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Abstract

Salient object detection is the process of finding the most visually catching objects
in the image. This can be very beneficial to outline the region of interest and use
that information for further image processing. In this paper, we review the most
common approaches to this problem and propose a simple approach that strives to
be compact and efficient. Since most SOTA solutions achieve their accuracy by sac-
rificing computational efficiency, they are not suitable for limited resources. We test
an approach that achieves comparative results on much smaller UNet and Unet++
models.
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Chapter 1

Introduction

1.1 Context

In recent years, salient object detection has seen great improvement in research.
Given the fact that we produce images and videos every day, it can often be ben-
eficial to know the parts of them the viewer finds most entertaining or important.
This task is not new, but thanks to the rise in deep learning networks creation and
use, the proposed ways to solve it have drastically changed throughout the years.
Earlier methods tried their best to utilize window feature extraction [39, 40, 8, 34,
24], be it through pixel contrast, key-points or edge detection, or relative pixel in-
tensity. Today, convolutional neural networks [31, 27, 21] manage to extract much
deeper features and find multiple salient objects even in extremely visually crowded
environments.

Nowadays, finding visually attentive regions is a pre-processing step for many
other computer vision tasks. Saliency segmentation is used in automated image
cropping [4], object re-identification [32], content-aware image compression [56, 3],
robot navigation [9] and utilized in such tasks as image classification, object detec-
tion and semantic segmentation. The knowledge about a person or an object that is
captured on camera can help save resources in many possible ways. Compressing
the less salient regions of images to save space, detecting a potential distraction ob-
ject in view while driving a car, changing the direction of the camera by tracking the
most interesting objects in the frame can all benefit from computers learning what
catches our eye. Thanks to the many applications saliency segmentation has, the
research continues.

1.2 Motivation

One of the aspects that still need improvement is the ability of a model to be
precise even with little computing, memory and time resources. Embedded devices
need to have a solution that does not lack in efficiency but requires little memory,
especially considering that saliency detection is often only a pre-processing step be-
fore another computation happens. Most SOTA approaches result in a model that is
100 mb or bigger, and achieve great accuracy by sacrificing speed and utilizing high
resource machines.

That is why we wanted to experiment with utilising known backbones such as
MobileNet [36] and EfficientNet[38] and proven architectures such as U-Net [33] and
U-Net++ [55] to create a solution that can compete with SOTA models while also
being compact. U-Net architectures have shown amazing results in medical image
segmentation by capturing both global context and local details through the use of
an encoder-decoder architecture. For the encoder, we chose EffiicentNet, which is
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a compact convolutional network that achieves great results on transfer learning
datasets, and MobileNet, which is a mobile architecture with a custom module that
brings SOTA performance to models for limited resource devices.

1.3 Goal

1. Provide an overview of methods used for salient object detection.
2. Find a compact and accurate solution for low-memory devices that need to

leverage the results of saliency segmentation models. The model has to be able to
extract both high-level features and pixel-wise information.

3. For this, we will experiment on a convolutional neural network with an
encoder-decoder architecture. The encoder will be a compact backbone network,
pre-trained on [10] for image classification.

1.4 Approach

In this experiment, we will use an encoder-decoder network architecture with
skip connections, created for semantic segmentation. Such a network manages to
capture both local and global features of the image and has proven to be successful
in medical image segmentation [33] as well as general semantic segmentation tasks.
The networks we will use are U-Net [33] and U-Net++ [55], an improvement based
on U-Net, with redesigned dense skip connections.

Two small backbones, MobileNetV2 [36] and EfficientNet-lite [38], pre-trained on
ImageNet, will be used as encoders. Both backbones were created with mobile/IoT
devices in mind, EfficientNet-lite being an optimization of the original EfficientNet
architecture.

The dataset we will use for training is a 10,553 images DUTS-TR [41] dataset
with simple augmentations, and for testing, we will use its 5,019 image companion,
DUTS-TE, as well as HKU-IS, DUT-OMRON, PASCAL-S and ECSSD. We will com-
pare the model with SOTA approaches using three most common evaluation metrics
- max F-measure, MAE and S-measure.

1.5 Thesis Structure

Chapter 2: Background
Here we give a the general idea of neural networks and how they work. We

also give a description of convolutional neural networks and an encoder-decoder
architecture that we use for salient object segmentation.

Chapter 3: Related works
Here we give a brief summary of methods used to detect saliency in the past and

SOTA approaches that aim to detect salient objects today.
Chapter 4: Methodologies
Here we outline the architectures we use to solve the task of fast and compact

salient object segmentation. Also, we describe the losses used to train the network.
Chapter 5: Experiments
Here we describe the evaluation metrics, implementation details of the solution

and our results compared to SOTA approaches.
Chapter 6: Conclusions
Here we make conclusions based on the results and talk about future work.
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Chapter 2

Background

In order to turn an RGB image into a binary representation of salient and non-
salient regions or objects in the image and in order to do it fast, we can use a CNN
Encoder-Decoder network. Let’s discuss the main concepts that go into it.

