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Abstract

Change Detection is a critical problem in Computer Vision with applications in
various domains such as medical detection, satellite imagery, quality control, and
traffic analysis. However, existing change detection models often have many pa-
rameters, making them computationally expensive and challenging to implement
in real-world applications. This study focuses on reducing the parameters set for
the models designed explicitly for Change Detection in Satellite Imagery. These
models typically process large-scale images, which can demand significant mem-
ory resources and take considerable time to compute. As a solution, we implement
three approaches, evaluate and compare their performance on a toy CNN model and
an advanced SNUNet-CD model [9], designed for the Change Detection task. The
highest parameter reduction rate we achieved for SNUNet-CD is 10.4% (1.25 million
parameters) with only a 3.7% model accuracy drop. The experiments demonstrate
that, when utilizing our methods, SNUNet-CD outperforms several SOTA models
in the change detection domain. We succeeded in surpassing UNet++_MSOF [22]
with respect to parameter count, while the original SNUNet-CD with 32 channels
was unable to do so.

The code implementation of this work is available on GitHub: https://github.
com/muliarska/parameter-reduction-for-change-detection/.

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
https://github.com/muliarska/parameter-reduction-for-change-detection/
https://github.com/muliarska/parameter-reduction-for-change-detection/
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Chapter 1

Introduction

1.1 Motivation

Deep Learning models are notable for their vast number of parameters. However,
although it helps to capture many data dependencies, it also creates several chal-
lenges in working with the networks. Training such models is computationally and
memory expensive. Usually, the process is slow if the user does not own significant
training capabilities. Moreover, it can lead to overfitting, which does not encourage
the model to learn the generalized patterns but pushes it to simply memorize the
training data.

The main challenge in solving the heavy parametrization problem is finding a
trade-off between producing a smaller, more efficient model and remaining rela-
tively accurate. In [13], the authors propose SqueezeNet, a small CNN, that handles
to maintain the AlexNet metrics results and, simultaneously, reduces the number of
the parameters 50 times, as well as decreases the memory usage 510 times. Changing
the network architecture requires extensive experimentation and testing, which can
be computationally expensive. With that reasoning in mind, we seek to speed up
the model by explicitly changing the parameters set without modifying the model
architecture.

Assuming which models can benefit from the reduction in parameter number,
we picked the Deep learning models designed to solve a change detection problem.
This task is a critical problem in Computer vision spotted in many domains, such
as medical images and financial studies. We focus specifically on Change detection
in satellite imagery. The reasoning is that operating with satellite imagery means
processing large-scale images. Because satellite images cover extensive geographic
areas, they usually require a high spatial resolution, leading to high memory con-
sumption and performance slow-down. One such data source is the public xBD
dataset [10], the most prominent building damage assessment dataset at the mo-
ment of its release, covering more than 45.000 km2 of imagery. Moreover, the models
designed to solve the Change detection in satellite imagery problem usually have a
vast number of parameters.

There are multiple ways to approach the change detection task, among which
one of the most popular is U-Net-based models [22, 15, 23]. Another potential an-
swer is to employ Siamese Networks [3, 5] as they are designed to take two images
as input and detect the differences between them. To understand the dependence
between the number of parameters and quantitative performance metrics of the re-
cent change detection models, see Table 1.1. Those results lead us to the assumption
that change detection models are required to grow in their parameter set size in or-
der to increase and maintain good accuracy. However, this process brings several
disadvantages, such as performance slow-down or demand for high computational
and memory powers. It introduces the main focus of this research which is to reduce
the number of parameters while maintaining relatively accurate.
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Model / Channels # Params (M) F1 score
IFN [33] 35.72 0.903

DASNet [3] 16.25 0.919
UNet++_MSOF [22] / 32 11.00 0.876

FC-Siam-diff [5] / 32 5.39 0.692
FC-Siam-conc [5] / 16 1.54 0.637
FC-Siam-diff [5] / 16 1.35 0.652

TABLE 1.1: Comparison of the number of parameters and F1 score for
change detection models. The scores are obtained by the authors of

[9].

1.2 Hypotheses

The leading job of this thesis is to speed up the model designed for the Change
Detection in Satellite Imagery task by applying the parameters reduction techniques.
This section summarizes and outlines the hypotheses we aim to test to achieve this
goal.

1) The models designed for Change Detection in Satellite Imagery benefit from
parameter reduction methods due to model complexity and operation with large-
scale imagery.

2) The Fractional Filter, Pruning, and Low-Rank Approximation approaches suc-
cessfully reduce the number of parameters for the change detection models as they
showed the potential in the related papers.

3) We are able to integrate those approaches into the models’ convolutional lay-
ers.

4) The accuracy of the model may decrease while reducing the number of param-
eters.

5) Fractional Filter has better scalability compared to other parameter reduction
methods. It reduces the number of parameters N from k× k (where k is the kernel
size) to only 6 regardless of the value of k.

1.3 Thesis Structure

This work consists of six chapters, starting with the chapter 1 that introduces the
domain and our hypotheses. Next, we briefly discuss the main ideas of each next
chapter for easier navigation through the paper.

