
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Compile time semantic analysis and verification of
conceptual models in application to transactional

business information systems

Author:
Vladyslav BILYK

Supervisor:
Oles HODYCH, PhD

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Vladyslav BILYK, declare that this thesis titled, “Compile time semantic analysis
and verification of conceptual models in application to transactional business infor-
mation systems” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Compile time semantic analysis and verification of conceptual models in
application to transactional business information systems

by Vladyslav BILYK

Abstract

Conceptual modeling of information systems is an approach to systems analysis and
design that is widely-used in the field of software engineering. Its aim is to obtain
a description of the general knowledge that an information system needs to know,
which is called a conceptual schema. Although, the information about a conceptual
schema is widely used by various technologies in a programmatic way for automa-
tion of error-prone software engineering tasks, there is a lack of refined metamodel-
ing facilities that provide domain discoverability at design time. This forces software
engineers to turn to awkward ways of representing metadata, which results in un-
reliable systems with limited evolvability. In this work, we develop a technology for
compile time semantic analysis that captures the description of a conceptual schema
in a form of metadata modeled in the source code. We focus on the Java program-
ming language in particular, taking advantage of its annotation processing capabil-
ities. We provide our implementation in the context of a particular framework –
Trident Genesis. As a means of evaluation we employ an approach of qualitative re-
search by conducting an experiment targeted at a focus group of software engineers.
We demonstrate that our findings indicate a definitive improvement in domain dis-
coverability, system reliabilty and evolvability. The core principles of the presented
implementation lay the groundwork for the development of a general metamodel-
ing abstraction.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements

I would like to thank the following for their help in connection with this thesis:

My thesis supervisor, Oles Hodych, for his valuable feedback and support through-
out this project.

The software engineering team at Trident Genesis for participating in the experi-
ments.

Armed Forces of Ukraine for protecting our country and our freedom.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Domain modeling . 2
1.2 System reliability . 2
1.3 System evolvability . 3
1.4 Technical approach . 5
1.5 Qualitative research . 6
1.6 Structure . 6

2 Background 7
2.1 Conceptual modeling of software systems 7
2.2 Domain-driven design and its terminology 8
2.3 Java programming language . 9
2.4 Java reflection . 9
2.5 Java annotations . 9
2.6 Annotation processing . 10

3 Related work 12
3.1 C# nameof . 12
3.2 Java nameof hack . 13

3.2.1 Method references . 14
3.2.2 Reflection and byte-code manipulation 14
3.2.3 The hack . 14

3.3 Project Lombok . 14
3.3.1 @FieldNameConstants annotation 15

3.4 Hibernate Metamodel Generator . 16

4 Implementation details 18
4.1 Entity graph . 19
4.2 Meta-model generation algorithm . 19
4.3 Meta-model structure . 22
4.4 Usage example . 25

5 Evaluation 26
5.1 Discoverability of the domain model . 27
5.2 Reliability . 28
5.3 Evolvability . 29
5.4 Performance . 29
5.5 Correctness of the generation mechanism 30

v

5.6 Intuitiveness and ease of use . 31

6 Conclusion and future work 33
6.1 Review against the original objectives 33
6.2 Future work . 33

6.2.1 Integration with IDEs . 33
6.2.2 Compile time constant values . 34
6.2.3 Support for external metadata 34
6.2.4 General framework indepent approach 34

Bibliography 35

vi

List of Figures

2.1 UML class diagram for a simplified banking domain 7
2.2 UML class diagram illustrating an additive change to the conceptual

model . 8
2.3 UML class diagram illustrating a breaking change to the conceptual

model . 8
2.4 Compilation process of javac . 10

3.1 Lombok Annotation Processor modifies an AST 15

4.1 Input and output of the domain model processor 18
4.2 Person entity graph . 19
4.3 A high-level view of the meta-model generation algorithm 20
4.4 The procedure of generating a meta-model 21
4.5 An entity meta-model graph where Person and User are metamod-

eled, but Vehicle is not . 22
4.6 A meta-model graph for entity Person after Vehicle was metamodeled 22
4.7 UML class diagram for generated meta-models 23
4.8 Traversing the entity graph with the help of Eclipse IDE code auto-

completion feature . 25

5.1 Question 1: Domain discoverability . 27
5.2 Question 2: Domain discoverability . 27
5.3 Question 3: Domain discoverability . 28
5.4 Question 4: Reliability . 28
5.5 Question 5: Evolvability . 29
5.6 Question 6: Performance . 29
5.7 Question 7: Correctness . 30
5.8 Question 8: Correctness . 30
5.9 Question 9: Correctness . 31
5.10 Question 10: Intuitiveness and ease of use 31
5.11 Question 11: Intuitiveness and ease of use 32
5.12 Question 12: Intuitiveness and ease of use 32

vii

List of Abbreviations

APT Annotation Processing Tool
AST Abstract Syntax Tree
ORM Object-Relational Mapping
OOP Object-Oriented Programming

1

Chapter 1

Introduction

An important piece of work in the information systems field by Antoni Olive [Oli07]
defines the term conceptual modeling as the activity of describing and structuring the
general knowledge a particular information system needs to know. The main objec-
tive of conceptual modeling is to obtain that description, which is called a conceptual
schema. Conceptual modeling is an important part of requirements engineering, the
first and most important phase in the development of an information system. How-
ever, any information system will invariably undergo modification, either due to the
demands of its users or as a result of a change in the nature of the information itself,
or for other reasons. Therefore, one of the most important properties of information
systems is evolvability.

