
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Platform for finding optimal trip plan

Author:
Khrystyna KOKOLIUS

Supervisor:
Dmytro PRYIMAK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences and Information Technologies
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://apps.ucu.edu.ua
http://apps.ucu.edu.ua


i

Declaration of Authorship
I, Khrystyna KOKOLIUS, declare that this thesis titled, “Platform for finding optimal
trip plan” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:



ii

“Success is not final; failure is not fatal: It is the courage to continue that counts.”

Winston S. Churchill



iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Platform for finding optimal trip plan

by Khrystyna KOKOLIUS

Abstract

This thesis focuses on developing an architectural solution for the trip planning
platform for finding the optimal trip path with appropriate tickets using particular
search filters. Existing solutions on the market were investigated to understand what
new features can be developed and what can be improved. In addition, there were
reviewed algorithms that can be used to solve optimization problems in searching
for optimal paths. An important thing to mention is that the main aim was design-
ing and developing an appropriate architectural solution. The usage of a particular
algorithm for solving an optimization problem does not relate to the main goals of
this thesis. There were investigated possible functional and non-functional require-
ments, designed microservices architecture together with data and math models and
a simple user interface. Moreover, there was developed infrastructure on the Ama-
zon Web Services cloud computing platform for hosting a website using the IaC
approach. The platform is successfully hosted on AWS and tested on real users.

Link to the Github repository.
Link to the demo of the platform.
Link to the website.

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
https://github.com/khristinakokolus/thesis-work-routefellow-platform.git
https://www.youtube.com/watch?v=V9e5e59YvOc
http://platform-lb-tf-899120819.us-east-1.elb.amazonaws.com/


iv

Acknowledgements
I want to express my gratitude to my supervisor Dmytro Pryimak for his constant
support, regular discussions, and help in decision-making. Many thanks for leading
me in my thesis work and taking the time to help me.

In addition, I want to thank my family and friends for their faith and support for
all four years of studies, accompanied by ups and downs. I am very grateful for the
experience I got at the Faculty of Applied Sciences at Ukrainian Catholic University
and very thankful for all gained knowledge, connections, and opportunities.

The last most important thanks to the Armed Forces of Ukraine for making it
possible to write this thesis under a peaceful sky.



v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Works 3
2.1 Trip planning applications . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Skyscanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Kiwi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Omio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Rome2rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Conclusions regarding existing applications . . . . . . . . . . . 7

2.2 Algorithms for solving Travelling Salesman Problem . . . . . . . . . . 7
2.2.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Ant colony optimization . . . . . . . . . . . . . . . . . . . . . . . 8

3 Data 10
3.1 Kiwi API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Flixbus API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Additional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Approach 12
4.1 Functional and non-functional requirements for the platform . . . . . . 12
4.2 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Microservices model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Sign Up service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Sign In service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Search service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.4 Insert Update Tickets background process . . . . . . . . . . . . 16
4.3.5 Main application service . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.6 Motivation of built architecture and chosen framework . . . . . 17

4.4 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.1 Users database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.2 Tickets database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.3 Motivation of choosing Postgres . . . . . . . . . . . . . . . . . . 20

4.5 Math model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



vi

4.7 AWS architecture of the platform . . . . . . . . . . . . . . . . . . . . . . 26
4.7.1 Motivation of choosing AWS and Terraform . . . . . . . . . . . 26

5 Experiments and Results 28
5.1 Testing different search criteria on platform . . . . . . . . . . . . . . . . 28
5.2 Testing on real users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusions 34
6.1 Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Future improvements and work . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 35



vii

List of Figures

2.1 Multi-city search in Skyscanner . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Nomad Search in Kiwi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Return Search in Omio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Transportation Search in Rome2Rio . . . . . . . . . . . . . . . . . . . . . 6
2.5 Tickets Search in Rome2Rio . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Use case diagram of the platform . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Main components of the system . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Detailed architecture of the platform . . . . . . . . . . . . . . . . . . . . 14
4.4 Data model of the platform . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Genetic algorithm steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Home page of the platform . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 About section on the platform . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 Sign up page on the platform . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9 Sign in page on the platform . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.10 Search page of the platform with example, part 1 . . . . . . . . . . . . . 24
4.11 Search page of the platform with example, part 2 . . . . . . . . . . . . . 25
4.12 Sample result of the optimal path search . . . . . . . . . . . . . . . . . . 25
4.13 Platform architecture on AWS . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Diagram of age of real users . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Evaluation of usefulness of this platform . . . . . . . . . . . . . . . . . 30
5.3 Evaluation of Sign Up part . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Evaluation of Sign In part . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Evaluation of Search part . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Evaluation of application’s speed . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Evaluation of UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Possible usage of application . . . . . . . . . . . . . . . . . . . . . . . . 32



viii

List of Listings

4.1 Sample input to Sign Up service . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Sample input to Sign In service for sign in endpoint . . . . . . . . . . . 15
4.3 Sample input to Sign In service for sign out endpoint . . . . . . . . . . 15
4.4 Sample input to Search service . . . . . . . . . . . . . . . . . . . . . . . 16



ix

List of Abbreviations

AWS Amazon Web Services
ECS Elastic Container Service
ECS Elastic Container Registry
IaC Infrastructure As Code
TSP Travelling Salesman Problem
UI User Interface



1

Chapter 1

Introduction

1.1 Motivation

In recent years the popularity of traveling is growing very fast, and people are ex-
ploring the world even more and more. But when it comes time for trip route plan-
ning, it can be a very complex task that can consume a lot of time. Many travel
options are available, such as buses, trains, flights, etc., making decision-making
even harder. Other essential factors are prices, travel dates, transportation times,
and travel providers, which makes this task even harder.

As the business market grows very fast, many platforms for building optimal trip
plans were created using different means of transport with diverse filtering options.
They use various algorithms and advanced techniques to give as many travel choices
as possible.

However, there are some challenges left that are not making these platforms per-
fect for planning. It still takes a lot of time to find tickets to visit more than two or
three places in one trip because travelers should make different combinations to find
a suitable one. There can be many variants, especially when the number of places to
visit grows.

This thesis aims to develop a platform that will not just find travel options but
will build optimal paths through different places using specific search criteria. This
optimal path will not be based on locations’ order but will be focused on the best
option to travel, minimizing time on transportation and price. An important thing
to mention is that the main focus is on designing and developing the architecture
but not on investigating and testing algorithms for solving optimal path searches.

1.2 Goal

There will be created a platform for finding optimal trip paths using destinations
that users will provide. It will find a way that matches the search criteria, and the
order of visiting places will be the most suitable. Users will get information about
possible flight and bus tickets to visit all the destinations as best as possible.