Chapter 2 contains the related literature overview: methods that could be used
to speed up a Neural Network and the existing methodology for solving a Change
detection in satellite imagery problem. It contains both traditional approaches and
SOTA models. In chapter 3, there is a mathematical background on fractional calcu-
lus, which is a ground for convolutional filter approximation with fractional deriva-
tives. Chapter 4 introduces the proposed solution: the algorithms for the parameter
reduction methods. In chapter 5, there is a description of experiment settings, in-
cluding dataset structure and architectures of the models. Moreover, we discuss
the results of the experiments and derive conclusions from them. Finally, chapter 6
summarises the work done and proposes several ideas for future work.
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Chapter 2

Related Work

2.1 Methods for Improving Model Efficiency

This section considers several techniques to improve the Deep Learning model’s
performance. Note that most of the methods described in this section do not conflict
with each other. For example, one can apply Pruning and Fractional Filter on a single
convolutional layer if the project goal requires a higher parameter reduction rate.

2.1.1 Switching the Kernel Size

The usage of smaller filters is the most direct method to approach a heavy parame-
terization problem. For example, replace a 5x5 filter with a 3x3 filter. [27] examines
the impact of kernel size on mobile networks by testing out different options. How-
ever, this logic does not work well for more extensive and complex models. Smaller
filters cannot capture intricate data patterns, leading to significant performance re-
duction. Therefore, we consider more complex approaches while seeking a solution
to this problem.

2.1.2 Modifying Model’s Architecture

Simplifying the model’s architecture can reduce the memory and computational re-
source requirements to train the model efficiently. One can question if all Neural
Network layers are crucial for its well-performance, as the authors of [25] have done.
They simplify the model by using convolutional layers only, without big perfor-
mance sacrifice.

The Inception method described in [26] is the traditional approach that enforces
the architecture change. The authors suggest applying an additional 1x1 convolu-
tional filter before applying more extensive 3x3 or 5x5 convolutions. This approach
is also known as a bottleneck application. It leads to dimensionality reduction of
the convolutional filter input, meaning the reduction in parameters number. A more
complex example of modifying the bottleneck structure is described in [4]. The au-
thors create a new bottleneck structure that shows about 25% reduction in param-
eters for a mobile network. Traditional bottleneck uses 1x1 convolution before and
after 3x3 convolution to reduce the number of parameters, while this approach em-
ploys an inverted residual structure as a solution.

2.1.3 Weight Matrix Approximation

A common way to approximate the weights matrix is to set some subsets to zero.
Usually, we set to zero small weight values as this transformation does not lead
to a radical change in the output. One of the standard techniques in this domain
is pruning. The magnitude-based pruning selects the weights to be pruned at the
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beginning by considering their absolute value. At the same time, iterative prun-
ing redefines pruned weights on each iteration. In [11], the authors suggest a more
"aggressive" approach based on those two pruning types. They achieved a weights
matrix compression rate of up to 13 times.

Another possibility is not to apply the changes on top of the existing weight
matrix but to factorize it into smaller matrices and operate with them. Knowledge
of the SVD allows one to transform a complex matrix M into three smaller matrices
U, E, and V, where M = USVT. Then, we can obtain the approximation of matrix M
by keeping only larger than some threshold values in the diagonal matrix E. Those
simple mathematical calculations present the base for the low-rank approximation
methods, which modern researchers constantly improve. The approach introduced
in [1] achieved a storage compression ratio of up to 9.71. At the same time, in the [14],
we witness the storage compression ratio equal to 22.47 on LeNet5 for MNIST. In
practice, it is difficult to reach such promising results, as the higher the compression
ratio we obtain, the bigger the accuracy reduction arises. Therefore, users need to
find a trade-off between compression and good metrics maintenance.

Consider the case when the weight matrix is a sparse matrix, meaning most of
the matrix elements are zero. [29] introduces an approach based on low-rank ap-
proximation, except it uses Product-of-Sums (PoS) decomposition instead of tradi-
tional SVD or PCA. The authors reached the compression in parameters number N
for MNIST CNN from N = 3 ∗ 106 to N = 3554 trainable parameters without signif-
icant accuracy sacrifice.

2.1.4 Modifying the Filter Setup

Note that the methods described above approximate or modify the weights matrix
directly. Another way to approach the heavy parameterization problem is to approx-
imate the weights matrix and the filter by creating a new parameters setup. The [31]
suggests defining a convolutional filter using fractional calculus. The paper achieves
the parameters set compression 5 times for kernel size k = 5.

2.2 Change Detection Approaches

2.2.1 Traditional Methods

Starting with traditional approaches, we have to mention CVA [30] and PCA [6].
Those fundamental decomposition methods consider the difference between images
as the difference among a pair of pixels and then make a change/non-change deci-
sion using some threshold. As an extension of this approach, one can perform a
PCA and apply k-means on top to group similar pixels as described in [2]. The
traditional methods cannot sufficiently capture small noisy changes as the SOTA
methods. Moreover, the images in change detection datasets are usually captured
in various lighting and during different seasons, which is had to catch for the tradi-
tional methods.

2.2.2 U-Net and Siamese Networks

Alternatively to the traditional methods, one can employ a network based on the
U-Net architecture [22, 15, 23] to approach the Change detection in remote imagery
problem. The authors of [15] report that the highest accuracy value they achieved
equals 89.2%.
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Another possibility is using the Siamese Networks to solve the Change detection
in remote imagery problem. The Building Damage Assessment Model developed by
Microsoft [19] is one of the SOTA approaches in this domain. It has around 0.69 mil-
lion parameters requiring significant computational and memory resources to train
a model. This method uses the public xBD dataset [10] that consists of large-scale
satellite imagery, building polygons, and labels that denote damage levels, particu-
larly for the classification task. However, to train the Building Damage Assessment
Model on the xBD dataset, one has to first calculate the change masks for each image
pair. The change mask generation process is computationally expensive due to the
significant size of the dataset. It causes a requirement for a significant amount of
storage and computational resources to use the current model.