2.1 Neural Networks

FIGURE 2.1: An example of an artificial neural network

A neural network is a layered system of computations performed on some input.
It outputs data that represents an answer to the question the system is trained to
solve. Originally, it was inspired by the biological neural networks present in the
brain, hence the name. The first layer is the input layer, then come one or more
hidden layers that consecutively perform operations on said input, transforming it
along the way, and lastly goes output layer that combines information from the last
hidden layer into a solution.

Hidden layers consist of nodes, or neurons; each node collects weighted inputs
from the nodes of the previous layer, sums them up, adds a certain bias and uses
an activation function to add non-linearity to the system. The activation function
and the weights that are assigned to the inputs influence the strength of the signal
that the neuron sends further along the network. Thus, the weights represent the
importance of the inputs and the neuron connection they travel along. By finding
the most optimal weights, the system can leverage complex patterns or parts of the
input to make correct predictions from the given data.

The process of doing so is what constitutes training the network, and it is done by
minimizing the difference between the prediction and the ground truth - the error.
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The error, calculated using a so-called loss function, is then back propagated through
the network layers to update the weights in an attempt to get a smaller error on the
next try.

Figure 2.1 shows a four-layer neural network. The layers are fully-connected,
meaning each node from the previous layer sends its output to each node of the
next. Other types of layers that are present in more complex networks include con-
volution, de-convolution, recurrent, pooling and batch normalization. Convolution
layers are commonly used in networks designed for computer vision tasks.

2.2 Convolutional Neural Networks

CNNs are a type of networks that work efficiently with structured data such as
images. Their main feature is a convolution layer, which employs a filter, a matrix of
weights that is applied to each two-dimensional image channel (or any other grid-
like input structure) using a sliding window approach. The dot product between the
weight matrix and a local part of the input is calculated for each possible square of
input features of the same size as the filter. The size of the square, the stride with
which the matrix moves across the input grid, the padding around the image border
and the amount of filters used are set up manually, while the entries of the filter
matrices are optimized during the training. After a filter is run across the image, an
activation map (or feature map) is created as a result, and an activation function is
applied to the map to introduce non-linearity.

Non-linearity is needed in all neural networks since linear functions are limited
in the range of input data they can find a distinct output for. Without activation
functions, a neural network could potentially be reduced to a simple vector product
with an added bias, which is not complex enough of a function for the problems
neural networks solve today.

FIGURE 2.2: An example of convolution layer. Input gets processed
by 5 separate filters, which allows to extract 5 different features of the

same image

As shown in figure 2.2, more filters create more dimensions of data, which can
heavily increase the amount of data the network has to process. Thankfully, the
process of convolution down-samples the image, due to the nature of dot product
operation, and making the stride bigger can also help condense the image data into a
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much smaller representation. As seen in figure 2.3, nine entries from previous layer
are combined into one in the next, but the amount of dimensions was multiplied by
four.

The main idea behind this process is that the filters of the first layer can learn to
look for small local features like edges, colors or lines, and each new convolution
layer will receive more condensed information about the image parts due to down-
sampling, so the last layers will be able to extract much more complex patterns, since
they will receive more high-level information.

One major benefit of this approach on images is that for each feature extracting
filter, one weight matrix is used across all local image regions, so the amount of
parameters to be learned does not depend on the size of the image, which is not
the case with previously mentioned fully-connected layers. This is called partial
connectivity, or local connectivity, and usually in a convolutional network, a fully
connected layer comes after one or more convolutions to bring the local information
together and form the output.

FIGURE 2.3: An example of a convolution layer. A feature window of
fixed size from one dimension is transformed using four kernel func-
tions into four dimensions of down-sampled features, image from

[16]

2.3 Encoder-Decoder Network for Semantic Segmentation

Apart from convolution layers, CNNs and other types of networks use a pooling
layer, which is used to down-sample the image. A common pooling technique is max
pooling, where a max value is taken from each 2x2 or 3x3 square of the input layer
to summarize the presence of features. This layer, along with a down-sampling con-
volution, allow CNNs to achieve deep learning, as they allow for creation of many
dimensions, each of which brings out a new feature from the image. Convolutional
neural networks perform great on many computer vision tasks, including image
classification, image segmentation, object detection and recognition.

However, in case of image segmentation, the output has to answer two questions
at once: what is present in the image and which pixels contain said object or objects.
For this to be possible, we need to up-sample the output of convolution layers back
to a feature map that can represent the image and show us where the objects are.
This is where an Encoder-Decoder CNN proves to be efficient.

Figure 2.4 shows an example of an encoder-decoder network - U-Net, which we
use in our experiments. U-Net can also be considered a so-called fully convolutional
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FIGURE 2.4: Architecture of U-Net

network, since it is made up of convolution layers, but does not have a fully con-
nected layer unlike other CNNs. The lack of this layer also allows the network to
work with any size of input images. U-Net architecture is revisited in Chapter 4:
Methodologies.