The main search filters will be:

• Cities that traveler wants to visit

• Amount of days that should be spent in every city

• Travel dates

• Maximum price of the trip



Chapter 1. Introduction 2

• The maximum amount of stops during the transportation from one city to an-
other

• Adults amount

• Transport options

• Airlines to exclude

There will be a focus on creating such optimal paths where price and transporta-
tion time will be minimized. Every traveler wants to spend a minimum amount of
time on transportation and the same on the price. Furthermore, one more objective
covers saving time on the trip planning process and ticket comparison.

Moreover, the next goals are going to be reached:

• Review of related works and algorithms for solving optimization problems

• Implementation of all needed services for making this platform work with ap-
propriate architecture, data, and math model

• Implementation of simple UI design for possible usage

• Conduction of experiments on finding optimal routes on different numbers of
cities and using various filters

• Host site and test it on real users



3

Chapter 2

Related Works

2.1 Trip planning applications

This section provides information about existing platforms that help travelers to
plan trips. Considering existing solutions on the market is vital because it can help
create a competitive product with more specific business needs and stand out among
existing ones.

There are a lot of different applications that help plan trip routes with their own
features. Here will be considered the most popular ones, such as Skyscanner, Kiwi,
Omio, and Rome2rio.

2.1.1 Skyscanner

Skyscanner (Skyscanner website) is a flight aggregator that allows searching for avail-
able flights with such filters as price, amount of stops on the way, time of departure,
time of transportation, airline, and airport.

FIGURE 2.1: Multi-city search in Skyscanner

It can help to find convenient tickets to one or multiple points, but using general
criteria it is possible to get all relevant flights to the place or places chosen. There
are search types such as Roundtrip, One way, and Multi city and categories of found



Chapter 2. Related Works 4

flights as Best, Cheapest, and Fastest. But there is no officially published algorithm
that uses Skyscanner for flight search.

Skyscanner searches multiple options and as output generates a lot of available
flights. Apart from that, a search can be narrowed using various criteria by choosing
airlines to travel with or only suitable departure times. In addition to that, there is a
great possibility to choose among the best, the cheapest and the fastest flights.

However, the multi-city option allows searching flights to different places only
by a specific order and dates that are given to the application. This can make the
search for appropriate flights a complex task. Moreover, Skyscanner allows search-
ing only for one transport type. In such a way, the cheapest trip to a particular place
cannot be found because flights can be rather expensive. Another thing is that there
is no potential to buy tickets through Skyscanner, and there is a need to redirect to
airlines’ websites directly.

2.1.2 Kiwi

Kiwi (Kiwi website) is a platform for travelers that allows searching for flights, buses,
and trains using different options and search types. There are such search types as
Return, One-way, Multi-city, and Nomad, and there are such categories of tickets as
Best, Cheapest, and Fastest.

Return allows finding flights in two ways at the same time. There are considered
such filters as dates of departure and return, amount of passengers, cabin type, bag-
gage preferences, amount of stops, transport type, connections, carriers, excluded
countries on the way, times of departure and arrival, the maximum value of trip
duration time, maximum time for stopovers, price, days of departure and return.
One-way offers only flights to a specific destination on a range of dates, and the
filters are used the same as in Return search.

The multi-city feature is for finding flights between a few cities using a specific
order of visits and dates. In this case, there are fewer filters, namely stops, baggage
preferences, times of departure and arrival, transport types, and days of departure.
In addition to that, there is an interactive map that shows the plan of the trip. The last
one is Nomad, which allows selecting cities to visit, and Kiwi generates optimal path
solving Travelling Salesman Problem. Moreover, there are used such filters as depar-
ture dates, allowed trip length in days, baggage preferences, amount of stops on the
way. After investigating this feature, there was noticed that the best route is mainly
equal to the cheapest one or the fastest one, but it looks like there is not presented
such a solution that is optimal considering cost and time together. Furthermore, in
Nomad only flight options are used, but Kiwi also provides information about buses
and trains in general. Apart from that, no official details were found on algorithms
used for Return, One-way, Multi-city, and Nomad search types.

On the one hand, Kiwi provides many options to search for optimal travel plans,
as many airlines and travel agencies are used. There can be found not only flights but
also possible buses and trains. Apart from that, the availability of different search
types is no less critical. Another great thing is that tickets can be bought directly
from the Kiwi website. On the other hand, Kiwi’s solutions are mostly considered
separately on transportation time and price, so it concentrates only on one thing at
the same time giving the best, cheapest, and fastest solutions.



Chapter 2. Related Works 5

FIGURE 2.2: Nomad Search in Kiwi

2.1.3 Omio

Omio (Omio website) is a travel platform that provides such services as comparison
and booking options. It has more than 1000 travel partners across trains, flights,
ferries, and airports. There are two search alternatives as Round trip and One-way.
Round trip offers four different means of transport trains, buses, flights, and ferries,
and gives the best trips using different categories such as cheap and fast, cheapest
price, fastest and departure times. In addition to that, there are such filters as the
number of passengers, departure and return dates, amount of stops on the way,
carries, duration of the trip, departure time, arrival time, price, arrival and departure
stations or ports or stations or airports depending on the transport. For One-way
search type filters are the same.

Using Omio, buying tickets directly from this website is possible, but it depends
on the provider, and for some, it redirects to the provider page. Furthermore, Omio
produces an excellent interface, making navigating and choosing appropriate filters
easy. One more important thing is that it provides a great variety of transport.

However, Omio is more suitable when a traveler wants to travel only from one
place to another one and return to the same place, as there are no search options
for multi-city trips. Users can only make comparisons, but it can take time and be
complex.



Chapter 2. Related Works 6

FIGURE 2.3: Return Search in Omio

2.1.4 Rome2rio

Rome2rio (Rome2Rio website) is a service for trip planning that provides two search
options: Transport and Tickets. As for Transport, it offers the possibility to find all
Transport offers to travel from one place to another one. Using this option, travelers
can get information about approximate transportation prices using different means
of transport. Apart from that, regular bus or train timetables are also provided with
carriers’ names and links to their website.

FIGURE 2.4: Transportation Search in Rome2Rio

Regarding Tickets search there are One-way and Return possibilities. There is
a search for such types of transport as trains, buses, and flights. Apart from that,
there are such filters as departure and return dates, amount of passengers, amount



Chapter 2. Related Works 7

of changes on the way, carries, and is the potential to sort flight tickets by departure
time, cheapest, and quickest or bus tickets by departure times.

FIGURE 2.5: Tickets Search in Rome2Rio

Using Rome2rio, there is a possibility to get information using what kind of
transport can be done transportation to a particular place. However, there are only
a few filters when searching for travel tickets. In addition to that, only one-way
and return travel options can be found that are more suitable for trips to one city.
Furthermore, there is no possibility of booking a trip directly from Rome2rio.

