) and reverse diffusion process (the mod-
eled process, which tries to "heal" the corrupted input)

Forward diffusion process

The forward diffusion process consists of T steps during which the Gaussian noise is
gradually added to the input data. It is assumed that after completing all T steps of
the process, the signal is completely destroyed (becomes pure Gaussian noise). Let
the original input distribution be the image x0 ∼ q(x). The noisy samples obtained
during the forward diffusion process will be denoted x1, . . . , xT. The magnitude of
each step of the noising process is indicated by the variance schedule parameter
{βi ∈ (0, 1)}T

i=1. The noisy samples at step t come from the following distribution:

q (xt | xt−1) = N
(√

1− βtxt−1, βtI
)

And the whole forward diffusion process can be specified by a joint distribution
of noisy input:

q (x1:T | x0) =
t=T

∏
t=1

q (xt | xt−1)

The authors of [20] use a nice property to sample a noisy signal at arbitrary time
step t given the original input x0. Let αt = 1− βt and ᾱt = ∏t

i=1 αi: :

xt =
√

αtxt−1 +
√

1− αtϵt−1 ; where ϵt−1, ϵt−2, · · · ∼ N (0, I)

=
√

αtαt−1xt−2 +
√

1− αtαt−1ϵ̄t−2 ; where ϵ̄t−2 is a standard Gaussian as well.
= ...

=
√

ᾱtx0 +
√

1− ᾱtϵ;

Therefore, noisy inputs at any given time step can be obtained by sampling from
the following distribution, conditioning only on the original signal:

q (xt | x0) = N
(√

ᾱtx0, (1− ᾱt) I
)



Chapter 2. Related works 9

Backward diffusion process

By sampling from q (xt−1|xt) (which is, as noted by the authors of the paper, ap-
proximately Gaussian as well) it is possible to recover the original signal. However,
this denoising process is intractable without conditioning on a less noisy version of
the signal. Therefore, the idea is to approximate this conditional distribution by a
modeled one pθ . The joint distribution:

pθ (x0:T) := p (xT)
T

∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (µθ (xt, t) , Σθ (xt, t))

is called a reverse diffusion process.

Training objective

The learning of pθ is performed by optimizing the variational lower bound of the
negative log-likelihood:

E [− log pθ (x0)] ≤ Eq

[
− log

pθ (x0:T)

q (x1:T | x0)

]
= Eq

[
− log p (xT)−∑

t≥1
log

pθ (xt−1 | xt)

q (xt | xt−1)

]
= L

Further on, the loss function L can be decomposed into several separate compo-
nents:

L = LT + LT−1 + · · ·+ L0

where LT = DKL (q (xT | x0) ∥pθ (xT))

Lt = DKL (q (xt | xt+1, x0) ∥pθ (xt | xt+1)) for 1 ≤ t ≤ T − 1
L0 = − log pθ (x0 | x1)

Each term, except for LT, which is constant, and L0, which is optimized sepa-
rately, is a KL-divergence of two Gaussians and it can be computed in a closed form.

Noteworthy, for original distribution of the input data q adding conditioning on
x0 makes q (xt−1|xt) tractable, having the following distribution:

q (xt−1 | xt, x0) = N
(
µ̃ (xt, x0) , β̃tI

)
, where µ̃t =

1√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
Given that xt is available at the training stage, the authors move parametrization

from µθ (xt, t) to noise term ϵt instead, so that we have µθ(xt, t) = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
Finally, the closed form of the loss term Lt is the following:



Chapter 2. Related works 10

Lt = Ex0,ϵ

[
1

2 ∥Σθ (xt, t)∥2
2

∥µ̃t (xt, x0)− µθ (xt, t)∥2

]

= Ex0,ϵ

[
1

2 ∥Σθ∥2
2

∥∥∥∥ 1√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
− 1√

αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)
)∥∥∥∥2

]

= Ex0,ϵ

[
(1− αt)

2

2αt (1− ᾱt) ∥Σθ∥2
2

∥ϵt − ϵθ (xt, t)∥2

]

= Ex0,ϵ

[
(1− αt)

2

2αt (1− ᾱt) ∥Σθ∥2
2

∥∥∥ϵt − ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵt, t

)∥∥∥2
]

The authors also found, that removing the scaling parameter improves the train-
ing of the model. The simplified version of the loss term is:

Lt = Et∼[1,T],x0,ϵt

[∥∥∥ϵt − ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵt, t

)∥∥∥2
]