An ability to access and process the information about a conceptual schema pro-
grammatically at runtime is widely used by various technologies for automation
of otherwise complex and error-prone software engineering tasks. For example,
Object-Relational Mapping (ORM)1 technologies automate mapping between two
representations of a conceptual schema: expressed in OOP terms as classes and ex-
pressed in terms of a relational database. This information is a structured represen-
tation of a conceptual schema, which we shall refer to as meta-model. Although ac-
cessible at runtime, such meta-models also need to be made available to software en-
gineers at design time. The information provided by meta-model is called metadata.
Since this meta-level information is also a part of a system it is desirable for it to be
evolvable as well. Moreover, due to the fact that a meta-model reflects the structure
of a conceptual schema, it must be consistent with it. Ideally, a meta-model would
always be automatically updated to match the structure of a conceptual schema.

The aim of this research is to develop a technology for compile time semantic
analysis that would capture the description of conceptual models in a form of meta-
data directly represented in the source code. We outline the following objectives:

1. Improve domain modeling efficiency and provide advanced domain discoverabil-
ity features at design time.

2. Improve system reliability and ensure correctness of references to domain mod-
els at compile time.

3. Improve system evolvability.

The key result of this research is the developed technology itself – an approach
to achieve the stated objectives.

1Object-Relational Mapping is a technique used to interact with a database through an interface
implemented in object-oriented paradigm.

Chapter 1. Introduction 2

1.1 Domain modeling

Any software system aims to address a specific problem. The area surrounding this
problem is known as the problem domain. Domain modeling is a form of conceptual
modeling commonly used in software engineering. Its aim is to construct a domain
model – a structured representation of the problem domain with a description of core
concepts and their relationships. We define domain discoverability as the ability to dis-
cover the domain model, that is, to inspect the conceptual schema of the domain. We
later show that domain discoverability can be limited by the programming language
used to write the software.

Efficient software construction requires a certain kind of knowledge to be present
in the mind of a software engineer. Peter Naur [Nau85] conveyed an insightful idea
of Theory Building View of programming, stating that a program is a shared men-
tal construct that lives in the minds of the people who work on it. Therefore, the
programmer possessing the theory is able to respond constructively to any demand
for a modification of the program. The same can be said about domain modeling
where the general knowledge of the domain needs to be present at all times in order
to develop correct models. However, that might prove to be a difficult task for a
domain of significant size, requiring the software engineers to frequently brush up
their knowledge of the target domain through the use of a secondary source of infor-
mation, such as documentation or source code of the software. In order to tackle this
difficulty many supporting tools have been developed. For example, modern IDEs2

come with a handful of advanced features, such as code auto-completion, which is
a practical way of enhancing domain discoverability.

Brooks [FPB86] defines two kinds of complexity involved in the process of soft-
ware construction: essential and accidental. Essential complexity stems from the
inherent properties of software, such as the size of software systems, conformity
to other interfaces, changeability and invisibility (inability to be visualized). Ac-
cidental complexity is manifested in any activity that engages in representation of
conceptual software structures in programming languages and mapping of those
structures onto machine languages within space and speed constraints. Among past
breakthroughs in solving accidental difficulties are: high-level programming lan-
guages, time-sharing systems and unified programming environments. Following
Brooks’s excerpt on time-sharing which he views as an attack on a specific accidental
difficulty – interruption of consciousness due to a need to call for compilation and
execution, which might result in the decay of grasp of all that is going on in a com-
plex system – our main hypothesis is that the lack of programming language-level
metamodeling facilities with advanced design time domain discoverability features
is the same kind of difficulty with negative effects of similar nature.

1.2 System reliability

Reliability of a system is its ability to perform a given task in an expected way with-
out causing errors. In order to build reliable systems it is important to understand
those systems. Moseley & Marks [BM06] identified two widely-used approches to

2Integrated Development Environment (IDE) is software that combines common developer tools
into a single graphical user interface.

Chapter 1. Introduction 3

understanding systems: testing and informal reasoning; with an emphasis on the im-
portance of the latter. Informal reasoning is an attempt to understand the system by
examining it from the inside. Its importance was explained by Moseley & Marks by
the fact that improvements in informal reasoning lead to less errors being created, as
opposed to improvements in testing that lead only to more errors being detected. One
of the desirable properties of testing is high code coverage, which is a measure of
the amount of source code of a program that was executed, hence covered, during
testing. However, for systems of significant size, characterized by large code volume
with complex structure, testing is usually a time-consuming process. No guarantees
can be given that a failing test will not occur at the very end of the whole process. Be-
cause of this, understanding systems through testing is also more time-consuming.
Therefore, it is preferable to focus on ways of improving informal reasoning.

When we examine a system from the inside we do it at design time, that is, dur-
ing the phase of system construction. For example, reasoning about the source code
of a system’s component is an activity carried out at design time. Modern IDEs blur
the line between design time and compile time, seemlessly integrating the compila-
tion process into design time in order to increase developer productivity. This allows
software engineers to benefit from messages signaled by a compiler, making a great
contribution to improvements in informal reasoning. Therefore, delegating as much
system validation as possible to a compiler will result into more reliable systems.

1.3 System evolvability

All systems are prone to change, especially the successful ones. This is due to the fact
that software that is found to be useful is often pushed to its limits by its users who
invent new uses for it. Change management thus plays an essential role in the life-
cycle of a software system. Whenever a change is introduced to the domain model,
all parts of a system that interact with the changed component must be verified and
modified if necessary. While the verification is usually covered by automated tests,
the modification of related components has to be carried out by a software engineer.
In order to ensure that the latest change is adopted correctly a software engineer
must know the exact locations of those components in the source code. Once again,
this can be a difficult task when working with a large system and that is why the role
of a compiler is critical, for it can inform the software engineer of those places in the
source code.