The SNUNet-CD model [9] can be applied to solve the change detection task.
It involves the usage of both Siamese Networks and U-Net (NestedUNet in this
case) architectures, as well as the previous Building Damage Assessment Model.
The DASNet model [3] is another recent model in the change detection domain
that achieved relatively competitive results. It has around 16.25 million parame-
ters demanding significant computational and memory resources to train a model.
While evaluating the performance of the DASNet model on the CDD dataset [17],
the authors reached F1 score equal to 0.919. However, for comparison, consider the
FC-Siam-diff [5] model, which has much fewer parameters (around 5.39 million)
and achieves an F1 score lower than 0.7. Another well-performing approach in the
change detection domain is IFN [33], with the number of parameters equal to 35.72
million. Previously introduced Table 1.1 summarizes the metrics described above
by comparing the parameters number and F1 score for the models in the change
detection domain.



6

Chapter 3

Fractional Calculus

3.1 Motivation for Applying Fractional Calculus

Fractional calculus is the part of mathematics that operates with fractional-order
derivatives and integrals. Its history started with the question L’Hospital asked Leib-
nitz, which raised the possibility of expanding the derivative theory to the idea of
derivative order n to be any number (irrational, fractional, or complex). "What if n
be 1⁄2?" he asked. To which Leibnitz replied: "From this apparent paradox, one-day
useful consequences will be drawn" [24].

Some standard fractional derivatives definitions are Riemann-Liouville and Ca-
puto [20]. Fractional-order derivatives are more complex than integer-order ones,
requiring calculating a sum over a range of fractional powers. It requires more com-
putational resources, as well as higher execution time. Nevertheless, in recent years
its usage has been found beneficial in many fields, for example, in quantum mechan-
ics [18].

We can discover several successful cases by considering the fractional calculus
application in Deep Learning. In [32], the authors introduce a fractional calculus
methodology that enhances the activation function selection. They outperform the
ResNet100 metrics by training a ResNet18 with fractional derivative order as an ad-
ditional hyperparameter. Another example of fractional calculus application in Deep
Learning is convolutional filter approximation, described in [31]. The authors report
the parameter compression five times per kernel without significant accuracy sacri-
fice.

3.2 Theoretical Background

This section introduces the fractional derivative concept and its theoretical back-
ground.

For the beginning, consider the integer-order derivative of the power function
f (x) = xn. We can calculate the first derivative of y: f ′(x) = nxn−1, the second
derivative: f ′′(x) = n(n− 1)xn−2, and others by the same logic. Equation 3.1 gener-
alizes the calculation of the derivative of order m ∈ N for f (x) = xn function.

Dm f (x) =
dm f (x)

dxm =
n!

(n−m)!
xn−m. (3.1)

Afterward, knowing that a! works only for a ∈ N, we use the generalized Gamma
function Γ, defined in Equation 3.2, to replace a! in Equation 3.1.

Γ(a) = (a− 1)!; a ∈ N (3.2)

As a result, we get the final fractional derivative formula (see Equation 3.3) valid
for x ≥ 0.
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Dm f (x) =
dm f (x)

dxm =
Γ(n + 1)

Γ (n−m + 1)
xn−m. (3.3)

For example, consider the fractional derivative with the order m = 0.5 for the
function y = x3, meaning n = 3. We use Equation 3.3 to calculate it and receive
Equation 3.4 as a result.

D
1
2 f (x) =

d
1
2 f (x)

dx
1
2

=
Γ(4)
Γ
( 7

2

) x
5
2 . (3.4)

The Γ of an integer is calculated as described in Equation 3.2: Γ(4) = 3! = 6.
To find Γ for the fractional value, we use the property Γ(a + 1) = a · Γ(a) and the
knowledge that Γ

( 1
2

)
=
√

π. Then, Γ
( 7

2

)
= 5

2 ·
3
2 ·

1
2 ·
√

π.
To see how the derivatives behave graphically, we visualized the derivatives of

different orders, both integer and fractional, for the function f (x) = x3 (see Figure
3.1). We pointed out the function f (x) = x3 by the dashed line. Then we included
includes integer order derivatives and fractional order ones that cover the following
cases for the derivative order m:

1) m < 1.
2) m > 1.
3) m < 0.
Those plots prove that if the derivative order is positive, the function decreases

at that point. Likewise, if the order is negative, then the function is increasing. More-
over, the lower the derivative order we provide, the lower reduction in the function
we can witness.

FIGURE 3.1: Visualization of the derivatives of different orders for
the function f (x) = x3. Plots are generated by definition, described

in Equation 3.3.
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Chapter 4

Proposed Solution

4.1 Motivation for Using Parameter Reduction Methods

This study aims to speed up the models designed for Change Detection in Satel-
lite Imagery tasks. To achieve this, we decided to modify model parameters rather
than model architecture. Changing the architecture of a network requires extensive
experimentation and testing, which can be computationally expensive. In contrast,
modifying the parameter set is a simpler and quicker approach, requiring fewer re-
sources and time. Specifically, we utilize various parameter reduction approaches,
including Fractional Filters, Pruning, and Low-Rank Approximation. Each method
modifies the parameters differently (Fractional Filter: redefining the parameter set;
Pruning: sets some values of the weights matrix to zero; Low-Rank: approximates
the matrix with the reduced-rank one), allowing us to compare their effectiveness.
Moreover, those methods can be integrated into the convolutional layer implemen-
tation, which creates a potential for its successful performance on the change detec-
tion model that is based on convolutions. In this chapter, we dive into each method
algorithm we implement within this work.