2.1.5 Conclusions regarding existing applications

After an investigation of popular travel planning platforms, there was found that
there can be provided great solutions when a traveler is searching for one-way or
return ticket types considering different means of transport. All of the services have
their benefits and drawbacks. Skyscanner is better for finding One-way or Return
tickets when a traveler is searching for flights, Omio gives information on a bigger
amount of transport types, Rome2rio is excellent for finding transportation options
to different cities, and Kiwi is more effective for discovering travel offers when plan-
ning a trip to more than two or three cities. Unfortunately, these services do not
provide official information on algorithms used for finding suitable transport tick-
ets.

Furthermore, during the research, it was found that services are mainly concen-
trated on price and transportation times separately, among them only Omio has a
filter for cheap and fast trips. It means there is what to improve, and in this thesis
will be applied more filters to find tickets with minimum prices and transportation
times.

2.2 Algorithms for solving Travelling Salesman Problem

In this section are reviewed metaheuristic algorithms for solving Traveling Sales-
man Problem. In this thesis definition of the Travelling Salesman Problem is used to



Chapter 2. Related Works 8

find optimal tickets between a few destinations. Such metaheuristic algorithms are
considered as Simulated Annealing, Tabu Search, and Ant Colony Optimization.

2.2.1 Simulated Annealing

Simulated Annealing is a metaheuristic algorithm that starts from a single random
state and is based on an annealing process in metallurgy. After that, a new solution is
generated, and if this solution is better than the previous one, it is selected instead.
If it is not better there is used a probabilistic function defined at the beginning of
the algorithm, and if the calculations of this function are acceptable, then this new
state is accepted. The generation of states is continued until equilibrium is met and
temperature is continuously decreased. While evaluation criteria is not met previous
steps are continuing. In general, in each iteration probability of choosing a worse
solution is decreased, and the probability of finding the optimal solution increases.
(Talbi, Metaheuristics)

An article prepared by Marek Antosiewicz, “Choice of best possible metaheuris-
tic algorithm for the travelling salesman problem with limited computational time:
quality, uncertainty and speed” investigated the computational possibilities of a few
algorithms, including simulated annealing on Travelling Salesman Problem. Ac-
cording to the results of the experiments on different amounts of vertices in the
graph, simulated annealing showed outstanding performance and solution quality
among other algorithms.

2.2.2 Tabu Search

Tabu Search is a metaheuristic algorithm that generates an initial random solution
and considers a tabu list of solutions that can not be applied. From the start, the first
solution is assumed to be the best, and then a neighborhood with possible solutions
close to this one is generated. The next best solution from the neighbors is selected
despite the fact it can be even worse than the current ones, but it should not be in the
tabu list. The previous best solution is then moved to the tabu list. On the next itera-
tions, the best solution is replaced when there is found better one, and the previous
one is added to the tabu list. The process of generating a new neighborhood for the
last best solution continues while evaluation criteria is unmet. (Talbi, Metaheuristics)

Tabu Search was also investigated in this article (Marek Antosiewicz, “Choice of
best possible metaheuristic algorithm for the travelling salesman problem with lim-
ited computational time: quality, uncertainty and speed”) on solving the Travelling
Salesman Problem. It showed a great performance on different amounts of nodes
and together with simulated annealing is a leader among other tested algorithms.

2.2.3 Ant colony optimization

Ant colony optimization is a metaheuristic algorithm that considers ants’ behavior
while solving the problem. First, there are generated random solutions that contain
the so-called ants. They are considering pheromone concentration on the way to find
an optimal solution. After the first pheromone generation, newly generated ants are
based on the previous solution, not to repeat mistakes and to choose the path that
contains more pheromones and is shorter. There are created new ant solutions until
evaluation criteria is not met. In general, this algorithm performs well on solving
problems like Travelling Salesman Problem. (Talbi, Metaheuristics)



Chapter 2. Related Works 9

In addition to that, an article prepared by Míča1, “Comparison of metaheuristic
methods by solving travelling salesman problem” investigated ant colony optimiza-
tion on Travelling Salesman Problem together with simulated annealing and tabu
search and showed the best results among them. But in general, all the algorithms
performed well on a smaller amount of nodes.



10

Chapter 3

Data

This chapter describes the data sources used in this thesis and the retrieved data
explanation. Kiwi and Flixbus APIs are used to get information about travel options
to different places.

3.1 Kiwi API

Kiwi API provided by Tequila API (Kiwi API provided by Tequila Reference) offers in-
formation from the Kiwi website about available flights to different places. There is
a limit in retrieving data from this API and it is 30 requests per minute.

Before starting the ticket search, there is made a request to /locations/query end-
point for getting the ids of cities used in the ticket search, but only when code for
a particular city is not already saved in the table in the database. Using these ids is
easier to find flights considering all airports located in specific city.

/search endpoint allows retrieving all needed ticket data from one city to another.
There are such required fields in a query as fly_from - departure destination, fly_to
- arrival destination, date_from - date from which search for flights, date_to - search
flights up to this date. In addition to that, in this thesis will be used select_airlines
- a list of airlines that will be excluded in the search, select_airlines_exclude - this
parameter should be set to True to exclude in flight search certain airlines, adults -
amount of passengers, max_stopovers - maximum value of the stops on the way.

As a result, a call to API provides such data that will be used for further investi-
gation as id - unique id of the flight, used then to update information about the flight
because price and availability are changing, cityFrom - departure destination, cityTo
- arrival destination, duration - duration of the transportation, fare - the cost of the
flight in euros, availability - the number of available places on the flight, airlines -
airlines that are used in transportation, local_departure - local departure time in ISO
format, local_arrival - local departure time in ISO format.

3.2 Flixbus API

Flixbus is a company that provides bus trips to different cities in Europe, North
America, and Brazil. There are provided 3,000 travel destinations in 39 countries. It
aims to give travelers the best service at a low cost.

Flixbus provides an API (Flixbus API Reference) with a few endpoints that give
data about all available bus stations, schedules on incoming and outgoing buses,
available tickets, and details of each trip. This thesis work uses endpoints such as
/stations and /search-trips. There is a limit in retrieving data from this API and it is
10,000 requests per month.



Chapter 3. Data 11

/stations endpoint outputs information about all possible bus stations in differ-
ent countries. It outputs such vital data as station name, station address, city name,
and city id. In this thesis city id field is used for bus trip searching. The data from
this endpoint is saved in a file in CSV format for further processing.