The underlying assumption is that software is being developed in a compile time
safe manner. However, given the general purpose nature of modern programming
languages, this assumption is not always true. There is a lack of a language-level
abstraction that could be used as domain model metadata, that carries type infor-
mation, to reference the conceptual model. This limitation forces software engineers
to use textual string representations instead, that are "hard-coded" into the program.
This is known to be unreliable because it is not the responsibility of a compiler to val-
idate the contents of a string. A program deemed valid by a compiler might make
use of incorrect metadata that results in a runtime error. Although, were the meta-
data represented in the form of a meta-model instead, all rules of compile time val-
idation would be applicable to it. Moreover, any modification to the domain model
would be reflected in the meta-model. Therefore, it would be possible to efficiently
track the related components in need of modification at design time due to messages
signaled by a compiler.

Chapter 1. Introduction 4

To illustrate a possible case where a meta-model might be required we provide
the following example. Consider a simplified domain that consits of a single concept
called Customer:

class Customer {
private String name;
private int age;

}

LISTING 1: A java class for the Customer concept.

The following listing illustrates the construction of a database query to fetch all
customers who are over 21:

String query = "SELECT name FROM customers WHERE age >= 21;";

LISTING 2: SQL query with hard-coded metadata that fetches the
names of all customers of age over 21.

The problem with this code is that it uses hard-coded metadata. A compiler
can’t tell whether name and age are parts of the Customer concept. It also has no way
of verifying whether customers is a valid database table. As a result, this code is
unreliable and difficult to maintain. It is easy to imagine that some time in the future
the conceptual schema might change, leading to the Customer concept no longer
having the attribute name, but fullName instead. Consequently, each such occurence
of hard-coded metadata must be manually located throughout the whole system.

It is true that using raw strings to construct SQL queries is a bad practice and
better approaches have been developed, such as ORM frameworks. However, the
core issue still remains, as demonstrated by the following example:

QueryModel<Customer> query = select(Customer.class).where()
.prop("age").gt().val(21)
.yield().prop("name")
.model();

LISTING 3: SQL query from Listing 2 expressed using an ORM frame-
work.

The "age" and "name" strings still must be used to refer to Customer attributes.
Now, consider an approach utilizing a meta-model:

QueryModel<Customer> query = select(Customer.class).where()
.prop(Customer_.age).gt().val(21)
.yield().prop(Customer_.name)
.model();

LISTING 4: SQL query from Listing 3 using a meta-model.

Here Customer_ is a meta-model class. It guarantees that the database query is
constructed in a compile time safe manner, since a change to the domain model is

Chapter 1. Introduction 5

immediately reflected in the meta-model. It also makes the system more evolvable.
In case a breaking change took place, an appropriate compilation error would follow.

Ideally, a meta-model would also capture the relationships between concepts,
allowing the software engineer to traverse the domain graph in the source code.
Expanding the previous example, consider a new concept called Order and its rela-
tionship to Customer:

class Order {
private int number;

}

class Customer {
private String name;
private int age;
private Order order;

}

LISTING 5: A java class for the Order concept.

Then, the relationship between Order and Customer could be captured by a meta-
model:

String path = Customer_.order.number; // "order.number"

LISTING 6: A meta-model capturing the relationship between
Customer and Order.

This would make a powerful addition to the domain modeling capabilities of a
programming language.

1.4 Technical approach

Taking into account the widespread adoption and use of object-oriented program-
ming in domain-driven design, we focus on the Java programming language in par-
ticular. Since Java language specification does not support class meta-models, we
provide our own implementation of a meta-model generation mechanism. The im-
plementation is based on a feature of Java – annotations, supplemented by annota-
tion processing – an ability to process annotations at compile time.

The implementation we provide is designed with a particular software develop-
ment technology in mind – Trident Genesis3 (TG). The choice was made to integrate
the implementation with the surrounding framework in order to make the devel-
opment process manageable in terms of time, and, given its experimental nature, it
was preferable to narrow down the scope of application, while making it practical.
This choice does not invalidate a general nature of the research.

Trident Genesis is an open-source software development technology, which has
been developed by Fielden Management Services Pty. Ltd (Australia). It aims to

3Trident Genesis Github page – https://github.com/fieldenms/tg

https://github.com/fieldenms/tg

Chapter 1. Introduction 6

tackle the core problems of systems analysis and design that are often associated
with building sophisticated transactional business information systems. TG fits well
into the definition of domain-driven development, as it shares the common language
of domain modeling, speaking in terms of domain entities and their relationships.

1.5 Qualitative research

In order to assess the extent to which the stated objectives were achieved the exper-
imental component of this work is carried out by employing an approach of quali-
tative research. The applictation of qualitative reserach to the field of software engi-
neering is discussed by Hazzan & Dubinsky [OH14].

The conducted experiments involve a focus group of select software engineers
from the industry, who are practicing domain-driven development as their main
software design approach, making them ideal candidates to test our main hypothe-
ses. We use a questionnaire as a main data gathering tool.

Richard Pawson [Paw04]’s work is one great example of an application of quali-
tative research methods to the field of software engineering.

1.6 Structure

This work is structured in the following way:

Chapter 2 goes into depth about key concepts and provides the necessary back-
ground for the rest of the paper.

Chapter 3 discusses related work, comparing the approaches employed. Each ap-
proach is examined in great detail with its strengths and limitations outlined.

Chapter 4 provides a detailed description of the implementation. It discusses the
developed algorithm step-by-step with attached illustrations and examples.

Chapter 5 describes the experiment. It includes a display of the questionnaire con-
tents and answers of the participants.