4.2 Fractional Filters

Consider some traditional filters used in the convolutional layer to extract features
from the data: Gaussian, Sobel, and Laplacian filters. The Gaussian filter is defined
by Equation 4.1. Then, the Sobel filter approximates the first derivative of the Gaus-
sian when the Laplacian filter does the second derivative of the Gaussian filter.

G(x) = e−
(x−xo)2

σ2 . (4.1)

This derivatives-based logic leads the authors of [31] to the introduction of the
Fractional filter, which operates with fractional derivatives instead of the traditional
integer ones.

To compute the Fractional filter, we need to calculate the values of the weight
matrix W of the shape k × k, where k is a kernel size. Equation 4.2 calculates the
W(i, j) component of W as the 2-dimensional derivative of the Gaussian function,
defined in Equation 4.1.

W(i, j) = DaDbG(i, j), (4.2)

where 1 <= i <= k, 1 <= j <= k, and a, b ∈ (0, 2) are the fractional derivatives
orders.

Next, the two-dimensional fractional derivative DaDbG(x, y) can be decomposed
as the exterior product of one-dimensional derivatives as follows.
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DaDbG(x, y) = DaG(x)× DbG(y). (4.3)

To calculate the fractional derivative of DaG(x) in practice, the authors of the
Fractional Filter approach use the Taylor series and calculate only the first 15 terms
for computational simplicity (see Equation 4.4).

DaG(x) =
A
ha

15

∑
n=0

Γ(a + 1)G(x)
(−1)nΓ(n + 1)Γ(1− n + a)

(4.4)

where A ∈ (−∞, ∞), σ ∈ (0, ∞), xo ∈ (−∞, ∞) are the parameters that define the
filter; a ∈ (0, 2) is the fractional derivatives order, as mentioned before; and constant
h, which is usually set to 1/k.

By using (b, y, yo) instead of (a, x, xo) in Equation 4.4, we can compose the for-
mula for DbG(y).

To summarize the procedure of computing the Fractional filter weights matrix
step by step, we present the algorithm 1, which we use in our implementation.

Algorithm 1 Fractional filter weights calculation

1: function COMPUTE WEIGHTS MATRIX(a, b, A, σ, xo, yo, k)
2: for x ← 0 to k do

3: G(x)← e−
(x−xo)2

σ2

4: DaG(x)← A
ha ∑15

n=0
Γ(a+1)G(x)

(−1)nΓ(n+1)Γ(1−n+a)
5: end for
6: for y← 0 to k do

7: G(y)← e−
(y−yo)2

σ2

8: DbG(y)← A
hb ∑15

n=0
Γ(b+1)G(y)

(−1)nΓ(n+1)Γ(1−n+b)
9: end for

10: W ← DaG(x)× DbG(y)
11: return W
12: end function

4.3 Pruning

Another approach we employ to speed up the model is pruning. It sets some of the
parameters to zero based on different conditions. Our method decides what weights
to prune by calculating the L2 norm, also known as Euclidean norm expressed by
Equation 4.5, of the weights matrix by the 0th axis.

∥W∥ =

√√√√ n

∑
i=1

n

∑
j=1

(
wij

)2. (4.5)

To perform pruning in our implementation, we use prune.random_unstructured
method developed by PyTorch [21]. The hyper-parameter amount influences how
many parameters the pruning method zeros out. It is an open discussion of choos-
ing the most reasonable value of the parameter as it depends on accuracy and model
speed requirements. As the default option, we use amount = 0.3, meaning the
method prunes 30% of all weights.
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4.4 Low-Rank Approximation

4.4.1 Factorization using SVD

For the primary implementation of our last approach, Low-Rank Approximation,
we use SVD to factorize the weights matrix W into a combination of three smaller
ones: U, S, V. Afterward, we trim by the rank k and decompose those three matrices
to get the resulting approximation of the input matrix: W ′ = U′S′V ′T.

4.4.2 Factorization using CUR Decomposition

The baseline SVD approach introduces the problem of selecting the optimal rank
value k. The [1] proposes to use the CUR decomposition to cope with this challenge.
We employ this approach for the Low-Rank Approximation in this work.

To approximate the weights with CUR decomposition, we need to compute two
sub-matrices: C and R. The first step in calculating C is to perform SVD on W2d, a 2d
representation of the 4d weights matrix W.

U, S, VT = SVD(W2d). (4.6)

Then, we use matrix V to find the normalized statistical leverage scores with the
leading r singular vectors, as described in Equation 4.7.

πj =
1
r

r

∑
ξ=1

(
Vξ

j

)2
, (4.7)

where r is the rank of 2d weights matrix W2d. Note, rank(W2d) = rank(W).
Afterward, to obtain the final C matrix, we choose the columns of W2d consider-

ing the probabilities expressed by Equation 4.8.

pj = min(1, cπj). (4.8)

It appears to be a challenge to thoughtfully choose the c parameter, which can
also be fine-tuned. In the article introducing the CUR decomposition [8], the authors
state that the value of c depends on the application. We consider three options:

1) A constant;
2) A logarithmic in the size of n: O(log(n));
3) O

(
r log r

ε2

)
, which is used in [1].

To calculate the matrix R, the Equations 4.6, 4.7, 4.8 should be applied to the
transpose of W2d matrix instead of regular W2d.