/search-trips endpoint provides information about all possible trips from one city
to another one on a specific date. There are such required fields in a query as to_id
- id of the city to where should be a trip, from_id - id of the city from where should
be a trip, currency - currency in which is the cost of the ticket, departure_date - de-
parture date of bus, number_adult - number of adults. The search is made by cities
and is not dependent on certain stations. The data that is used after retrieving from
API is uid - unique id of the trip, used then to update information about the journey
because price and availability are changing, departure timestamp - departure time
from the departure point that is represented as unix timestamp, arrival timestamp
- arrival time to the arrival point that is defined as unix timestamp, status - means
whether this bus trip has available places or not, available - gives information about
the number of available seats, price_average - the price of the trip, transfer_type -
provides information whether this bus trip is direct or has stops on the way, inter-
connection_transfers - is used to determine whether there are additional transfers
in the journey.

3.3 Additional Data

Besides API data, this thesis work also uses airline and airport datasets from Kaggle.
(Airlines, Airport, and Flight Routes datasets).

Airports dataset is used for background data load from Kiwi API using the air-
port name. From this dataset are used three fields, namely name - the name of the
airport, city - the name of the city where an airport is located, and iata - unique
identifier of the airport.

Airlines dataset is used for getting full airline names when retrieving data from
Kiwi API. When calling Kiwi API in output are represented only airline codes that
are not suitable as output for users. From airlines dataset are used such fields as
name - the name of the airline and iata - unique identifier of the airline.



12

Chapter 4

Approach

This chapter will describe functional and non-functional requirements, the designed
architecture of the travel platform, the data model, the math model used to solve the
optimization problem for finding optimal trip plans, and the developed UI and IaC.
In addition, the motivation for choosing system components will be explained.

4.1 Functional and non-functional requirements for the plat-
form

Before considering the design of the architecture, it is necessary to determine the
functional and non-functional requirements of the application. Functional require-
ments define the main use cases of the platform (figure 4.1), while non-functional
describe operational capabilities.

In the case of a travel platform for optimal trip planning, there are such main
functional requirements:

1. New users should be able to register on the platform.

2. Users can log in to the platform.

3. Users can search for optimal trip plans with such filters as departure city, cities
that the traveler wants to visit, amount of days that should be spent in every
city, travel dates, the maximum price of the total trip, the maximum amount
of stops in transportation between cities, adult number, transport type and the
possibility to exclude certain airlines.

4. Users can get a few variants of the best trip plans that consist of flight or bus
ticket information with total price and transportation time with the order of
cities to visit.

In addition to that, there are defined such non-functional requirements for the
travel platform:

1. Highly consistent.

2. Great availability.

3. Great reliability.

4. User data should be durable.

5. The maximum latency of search of the optimal path and possible variants
should be maximum of 60 sec.



Chapter 4. Approach 13

FIGURE 4.1: Use case diagram of the platform

4.2 Architecture overview

Using functional requirements, there can be defined main components of the sys-
tem(figure 4.2):

• Microservices that are responsible for performing main operations on the plat-
form. There can be defined such services as:

1. sign_up service - for performing users registration.

2. sign_in service - for performing users log in and log out to the travel
platform.

3. search service - searching for optimal trip plans by solving a mathemati-
cal problem.

• insert_update_tickets background process daily deletes outdated tickets from
the database, inserts new ones, and updates existing ones.

• Main server that uses all microservices for building a platform.

• Storage for users and tickets data.



Chapter 4. Approach 14

FIGURE 4.2: Main components of the system

4.3 Microservices model

In this section will be considered main services that are created for building the
platform. Figure 4.3 shows the detailed architecture of the travel application with
main databases and services.

FIGURE 4.3: Detailed architecture of the platform

4.3.1 Sign Up service

Sign Up service is responsible for registering users and saving their data to the
database. It is written using Flask framework in Python and has one main endpoint
/users_api/sign_up to where can be sent only POST requests. Main service of the
program sends POST requests to Sign Up service to register users in the system.
The format of input data should be JSON. The main fields are username, email, and
password. On listing 4.1 is showed sample content sent to Sign Up service.



Chapter 4. Approach 15

LISTING 4.1: Sample input to Sign Up service

{
" username " : " t e s t _ u s e r " ,
" email " : " test_user@gmail . com " ,
" password " : " Password12@ "

}

After data is sent to the main endpoint of the service there is checked whether
the user with such email has an account on the platform. If the user already ex-
ists, an account with such an email can not be created again. User should create
a new account with a new email or sign in using the sign-in form. In addition to
that, to register, a valid password should be entered that should contain upper and
lower case letters, numbers, a minimum of one special character, and should consist
minimum of 6 symbols. If all entered fields are appropriate, information about the
user is saved in users table in users database, and 200 Response is sent back. One
more thing, the password is encrypted, and only this version is saved in the table.
For encryption is used flask_bcrypt extension in the Flask library that provides a hash
function for passwords based on Blowfish cipher.

4.3.2 Sign In service

Sign In service logs users to the platform. It is written in Flask and has two main end-
points /users_api/sign_in and /users_api/sign_out to where can be sent only POST
requests. Main service of the program sends POST requests to Sign In service to
sign in or sign out users of the platform. The format of input data should be JSON.
The main fields are email and password for sign in and email for sign out. On list-
ing 4.2 is showed sample content for Sign in endpoint, and on listing 4.3 is showed
sample content for Sign up the endpoint.

LISTING 4.2: Sample input to Sign In service for sign in endpoint

{
" email " : " test_user@gmail . com " ,
" password " : " Password12@ "

}

LISTING 4.3: Sample input to Sign In service for sign out endpoint

{
" email " : " test_user@gmail . com " ,

}

When data is sent to Sign In service to /users_api/sign_in endpoint, there is
checked whether a such user exists in general. If such a user does not exist, he can
not log in to the system. In addition, there is made a check whether a user is already
logged into the system. If the user is logged in, the users’ table field log_in equals
True, and when not False. If the user is registered and was not logged in before, Sign
In service returns 200 Response and changes log_in to True.

4.3.3 Search service

Search service is designed to search for an optimal trip plan. The main responsibili-
ties of this service are to search for appropriate tickets and solve optimization prob-
lems considering all constraints for finding optimal trip plans. It is written using



Chapter 4. Approach 16

Flask framework in Python with such main endpoint /search_api/search to where
can be sent only POST requests. The main service of the platform sends POST re-
quests to Search service to find optimal paths between certain cities. The format of
input data to this service should be JSON. The main fields are departure_destination,
other_destinations, days_in_cities, date_from, date_to, price_max, adult_number,
stopover_during_transportation, search_buses_flights and airlines_to_exclude.On list-
ing 4.4 is shown sample input for search.