Chapter 6 discusses future work that encompasses a general framework indepen-
dent approach and draws on shortcomings of the implementation.

7

Chapter 2

Background

This chapter covers the background for the fundamental concepts in this work in
order to provide a deeper understanding of the research area and prepare the reader
for the discussion of related work and the explanation of implementation details.
We start with the topic of conceptual modeling in the context of software systems.
Then, we introduce the approach of domain-driven design, which is followed by the
description of the Java programming language and its application to this research.

2.1 Conceptual modeling of software systems

Conceptual modeling is an integral part of software construction. In software en-
gineering field the term "conceptual schema" is often associated with the world of
relational database management systems (RDBMS). A conceptual schema describes
the structure of a database from a high-level perspective. More specifically, it iden-
tifies the core concepts and classifies them into tables, which contain columns that
stand for the attributes of a concept. A conceptual schema does not include any
internal details about a database.

For example, in a banking system domain, the conceptual schema might describe
concepts such as banking accounts and transactions, as well as their relationship. One
common language for expressing conceptual schemas is UML. Consider the banking
example illustrated in the following UML class diagram:

FIGURE 2.1: UML class diagram for a simplified banking domain

Here the conceptual schema consists of two domain entities. Both of them are
characterized by specific attributes that describe their structure. And it is a common
occurence that the underlying structure of an entity might undergo some kind of
modification. For example, consider the diagram in Figure 2.2 that introduces a new
attribute to the Account entity, namely, its creation date:

Chapter 2. Background 8

FIGURE 2.2: UML class diagram illustrating an additive change to the
conceptual model

Modifications on a conceptual level, such as these, must be performed with cau-
tion, since they are fundamental in their nature. This means that every part of the
system that interacts with a modified concept should be taken into account during
verification. However, a simple additive change, as illustrated by the example, is
relatively safe. Consider another example showing an existing attribute of Account
being modified:

FIGURE 2.3: UML class diagram illustrating a breaking change to the
conceptual model

The ownerName attribute of Account has been replaced by owner. The Owner con-
cept has also been included in the diagram to provide the necessary context. This
kind of change is often refered to as a breaking change, since it might "break" the sys-
tem if any of its components were using the modified part. Given that prior to this
change the ownerName attribute was a simple textual representation, any part of the
system that was refering to this attribute must be modified accordingly. Ideally, af-
ter a modification has taken place, the system would be automatically validated to
detect any errors that might have resulted from the modification. In our example it
would be expected that the validation mechanism reports that the Account concept
does not define an attribute ownerName, if it was used prior to the modification.

2.2 Domain-driven design and its terminology

Domain-driven design, a term coined by Eric Evans [Eva03], is an approach to con-
ceptual modeling of a specific business domain. Its main aim is construction of a
domain model, which translates to a conceptual model of the domain. At the core
of domain-driven design one of the basic building blocks is an entity, that is, a do-
main object defined primarily by its identity. We use the term entity interchangeably
with the term concept (assuming that the concept has an identity). Every entity is
characterized (but not necessarily identified) by its properties in the same way that
every concept is characterized by its attributes. The notion of domain-driven design
is important since it enables an individual to think about systems design in terms of
domain models.

Chapter 2. Background 9

2.3 Java programming language

Java [Jav] is a compiled, high-level, class-based, object-oriented programming lan-
guage. In practice it is often used to implement domain-driven software systems,
mapping domain objects to Java classes. Fields of a Java class are used to represent
properties of an entity. For example, the domain from 2.1 could be modeled in the
following way:

class Account {
private int number;
private String ownerName;
private float balance;

}

class Transaction {
private Account fromAccount;
private Account toAccount;
private float amount;
private DateTime datetime;

}

LISTING 7: The domain illustrated in 2.1 modeled in Java.

2.4 Java reflection

The reflection capabilities of Java are briefly discussed in this section, since they are
often mentioned alongside with the terms metadata and metaprogramming. In contrast
with other compiled languages, such as C, Java is characterized by its sophisticated
runtime mechanism that provides dynamic capabilities, such as reflection and code
modification. Reflection, in particular, makes metaprogramming possible, which
allows the program to use other programs, itself included, as data. For example,
using reflection it is possible to obtain the type of a class field by its name:

class Person {
private Animal pet;

}

Person.class.getDeclaredField("pet").getType()); // class Animal

Although this is a powerful programming technique that allows runtime type in-
trospection to take place, it can not be used to treat the source code of a program as
data at compile time. The runtime nature of reflection indicates that reflection oper-
ates on objects constructed from compiled code. This means that metadata obtained
by using reflection exists only at runtime of the system, which is out of compiler’s
scope.

2.5 Java annotations

The Java Language Specification [JG15] defines a special construct – annotations –
that provides data about a program that is not part of the program itself, in other

Chapter 2. Background 10

words, it has no direct effect on the operation of code that is annotated. Annotations
may be used to provide additional information to the compiler or to be interpreted
during runtime of the program. We focus on the compile time processing of anno-
tations. As an example, the @Deprecated annotation can be used to tell the compiler
to generate warnings in places where the annotated element is used.

class Transformer {
@Deprecated
public static boolean isTransformable(Item item) {

...
}

}

// warn: the method Transformer.isTransformable(Item) is deprecated
Transformer.isTransformale(someItem);

The annotated method can still be used as if there was no annotation, but the
warning makes it clear to a software engineer that the method is no longer supported
and its usage is discouraged.

2.6 Annotation processing

Annotation processing, as its name implies, is a mechanism for processing annota-
tions in the source code at compile time. An important distinction from the previ-
ously mentioned concept of reflection is that the input of an annotation processor is
an AST1 constructed from the source code.