An encoder-decoder network can be divided into two virtually symmetrical parts:
a contracting side, that consists of convolution and down-sampling layers that ex-
tract high level features of the image, and an expansion side where the output of the
contracting side is up-sampled back to a segmentation binary mask of the input im-
age. A highly dimensional vector that the encoder outputs is shrunk in dimensions,
but given back the grid-like structure of local features. Thus, the training process
now consists of optimizing matrix weights in filters that extract features in the en-
coder as well as those that try to up-sample those features in the decoder.



7

Chapter 3

Related works

There are numerous works on saliency-based image segmentation and object de-
tection. Before the deep neural networks gained their popularity, researchers mostly
used hand-crafted features to detect salient regions of the image. Today, on the other
hand, quite a few deep learning models have been created for this task, and many
more have been utilized for it as well.

Two most used types of data are collected eye-fixations that create blob-like
salient regions on the image, and binary segmentation masks, where the subject
decides what is the salient object in the image before him. Both of these can give
us valuable information about the human visual attention, although it will not be
completely similar. The approaches that use these two distinct data types have usu-
ally little overlap, with segmentation masks’ based ones gaining popularity because
of their ability to be helpful in many further important applications, such as object
recognition, object detection, image segmentation. Overall, one can distinguish be-
tween two approaches to detecting saliency: bottom-up and top-down.

3.1 Bottom-up techniques

Bottom-up techniques get their motivation from the idea that human visual at-
tention has a bottom-up stage: we first notice rare, surprising, striking parts of the
image at the very detailed level. Using this idea, they try to start from the low-level
image qualities, get some saliency measurement of separate pixels or small regions
based on those qualities, and later use normalized pixel-wise saliency levels to de-
termine the highest ones by some non-linear operations. Qualities that are used in
these techniques include contrast (local or global), intensity, motion, edges and oth-
ers. Also, center bias or image boundary prior [50] were used: center is often con-
sidered more likely to have an object, and the boundary very unlikely. This is very
clearly not the case for many images and thus is not efficient to use today. Similarly,
a background prior used in [46] utilizes a rather limited assumption that regions
from background, or non-salient area, are closer in distance to each other than to a
region in the salient object area.

Some examples of past approaches include one with a histogram-based con-
trast and a center bias [8], one that computes local saliency levels on random image
patches and utilizes color space similar to human psycho-visual space and pixel in-
tensity values [39], and a simple edge density method [34]. These and others are all
generally fast, often due to them making shortcuts, and do not require any trained
base. Their results usually are more resembling of eye-fixation data blobs than full
segmented objects.
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3.2 Top-down techniques

Apart from data-driven methods that relied on bottom-up attention, or attention
based on visual stimuli, some also tried to predict attention with prior knowledge
[28], which can be classified as top-down. Bottom-up methods can easily have false
predictions due to the fact that they do not know what they are looking for, rather
expect to find what the person is subconsciously aiming to look at. A more targeted
approach is to make the model look for some object of interest. Here, [52] a con-
ditional random field together with a learning approach is used to detect regions
containing a target object, taken from a dictionary of visual words.

3.3 CNN architectures

With the introduction of convolutional neural networks, saliency segmentation
became much more efficient, since they allowed to fuse bottom-up features and
high-level information about the object that is in the image, thus both getting rid
of many false predictions caused by cluttered backgrounds or low contrast and sur-
passing a simpler top-down approach.

First, fully convolutional network (FCN) was largely utilized for SOD, but since
its output is a small high-level feature map, because it is achieved by multiple con-
volutions and pooling layers, it is hard to generate a prediction with fine boundaries
out of it. Trying to fuse this output with hand-crafted low-level features, computed
separately, was far from efficient. Thus, multi-scale feature extraction was intro-
duced. The next step was to correctly communicate the features between the levels,
since they are complementary to each other. Deep high-level features can tell us
about the location of the most important abstract areas (giving context), and low-
level features preserve edge and structural information, giving detailed clues that
are present in both the salient objects and the cluttered backgrounds, so the high-
level feature helps to choose where to look.

In [13], they create short connections that pass information from deep feature
maps to the shallow ones, providing them with context. However, the context is also
present on multiple scales, and the low-level details should also reach the deep lay-
ers. To transmit the two-side information between the high-level and the low-level
layers and make sure that the information transmitted is useful, A bi-directional
message passing model was created by [53].

Recurrent networks have also been utilized, either to perform refinement on se-
lected image patches [17] using spatial transformer and recurrent network units, to
transfer global semantic information from the deep to shallow levels by multi-path
recurrent connections [54], or to utilize a saliency prior map in learning and itera-
tively correct false predictions[42].

Refinement modules or strategies which aim to create more accurate boundaries
of the object were also highly researched [14, 22, 43]. A recent example, BASNet
[30], adds a residual refinement module to a deeply supervised encoder-decoder
architecture to go from a coarse to a fine overall prediction, and proposes a hybrid
loss consisting of IOU, Binary Cross Entropy and SSIM [44] losses.

After the success of U-Net, encoder-decoder model used to segment medical im-
ages, encoder-decoder frameworks were used in salient object detection as a way to
efficiently extract multi-level features, with skip connections that add low-level fea-
tures to the high-level outputs. A cascaded partial decoder was proposed [47] with
an assumption that the most low-level features are not important enough to sacrifice
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computational resources on, since the important info such as edges still remain in
their higher-level representations. Thus, the decoder only takes those higher-level
features into account, still remaining accuracy, but decreasing the resolution of the
inputs of decoder layers.