LISTING 4.4: Sample input to Search service

{
" depar t ure_des t ina t io n " : "Warsaw " ,
" o t h e r _ d e s t i n a t i o n s " : " Ber l in , Par is , Barcelona " ,
" d a y s _ i n _ c i t i e s " : " 4 , 5 , 4 " ,
" date_from " : " 0 1 . 0 7 . 2 0 2 3 " ,
" date_to " : " 1 4 . 0 7 . 2 0 2 3 " ,
" price_max " : " 5 0 0 " ,
" s topover_dur ing_transpor ta t ion " : " 1 " ,
" adult_number " : " 1 " ,
" s e a r c h _ b u s e s _ f l i g h t s " : " both " ,
" a i r l i n e s _ t o _ e x c l u d e " : " Ryanair "

}

Here is presented a more deep explanation of input values:
departure_destination - name of the city from where user will depart and to where

will come back; other_destinations - names of the cities user wants to visit in the trip
separated by coma; days_in_cities - amount of days user want to spend in each city
separated by coma; date_from - date from which user want to start trip, date_to - date
on which user want to come back to departure city; price_max - maximum price of
total journey; stopover_during_transportation - amount of stops allowed during one
transportation between cities, for example, 0 means that no transfer change during
all transportations and 1 means that there are allowed maximum 1 transfer change
on transportation between every two cities; adult_number - number of adults that
want to perform such trip; search_buses_flights - identifies which transport to search,
there are possible 3 options: both, flight and bus; airlines_to_exclude - airlines to ex-
clude in tickets search.

When Search service gets input values, it first generates all possible transporta-
tion days depending on date_from, date_to, and days_in_cities. Then checks for tickets
in the tickets database. If there is no ticket for the needed date and cities, the ser-
vice starts to search tickets directly from Kiwi and Flixbus APIs, depending on the
search_buses_flights it looks for flights, buses or both. An important thing to mention
here is that now only the best ticket for one date for two cities combination is consid-
ered, and not all possible ones found to reduce the calculation time. This new data
is saved then in the tickets database for future usage. When tickets for all possible
dates for specific input parameters are gathered, their combinations are created, and
optimization problems are formed. After problems solving, all results are gathered
and returned.

4.3.4 Insert Update Tickets background process

Insert Update Tickets background process is responsible for deleting outdated ticket
data from the tickets database, inserting new ones, and updating existing ones. This
process runs once a day, loads and updates data for a few months. One important



Chapter 4. Approach 17

thing to mention is that daily run is currently not working due to high cost usage.
The purpose of this process is to make the work of the main platform service faster
as there are for now some limitations of load from API and it makes search of tickets
a rather long process, especially when there are many points and many generated
possible dates. There are no inputs to this background process, and it first deletes
tickets that are outdated and consume extra space in the table and starts the tickets
search from tomorrow’s date.

4.3.5 Main application service

Main application service is a main entry point to the trip planning platform. It is
written in Flask and there such main endpoints /, /sign_up, /sign_in, /sign_out and
/search. From / application starts and redirects to the home page from where the
user can register and log in to the system. When the user is redirected to /sign_up
and fills out the form, the main service sends POST request to Sign Up service,
respectively when the user is redirected to /sign_in endpoint and fills out the form,
there is send POST request to Sign In service. When the user is logged in, he is
automatically redirected to /search, where he can start searching for optimal trip
plans by submitting his request through the form. All submitted values are sent to
Search service for further processing, and when it is done, optimal paths are sent
back to the main service, which outputs these results to the user.

4.3.6 Motivation of built architecture and chosen framework

In building the platform architecture was chosen microservices approach. One main
service communicates with three others through HTTP POST requests. One of the
main reasons for choosing such an approach is that all microservices are indepen-
dent and do not affect the work of others. In addition to that, it is easier to scale
services separately, and fault tolerance together with data security are improved. If
one of the services fails, other application parts will continue working.

For building the main service and other microservices was chosen Python Flask
framework for a few reasons. First of all, it is easy to use and flexible. It is suitable
for making the first version of the system and using Flask it is not hard to debug
failures using its built-in debugger. In addition to that, this framework has a great
scaling possibility and can process many requests at the same time.

4.4 Data model

Two databases are created to save users’ and tickets’ data in the travel platform (fig-
ure 4.4 ). Each of them has its tables with specific fields. In both cases, is used
Postgres database management system to save data.

4.4.1 Users database

Users database consists of users table that contains information about registered
users on the platform. Description of users table fields:

• id - unique id of the user.

• username - name of the user.



Chapter 4. Approach 18

FIGURE 4.4: Data model of the platform

• email - email of the user which must be unique.

• password - encrypted password of the user.

• log_in - boolean value which indicates whether user is logged in to the plat-
form.

• created_at - saves timestamp that identifies user registration time.

• updated_at - saves timestamp which indicates when record was updated last
time.

4.4.2 Tickets database

The tickets database consists of four tables: trips, flights, buses, and city_codes. Data
that is saved in these tables is gotten using Kiwi and Flixbus APIs. The trips table
holds information about possible tickets from one place to another. Description of
trips table fields:

• id - unique id of the trip.

• api_id - unique id of the returned possible trip from the API. Using this id then
can be updated information about the ticket from one place to another.

• transport_type - type of the transport, possible values are flight and bus.

• type - this field describes whether ticket from one place to another is direct or
with stops.

• availability - saves how many tickets are still available on such flight or bus
trip.



Chapter 4. Approach 19

• departure_point - place from where is ticket.

• arrival_point - place to where is ticket.

• price - price of the ticket from one place to another.

• duration - total transportation time from departure to arrival point.

• departure_time - time of departure from departure point.

• arrival_time - time of arrival to arrival point.

• created_at - saves timestamp that identifies addition of the trip record to the
table.

• updated_at - saves timestamp which indicates when record was updated last
time.

Flights and buses tables are meant to save data about transfers from departure
point to arrival. For example, a flight change in Berlin can be performed to get from
Warsaw to Paris. That means there is one stop on the way, and the flight to Paris
consists of two flights. That is why data about all transportation from departure
to arrival point is in separate tables. In addition to that, it is more convenient to
keep flights and bus data separately from each other, but these tables have the same
schema:

• id - unique id of the transportation possibility.

• company_name - name of the carrier.

• departure_point - place from where will be made transportation.

• arrival_point - place to where will be made transportation.

• trip_id - id of the trip from trips table.

• departure_time - time of departure from departure point.

• arrival_time - time of arrival to arrival point.

• created_at - saves timestamp that identifies addition of a certain transportation
information.

• updated_at - saves timestamp which indicates when record was updated last
time.

A background process will clean all outdated data; only appropriate possible
tickets will remain.