2.2.2 Improvements in DDPMs

Reduction in sampling costs

While being able to generate high-quality images, diffusion models are notorious
for their slow inference. Starting from Gaussian noise, the model should pass the
data sequentially through the whole reverse diffusion process to generate noise-
free samples. The number of steps in the diffusion Markov chain was set to 1000
in the original research [20] and many subsequent works [1, 9, 57]. This parame-
ter is rarely changed irrespectively of the dataset and it is generally considered a
sufficient number for learning the data distribution. This means that one needs to
pass data 1000 times through the learned model in order to generate new samples.
Therefore, the primary line of research in the field of diffusion models deals with
speeding up the sampling process. In [30] the authors propose to learn variances
∑θ(xt, t) during the backward diffusion process. They find that this modification al-
lows sampling in fewer steps with very little change in sample quality. Specifically,
50 passes were enough to achieve high-quality samples compared to hundreds in
the original work. Additionally, their modification improves the log-likelihoods of
the generated samples. The authors of [52] replace the backward diffusion process to
be non-Markovian proposing DDIM. They show that deterministic reverse diffusion
can be used for sampling in fewer steps with enhanced image quality but reduced
image diversity. [38] suggests compressing input data by powerful pre-trained au-
toencoders. Then, diffusion will be learned on the latent representations of the input.
After both forward and backward diffusion is completed, the image is passed to the
decoder, which will decompress it to its original size.

The increase in likelihood

Given that the diffusion models are optimized for the variational lower bound of
negative log-likelihood, another line of improvements to DDPMs investigates the
possibilities for increasing the log-likelihood of the model making them more com-
petitive with other likelihood-based models. [25] adds Fourier features to the input
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data before passing it to diffusion models. The authors perform a thorough abla-
tion study to confirm that this modification leads to the increased likelihood of the
model. Similarly, [54] proposes a new weighting scheme for loss terms of the train-
ing objective, which results in an improved likelihood of the model.

Conditional DDPMs

Diffusion models are capable of modeling conditional distributions of the form p(z|y)
by modeling ϵθ(zt, t, y) Therefore, DDPMs can be easily extended to the tasks of in-
painting, deblurring, prompt generation, or other text-to-image and image-to-image
tasks. Incorporating different conditioning information, such as text, masks or class
labels can be implemented in diffusion models by a few different approaches. [38]
propose including the conditional information with direct changes to the denoising
backbone model, specifically, by adding the cross-attention mechanism [56], which
is known to work for various input modalities.

A different approach [14] proposes a new method for incorporating class infor-
mation in DDPM. The authors train a classifier on noisy samples. They show that
adding a scaled gradient (with respect to data) of this classifier to the noise predic-
tion in the reverse diffusion guides the network to produce samples that correspond
to the label information. Their approach is called the ablated diffusion model with
classifier guidance and it resulted in outperforming the SOTA approach.

Unsupervised VAD with DDPMs

Concerning unsupervised VAD, at the time of the writing, diffusion models were
only applied in the field of medical analysis, specifically, unsupervised MRI segmen-
tation. [58, 33] are the only representatives found for tackling this specific problem.

[58] proposes a new noising scheme, replacing Gaussian noise corruption with
simplex noise [32]. Their assumptions are the following: in natural images lower
frequency components contribute more to the image. Due to Gaussian white noise
having a uniform spectral density, low-frequency components of partially diffused
images do not become corrupted to the same extent as high-frequency terms. This
limits the discriminatory power of an AnoDDPM model as low-frequency compo-
nents are inferred to be relatively corruption free, resulting in large anomalous re-
gions being reconstructed in the reverse process. Simplex noise tends to corrupt
high-frequency components of the image very well, and that is where the authors
expect the abnormalities to lie. Thus, these regions are going to get reconstructed
more in the "normal" style, leading to high pixel-wise differences between normal
and reconstructed images in these regions.

[33] train diffusion model in the latent space of the pre-trained autoencoder in
order to reduce sampling costs during reconstruction. In addition, the research in-
vestigates the difference in the meaning of the noise at different time steps. By using
the pixel-wise difference between normal input and the reconstruction on the nor-
mal validation set, the authors use it for thresholding to guide reconstruction during
the inference stage. The proposed solution performed competitively compared with
the SOTA methods on both synthetic and real data, thus making the diffusion model
very relevant in further research in the medical analysis field.
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Chapter 3