Another development over U-Net is U2Net [31], a model that uses a nested U-
Net like architecture composed of custom RSU blocks in order to remove the need
for pre-trained backbones. They propose a Residual U-block (RSU) that contains in
itself an encoder-decoder module that extracts multi-scale features and is fused with
a local feature, compared to convolution layers that constitute original U-Net blocks.

A recent research proposes an architecture called TRACER[18], which makes use
of a weighted loss that discriminates the object edges. Their approach consists of
three parts: masked edge attention module (MEAM), union attention module and
object attention module. It includes a four block encoder with EfficientNet backbone
and a decoder. Edge detection is done in the MEAM using the output of the first
convolution layer in an encoder architecture and applying Fast Fourier Transform
to get the explicit object boundary. The union module integrates three remaining
encoder blocks to detect the more important context from both channel and spatial
representations of the image. The object attention module extracts the object and
its complementary edge information. This approach significantly outperforms pre-
vious SOTA approaches both in accuracy, as measured by currently used metrics,
and computational efficiency, since it removes a lot of redundant information and
computations.
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Chapter 4

Methodologies

4.1 Segmentation models

As mentioned in the Background chapter, we use an encoder-decoder architec-
ture for salient object segmentation.

4.1.1 U-Net

U-Net is a fully convolutional model proposed by Ronneberger, P.Fischer, and
Brox [33] for segmentation of 2D medical images including segmentation of neu-
ronal structures in EM stacks and cell segmentation in light microscopy images.
U-Net draws inspiration from FCN [23], a network that introduced a convolution
architecture with a pixel-to-pixel prediction for image segmentation. After its intro-
duction in 2015, U-Net was used extensively for semantic segmentation in general
and many architectures build upon it, including U-Net++, Vnet [26], U2Net [31] and
more.

U-Net is composed of an encoder and decoder with skip connections between
them for saving low-level features of the image that would otherwise turn abstract
during down sampling. Encoder is a contracting side that down samples the image
to get the high level features. In order to turn the high level features back into a
pixel mask that will be able to show the location of the salient objects, the decoder
side up samples the output of the encoder. Up sampling doubles the size of each
feature channel and halves the number of channels. To make sure that more fine-
grained features get to the up sampled result, the output of each down sampling
convolution step in the encoder gets concatenated to upsampled feature maps in the
decoder (Figure 2.4). After each concatenation, two convolution layers are applied
to help concatenated data merge better with up sampled data, and the number of
channels is halved. This way the contracting and expanding side become virtually
symmetrical.

U-Net was created with dataset constraints in mind, since medical images often
were and still are hard to collect and take a long time to get access to, so they heavily
augmented the data with the use of elastic deformations.

4.1.2 U-Net++

In 2018, Z. Zhou, et al [55] introduced U-Net++, a model based on U-Net that
tries to achieve semantic closeness between the feature maps from the encoder and
the decoder before they are fused together using skip connections. It does this by
putting dense convolution blocks on the path of the encoder feature maps. As shown
in 6.1, each up sampled feature map in the decoder receives both features from its
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level in the encoder that go through a series of dense convolutions and up sam-
pled features from all down sampled maps that go after the corresponding encoder
feature map. The up sampled features are concatenated before each consecutive
convolution layer. U-Net++ shows an improvement in IOU metric on four different
medical image segmentation datasets and problems.

FIGURE 4.1: Architecture of U-Net++

4.2 Encoders

As a building block for the encoder part of the model, we use a pre-trained back-
bone. Pre-training the weights on ImageNet dataset helps to speed up the training
process a lot, and using a feature extractor suited for mobile devices instead of orig-
inal U-Net encoder modules should give us compact model size while simultane-
ously giving better accuracy. Thus, we will try MobileNetV2 and EfficientNet, two
architectures that promise these things.

4.2.1 MobileNetV2

MobileNetV2 is a feature extracting architecture designed for mobile devices. It
uses depth-wise separable convolution instead of standard convolution, lowering
the computational cost 8 or 9 times without strong accuracy loss. The main feature
of the architecture is an inverted residual block with linear bottleneck, which maps
a low dimensional input into low-dimensional feature map, with depth-wise convo-
lution performed on an expanded input in the block.

4.2.2 EfficientNet

EfficientNet model family was created by Mingxing Tan and Quoc V. Le [38]
as part of research on model scaling. They wanted to achieve efficient scaling of
all three network dimensions - depth, width and image resolution. The authors pro-
posed a compound scaling method that takes in a coefficient specifying the resources
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available for use and selects coefficients for uniform scaling. By using these coeffi-
cients, you get the benefits of all three dimensions being scaled up or down. They
also use their scaling method on MobileNet and others to show an improvement in
efficiency. As for the baseline network which was used to show the effects of their
scaling method, they used Neural Architecture Search to get the best results on both
accuracy and FLOPS and the resulting architecture EfficientNet-B0 was born. Ef-
ficientNet also consists of MBConv blocks, which are an upgrade on the inverted
residual block used in MobileNet.