The @Deprecated annotation in the example above is one of the Java built-in
annotations. It gets processed by a built-in annotation processor that is a part of the
Java compiler.

The standard library of Java includes a common interface to all annotation pro-
cessors, so software engineers can provide their own implementations, and instruct
the compiler to use them. Apart from issuing compile time warnings and errors, an-
notation processing supports programmatic generation of new code. The following
figure depicts the compilation process of javac2.

FIGURE 2.4: Compilation process of javac

Java compilation process can be broken down into the following steps:

1. The input source files are parsed to build a syntax tree.

1Abstract syntax tree is a tree-like data structure used by the compiler to represent the structure of
program source code.

2Java compiler included in the JDK from Oracle

Chapter 2. Background 11

2. All appropriate annotation processors are run until no new files are generated.

3. The syntax tree is analyzed to generate byte-code.

It is important to mention that step 1 may differ across compiler implementa-
tions. The main difference lies in the input of a compiler. There is a notion of in-
cremental compilation, which provides an ability to limit the number of source files
that are passed as input to the compiler. As opposed to traditional compilation that
requires the whole set of source files to be recompiled, an incremental compiler’s
input is limited to that portion of the program that was modified.

The built-in annotation processing API in Java3 has a rich collection of types that
model the source language itself, equipping programmers with a powerful abstrac-
tion to analyze the syntax tree.

3javax.annotation.processing – https://docs.oracle.com/javase/8/docs/api/javax/
annotation/processing/package-summary.html

https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/package-summary.html

12

Chapter 3

Related work

This chapter contains an overview of existing approaches and examines the extent
to which they might be used to achieve the objectives of this research. The scope of
related work was not limited to the programming language used in the implemen-
tation. Given the dominance of Java in the field of software engineering, most of the
related work presented in this chapter is naturally associated with it. Each approach
is examined from the perspective of practicality, as well as in terms of the ability to
reach the stated objectives.

3.1 C# nameof

C# is a programming language develop by Microsoft that is often put in comparison
with Java, sharing a lot of fundamental principles. We inspect a particular expression
that is a part of the C# language – the nameof expression [Mica] – that is used to
obtain the name of a program element as a constant string. The general usage of this
expression is demonstarted in the following example:

using System.Collections.Generic;

class Program {
static void Main() {

string s1 = nameof(Program); // "Program"
string s2 = nameof(Program.InstanceMethod); // "InstanceMethod"
string s3 = nameof(System.Collections.Generic); // "Generic"
// Invalid
string s4 = nameof(int); // Keywords not permitted

}
void InstanceMethod() { }

}

LISTING 8: Usage of nameof expression in C#.

Result of the nameof expression is evaluated at compile time. This means that
nameof(x) is replaced by "x" in the compiled code, given that x is a legal input. Our
interest is drawn, however, to the use of property literals1 as string constants. And,
indeed, nameof accepts class properties as input:

1A literal in programming is a notation used to for representing a fixed value in the source code.
For example, 5 is a literal, "abc" is also a literal, but a variable name is not.

Chapter 3. Related work 13

class Book {
public string title { get; set; }

}
nameof(Book.title) // "title"

This is quite an effective way of using property literals as constant strings and it
satisfies the compile time model correctness property. There are, however, several
limitations to this approach, which are demonstrated below with provided exam-
ples:

1. The nameof expression cannot be applied to class members with restricted ac-
cess, such as private members. Although we consider this a limitation, the
example above, which makes use of C# Properties [Micb], is not constrained
by it.

2. The nameof expression always returns a simple name of its input, that is, the
resulting name is not fully-qualified. This was demonstrated in the first code
snippet:

string s3 = nameof(System.Collections.Generic); // "Generic"

This limitation requires additional functionality to be implemented to concate-
nate the resulting string constants into a proper representation of the dot-notation.

class Book {
public string title { get; set; }
public Author author { get; set; };

}
class Author {

public string fullName { get; set; }
}

// "author.fullName"
DotNotation.Of(nameof(Book.author), nameof(Book.author.fullName));

class DotNotation {
public static string Of(params string[] names) {

return String.Join(".", names);
}

}

Book.author.fullName is used instead of simply Author.fullName to satisfy the
compile time safety requirement. If the latter was used and the conceptual schema
was changed leading to the type of Book.author not being Author anymore, but
instead a value object or another entity that doesn’t have the property fullName, a
runtime error would occur at the moment of the dot-notation being used (to fetch
some data from a database, for example). Consequently, this results in an unintuitive
and overly verbose code.

3.2 Java nameof hack

While the Java programming language specification does not define property liter-
als or an expression similar to that of C# nameof, there are 3rd party libraries [Art]

Chapter 3. Related work 14

[Fra] that attempt to achieve the desired result by means of byte-code manipula-
tion through the use of method references. What follows is a brief overview of the
concepts of method references and reflection in Java.

3.2.1 Method references

Java has a special syntax for referring to a method of a class as if it was a lambda
expression. Consider the following example:

class Person {
private String name;
public String getName() {

return this.name;
}

}

This makes it possible to avoid writing a full lambda expression:

map(person -> person.getName()); // lambda expression
map(Person::getName); // method reference

3.2.2 Reflection and byte-code manipulation

Reflection is a feature in the Java programming language that allows a Java program
to discover and manipulate information about itself in the runtime. More precisely,
one can obtain information such as names of class members, their types, etc. In
addition, it is possible to "intercept" a method of a class by using a dynamic proxy. In
this case an interceptor would gain access to the information about the intercepted
method, such as its name, parameter types, return type, etc.