Methodology

Given that the unconditional diffusion model is trained on normal samples, one
can utilize it in the following way. During the inference stage, a test image would
be passed through the t steps of the forward diffusion process giving us the noisy
version xt of the original image. Then, xt would be fed into the reverse diffusion
process, which would gradually denoise the corrupted image until all noise is re-
moved and the reconstructed version of the image x̂ is obtained. If the image is
normal, we expect to see a very accurate reconstruction of the input. In the case of
an abnormal image, the model shouldn’t be able to reconstruct the anomalous re-
gions due to their out-of-distribution nature, while leaving non-anomalous regions
unchanged. This would lead to the high pixel-wise difference |x̂ − x| between the
input image and its reconstruction in the poorly reconstructed areas, which are by
assumption anomalous. This pixel-wise difference can be used then as an anomaly
map, providing the localization of the anomalous regions in the image. In such a
setup, the choice of t is crucial. In general, the value t can be logically interpreted
as a trade-off between preserving local and semantic information of the image. That
is because as we increase the level of noise, the image starts to be less and less dis-
tinguishable from its original version, thus losing its local information, while at the
same time, it is being pushed to the pure Gaussian noise distribution, which is the
respective latent of the original input containing its semantic information. A small
t would lead to a tiny amount of noise being added to the image, enough for the
model to reconstruct even the anomaly during the reverse diffusion process. On the
contrary, a large t would cause a lot of local information to be hidden, which can
result in weak reconstruction even in normal images.

(A) Original (B) Reconstruction (20 steps) (C) Reconstruction (300 steps)

FIGURE 3.1: The examples of reconstruction of image (A) when the
number of noise steps t is too low (20), which results in the anomaly
being reconstructed well (B), and when t is too large, which results in

losing too much local information (C)

The described approach requires one essential component - the unconditional
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denoising diffusion model trained on the normal samples. In addition, according to
this method’s assumption, the noise amount t must be carefully chosen. In this case,
t can be considered as a hyperparameter of the anomaly detection process.

In this study, we try to build on this standard reconstruction procedure to en-
hance the capability of diffusion models specifically for VAD. The reasons for such
enhancements lie mainly in the impracticality and moderate performance of the ap-
proach described. First of all, the selection of t is very dependent on the type of
visual data used in the training of the diffusion models. It means, for example, that
for the multiclass dataset, optimal for reconstruction t can be very different in each
class, therefore, it should be validated separately for each one of them. Secondly, the
diffusion models tend to generalize very well. In the context, of VAD, it means that
even anomalous regions usually get a great reconstruction under a low-to-moderate
amount of noise. Increasing the amount of noise further is usually not appropriate
for solving this problem, as we then start losing too much local information, leading
to the worse reconstruction of normal pixels.

Considering this, we try to eliminate the disadvantages of this basic DDPM de-
noising approach by proposing a new method for VAD based on the diffusion mod-
els:

• Reconstruction with DDPM using a self-aware sampling technique

By introducing this approach we aim to improve the performance of the basic
denoising approach as well as to reduce the dependence on hyperparameter t.

3.1 Reconstruction with DDPM using a self-aware sampling
technique

We suggest treating AD under the light of image inpainting, which is the task of
complementing the image with the content in arbitrarily specified locations. [29]
utilizes unconditional pre-trained DDPMs for the task of inpainting. The setup is
quite the same as for the basic reconstruction algorithm described at the beginning
of the chapter. The DDPM is trained on the given dataset without the incorporation
of any knowledge of inpainting masks. At the inference stage, an inpainted image
is passed through the forward diffusion process, and then, the corrupted input is
reconstructed in the reverse diffusion process replacing inpainted regions with rel-
evant content. The authors also introduce a resampling technique - a change in the
reverse diffusion process so that the unmasked regions remain unaltered and well-
harmonized with the rest of the image. In our method, we also include modification
in the reverse diffusion process using a technique similar to resampling.

3.1.1 Reconstruction procedure

Suppose we have a trained unconditional DDPM. We denote x as the image coming
from the training distribution. The inpainting is performed by the binary image
mask m so that m⊙ x is the known part of the image and (1−m)⊙ x is the inpainted
part.