One of the last steps would be to calculate the matrix U by U = C+WR+, where
C+ and R+ are the Moore–Penrose generalized inverse of C and R, respectively.
Then, to get the final approximation of the weights matrix, we compute Θ = CUR
and reshape Θ back to the 4d representation.

We summarize the process of approximating the weights matrix using CUR de-
composition in the algorithm 2.
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Algorithm 2 Low-Rank Weights Approximation using CUR Decomposition

1: function COMPUTE SUB MATRIX(M)
2: U, S, VT ← SVD(M)

3: πj ← 1
r ∑r

ξ=1

(
Vξ

j

)2

4: Compute S by selecting the columns using probabilities pj = min(1, cpij)
5: return S
6: end function
7:
8: function APPROXIMATE WEIGHTS(W, k)
9: Reshape W into 2d matrix: W2d ←W

10: C← Compute Sub Matrix(W2d)
11: R← Compute Sub Matrix(WT

2d)
12: U← C+WR+

13: Θ← CUR
14: return Θ
15: end function
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Chapter 5

Experiments and Results

5.1 Experimental Setup

In this section, we aim to measure the performance of the parameter reduction meth-
ods on two models: CNN trained on the MNIST dataset and SNUNet-CD.

5.1.1 CNN on MNIST Dataset

Firstly, we developed a simple CNN consisting of two convolutional layers com-
bined with some max pooling and ReLU layers. Figure 5.1 shows its backbone’s
visualization. We performed the experiments with this model on the MNIST dataset
[7].

FIGURE 5.1: The CNN Architecture used to perform experiments on
MNIST dataset.

5.1.2 SNUNet-CD Change Detection Model

It is worth mentioning that we first tried Building Damage Assessment Model de-
veloped by Microsoft [19]. The experiment did not go successfully due to space and
computational resources limitation. However, we researched several other Siamese
networks in the Change Detection domain. Figure 1.1 compares the parameters
number and F1 score among those models. As a result, we stopped on the SNUNet-
CD proposed in the [9] as a central model for our experiments. The reasoning be-
hind our decision is the computational load available for us, but, at the same time,
a significantly considerable number of parameters, which allows us to improve this
model by involving the parameters reduction methods. Moreover, this model shows
promising metrics and holds the architecture we can easily modify to apply our al-
gorithms.
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Model’s Architecture

SNUNet-CD has an encoder-decoder architecture and uses the Siamese network
as the encoder. Figure 5.2, initially provided in the [9], illustrates the backbone
of the SNUNet-CD model. The model takes two images as input, performs the
down-sampling, and restores them to the original size before outputting using a sub-
decoder. By using skip connections throughout the model architecture, SNUNet-CD
transfers fine localization features from the encoder to the sub-decoders and allows
the maintenance of fine-grained information.

FIGURE 5.2: The illustration, provided in the SNUNet-CD article, of
SNUNet-CD model architecture. (a) The backbone of the model. (b)
The model’s Ensemble Channel Attention Module. (c) A convolution
block represented as Xi,j on the backbone scheme. (d) Channel Atten-

tion Module from [28].: [9] © 2022 IEEE

Dataset

As the dataset for the SNUNet-CD experiments, we use the CDD dataset [17], on
which the SNUNet-CD was trained originally. It is designed to solve an automatic
change detection problem and consists of season-varying remote sensing images.
The dataset introduces synthetic and real remote-sensing images. For our task, we
operate with the second class, precisely 16,000 triples, each containing three objects:
image1, image2, and the ground truth change mask. Figure 5.3 shows two different
examples of the dataset triples.

5.2 Evaluation Metrics

The leading goal of this study is to reduce the number of parameters for a model
to make it more efficient in terms of computing and memory usage. Based on this,
we utilize the number of parameters as the primary metric for our experiments. The
aforementioned metric is a primary indicator in the [31] due to its direct correlation
with decreased memory and computational resource utilization. Pruning is a partic-
ular case, as this metric is relevant if the parameters are not only pruned (set to zero)
but also removed from the parameters set. Therefore, for this approach, we estimate
the number of non-zero parameters based on the assumption that pruned parame-
ters do not add value to the calculation during the forward or backward steps.
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FIGURE 5.3: Two triples examples from CDD dataset. Top images
(a), (b), and (c) are examples of image 1, image 2, and a ground truth
mask, respectively. The same logic is applied for bottom images (d),
(e), and (f). The top images represent urban development and agri-
cultural change, while the bottom images show the change with no-

ticeable seasonal variation.

It is important to note that Low-Rank approximation improves the model effi-
ciency by reducing the rank of the weights matrix. However, it does not modify
the number of parameters directly. Nevertheless, we compare this approach with
other methods to understand its relative strengths and weaknesses. Specifically, we
are interested in evaluating the potential impact of Low-Rank Approximation on the
training time and quantitative metrics.

Another metric is the training and inference time. We run all of the experiments
on the Google Colab GPU. Therefore, the running time can successfully represent
an improvement in model efficiency. Moreover, some of the methods could increase
the training time of the model. The reason is that we add additional computational
load to the weights calculation process by applying our algorithms.

All of the methods can reduce the model performance while improving its ef-
ficiency in terms of computational resource usage. We measure the quantitative
metrics to allow the user to find a suitable accurateness-simplicity trade-off. Af-
ter looking at other Siamese Networks performance evaluations, such as [5, 33, 3],
we decided to proceed with Precision, Recall, and F1 score.