3.2.3 The hack

It is possible to use a combination of method references and reflection to intercept
the getter method call, such as getName() in the above example and map the method
name to a field name, for which the getter was designed. As a result it would be
possible to get the property name as a String in a compile time safe manner:

nameOf(Person.class, Person::getName) // "name"

As this approach is merely mimicking the nameof expression of C#, it is subject to
the same limitations. In addition, there is no way of chaining properties to construct
a dot-notation in a compile time safe manner, since method references are semanti-
cally equivalent to lambda expressions.

3.3 Project Lombok

Project Lombok [Lomb] provides a handful of useful additions to the Java program-
ming language in the form of annotations with the aim to reduce boilerplate code2.

2Boilerplate is a term used for the parts of code that are repeated in multiple places with little to no
variation

Chapter 3. Related work 15

The specificity of this approach lies in the fact that lombok injects itself into the com-
pilation phase to build on top of the source code being compiled, that is, lombok’s
annotations are used to replace repetitive pieces of code.

Project Lombok makes use of annotation processing for the sole purpose of iden-
tifying the supported annotations, i.e., as an entry point, and, unlike the original
purpose of APT, does not generate any source files. Instead it uses the internal API
of Java compiler (supports javac and ecj3) to manipulate the AST. The resulting AST
is then analyzed and translated into bytecode. This process is illustrated by the fol-
lowing figure [nei11].

FIGURE 3.1: Lombok Annotation Processor modifies an AST

3.3.1 @FieldNameConstants annotation

One of the experimental features of Project Lombok, @FieldNameConstants [Loma]
annotation is used to generate an inner type that contains a string constant represent-
ing a field’s name for each field of the annotated type. This annotation is provided
with some room for configuration, such as inclusion or exclusion of particular fields,
capitalization of generated fields names, the name of the inner generated type, etc.
The following listings demonstrate the benefits of using Lombok.

3Eclipse Compiler for Java

Chapter 3. Related work 16

@FieldNameConstants
public class Person {

private String name;
private int age;
@FieldNameConstants.Exclude
private String id;

}

LISTING 9: Java source code using Lombok.

public class Person {
private String name;
private int age;
private String id;

public static final class Fields {
public static final String name = "name";
public static final String age = "age";

}
}

LISTING 10: Java source code equivalent to 9, but without Lombok.

This approach, although effective for basic needs, is limited by its trivial nature:

• The generated entity graph is limited by a depth of a single level, as the gener-
ated fields are always of type String.

• Domain discoverability is limited by the lack of descriptiveness of the gener-
ated fields, since no javadoc accompanying a field is present.

However, the approach employed by Project Lombok is certainly a unique and
inspiring piece of work to learn from.

3.4 Hibernate Metamodel Generator

Hibernate is an implementation for the JPA4 [RB]. Hibernate Metamodel Generator
[Fer10] is an annotation processing tool that is a part of the Hibernate ORM frame-
work. It automates the generation of static entity meta-models used for typesafe
Criteria queries as defined by the JPA 2. The queries benefit from the meta-models
by being able to be constructed in a strongly-typed manner, thus avoiding the risks
of type casting the result of a query. Consider the following example which shows a
meta-model generated for the Order entity:

4Java Persistence API (renamed to Jakarta Persistence)

Chapter 3. Related work 17

@Entity
public class Order {

@Id
private long id;

@ManyToOne
private Person customer;

@OneToMany
private Set<Item> items;

private BigDecimal totalCost;
}

LISTING 11: Java class modeling the Order entity.

@StaticMetamodel(Order.class)
public abstract class Order_ {

public static volatile SingularAttribute<Order, Long> id;
public static volatile SetAttribute<Order, Item> items;
public static volatile SingularAttribute<Order, BigDecimal> totalCost;
public static volatile SingularAttribute<Order, Person> customer;

public static final String ID = "id";
public static final String ITEMS = "items";
public static final String TOTAL_COST = "totalCost";
public static final String CUSTOMER = "customer";

}

LISTING 12: Hibernate meta-model for the Order entity.

What stands out is that, apart from the property names, the generated meta-
model also captures information about property types, providing an ability to use
them in a compile time safe manner. Therefore, this approach could find more inter-
esting uses than the previous ones.

The major limitation of Hibernate meta-models is that they are not designed for
traversing an entity graph deeper than a single level. That is, the modeling technique
of entity relationships is not advanced enough.

18

Chapter 4

Implementation details

This chapter describes the proposed implementation of a meta-model generation
mechanism designed in the Java programming language. The source code of the
implementation is hosted on GitHub1.

The meta-model generation mechanism is implemented as an annotation proces-
sor, hereafter referred to as "domain model processor".

FIGURE 4.1: Domain model processor accepts a processing environ-
ment on input and produces generated sources on output

The annotation processor is initialized with a processing environment, by the
compiler. The processing environment provides an AST that was obtained by pars-
ing source files. In the incremental compilation environments, the processor benefits
from the fact that it is possible to access the AST of a source file that was not necessar-
ily a part of the compiler’s input. The domain model processor performs semantic
analysis of its input and obtains the domain model as a result.

We define the following domain evolution operations that are covered by the
meta-model generation mechanism:

1. Creation of a domain entity.

2. Renaming of a domain entity.

3. Removal (deletion) of a domain entity.

4. Modification of a domain entity’s structure that encompasses the following
suboperations: renaming of a property, removal of a property, modification of
a property’s type or name, and creation of a new property.

Each of these operations leads to an according change in the conceptual schema.
Therefore, it is important to be able to detect those changes (by means of semantic
analysis) and reflect them in the meta-model.