The last table that is located in the tickets database is city codes. It contains
information about city names and their codes retrieved from Kiwi API. The reason
for creating such a table is that API calls to Kiwi API are limited, and it is suitable
to save already retrieved data in the table and not to make the same API call. City
codes are used to get flight data from one city to another from Kiwi API.



Chapter 4. Approach 20

4.4.3 Motivation of choosing Postgres

Postgres is a relational database management system that ensures data resilience
and is used to save structured data. In the case of the traveling platform, all gotten
data is structured and can be saved in defined tables. One of the motivations for
using a relational database is that it is easy to perform any changes such as inserts
and updates of records. In addition to that, a relational database is a great choice
when tables have relations between each other, and there should be performed joins
of data. In the tickets’ database trips table is connected to flights and buses tables
through id to get more detailed information about transportation between cities.
Moreover, a relational database supports ACID and ensures that data will be consis-
tent and durable. This is important for saving users’ data because it should not be
lost.

4.5 Math model

To find optimal paths in the platform, there is used Travelling Salesman Problem rep-
resented as a linear integer optimization problem, and to solve it Genetic Algorithm
is used. Here should be solved a typical TSP problem where the user should visit
every city only once with the minimum total cost and get back to the initial point.
But the formulation of the problem itself differs from the classic ones and has more
constraints. Here is an emphasis on minimizing the total price of the tickets together
with transportation time that defines a multi-objective problem but using weights, it
was converted to a single-objective problem. In addition to that, in the platform are
solved numerous such problems depending on the amount of found tickets. After
finding all possible tickets for all possible dates, combinations are made from them,
and created separate TSP problems that are then solved using Genetic Algorithm
minimizing objective function taking into account constraints.

Objective function of the problem is defined as:

min
n

∑
i=1

n

∑
j ̸=i,j=1

wpijxij + wtijxij

where w is a weight of price and transportation time in equation and w = 0.5,
that means that weight of price and transportation time are the same in the problem;
pij - price to get from city i to city j in euros; tij - transportation time to get from city
i to city j in hours;

There are such main constraints that are considered in Travelling Salesman Prob-
lem that should be observed:

xij ∈ {0, 1} i, j = 1, ...., n (1)

n

∑
i=1,i ̸=j

xij = 1 j = 1, ...., n (2)

n

∑
j=1,j ̸=i

xij = 1 i = 1, ...., n (3)



Chapter 4. Approach 21

(1) constraint shows that x can be equal to 0 or to 1, where 1 - path from city i to
city j and 0 - shows that no path between city i to city j; (2) and (3) constraints ensure
that traveler comes to a certain city only ones and departs from it also once

In addition to that, there are defined such additional constraints as the trip should
always start from the departure city and end in this city, in each city must be spent
a certain amount of days as the user of the platform wants, all the dates of tickets
in the planned path should be the unique and total price of the trip has to be less or
equal than maximum possible price.

For now, for problem solving is used Genetic Algorithm. This algorithm is a
metaheuristic algorithm that uses natural selection as a foundation. In the iterations
are modified populations using crossover and mutation processes until the perfect
one is not found that will be greatly evaluated. Crossover makes from two parents
one valid child with a selected modified part, and using mutation it is further mod-
ified by recombination of the selected part. (Talbi, Metaheuristics) All steps in the
algorithm can be defined as follows:

FIGURE 4.5: Genetic algorithm steps

In chapter 2.2 were described three other algorithms suitable for such kind of
problem, namely Simulated Annealing, Tabu Search, and Ant Colony Optimiza-
tion. In the article written by Míča1, “Comparison of metaheuristic methods by
solving travelling salesman problem” Genetic algorithm was also tested and with
fewer nodes it performed well but with more ones solution was inaccurate. But the
motivation for choosing this algorithm to solve the problem of finding an optimal



Chapter 4. Approach 22

path in this thesis is that it is suitable to solve such a problem and is easy to under-
stand. In the platform will be performed search not for a big amount of cities at one
time, that is why this algorithm will be quite enough to solve the problem. This is
somehow a random algorithm so that a solution can be found faster. In the platform
this algorithm is represented using pymoo library in Python, an optimization library
that represents different algorithms for solving optimization problems.

4.6 User Interface

A simple interface of the platform was created to make it usable for users. The design
was created using HTML and CSS.

On the home page, the user can go directly to search after signing up and signing
in to the platform. To go further, there should be clicked search button. (figure 4.6)

To get more information about the platform user can click the About button on
the header. There are described the purpose of this platform and the main bene-
fits.(figure 4.7)

Sign up (figure 4.8) and Sign in (figure 4.9) are represented as forms. Users
should register first, then sign in to be able to search for optimal paths.

After signing in user can search for optimal trip paths. Search is represented as a
form where the user should enter requirements regarding the trip. (figure 4.10, 4.11)
All the inputs are redirected to the main application service and, after that, are sent
to the Search service for processing. There should be sent all the inputs required by
the Search service. On these two figures, 4.10 and 4.11 are also shown sample inputs
in the form.

Figure 4.12 represents the sample output result of optimal path search. It consists
of one main table and n more detailed tables about found paths. The first main ta-
ble represents all found paths with their total price in euros and total transportation
time in hours. Other tables contain information about every optimal path separately
with details about every transportation option, cost, transportation time, carrier, lo-
cal departure time, and local arrival time.

FIGURE 4.6: Home page of the platform



Chapter 4. Approach 23

FIGURE 4.7: About section on the platform

FIGURE 4.8: Sign up page on the platform



Chapter 4. Approach 24

FIGURE 4.9: Sign in page on the platform

FIGURE 4.10: Search page of the platform with example, part 1



Chapter 4. Approach 25

FIGURE 4.11: Search page of the platform with example, part 2

FIGURE 4.12: Sample result of the optimal path search



Chapter 4. Approach 26

4.7 AWS architecture of the platform

Infrastructure as a Code approach to deploy application on Amazon Web Services
was used to make the platform available for users. Amazon Web Services is a cloud
computing platform (AWS documentation) that can be used for hosting websites and
has many tools to choose from. All the architecture launched on AWS was written
using Terraform (Terraform documentation) - Infrastructure as a Code tool.

For hosting microservices of the platform was chosen Elastic Container Service
- container orchestration tool using which can be created services that run tasks iso-
lated from each other. In task definitions are defined Docker images that should
start running as containers on task launch. One of the advantages of this service is
that it provides a serverless mode of task running, and there is no need to manage
used servers. In addition to that, when tasks are deployed as services, they can be
automatically relaunched in case of failure inside the Docker container.