4.3 Loss

During training and validation, we use a combination of losses adopted by [30].
At the validation step, this loss combination determines the efficiency and is used to
tune the learning rate and perform early stopping when the loss stops decreasing.

4.3.1 Binary Cross Entropy

BCE, or log loss, is widely used for binary segmentation and is defined as

lbce = −
H,W

∑
r,c

[G(r, c)log(S(r, c)) + (1− G(r, c))log(1− S(r, c))]

Here, r and c are indexes along the image height and width, G(r,c) is the ground
truth label of the pixel and S(r,c) is the label of it on the predicted saliency map. This
is a pixel-wise loss, treating both background and salient object predictions equally
across the image.

4.3.2 Jaccard / IoU

Jaccard, or IOU loss is often used for training as well. It is a measure of similarity
between two sets of points. Since in our case we need to compare ground truth
points and the saliency probabilities, we use a soft IOU loss version defined in [25]
as

lso f tiou = 1− ∑H,W
r,c S(r, c)G(r, c)

∑H,W
r,c [S(r, c) + G(r, c)− S(r, c)G(r, c)]

4.3.3 L1 Loss

L1 loss measures the accuracy by summing all the absolute differences between
the ground-truth and predicted values.

L1loss =
n

∑
i=1
|ytrue − ypredicted|

4.3.4 SSIM

Structural Similarity Measurement was introduced in [44] for image quality as-
sessment, based on the assumption that since human vision is adapted to extract
structure from what they observe, one can say that an image with a good structure
is of high quality. By comparing an image with a distorted version of it using struc-
tural similarity, they assess the quality of the latter.
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This measure was successfully used by [30] with BASNet for patch-level loss
evaluation of salient object detection. The loss tries to capture structural similarity
of the ground-truth mask and the predicted mask. The structure similarity of a patch
of an image can be defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

Here, µx, µy and σx, σy are the mean and variance of x (a patch from the ground
truth mask) and y (patch from prediction map), σ(xy) is covariance, C1 = 0.012 and
C2 = 0.032. The universal image quality index suggests they be 0, so these values
help avoid unstable results in the denominator. The formula compares luminance,
contrast and structure of the image, since mux and σx can be interpreted as the lu-
minance and contrast of x, respectively, and the covariance of ground truth patch
and predicted patch measures the tendency of them to vary together, thus measures
structural similarity.

This formula is applied in a sliding window approach across the image, then the
mean is calculated and used as a structure similarity assessment (or image quality, in
the image quality assessment problem). We use this formula as a loss by subtracting
the mean from 1.



14

Chapter 5

Datasets

5.1 Eye-fixations vs segmented objects/areas

There are numerous datasets created for saliency segmentation or salient object
detection. As earlier methods focused more on salient pixels or regions, earlier
datasets collected human eye-tracking information [15] as well as mouse tracking
that tries to emulate human viewing behaviour[14]. They usually contained a cou-
ple hundred or thousand images, with 5-10 respondents whose eye attention was
being tracked. A big problem with eye-tracker information is center bias [20], where
human gaze is often thought to be biased towards the center of the image, which
creates false points if there are no salient objects there. This problem does not dis-
appear completely even with other dataset types, since photographers typically put
the object to the center of the image as well.

More recently, datasets became more focused on objects that humans notice most
rather than tracking separate pixel regions where people look. Since objects contain
biggest visual stimuli and in the case of prior knowledge, the human eye is most
likely searching for objects as well, it makes sense to try to predict object boundaries
and preserve the wholeness of the salient thing the hypothetical person is concen-
trated on. The typical dataset used today contains a set of images with one or more
salient regions or objects and a set of binary masks that classify each pixel of the
image into two categories: salient and non-salient. This approach to data collecting
can get rid of pixel outliers that come with eye tracking, as well as center bias. In
order to prevent biasedly designed [20] image sets, SOD datasets sometimes consist
of images from pre-existing large datasets. Datasets include images with complex
crowded backgrounds, occluded objects, low contrast or multiple salient objects per
image.

5.2 Pixel-wise Datasets

Most datasets we will use present a pixel-wise binary mask with one class be-
ing a salient object area (pixels are valued as 255) and the other - non-salient area,
or background (pixels are valued as 0). One exception is PASCAL-S, which, when
an image has multiple salient object areas, annotates each of them with a number
between 0 and 255, creating a relative degree of saliency.

5.2.1 ECSSD

ECSSD [37] is a challenging dataset that contains 1000 images gathered from
the internet that have complex multipart, structured, or textured backgrounds and
objects. The difference between the background and salient object pixel distributions
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in the CIElab color space is low (compared to the MSRA-1000 [1]), making it harder
for the model to separate the two.

5.2.2 DUT-OMRON

DUT-OMRON [51] is a 5,168 image dataset, manually picked out of 140.000 im-
ages. It contains three different image annotations: eye fixations data, salient object
pixel-wise masks and bounding boxes. 5 subjects per image were used to make the
annotations. The resulting average bounding boxes were also used to remove out-
liers from eye-tracker points. Eye-tracker data was reported by the authors to have
a center bias.