1GitHub Issue - https://github.com/fieldenms/tg/issues/849.
Github Wiki page - https://github.com/fieldenms/tg/wiki/MetaModels.

https://github.com/fieldenms/tg/blob/Issue-%23849/platform-annotation-processors/src/main/java/ua/com/fielden/platform/processors/metamodel/MetaModelProcessor.java
https://github.com/fieldenms/tg/issues/849
https://github.com/fieldenms/tg/wiki/MetaModels

Chapter 4. Implementation details 19

4.1 Entity graph

A convenient and intuitive model for entities and their properties is a graph. The
structure of an entity can be represented as a directed graph where each node is a
type, with the source being the type of an entity itself. An arc (x, y) represents an
association and can be read as "Entity x has a property of type y".

Figure 4.2 depicts an entity graph for Person, User and Vehicle. The labels at-
tached to arcs are the corresponding names of those properties. All nodes are labeled
with their type’s name. The ones filled with blue are entity types, while those filled
with white, which are always sinks, are non-entity types. An entity graph might
contain a cycle.

FIGURE 4.2: Person entity graph

This graph contains one cycle – (User, User) at the basedOnUser property.

4.2 Meta-model generation algorithm

At the highest level the meta-model generation mechanism functions according to
the following rules:

• For each class annotated with @MapEntityTo or @DomainEntity there will be
a meta-model generated that captures all of its properties, that is, all fields
annotated with @IsProperty.

• A meta-models collection class will be generated. This class is a container stor-
ing an instance of every active meta-model in a static field. In other words, it
contains an entity graph for each domain entity.

• Whenever a domain entity is modified, the whole entity graph is considered
for regeneration. That is, each node in the graph that represents a domain
entity will have its metamodel regenerated. The renaming and deletion of an
entity is also covered.

• If an entity should no longer be metamodeled, that is, it is either no longer
annotated with the above mentioned annotations or deleted, then its meta-
model is regenerated into an inactive one. Its entity graph is removed from the
meta-models collection class.

Chapter 4. Implementation details 20

FIGURE 4.3: A high-level view of the meta-model generation algo-
rithm

(1) A class is considered to be metamodeled if it is annotated with @MapEntityTo
or @DomainEntity.

(2) This step is illustrated in detail by 4.4. See (2)*

(3) A meta-model is considered to be inactive if its underlying entity no longer
qualifies for being metamodeled. An inactive meta-model is structured in such
a way that it effectively becomes "useless". To achieve this in Java we generate
an abstract empty class (with no members). The fact that the class is abstract
means that it cannot be instantiated. The reasoning behind this choice was to
overcome the limitations of an inability to support deletion of meta-models.

(4) In case an entity becomes metamodeled, it is necessary to connect its meta-
model to any existing ones, the underlying entities of which are adjacent in the
entity graph. In other words, this step is responsible for connecting the entity
graphs. This step is discussed in more detail below (4.5). See (4)*.

(5) The meta-models collection class is regenerated by removing fields with inac-
tive meta-models and adding fields for newly generated meta-models if needed.

(6) This step is equivalent to (5), except that there are no inactive meta-models,
since the collection class does not yet exist.

(2)*

Chapter 4. Implementation details 21

FIGURE 4.4: The procedure of generating a meta-model

(a) Each field annotated with @IsProperty is considered to be a property of
an entity.

(b) See (1) above.

(c) PropertyMetaModel class is used to represent any property that is a sink
in the entity graph.

(d) Supplier<T> is a parameterized type used to represent any node in a
graph that is not a sink, where T is a meta-model class. This particular
type is used in order to achieve lazy computation of an entity node value,
since an entity graph may contain a cycle.

(4)* Consider a situation where Person and User entities are metamodeled, while
the Vehicle entity is not. Then the following entity meta-model graph exists:

Chapter 4. Implementation details 22

FIGURE 4.5: An entity meta-model graph where Person and User are
metamodeled, but Vehicle is not

Then, if Vehicle becomes metamodeled, the arc (PersonMetaModel, PropertyMetaModel)
labeled vehicle() should be replaced by an arc (PersonMetaModel, VehicleMetaModel).

FIGURE 4.6: A meta-model graph for entity Person after Vehicle was
metamodeled

This can be achieved only by traversing each entity graph in order to find the
appropriate adjacent entity nodes ((Person, Vehicle) in the example above).

4.3 Meta-model structure

The following UML class diagram illustrates the structure of the generated meta-
models for entities from the example in 4.2.

Chapter 4. Implementation details 23

FIGURE 4.7: UML class diagram describing the generated meta-
models for the domain illustrated in Figure 4.2

The actual String value representing the property dot-notation is accessed by
calling the toPath() method (or the equivalent toString()). A meta-model also
implements a getEntityClass() method that can be used to obtain the class of its
underlying entity. Fields of the meta-models collection class (MetaModels) are named
by appending the underscore to the name of the underlying entity in order to avoid
conflicts that might be caused by static imports in Java (Person as type and Person
as statically imported field). Methods of a meta-model that are used to traverse
the entity graph contain additional information about the modeled properties in the
form of javadoc as illustrated below:

@IsProperty
@Title("Name", desc = "The name of this person")
@MaxLength(255)
private String name;

LISTING 13: An arbitrary non-entity type property (a sink node in the
graph)

Chapter 4. Implementation details 24

/**
* Title: Name
* Description: The name of this person
* Type: {@link String}
* {@literal @}{@link IsProperty}
* {@literal @}{@link MaxLength}(value = 255)
*/
public PropertyMetaModel name() {

return this.name;
}

LISTING 14: A property metamodeled after 13

@IsProperty
@Title("User", desc = "User associated with this person")
private User user;