Finally, while evaluating the SNUNet-CD, we, despite measuring the perfor-
mance of different methods within this model, also compare it to other SOTA Siamese
Networks in this domain. We use the number of parameters and F1 score as our suc-
cess indicators in this case.
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5.3 Implementation Details

For the entire implementation, we used the programming language Python3 and the
framework PyTorch [21]. We created a custom class for a convolutional layer to inte-
grate the parameter reduction techniques into the weights calculation of the model
convolutional layer. Then, during the initialization step, calculated the weights with
the algorithms discussed in the "Proposed solution" section. Afterward, we replaced
the traditional PyTorch convolutional layer with our custom class.

While performing experiments on SNUNet-CD, we specifically worked with the
convolutional block, visualized in Figure 5.4. It employs the architecture of the resid-
ual unit proposed in [12].

FIGURE 5.4: The structure of convolutional block used in SNUNet-
CD model architecture.

It is an open discussion of how many convolutional layers we should replace
within a model to reach a significant improvement. As a default version of our
implementation, we update only layer 4 of the convolutional block, represented
in Figure 5.4). The reasoning is that estimated number of parameters N equals to
N = (k× k× in_ch+ 1)×mid_ch for layer 1, and N = (k× k×mid_ch+ 1)× out_ch
for layer 4. Knowing that in_ch < mid_ch < out_ch, we can assume that modifying
an element with more parameters would considerably influence the model perfor-
mance. Regarding running experiments on the toy dataset MNIST, we substitute our
custom class for layer 4, displayed in Figure 5.1, with the same logic.

Considering our training process, we developed a classical training for MNIST
CNN using Cross Entropy Loss and Adam optimizer [16]. As for the SNUNet-CD,
we used a batch size of 16 as in the original implementation. In addition, we mod-
ified the training procedure by reducing the number of workers from 8 to 2 and
conducting 10 epochs instead of the 100 epochs used by the authors due to our com-
putational limitations.

5.4 Results for CNN on MNIST Dataset

5.4.1 Key Metrics Results

Table 5.1 shows the metrics results for three techniques: Fractional Filter, Pruning,
and Low-Rank Approximation, compared with the original MNIST CNN perfor-
mance. We witness that the Fractional Filter shows the most elevated reduction
in parameter number and training time. However, we notice the most prominent
performance drop for this approach. Meanwhile, Pruning and Low-Rank Approx-
imation slightly reduce the training time compared to the original model with no
accuracy sacrifice.

Regarding the Low-Rank Approximation method, we evaluated different set-
tings: (i) an algorithm based on SVD, (ii) an algorithm based on CUR decomposition
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Approach Params (k) Training time (sec) Precision Recall F1 score
Original 28.9 372 0.982 0.982 0.982

Low-Rank 28.9 365 0.985 0.985 0.985
Pruning 25.1 365 0.983 0.982 0.982

Fractional 19.2 198 0.968 0.967 0.967

TABLE 5.1: Metrics results for MNIST CNN.

with different values of the parameter c, discussed in more detail in the Proposed
Solution section results, we did not observe any significant after analyzing the re-
sults changes. Consequently, we decided to set the default implementation of this
method to the CUR decomposition with the constant value of the parameter c.

5.4.2 Applying Methods to Various Convolutional Layers

We assume that the efficiency improvements of the model depend on how many
convolutional layers we modify with the parameters reduction logic. To more con-
volutional layers we apply our algorithms, the better results in terms of the number
of parameters we can get. We ran such experiments for each approach and noticed
a significant shift in metrics results only for the Fractional Filter method. Table 5.2
shows the metrics for the Original model and the model with Fractional Filter ap-
plied, depending on which layer is modified: layer 1, layer 4, or both. Refer to Figure
5.1 for the order of the layers.

Approach / layer # Params (k) Train time (sec) Precision Recall F1 score
Original / - 28.9 372 0.982 0.982 0.982

Fractional / 1 28.6 108 0.979 0.979 0.979
Fractional / 4 (default) 19.2 198 0.968 0.967 0.967

Fractional / 1&4 18.9 105 0.791 0.790 0.788

TABLE 5.2: Metrics results for MNIST CNN while applying the meth-
ods to different convolutional layers in the model.

The more parametrized layers we switch to the Fractional Filter setting, the fewer
parameters we get for the whole model, meaning the number of the parameters for
layers 1&4 < layer 4 < layer 1.

In addition, we noticed that the training time is significantly lower for layer 1
than layer 4, while the number of parameters results in the opposite way. The
reason is that the Fractional Filter method takes more time to compute for more
parametrized layers. Another cause lies in the activation functions behavior. Ac-
tivations have a more considerable impact on the model in the earlier layers than
during the last ones. However, when we apply the Fractional Filter for both layers,
we get the lowest training time since later activations are already influenced by the
activations in the previous layers. Consequently, suppose the project goal is to speed
up the training, not to reduce the number of parameters directly. In that case, it is
better to modify the first convolutional layer of the network or some of the leading
layers.
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5.4.3 Increasing the Kernel Size

In this part of the experiments, we aim to test the scalability assumption by com-
paring the performance of MNIST CNN for kernel sizes k = 5 (original value) and
k = 7. Table 5.3 provides metrics results for Pruning and Fractional Filter, as those
methods showed the most considerable improvement during previous experiments.