Given that in the reverse diffusion process, the backbone model predicts the
noise ϵ of the noisy image xt =

√
ᾱtx0 +

√
1− ᾱtϵ, we can derive x0 from the noisy

version of the image and the predicted noise. Then, according to the basic denois-
ing algorithm, one should sample xt−1 from q(xt−1|xt, x0) and continue the same
steps until a denoised version of the image is achieved. Instead of this procedure,
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we suggest replacing x0 with the sum m⊙ x + (1−m)⊙ x0. By doing this, we will
leverage the known regions of the image in order to infer the masked ones. Then,
we follow the strategy described in [29]. Instead of sampling directly q(xt−1|xt, m⊙
x + (1−m)⊙ x0), we sample q(xt|m⊙ x + (1−m)⊙ x0) and repeat this procedure
n times. In the basic approach, n = 1. The authors argue that though the model is
leveraging on the context of the known region, the obtained unmasked image is not
harmonizing well with the rest of the image. However, increasing the value of n will
make the model adjust x0 during each of these resampling steps, leading to a more
harmonized output image.

Algorithm 1 Algorithm which performs inpainting of the image with mask m
Data: Trained model ϵθ(xt, t), input image x, inpainting binary mask m, number of

noise steps T, number of resampling steps N
Result: x̂ - reconstructed version of the input image x
ϵ ∼ N (0, I)
xmasked ← m⊙ x
xt ←

√
ᾱtxmasked +

√
1− ᾱtϵ

for t = T to 0 do
// Denoising steps
for n = 1 to N do

// Resampling steps

x̂ ← xt−
√

1−ᾱtϵθ(xt,t)√
ᾱt

x̂ ← m⊙ x + (1−m)⊙ x̂
xt ←

√
ᾱt x̂ +

√
1− ᾱtϵ

return x̂

We note that reconstructing masked images with the described approach reduces
the dependence on hyperparameter t. Firstly, by incorporating the unmasked part
of the image to infer the masked part, we remove the upper threshold of t, e.g., if the
model reconstructs inpainted regions with k noise time steps well enough, the near-
same output will be achieved with any other number of time steps larger than k. This
effect is due to conditioning on the unmasked part of the image, which preserves a
lot of local and semantic image details and pushes the resulting output to be well-
harmonized with the rest of the image. Additionally, it is not necessary to select t
for different image classes for performance improvement. Previously, multiple ts
are needed to cover a variety of anomalies. In the inpainting-based approach, all
potential anomalies are covered with the same mask, thus removing the need to
select t for any specific abnormality.

The described approach for image inpainting expects a mask m as an input. Ide-
ally, this mask should cover the anomalous region in the image as only this part gets
reconstructed while the unmasked regions remain unchanged. However, there is
an inherent problem in the nature of anomalies. They can be irregular and diverse
in size, form, and location. Therefore, it is impossible to choose one general mask,
which would cover all possible locations of anomalies. That is why the mask should
be selected separately for every image.
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3.1.2 Inpainting mask creation

In this study, we will utilize the model’s predictions as a way to form masks m for
the task of inpainting. As described previously, the objective of the model is to min-
imize the difference between the predicted noise ϵθ(xt, t) and noise ϵ, which was
initially used to corrupt the image. We assume that if the image is abnormal, then,
the predicted and ground truth noise is going to be different in the anomalous re-
gions as the model hasn’t seen the anomaly during training. Such reasoning can
be used directly to form the anomaly maps as a difference |ϵθ(xt, t)− ϵ|, similar to
the basic approach described at the beginning of the section. However, we notice
that there are a lot of separate areas unrelated to anomaly regions that are mispre-
dicted by a large margin, therefore we don’t use this difference as the end tool for
anomaly detection. Instead, we look at |ϵθ(xt, t) − ϵ| for multiple t, as different t
correspond to different features within the image [33]. We collect such tensors for
multiple normal images from a validation set (a portion of normal images that was
not used during the training) to form a tensor q ∈ Rb×a×h×w, where a refers to the
number of noise steps, b - the number of images in the validation set, h and w to the
height and the width of the images respectively. Next, we average tensor q across
the first dimension. We denote the averaged tensor as Q. Then, we must select the
specific percentile p for Q to finally obtain the threshold map Qp ∈ Rh×w. For the test
image, we compute a tensor Qtest ∈ Rh×w, by calculating |ϵθ(xt, t)− ϵ| for multiple
t and averaging them. The inpainting mask m is obtained by comparing Qtest to Qp.
mi,j = 1 if Qtesti,j > Qpi,j and mi,j = 0 otherwise.