5.2.3 HKU-IS

HKU-IS [19], a 4,447 images dataset, is also challenging, with images of low color
contrast, salient objects that are mostly either multiple, disconnected or touch the
image boundary. These features were specifically formulated in contrast to earlier
MSRA-B [15], first large dataset with pixel-wise salient object masks that had both
a center bias and 98% of image border pixels containing no salient objects. HKU-IS
was annotated by 3 subjects and images that had an inter-subject label inconsistency
larger than 10% were left out.

5.2.4 PASCAL-S

Dataset PASCAL-S [20] comprises of 850 images from PASCAL VOC 2010 [11]
validation subset. It contains both pixel-wise masks of salient objects, which are cre-
ated by 12 subjects highlighting objects on images, pre-segmented into 540 category
classes by [29], and a 2s per image eye-tracker data gathered from 8 subjects. The
saliency value of each object is determined by the percentage of the human subjects
that marked it as salient.

5.2.5 DUTS

DUTS [41] is the biggest train/test divided dataset for salient object detection.
Its 10,553 training images (DUTS-TR) come from the train/val subset of famous Im-
ageNet [10], and 5,019 testing images (DUTS-TE) are from ImageNet test set as well
as SUN [48], which is a dataset for scene understanding. Images were labelled by 50
subjects, and contain challenging scenarios. DUTS-TR is often the choice for model
training, and DUTS-TE is used along with other previously mentioned datasets to
evaluate the model. We will also follow this approach.

5.3 Interesting data cases

Overall, after reviewing the datasets used for this task, we came to the conclu-
sion that the definition of saliency is hard to perceive. The dataset creators usually
reported that the saliency labels were consistent among different subjects who were
providing their visual attention. Still, some results seem to be visually contradicting
(our assumption here). For example, images from DUTS-TE in figure 5.1. If these
masks truly represent the average salient representation of these images, a model
that can correctly determine such cases can probably tell more about the definition
of saliency than an average human subject.
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FIGURE 5.1: DUTS-TE images and masks. First and second picture
both have food as salient region, ans both have food containers as
semi-salient (visually) but are marked differently. Third and fourth
pictures have a foreground character (strawberry and monkey) and a
background character (third strawberry and mother-monkey) but are

marked differently.

Also, an approach to data annotation taken by [29] seems to be superior in cases
where an image has more than one salient object. Since giving both of the objects on
images in figure 5.2 would ignore the fact that they are not equally the most unique
and important in the image, the saliency was only assigned to one of them. In the
cases such as these, it seems like giving the model relative saliency of the excluded
objects would be better than giving none at all. And same can be said about giving
equal degree of saliency to different objects here.

5.3.1 Possible improvement

When taking into account the possible applications of the salient object detection,
e.g. image cropping, compression, adaptive image display on small screens, our
point can be illustrated by cropped images from DUTS-TE and PASCAL-S in figure
5.2. A cropped area that is the result of a ground truth mask in DUTS-TE seems to
be of lesser quality than if we mark the object left out by the dataset image mask as
salient instead and then do the crop.

Another point can be made for the degree of saliency of the object. Saliency that
is relative to the other salient objects does not necessarily reflect it, rather a saliency
relative to the image overall. The eye-fixations data that is usually not used for object
detection could potentially give us a more exact measurement of this. DUT-OMRON
dataset has collected both eye-fixations and ground-truth binary masks, as well as
bounding boxes for separate objects. The boxes can have a relative degree of saliency
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FIGURE 5.2: First two rows are images and saliency masks from
DUTS-TE, third row is from PASCAL-S. The first crop (third column)
is based on the saliency map in DUTS-TE and for PASCAL-S, we pre-
sume that only the cat was categorized as salient. The second crop is
based on the assumption that the other object in the image would be
also highlighted as salient (which is already the case with PASCAL-S).

since they gathered multiple boxes from multiple participants. The boxes can also
help distinguish objects on the monolithic binary masks, although the result would
be of less quality than if the masks themselves were presented like in PASCAL-S.

Overall, some intersection of what DUT-OMRON and PASCAL-S provide can
possibly be utilized to create an approach with a saliency percent given to each object
in the image. This can be a project for future work.



18

Chapter 6

Experiments and Results

6.1 Implementation details

The experiments were performed on Google Cloud instances with Tesla T4 GPUs.
We used a Pytorch library of common segmentation models [49] to train an encoder-
decoder with a pre-trained backbone to utilize the feature maps learned on Ima-
geNet dataset. DUTS-TR dataset was used for training and validation. We used the
hold-out technique, making a 8:2 / 17:3 split of DUTS-TR that resulted in 8.442 /
8.970 images for training and 2.111 / 1.583 for validation. The training images were
augmented using a series of transformations from the Albumentations library [6].