Approach / k Params (k) Train time (sec) Precision Recall F1 score
Original / 7 33.9 395 0.983 0.983 0.983

Original / 5 (default) 28.9 372 0.982 0.982 0.982
Pruning / 7 26.4 410 0.983 0.983 0.983

Pruning / 5 (default) 25.1 365 0.983 0.982 0.982
Fractional / 5 (default) 19.2 198 0.968 0.967 0.967

Fractional / 7 11.9 233 0.834 0.834 0.833

TABLE 5.3: Metrics results for MNIST CNN, considering different
kernel sizes k of the convolutional layer to which we apply the meth-

ods.

For k = 5, Fractional Filter reduces the number of parameters by 33.56%, while
for k = 7, by 64.90%. Pruning goes from a reduction of 13.15% to 22.12%. Both
methods ensure a scalable reduction rate, but Fractional Filter introduces a more
significant improvement in terms of parameters number.

An interesting observation of the Fractional Filter method performance is that
the number of parameters reduces with the increase of the kernel size. For k = 7, the
number of the parameters equals 11.9, while for k = 5, 19.2. It differs from the trivial
behavior we observe for the original architecture and the Pruning method.

Figure 5.5 shows the number of parameters for the original model and the model
with Fractional Filter for different kernel sizes. It shows the distribution of parame-
ters number among all layers in the model. On the graphs, the number of parameters
in the second convolution in the Fractional Filter model is fixed for both kernel cases.
The reason is that a 2-dimensional Fractional Filter gives a compression from k× k,
regardless of kernel size value, to only six trainable parameters (A, σ, xo, yo, a, b) per
kernel.

5.5 Results for SNUNet-CD

5.5.1 Key Metrics Results

The next significant milestone of our work was to perform the experiments on the
SNUNet-CD model designed for Change Detection in Satellite imagery. We discuss
the model architecture in more detail in the Experimental Setup section. Note that
we performed the training using ten epochs to accommodate limited memory and
computational resources. This decision results in relatively worse quantitative met-
rics (F1 score, Recall, and Precision) than the initial results provided by the authors
of the SNUNet-CD model.

According to the metrics results for SNUNet-CD on the training set (see Table
5.4), the highest reduction in parameters number is marked for the Pruning method.
It outperforms the Fractional Filter approach, which showed the most potential
during the CNN on MNIST dataset experiments. Pruning reduces the number of
weights by 10.39% (from 12.03 million parameters to 10.78 million), while Fractional
Filter by 4.99% (from 12.03 million to 11.43 million). In addition, Pruning introduces
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FIGURE 5.5: The number of parameters in the MNIST CNN model,
distributed by each layer. The top tables represent the results for the
Original model, while kernel size equals k = 5 and k = 7. The bot-
tom tables show the number of parameters of the MNIST CNN with

Fractional Filter applied as a second convolutional layer.

slightly higher performance metrics than Fractional Filter, as it works with existing
weights and does not modify the parameters set directly.

Approach Params (M) Training time (sec) Precision Recall F1 score
Low-Rank 12.03 9828 0.848 0.746 0.791
Original 12.03 6318 0.848 0.746 0.791

Fractional 11.43 6824 0.802 0.692 0.738
Pruning 10.78 7539 0.809 0.727 0.762

TABLE 5.4: Metrics results for SNUNet-CD on the training set.

However, as mentioned during the MNIST CNN experiments, Fractional Filter
introduces better scalability. We can achieve a higher parameter reduction with Frac-
tional Filter by employing a larger kernel size (for original SNUNet-CD kernel size
equals k = 3).

Regarding the Low-Rank Approximation method, we observed that the quanti-
tative metrics and number of parameters do not change compared to the original
model performance. Additionally, this method takes the most time to compute.
Nevertheless, upon looking at the weights matrix, we noticed that the rank of the
new matrix is reduced, implying that the resulting matrix contains fewer indepen-
dent rows and requires less memory usage. It also lowers the risk of overfitting
as the approximation method derives a more generalized pattern than the original
weights matrix has. Although this method improves the model’s efficiency in some
way, we decided to exclude it from the further results discussions as our proposed
metrics do not accommodate this method.
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Approach Params (M) Validation time (sec) Precision Recall F1 score
Original 12.03 1254 0.785 0.782 0.781

Fractional 11.43 1291 0.870 0.567 0.679
Pruning 10.78 1691 0.803 0.713 0.753

TABLE 5.5: Metrics results for SNUNet-CD on the validation set.

Further, we evaluated the performance of SNUNet-CD on the validation set (see
Table 5.5). The central metrics patterns are consistent with the training set results.
However, in the validation step, it is more apparent that the Fractional Filter method
has significantly lower recall than the other methods. It results in the model’s failure
to identify some of the actual changes in the image, resulting in a higher rate of false
negatives. Figure 5.6 presents examples of the predicted changes by the Fractional
Filter method with high and low losses. During the initial training steps, many
images show poor recall. However, as training continues, the predictions tend to
improve significantly.

FIGURE 5.6: Ground truth images and predicted change maps (with
high/low loss) for the Fractional Filter approach.

5.5.2 Metrics Distributed For Each Epoch

Furthermore, we calculated the F1 score for each epoch individually (see Figure 5.7)
to track how quickly the model converges. It allows us to make more reasonable
conclusions regardless of the number of epochs for training.
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We can see that Fractional Filter performs more poorly than other methods re-
garding the F1 score, which is expected as it provides a significant parameters re-
duction rate for the model. Pruning also sacrifices the model performance, but less
than the Fractional Filter method. The plots suggest that the F1 score goes up with
each epoch, which means that the utilization of a higher number of epochs poten-
tially introduces a more elevated F1 score than we currently get.

FIGURE 5.7: F1 score curve for SNUNet-CD during training on train
and validation sets.