We formalize the process of obtaining inpainting mask m with the following pro-
cedure:

Algorithm 2 Algorithm for forming the inpainting mask m
Data: Trained model ϵθ(xt, t), validation set samples S, test image x, noise levels

range [tstart, tend], threshold percentile p
Result: m - inpainting mask
ϵ ∼ N (0, I)
m← empty tensor with shape o f x
Function calculateDifference(x, t f rom, tto)

Q← []
for t = t f rom to tto do

xt ←
√

ᾱtx +
√

1− ᾱtϵ
δ← |ϵθ(xt, t)− ϵ|
Q.add(δ)

return mean(Q)

Function calculateThreshold(S, t f rom, tto, p)
q← []
foreach s ∈ S do

q.add(calculateDifference(s, t f rom, tto))

Qp ← percentile(q, p)
return Qp

Qp ← calculateThreshold(S, tstart, tend, p)
Qtest ← calculateDifference(x, tstart, tend)
mi,j ← 1 i f Qtesti,j > Qpi,j else 0
return m
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3.1.3 Anomaly score

Multi-Scale Reconstruction Error Anomaly Map

By firstly obtaining the inpainting mask m and then performing reconstruction we
will get the image x̂ from the original image x. In order to obtain the final anomaly
map we calculate the |x̂− x| at different scales to consider both pixel-wise and patch-
wise reconstruction errors, as proposed in [6]. For different scales, L = {1, 1

2 , 1
4 , 1

8},
we compute the error for downsampled x̂ and x and, then, upsample the error back
to the original size. We denote such errors as Err(x, x̂)l . The final anomaly map is
obtained by averaging each scale’s error map and applying a mean filter for better
stability similar [65]. Err(x, x̂) = 1

NL
∑l∈L Err(x, x̂)l ∗ fx×s, where fx×s is the mean

filter of size s× s and ∗ stands for convolution operator. The anomaly score is then
calculated as max(Err(x, x̂).

Learned Anomaly Map

The anomaly map can be obtained in a discriminative way as well. For that, we
will utilize an additional segmentation subnetwork. This idea was first proposed in
DRAEM [64]. The segmentation subnetwork learns the anomaly map by training
the joint representation of the original image and its reconstruction outputting the
decision boundary between normal and anomalous samples. This method enables
anomaly detection without the need for additional post-processing steps after the
anomaly-free reconstruction is obtained. The training is performed by using artifi-
cially simulated anomalies. The concatenated image and its reconstruction are used
as input to the segmentation model. We expect the model will learn the decision
boundary between normal images and the reconstructed ones more accurately than
in hand-crafted post-processing while generalizing from artificial anomalies to real
ones.

We create artificial anomalies by the same procedure as in DRAEM. Worth notic-
ing, the simulated anomalies don’t require to resemble the ones from the target do-
main. They are needed only to generate appearances that deviate from the distri-
bution of normal images. According to the DRAEM, this will allow learning the
appropriate distance function to recognize the anomaly by its deviation from nor-
mality.

The algorithm for creating anomalies is the following one. Perlin noise [32] P
is generated to capture a range of anomaly shapes. The noise is binarized by a
threshold to create the anomaly mask Ia. The anomaly texture source image A is
sampled from the dataset unrelated to the input image distribution. The 3 random
augmentation functions from the set {posterize, sharpness, solarize, equalize, bright-
ness change, color change, auto-contrast} are chosen and applied to texture image A.
The augmented version of image A is masked with the anomaly mask and blended
with the original image I to create anomalies. Formally, the image Ia used for the
training of the segmentation subnetwork is obtained with the following formula:
Ia = M̄a ⊙ I + (1− β) (Ma ⊙ I) + β (Ma ⊙ A), where M̄a is the inverse of Ma and β
is the opacity parameter in blending. This parameter is sampled uniformly from an
interval, i.e., β ∈ [0.1, 1.0].



Chapter 3. Methodology 17

FIGURE 3.2: The strategy for generating anomalies proposed in
DRAEM [64]

We use a basic UNet [39] architecture for the segmentation subnetwork. The
expected input is a six-channel tensor of concatenated image and its reconstruction
with the output being the anomaly map. The maximum value over this anomaly
map will be used as the anomaly score for the input image.

3.1.4 Backbone model

The backbone model that we use in the reverse diffusion process ϵθ(xt, t) to predict
the noise ϵ is the same as in the original work [20], which is a UNet-like architec-
ture similar to PixelCNN++ [46] based on Wide ResNet [63]. Parameters are shared
across time steps t, which are encoded by the Transformer sinusoidal position em-
bedding [56] into each block in the network. In total, there are 4 downsampling
blocks with 4 mirrored upsampling blocks. Each resolution map consists of two
convolutional residual blocks and a self-attention [56] block followed by downsam-
pling/upsampling. Grouped normalization [34] is used between the convolutional
layers. Residual connections are used between the downsampling and upsampling
blocks. Complementing the original work, where the input to the model is expected
to be the noisy image xt, we modify it to be the concatenated xt and the model’s
prediction of x̂ = xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
as proposed in [8]. This modification leads to the

increased quality of predictions according to the authors. The resulting model con-
sists of 271M of trainable parameters with a total of 273 megabytes.
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Chapter 4