The augmentations included:
- Horizontal and vertical flipping
- Scaling and rotation
- Optical and grid distortion of the input, as well as elastic transformation
- Adding Gaussian noise
- Random brightness and contrast change, as well as CLAHE - Contrast Limited

Adaptive Histogram Equalization, which equalizes the image
- In the end, a random crop was performed to the 256x256 size
For validation and later for testing, images were simply resized to 256x256, with-

out any post-processing.
The loss used for training was a combination of BCE, Jaccard, L1 and SSIM loss.

The optimizer of choice was Adam, with a learning rate of 0.0001. Validation loss
was used to decrease the learning rate by 10 after 5 stale epochs, and to perform an
early stopping after 11.

6.2 Evaluation metrics

We use five most commonly used benchmark datasets DUTS-TE, DUT-OMRON,
PASCAL-S, ECSSD and HKU-IS to test the model. To evaluate the performance,
we use MAE (Mean Absolute Error), maximum F-score, and S-measure (Structure-
measure) as suggested in many SOTA approaches [31, 18, 45, 21, 30] to be fairly good
metrics for this task. Also, we compare our resulting model with others on model
size.
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6.2.1 MAE

MAE [7] is the average of the absolute differences between ground-truth pixel
values and the predicted probability values of the pixel being salient. It can be de-
fined as follows

MAE =
1

H ∗W

H

∑
y=1

W

∑
x=1
|P(x, y)− G(x, y)|

Here P denotes the probability map of pixel of x width and y height and G - cor-
responding pixel of ground truth map. This metric looks at the percentage of erro-
neously labeled pixels relative to the image size, treating each error equally.

6.2.2 Max F-measure

Max F-measure is the average of the maximum F-measures computed for each
image using a Precision-Recall curve. To build a Precision-Recall curve, we need to
compare two pixel-wise binary masks. Since the saliency prediction map is contin-
uous, we need to binarize it first, which is a separate important step in the research.
There are several approaches to this, including SaliencyCut [8], which is based on
GrabCut [35], an iterative process that uses Gaussian mixture models and graph cut
for foreground extraction. Other approaches include mean-shift segmentation fol-
lowed by averaging the saliency of the segments and using adaptive thresholding to
binarize them [2].

We use a simpler approach [5] which takes a fixed threshold in the range 0-255
and creates a binary mask for each. By computing precision and recall at each thresh-
old, we get a curve that shows the range of the performance of the model. Since
neither of the two metrics is extensive enough, we can use a weighted harmonic
mean of the two called F-measure, which prioritizes precision over recall by setting
a coefficient β2 to 0.3. The formula goes as follows

Fβ =
(1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall

The maximum F-measure over the curve can be used to evaluate the model perfor-
mance on the image. Averaged over the dataset, max F-measure is a metric that
shows efficiency.

6.2.3 S-measure

Since previous measures both only care about overall pixel-wise efficiency, there
is a need for a measure that will evaluate the structure of the predicted object area.
For many applications of salient object detection, it is important to preserve the
structure of the object. We will use a measure proposed by [12] called Structure-
measure (or Structure Similarity Measure) which consists of two parts: region-aware
structure similarity measure and object-aware.

The structure similarity of separate regions of the object is measured using an
approach based on SSIM index [44], which was discussed here. The formula is as
follows

Sr =
K

∑
k=1
∗wk ∗ SSIM(k)

K is the number of blocks the saliency mask is divided into. For each block, SSIM
is computed and multiplied by a weight wk that is determined by the amount of
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ground truth object pixels that the block covers (to give importance to the blocks
that contain the object).

As for the object-aware measure, it compares the global distributions of the salient
object and the background. Since in a high-quality prediction map, these two re-
gions’ distributions will be relatively uniform, i.e. the foreground pixels should all
have relatively equally predicted probabilities of being non-salient, and the object -
salient. To assess the dispersion of the probabilities of the salient area as well as the
foreground, it uses the coefficient of variation, i.e. the ratio of the standard devia-
tion to the mean. Also, it compares the contrast between the salient and non-salient
region by measuring the closeness of the mean probabilities of the two, using a for-
mula based on the part of [44] responsible for luminance. By adding the two com-
ponents, the formula for the similarity of the foreground, or salient area, is defined
like this

OFG =
2 ∗ µxFG

(µxFG)2 + 1 + 2λ ∗ σxFG

The formula is the same for the background, except its pixels are subtracted from
1, since it is a complement to the salient area. OFG and OBG are then assigned weights
according to the percent of image they occupy

The general formula, where α is set to 0.5 to treat both object-aware and region
aware structure similarity equally, is

S = α ∗ So + (1− α) ∗ Sr,

6.3 Results

We compare our results with several SOTA approaches in table 6.1 and 6.2. Over-
all, quantitatively, our best model is UNet++ with an EfficientNet encoder. There are
two versions presented, differentiated only by the split of training and validation
data. Since they gave very close and contradicting results on different datasets, we
could not pick a winner. Usually, in MAE and maxF our two best results - U ++85/15

e f f

and U ++80/20
e f f lie between the UNet and UNetsmall , and in S-measure, which is for

structure, our approaches could not reach the desired efficiency.