Table 5.6 compares the training time measured for each epoch individually and
the inference time of the models with different parameter reduction methods ap-
plied. As a result, we see that regardless of the training time for the first epoch, after
the second one, the time stabilizes and remains the same for all approaches.

Moreover, although we observe the lowest training time for the original archi-
tecture, the Fractional Filter approach outperforms all other methods regarding in-
ference speed. It is an important observation, as some of the projects in real-life
scenarios care about inference time more than the training process.

Approach Train / 1 Train / 2 Train / 3 Train / 4 Train / 5 Inference
Pruning 2312 584 582 582 582 2445

Fractional 1713 572 570 570 568 1100
Original 1292 560 558 559 558 2433

TABLE 5.6: Training time for the first five epochs and an inference
time for SNUNet-CD.

5.5.3 Benchmarking with Other Change Detection Models

Let us start by comparing the performance of the SNUNet-CD model trained by us
and the results provided by the authors of [9]. The difference is in the number of
epochs used for training the model. The number of parameters appears the same
for both cases, which is an expected outcome as we employ the same model archi-
tecture. However, our experiments show poorer performance in terms of metrics:
0.953 F1 score reported by the authors and 0.791 presented by us. That leads us
to the conclusion that we cannot expect a fair comparison of our experiments and
other SOTA models in the domain. The results obtained within this work are lower
than the expected performance of the SNUNet-CD model in higher computational
resource settings. Nevertheless, our methods still outperformed some models in the
Change Detection domain (see the results in Table 5.7).



Chapter 5. Experiments and Results 21

All of our methods show a smaller number of parameters than IFN and DAS-
Net models. Moreover, the SNUNet-CD model with Pruning applied outperforms
UNet++_MSOF by the same metric. It is an important finding as the original SNUNet-
CD with 12 channels was unable to surpass this method in terms of parameter count.
In addition, we propose a higher F1 score than the less-parametrized models, such
as FC-Siam-diff and FC-Siam-conc, even considering our limited computational re-
sources.

Model / Channels # Params (M) F1 score
IFN [33] 35.72 0.903

DASNet [3] 16.25 0.919
SNUNet-CD Low-Rank 12.03 0.791
SNUNet-CD Original 12.03 0.791

SNUNet-CD [9] 12.03 0.953
SNUNet-CD Fractional 11.43 0.738
UNet++_MSOF [22] / 32 11.00 0.876

SNUNet-CD Pruning 10.78 0.762
FC-Siam-diff [5] / 32 5.39 0.692
FC-Siam-conc [5] / 16 1.54 0.637
FC-Siam-diff [5] / 16 1.35 0.652

TABLE 5.7: Comparison of the number of parameters and F1 score for
SNUNet-CD and other SOTA models in the domain. The scores for
all models except our experiments are obtained by the authors of [9].

Lastly, we assume that the project goals and resource availability may differ.
Therefore, we leave the decision of what model and which parameter reduction
method to use into consideration for the reader.
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Chapter 6

Conclusions

6.1 Results Summary

Reducing the number of parameters in Change Detection models holds significant
potential for optimizing model performance. It leads to the reduction of computa-
tional resources and memory usage, which makes a model more compact and effi-
cient. Our experimental results have shown that this concept is particularly effective
in the Satellite imagery field, where large-scale images are processed.

Our study involved a comprehensive analysis of existing parameter reduction
methods. The central part of this work involves implementing three approaches
Fractional Filter, Pruning, and Low-Rank Approximation, and applying those to two
models, namely CNN for the MNIST dataset and the Siamese Network designed for
Change Detection in Satellite Imagery. Moreover, one of this work’s contributions
is our implementation of the Fractional Filter approach, established on fractional
derivatives theory. It is not generally available in open-source resources, contrasting
with other methods we examined.

The preliminary experiments on the MNIST CNN have shown the highest pa-
rameter reduction rate with the Fractional Filter method applied. It equals 64.90%
for kernel size k = 7 and 33.56% for k = 5.

Regarding the SNUNet-CD model designed for the change detection task, we
achieved a considerable reduction using Pruning and Fractional Filter methods, 10.39%
and 4.99% rates, respectively. With the highest reduction rate of 10%, the F1 score
drop equals only 3.65%, which allows our implementations to remain accurate while
becoming more effective in computing and space usage. Moreover, the SNUNet-CD
model, with our updates applied, outperformed some of the existing models in the
change detection domain.

6.2 Limitations and Future Work

While the pruning method could reach a higher reduction rate by modifying the
pruned weights percentage parameter, it comes at the cost of sacrificing a significant
accuracy percentage. It introduces the main limitation of this work, which does not
allow us to decrease the number of parameters further and maintain good accuracy
at the same time.

Moreover, the trade-off problem introduces the possibility of future work. It
is worth trying to experiment with our methods on a broader range of models to
identify generalized patterns, if any. Another possibility is to apply other techniques
for improving model efficiency. This piece focuses specifically on operating with the
parameter set. However, in the Related Work chapter, we discussed other options
to make the model more efficient, such as model architecture modification. Finally,
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the question of an optimal trade-off remains an open challenge for researchers in
Change Detection. We hope our study will inspire further study in this area.

Lastly, our study can be applied to various domains in the change detection field,
including medical detection, quality control, traffic analysis, and financial studies.
The methods analyzed within this work can be integrated into models beyond Change
Detection. For instance, Speech Recognition and Generative Models usually operate
with a high number of parameters and could potentially benefit from our research.
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