Experiments and Results

4.1 Dataset

For a long period of time, the common setup for evaluating the performance of
anomaly detectors was to adapt the existing classification datasets with the class
labels being available. The basic approach was to select a set of classes and re-label
them as abnormalities, while the rest of the classes were considered normalities. The
anomaly detection algorithm would be trained on the normal samples without be-
ing exposed to the anomalous samples according to the unsupervised VAD scenario.
During the test stage, one should check if the trained model can discriminate images
to be either inliers or outliers. This approach provides tons of training and testing
data, however, the created anomalies differ significantly from the training distribu-
tion. Therefore, it is very unclear how the proposed methods would generalize to
real-world cases, especially the industrial setting.
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(A) Examples of normal/abnormal images

(B) Statistical information about dataset

FIGURE 4.1: Image examples (A) and class distributions (B) in the
MVTec AD dataset

In order to remove the ambiguities of classification datasets for unsupervised
VAD, the MVTec AD [4] was introduced. This dataset mimics real-world industrial
inspection scenarios and consists of 5354 high-resolution images of five unique tex-
tures and ten unique objects from different domains. There are 73 different types
of anomalies in the form of defects in the objects or textures. For each defect im-
age, there is a pixel-accurate ground truth regions that allow evaluating methods
for both image and pixel-level anomaly detection. At the time being, this dataset is
considered to be a standard benchmark for evaluating the performance of anomaly
detection methods. Therefore, we will utilize this dataset to evaluate the perfor-
mance of our approach as well, additionally extracting 20% of normal samples to
form a validation set that won’t be used for training.
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4.2 Implementation details

We use Python 3 [55] as a programming language in this study. For the implemen-
tation of neural networks, we use the PyTorch [31] library. The training pipeline is
created using PyTorch Lightning [15]. For image processing, we use the Pillow [11]
library. We also use the Hydra [60] library for config manipulations. Wandb ser-
vice is used for logging. The whole stack of libraries can be viewed in the Github
repository.

4.3 Training details

Both training and inference of DDPM were conducted on NVIDIA GeForce RTX 3090
Ti GPU with 24GB of RAM. We train the DDPM model with the backbone described
in 3.1.4. For the backbone, we use a batch size of 16 elements, and the learning rate
is set to 0,00002. We use 1000 time steps in DDPM, the loss function is the same as
described in 2.2.1, sigmoid function for the beta schedule is used. Adam [24] is used
as an optimizer during training. We train the model for 500 epochs, choosing then
the best one in terms of the value of the loss function on the validation set.

For training the segmentation subnetwork, we use a setup similar to the training
of DDPM. The only difference is the increased batch size (32 elements), and changed
learning rate (0,001). We use the Cross-Entropy and Focal loss in our experiments
with the segmentation model. 50 epochs were enough for training for validation loss
to converge.

All images are resized to 256× 256 size in all experiments.

4.4 Evaluation

We measure the performance of our method in terms of image-level detection AU-
CROC metric, which is commonly used for the evaluation of anomaly detectors on
the MVTec AD dataset.

We don’t assess the results of solving image inpainting problem separately, as
our primary goal is to build a method that discriminates well between normalities
and abnormalities.

4.5 Experiments with the proposed method

(A) Original image (B) Masked image (C) Restored (n=1) (D) Restored (n=5)

FIGURE 4.2: Our experiments with resampling: both reconstructed
images are obtained by setting the number of noise steps t to 80. The

number of resampling steps is 1 in (C) and 5 in (D)
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Our experiments start with training the unconditional DDPM on the MVTec AD data
with the configuration specified in 4.3. After that, we explore the effect of resampling
steps for image inpainting under arbitrary masks. We note that resampling is crucial
to generate well-harmonized outputs. Fig. 4.3 shows the reconstruction results of
the image with a square mask covering 25% of the image area. In our anomaly
detection pipeline, we set the number of resampling steps to 5, as further increases
seem to have no effect on the reconstruction. The number of noise steps t is set to 50,
given that it copes with inpainting well enough, when the resampling is set to 5.