Datasets DUTS-TE(5019) DUT-OMRON(5168) HKU-IS(4447)
Model Size(Mb) Fm MAE Sm Fm MAE Sm Fm MAE Sm

BASNet 348.5 .860 .047 .853 .805 .056 .836 .928 .032 .909
U2Net 176.3 .873 .044 .861 .823 .054 .847 .935 .031 .916

U2NetS 4.7 .852 .054 .847 .813 .060 .837 .928 .037 .908
U++mob 29.1 .854 .052 .843 .807 .066 .805 .921 .042 .889

Umob 27.7 .851 .053 .846 .802 .067 .805 .920 .041 .891
Ue f f 27.7 .868 .049 .857 .814 .066 .815 .926 .041 .896

U++85/15
e f f 29.1 .871 .048 .859 .815 .066 .815 .929 .039 0.9

U++80/20
e f f 29.1 .872 .048 .862 .821 .066 .821 .928 .040 .898

TABLE 6.1: The results of several SOTA approaches and our ap-
proaches on bigger datasets. The last two approaches are both
UNet++ with EfficientNet, but their train/val split was different, and

they showed contradicting results on different datasets.

Qualitatively, it seems that U + +85/15
e f f is better, even when looking at pictures

from DUTS-TE, where it is not superior. When doing qualitative comparison, there
are cases for each model, where it does best, which shows that they are very close to
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Datasets ECSSD(1000) PASCAL-S(850)
Model Size(Mb) Fm MAE Sm Fm MAE Sm

BASNet 348.5 .942 .037 .916 .856 .076 .838
U2Net 176.3 .951 .033 .928 .859 .074 .844

U2NetS 4.7 .943 .041 .918 .849 .086 .831
U++mob 29.1 .933 .050 .897 .844 .075 .835

Umob 27.7 .933 .049 .900 .842 .074 .835
Ue f f 27.7 .943 .044 .906 .848 .071 .842

U++85/15
e f f 29.1 .943 .044 .908 .851 .069 .847

U++80/20
e f f 29.1 .943 .046 .905 .850 .071 .845

TABLE 6.2: The results of several SOTA approaches and our ap-
proaches on smaller datasets. The last two approaches are both
UNet++ with EfficientNet, but their train/val split was different, and

they showed contradicting results on different datasets.

each other in their approach. However, it seems that MobileNet based approaches
on average create clearer boundaries of the object, however the prediction itself is
usually inferior to EfficientNet based. Also, even though Ue f f seems to perform the
worst on most images, there are cases when it is the best instead. U ++80/20

e f f , which
is quantitatively best on the DUTS-TE and DUT-OMRON, usually creates more false
positives than U + +85/15

e f f or Ue f f , and seems to be the only one that sometimes
makes no confident predictions on a map at all.
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FIGURE 6.1: Our results on various datasets. From left to right: im-
age, gt mask, Ue f f , U ++85/15

e f f , U ++80/20
e f f , Umob, U ++mob
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this paper, we presented the well-known problem of salient object detection.
The most popular approaches, methodologies and features used in solving this task
were discussed, as well as the wide range of available data resources and some prob-
lems that come with them. We proposed an approach to solving this task that is
fast, compact and achieves comparable results while being very simple and utiliz-
ing well-known and researched architectures. Pre-trained backbones that are used
for general feature extraction proved to be very beneficial to the task. Different varia-
tions in our approach came very close in quantitative comparison, but it is clear from
the visual examples that they behave somewhat differently. Overall, we achieved
comparable results to some recent SOTA approaches that create a more complex al-
gorithm than simply utilizing proven architectures for this specific task.

7.2 Future work

There are some areas where we could improve upon what we did, or go onto a
next step in salient object detection.

7.2.1 Binarization of the prediction

To finish the binary segmentation of images into salient objects and the back-
ground, we have to choose the best way to transform the prediction map, which
was created in our approach, into a binarized mask. There are several possible ways
to do it, which were touched upon briefly here. We will try the SaliencyCut [8] ap-
proach as well as search for other methods.

7.2.2 S-measure based loss and weighted loss

Also, we discussed SSIM index here and Structure-measure here, both used to
detect the structure similarity of the prediction and the ground truth. Since we re-
ceived did not receive high enough results when evaluating the model on Structure-
measure, even though a SSIM loss was applied to assist the model, it seems that it is
not sufficient enough of a loss. Structure-measure builds upon SSIM for the specific
task of saliency detection, so it would be interesting to apply it as a loss to train the
model and see if it will bring better results.

Also, it could be beneficial to try a weighted loss like in [18] that gives more
importance to the edges of the objects to make the model perform better in terms of
finding thin subparts of the object or overall, get better at knowing where the object’s
boundary is.
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7.2.3 Object saliency percentage measure relative to the image

Perhaps the most interesting idea for future work was discussed here. Since
the binary representation in most current salient object datasets presents some con-
straints on the saliency measure of the objects, it would be interesting to give the
network soft ground-truth masks. This might help utilize the salient segmentation
in further applications such as image cropping, because we will have more inclusive
information as to what can be cropped and what can stay when there is more than
one salient object in the image. Currently, the soft ground-truth masks do not exist,
as far as we know, but an attempt can be made to create them out of DUT-OMRON
data or by creating a new dataset.
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