To run platform services on AWS ECS, there were created five separate reposito-
ries in AWS Elastic Container Registry for main, sign up, sign in, search services
and background process for inserting and updating tickets data to save their Docker
images. The Elastic Container Registry service is used to store and manage Docker
images. All repositories for the platform were created using Terraform, and only the
push of images was performed manually.

All microservices are deployed inside one Virtual Private Cloud - an isolated
section on AWS that can be interpreted as an isolated virtual network. This is used
to make an application more secure and save it isolated. In addition, every microser-
vice has its own security group - a firewall that controls all incoming and outcoming
traffic by defined rules. Separate security groups were created to provide excellent
security for every microservice. In addition, all platform services have their own
load balancers to provide resource distribution between microservices instances and
greater availability and performance. Every load balancer has its security group
with provided inbound and outbound traffic rules.

For deploying Postgres servers to save application data was chosen Relational
Database Service with Postgres engine. The reason for using Relational Database
Service is that it provides a more straightforward setup and operation of databases
used in the platform.

Figure 4.13 shows AWS architecture in detail.

4.7.1 Motivation of choosing AWS and Terraform

The main motivation for choosing AWS is that this cloud computing provider is
great for website hosting as it can provide high availability and scalability. In ad-
dition to that, many different services can be used to build an infrastructure and
provide excellent performance and security.

The motivation for choosing Terraform as infrastructure as a code tool is that it
provides the possibility to provision AWS resources and is easy to use. Using one
command all the architecture can be deployed in one click. Moreover, deleting and
updating already created resources is easy as the entire state is remembered in the
Terraform state file.



Chapter 4. Approach 27

FIGURE 4.13: Platform architecture on AWS



28

Chapter 5

Experiments and Results

This chapter describes experiments performed on the developed platform using dif-
ferent search criteria and testing on real users.

5.1 Testing different search criteria on platform

Several experiments were conducted to check how well ticket filtering and optimal
path search work on the platform.

1. Search for the trip plan from Lviv to specific destinations.

After performing such an experiment, it was found that the search from Lviv
is poorly performing as for now there are available only buses from this point,
and not to all locations are buses from Lviv. But in general it is possible to find
paths from Lviv to other cities.

2. Check the performance of the search part for different amounts of destinations
from 2 to 10 cities.

After checking the different amount of destinations to go to, there was inves-
tigated that when the amount of cities grows, the computation time also in-
creases. Starting from 4 cities the user wants to visit as particular destinations,
the computation speed starts to be very bad, and the user should wait a long
time to get the results. This happens because the search service works on load-
ing a significant amount of data from API and works on solving all the possible
combinations of optimization problems. Starting from 5 or more destinations,
it is almost impossible to wait all the time for the results.

3. Check the performance of the search part for the different number of days to
stay in other cities.

There was found that when there are many cities to visit for 1 or 2 days, perfor-
mance worsens as there are many date combinations on which these cities can
be visited. Because of that, there is performed a long search for tickets, together
with solutions of optimization problems. But the search performs rather well
when the number of days to spend in different cities correlates from 4, and the
number of destinations is not so big.

4. Check the search for close dates and those in the distant future.

Search for close dates performs poorly as no places on buses and flights can
be available, but it differs significantly from dates and destinations. As for
the search for a distant feature, it performs rather well, and tickets are mostly
found, but it all depends on search parameters.



Chapter 5. Experiments and Results 29

5. Check for different price limits.

There were checked different price limits. When using a price limit of 1000,
there is a more significant possibility of finding more diverse optimal paths.
But in general, it is often possible to find optimal paths with a total price less
and equal to 300. Everything depends solely on the entered destinations.

6. Check for the possibility of traveling only using direct transportation and with
a transfer change.

After performing experiments, it was found that there are possibilities to travel
with transfer changes as well as using direct transportation. The amount of
such found paths depends on entered destinations, dates, and price limits.
In most cases, the direct transportation is more expensive than with transfer
changes.

7. Check different transportation options: flight, bus, and both.

These three transportation options were checked, and for all of them search
part performed relatively well. But everything also depends on the entered
parameters, and paths can occasionally not be found.

8. Check of work of certain airlines exclude.

Excluding certain airlines works rather well, and airlines with which users do
not want to travel are excluded. The ones that were entered were not present
in the results. But when the airline is incorrectly entered, it does not work
correctly.

After performing experiments, conclusions about the general work of the opti-
mal paths search were made. First of all, when finding the optimal trip plan for a
larger number of destinations, the work speed gets worse a lot because there should
be found a lot of tickets and many combinations of optimization problems that
should be solved. In addition, when choosing many destinations together with a
small number of days to spend there as 1 or 2, there will be even more possible com-
binations because there are many potential dates to travel. However, when some
tickets are saved in the database, the work of the search part slightly improves, and
also when there are a small number of destinations in the search. But in the general
search part works rather well and finds optimal paths, although it works for quite a
long time. In addition to that, all the results depend on the entered parameters, and
the user should be attentive when entering them.

5.2 Testing on real users

Platform testing was performed on real users, and all the feedback was gathered
anonymously through Google Forms. There was gathered feedback from 28 users.

Testing was performed on the age category from 19 to 30, and a few answers
were gathered from the 30+ age category. An important thing to mention is that the
target audience was chosen primarily people interested in traveling and who have
experience using popular applications for trip planning. The purpose of choosing
such a people category is to get real feedback on the usefulness of this platform and
things that can be improved. The age distribution is shown in more detail in the
figure 5.1.

The Google form for feedback consisted of a few questions, and a detailed anal-
ysis of the answers will be made here.



Chapter 5. Experiments and Results 30

FIGURE 5.1: Diagram of age of real users

The first question was whether this trip planning application is helpful in trip
planning, and suggested answers consisted of evaluation from 1 to 5: 1 - it is not
useful at all, 5 - it is beneficial. This diagram 5.2 shows that this application can be
useful in trip planning for most users that tested the platform.

FIGURE 5.2: Evaluation of usefulness of this platform

Another three questions aimed to get feedback on separate parts of the appli-
cation, namely Sign Up, Sign In, and Search from a user experience perspective.
Answer choices consisted of evaluation from 1 to 5: 1 - particular application part
works poorly, 5 - rather excellent. The figure 5.3 shows the results of the review
of the Sign Up service that most users rated as 4. In general, from all the answers
can be concluded that it works rather well, but for some real users, it did not work
satisfactorily.

FIGURE 5.3: Evaluation of Sign Up part



Chapter 5. Experiments and Results 31

In the figure 5.4 are described results of the evaluation of Sign In service that as
Sign Up is mainly rated as 4. It can be concluded that it worked well for most users
that tested the platform.