The masks for anomaly detection are generated by the algorithm 2. Our obser-
vation is that the backbone model’s noise misprediction is independent of the range
[tstart, tend], i.e., an arbitrary range can be chosen to generate masks. We set tstart to
300 and tend to 350. The percentile p is used to control the size of the mask. There is
no direct mapping between p and the amount of space the mask would cover, as it is
extremely specific to the image class. The lower p is, the larger space covered by the
mask will be. Ideally, we would like to generate larger masks in order not to miss
any anomalies. However, too large masks can pose problems for reconstruction, i.e.,
the unmasked part of the image would be too small to infer the rest of the image.
For us, setting p to 0.8 works best in terms of the final detection metric.

(A) Image (B) p = 0.5 (C) p = 0.7 (D) p = 0.8 (E) p = 0.9 (F) p = 0.98

FIGURE 4.3: The anomaly masks used for inpainting depending on
hyperparameter p for abnormal image (A)

Without retraining the DDPM, we compare the proposed approach with the basic
one, in which we add t steps of noise to the original image and then denoise it in the
reverse diffusion process. In this basic approach, we set t to 50, the same as in our
method.

In terms of time costs, the basic approach is 5 times as fast as the proposed one for
obtaining the reconstruction of the image due to the resampling factor. However, in
this study, we don’t perform specific time measurements for a time cost comparison.

AnoGAN GANomaly Skip GANomaly DAGAN Basic DDPM
denoising

Ours (using multi-scale
anomaly map)

Ours (using
segmentation subnetwork)

bottle 0.800 0.794 0.937 0.983 0.949 0.938 0.996
capsule 0.422 0.721 0.718 0.687 0.797 0.852 0.839

grid 0.871 0.743 0.657 0.867 0.990 1.000 1.000
leather 0.451 0.808 0.908 0.844 0.886 0.970 0.982

pill 0.711 0.671 0.758 0.768 0.604 0.744 0.903
tile 0.401 0.720 0.850 0.961 0.725 0.811 0.960

zipper 0.715 0.744 0.663 0.781 0.848 0.868 0.999
cable 0.477 0.711 0.674 0.665 0.616 0.607 0.782

carpet 0.337 0.821 0.795 0.903 0.577 0.659 0.662
hazelnut 0.259 0.874 0.906 1.000 0.968 0.982 0.981

metal nut 0.284 0.694 0.790 0.815 0.772 0.717 0.891
screw 0.100 1.000 1.000 1.000 0.964 0.970 0.842

toothbrush 0.439 0.700 0.689 0.950 0.889 0.990 0.938
wood 0.567 0.920 0.919 0.979 0.965 0.960 0.912

transistor 0.692 0.808 0.814 0.794 0.822 0.779 0.962
average 0.502 0.782 0.805 0.86.6 0.822 0.856 0.910

TABLE 4.1: Anomaly Detection Performance (AUCROC) on MVTec:
comparison with GAN-based methods
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PatchCore DifferNet Basic DDPM
denoising

Ours (using multi-scale
anomaly map)

Ours (using
segmentation subnetwork)

bottle 1.000 0.990 0.949 0.938 0.996
capsule 0.980 0.869 0.797 0.852 0.839

grid 0.986 0.840 0.990 1.000 1.000
leather 1.000 0.971 0.886 0.970 0.982

pill 0.970 0.888 0.604 0.744 0.903
tile 0.994 0.994 0.725 0.811 0.960

zipper 0.992 0.951 0.848 0.868 0.999
cable 0.993 0.959 0.616 0.607 0.782

carpet 0.980 0.929 0.577 0.659 0.662
hazelnut 1.000 0.993 0.968 0.982 0.981

metal nut 0.997 0.961 0.772 0.717 0.891
screw 0.964 0.963 0.936 0.970 0.842

toothbrush 1.000 0.986 0.889 0.990 0.938
wood 0.992 0.998 0.965 0.960 0.912

transistor 0.999 0.911 0.822 0.779 0.962
average 0.990 0.949 0.822 0.856 0.910

TABLE 4.2: Anomaly Detection Performance (AUCROC) on MVTec
AD: comparison with recent SOTA methods

The results provided are compared with GAN-based methods 4.1 and feature-
embedding methods 4.2.

We include our metrics when using both a multi-scale reconstruction error map
and learned with an additional segmentation subnetwork anomaly map. Both ap-
proaches beat the basic DDPM denoising in terms of the detection AUCROC for
most of the classes. The first one outperforms 3 out of 4 highlighted GAN-based ap-
proaches, while the learned anomaly map outperforms all 4 of them in terms of aver-
aged detection metric. However, our method is not highly competitive with feature-
embedding-based approaches, outperforming them only in 2 classes in terms of AU-
CROC.

We notice that poorly detected classes are roughly the same for the DDPM-based
methods. Those are cable and carpet. The first one is the most difficult class in terms
of structure while the carpet is a simple texture. We notice that the model struggles to
reconstruct even normalities for the cable class, while, on the other hand, the model
generalizes to anomalies and reconstructs the images very well for the carpet class.

In general, our experiments show that the proposed approach can be quite effi-
cient for unsupervised VAD, outperforming other reconstruction-based approaches
like GANs and even showing comparable results with feature-embedding-based
SOTA solutions for some of the classes.
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(A) (B) (C) (D) (E) (F)

FIGURE 4.4: The results of our method: (A) - original image, (B) -
reconstructed image, (C) - inpainting mask m, (D) - anomaly map ob-
tained with multi-scale reconstruction error map, (E) - anomaly map
obtained with segmentation network trained on artificial anomalies

and their reconstruction, (F) - Ground-truth anomaly map
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this study, we leveraged the power of denoising diffusion models for the task of
unsupervised VAD. We proposed a reconstruction-based approach that treats AD
as an image inpainting problem. We call the process of reconstruction a self-aware
sampling as the mask for inpainting is produced by the same model that performs
reconstruction. We also experimented with the segmentation subnetwork that learns
the decision boundary between normalities and abnormalities using artificially sim-
ulated anomalies for training images. We showed that the suggested approach is
superior to some of the GAN-based solutions such as GANomaly. However, the
proposed model is still not competitive with feature-embedding-based methods on
average, due to the poor performance of the DDPM in some of the classes.

5.2 Future work

Although the DDPMs are getting a lot of attention nowadays, they still remain not
fully discovered in many fields, specifically in unsupervised VAD. This work ex-
plores the reconstruction capabilities of the DDPM, though it leaves a lot of space
for improvement.

• One potential direction for future work is speeding up the diffusion process as
the main bottleneck in time costs for the pipeline.

• It is possible to perform the diffusion process in the latent space of pre-trained
autoencoders. Not only it can result in reduced time costs, but it can also affect
the quality of reconstruction. After the diffusion is performed, the decoder
network should bring the reconstruction back to pixel space. Given that it is
trained on normal images as well as the DDPM, it is going to generalize poorly
to anomalies that were potentially omitted during the diffusion.

• Training conditional diffusion model can be promising in the field of unsuper-
vised VAD. For instance, it is possible to condition on CLIP [35] embeddings
of the normal images or utilize metric learning to minimize the feature differ-
ence between the original image and its reconstruction. These enhancements
can all lead to the poorer reconstruction of abnormal regions therefore to better
anomaly detection.

• Many experiments can be done within the training process of DDPM itself.
The number of total noise steps, the noise schedule algorithm, and the depth
of the backbone network are all good candidates for potential improvement in
DDPM, which is a crucial element in anomaly detection.
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Appendix A

GitHub repository with code:

• Diffusion-based anomaly detection

https://github.com/psemchyshyn/Diffusion-based-anomaly-detection
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painting for visual anomaly detection”. In: Pattern Recognition 112 (2021), p. 107706.
ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2020.107706.
URL: https://www.sciencedirect.com/science/article/pii/S0031320320305094.

[66] Yulun Zhang et al. Residual Dense Network for Image Restoration. 2020. arXiv:
1812.10477 [cs.CV].

https://arxiv.org/abs/2108.07610
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107706
https://www.sciencedirect.com/science/article/pii/S0031320320305094
https://arxiv.org/abs/1812.10477

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related works
	Visual Anomaly Detection
	Image reconstruction
	Autoencoders
	Generative Adversarial Networks

	Feature-based approaches
	One-class classification
	Density estimation
	Student-Teacher
	Memory bank


	Diffusion models
	Background
	Forward diffusion process
	Backward diffusion process
	Training objective

	Improvements in DDPMs
	Reduction in sampling costs
	The increase in likelihood
	Conditional DDPMs
	Unsupervised VAD with DDPMs



	Methodology
	Reconstruction with DDPM using a self-aware sampling technique
	Reconstruction procedure
	Inpainting mask creation
	Anomaly score
	Multi-Scale Reconstruction Error Anomaly Map
	Learned Anomaly Map

	Backbone model


	Experiments and Results
	Dataset
	Implementation details
	Training details
	Evaluation
	Experiments with the proposed method

	Conclusion and Future work
	Conclusion
	Future work

	
	Bibliography