FIGURE 5.4: Evaluation of Sign In part

Evaluation of the Search part in the figure 5.5 shows that users’ opinions some-
what differ, but most are rated as 3, 4, and 5. For four users that rated it as 1 and 2
search part worked rather badly. This means that the work of this part of the appli-
cation should be reviewed and improved.

FIGURE 5.5: Evaluation of Search part

The next question was to rate the platform’s speed from 1 to 5: 1 - speed is awful,
and 5 - speed is rather great. The figure 5.6 shows results that can be interpreted as
the speed of the application work is not so bad, but it is not also great. For some users
speed is critical, and at the same time, for others is normal to wait for a generated
path for some time.

FIGURE 5.6: Evaluation of application’s speed



Chapter 5. Experiments and Results 32

In addition to all those questions, there was a question to evaluate the user in-
terface from 1 to 5: 1 - the user interface is terrible, 5 - looks rather excellent. In
the figure 5.7 are shown results that indicate that most users like the simple user
interface developed. Most rated it as 4 and 5.

FIGURE 5.7: Evaluation of UI

The last important question with multiple choice represented for users was whether
they would like to use this application. It is a major one because answers can show
whether there exist potential users for such a product. In the figure 5.8 are shown
that there are no negative answers. Sixty percent of users wish to use this platform,
thirty percent will maybe use it, and seven percent are more inclined to use this
application.

FIGURE 5.8: Possible usage of application

Moreover, there were two descriptive questions. The first one compares this plat-
form with similar ones, such as Skyscanner, Kiwi, Rome2rio, etc. The users’ answers
differ, but some similar thoughts were found. First of all, some users liked that there
are more filters that can help generate the trip they want to, and all nuances are taken
into account. In addition to that, users liked the possibility of getting bus options in
optimal path results. Some answers described the great design and straightforward
flow of the application.

The second question covers things that users like and do not like in the applica-
tion. The answer to it was not mandatory, but mostly all users wrote their feedback.
Most of them liked the idea behind the application and the possibility of building
complex trips. As for things that users do not like is the UI of the search part because
not for all it was apparent, and also, there were no appropriate error messages about
what parameter was entered incorrectly. Some users had problems in receiving re-
sults after tries of different search parameters. In addition to that, users complained
about the relatively long time spent waiting for optimal path results. One more



Chapter 5. Experiments and Results 33

thing: there was advice on what can be improved in other parts of the application
from the user experience perspective.

In general, there can be concluded that most users like the idea of such an ap-
plication, but there are some nuances in the work, and many things can still be im-
proved. All the feedback was considered, and some drawbacks were already fixed,
namely more deep descriptions of the fields to enter and better results output.



34

Chapter 6

Conclusions

6.1 Result Summary

In this thesis work were reached all the goals set at the beginning, especially the main
aim to design and develop platform architecture. First of all, there were reviewed
related works and algorithms that can be used to solve optimization problems. There
was implemented microservices system with defined architecture, data, and math
model. In addition to that, a simple UI was developed for possible user usage. The
application was hosted on Amazon Web Services using its services with a defined
infrastructure. The developed platform allows users to search for optimal trip plans
with a simple user interface. Users can register on the application, log in, search for
optimal trip plans using specific requirements, and get results.

After completing all these steps, several experiments were performed to test the
system’s work. These experiments showed that in the general system works and
gives path results back, but some things can be improved, especially work speed. In
addition, testing on real users showed that the application idea is rather great, but
more deep improvements of the search service should be made.

6.2 Future improvements and work

After performing experiments on the platform and testing on real users, it was found
that improving the system’s operation is necessary. There should be made such
future work and improvements:

• Work on increasing search part speed, improving the data load from carriers
together with an algorithm that solves optimization problems faster.

• More deep exploration of algorithms for solving optimization problems for
getting better results.

• Development of better error handling on the whole platform.

• Improvement of UI to make the search part more convenient for users.

• Addition of more bus providers and integration of train ones.

• Implementation of features related to the profile as the possibility of saving
optimal trip plans.



35

Bibliography

Airlines, Airport, and Flight Routes datasets. https://www.kaggle.com/datasets/
elmoallistair/airlines-airport-and-routes?select=airlines.csv.

AWS documentation. https://docs.aws.amazon.com/.
Flixbus API Reference. https://rapidapi.com/tipsters/api/flixbus/details.
Kiwi API provided by Tequila Reference. https://tequila.kiwi.com/portal/docs/

tequila_api/search_api.
Kiwi website. https://www.kiwi.com/.
Marek Antosiewicz Grzegorz Koloch, Bogumił Kamiński. “Choice of best possible

metaheuristic algorithm for the travelling salesman problem with limited com-
putational time: quality, uncertainty and speed”. In: Journal of Theoretical and Ap-
plied Computer Science 7.1 (2013), pp. 46–55.

Míča1, Ondřej. “Comparison of metaheuristic methods by solving travelling sales-
man problem”. In: The International Scientific Conference INPROFORUM 2015 (2015).

Omio website. https://www.omio.com/.
Rome2Rio website. https://www.rome2rio.com/.
Skyscanner website. https://www.skyscanner.com/.
Talbi, El-Ghazali. Metaheuristics. Wiley, 2009.
Terraform documentation. https://developer.hashicorp.com/terraform/docs.

https://www.kaggle.com/datasets/elmoallistair/airlines-airport-and-routes?select=airlines.csv
https://www.kaggle.com/datasets/elmoallistair/airlines-airport-and-routes?select=airlines.csv
https://docs.aws.amazon.com/
https://rapidapi.com/tipsters/api/flixbus/details
https://tequila.kiwi.com/portal/docs/tequila_api/search_api
https://tequila.kiwi.com/portal/docs/tequila_api/search_api
https://www.kiwi.com/
https://www.omio.com/
https://www.rome2rio.com/
https://www.skyscanner.com/
https://developer.hashicorp.com/terraform/docs

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goal

	Related Works
	Trip planning applications
	Skyscanner
	Kiwi
	Omio
	Rome2rio
	Conclusions regarding existing applications

	Algorithms for solving Travelling Salesman Problem
	Simulated Annealing
	Tabu Search
	Ant colony optimization


	Data
	Kiwi API
	Flixbus API
	Additional Data

	Approach
	Functional and non-functional requirements for the platform
	Architecture overview
	Microservices model
	Sign Up service
	Sign In service
	Search service
	Insert Update Tickets background process
	Main application service
	Motivation of built architecture and chosen framework

	Data model
	Users database
	Tickets database
	Motivation of choosing Postgres

	Math model
	User Interface
	AWS architecture of the platform
	Motivation of choosing AWS and Terraform


	Experiments and Results
	Testing different search criteria on platform
	Testing on real users

	Conclusions
	Result Summary
	Future improvements and work

	Bibliography