LISTING 15: An arbitrary entity-type property

/**
* Title: User
* Description: User associated with this person
* Type: {@link User}
* Meta-model: {@link UserMetaModel}
* {@literal @}{@link IsProperty}
*/

public UserMetaModel user() {
return this.user.get();

}

LISTING 16: A property metamodeled after 15

Chapter 4. Implementation details 25

4.4 Usage example

The following listing shows how a meta-model might be used:

1 public class PersonFetcher {
2 static final PersonMetaModel person = MetaModels.Person_;
3

4 // a fetch model used to fetch data from a database
5 static final Fetch<Person> FETCH = fetch(Person.class).with(
6 // sink node
7 person.name(), // "name"
8

9 // entity node
10 person.user(), // "user"
11 person.user().basedOnUser(), // "user.basedOnUser"
12 person.vehicle(), // "vehicle"
13 person.vehicle().cost(), // "vehicle.cost"
14

15 // source node
16 person // "this"
17);
18 }

LISTING 17: Using the meta-model for entity Person to traverse its
graph

Suppose that the conceptual schema has changed, resulting in the Vehicle entity
no longer having property cost. Then, the following compilation error would occur
at line 13:

// error: The method cost() is undefined for the type VehicleMetaModel
person.vehicle().

:::::::
cost(),

The true power of a meta-model is manifested in combination with code auto-
completion:

FIGURE 4.8: Traversing the entity graph with the help of Eclipse IDE
code auto-completion feature

Note: Property-methods are highlighted

26

Chapter 5

Evaluation

Evaluation of the developed technology was conducted in the form of an experi-
ment. The motivation behind this choice was the desire to assess the extent to which
all stated objectives were achieved. Although, the intuitive choice was to employ
an approach of automated software testing, not all objectives could be effectively
assessed in that manner. Domain discoverability, in particular, is better suited to
evalutaion by opinion because of its subjective nature. Also, given rather uncom-
mon software development technique of code generation, as well as the intricate
dependencies between the generated code and source code, it was challenging to de-
velop automated tests for the assessment of the other two objectives, namely, model
consistency and evolvability. Therefore we use the experiment as the sole means of
evaluation.

The focus group of the experiment was comprised of 7 software engineers work-
ing on several commercial projects built with TG at their core. The experiment had
been conducted over a period of one week, at the end of which every participant
was asked to fill out a questionnaire. Each individual was asked to agree/disagree
with a handful of statements and optionally provide additional comments.

Despite the fact that the actual duration was shorter than originally planned,
most answers convey enough information with only a few where several respon-
dents share the opinion that more time is required. What follows is a display of
responses, accompanied by selected comments that contributed most valuable in-
sight.

Chapter 5. Evaluation 27

5.1 Discoverability of the domain model

Figure 5.1 shows that all respondents recognize the improvements in domain dis-
coverability. Several comments show an appreciation for the generated javadoc for
entity properties, implying that it has led to an increase in the development pace.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.1: Responses to the statement: The information provided
by meta-models in the form of javadoc combined with the IDE’s
code auto-completion feature made domain discoverability more

efficient.

Figure 5.2 shows that the need for repetitive context switching was effectively elim-
inated with the introduction of meta-models. One participant commented that he
was particulary annoyed in the past by the need for context switching. However,
several other comments indicate that it was occasionally necessary to switch to the
definition of an underlying entity to further discover additional information that is
out of scope of the meta-model.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.2: Responses to the statement: When attempting to refer
to a property of an entity using a meta-model, there was no need
for context switching, i.e., opening an entity class and looking for

the property definition.

Chapter 5. Evaluation 28

The opinions vary in regards to whether meta-model conveys enough information
about the underlying domain entities, as illustrated by Figure 5.3. One comment
suggested an idea that a meta-model could contain the database representation of
its underlying entity (e.g. table name and columns data types).

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

FIGURE 5.3: Responses to the statement: The generated meta-
models could contain more information about their underlying en-

tities.

5.2 Reliability

Figure 5.4 shows that all participants are in agreement about reliability of the meta-
models. Several comments identified improvement areas for the meta-model. One
participant suggested that it would be practical to to allow external properties (rep-
resented by String objects) to be inserted into the dot-notated path of a meta-model.
Another participant identified a limitation of the meta-model in the fact that it can
not be used in annotations, that is, as a constant value at compile time. We address
these ideas in Chapter 6 in the discussion of future work.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

FIGURE 5.4: Responses to the statement: Usage of the generated
meta-models proved to be a reliable way of referencing properties

of an entity, i.e., there were no occurrences of runtime errors.

Chapter 5. Evaluation 29

5.3 Evolvability

Figure 5.5 shows that most respondents acknowledge that system evolvability has
improved with the introduction of meta-models.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

FIGURE 5.5: Responses to the statement: Evolvability of a sys-
tem against modifications to the conceptual model increased due
to compile-time validation in places where the generated meta-

models were referenced.

5.4 Performance

Figure 5.6 shows that the impact on performance of an IDE was not of a noticable
significance. Two participants commented that even for relatively large domains the
generation process was very fast. One of the "Hard to tell" answers was followed by
a comment that more time is needed to asssess this aspect.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.6: Responses to the statement: Impact of the meta-model
generation process on performance of the IDE during compilation

has been insignificant to the development process.

Chapter 5. Evaluation 30

5.5 Correctness of the generation mechanism

Figure 5.7 shows that most participants agree that the generated meta-models were
correctly reflecting the additive changes to the domain model. Several comments,
however, state that more time is required for evaluation of this aspect, since addition
of an entity is not a common occurence.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

FIGURE 5.7: Responses to the statement: The meta-model generation
mechanism was always correctly generating meta-models for newly

added entities.

Figures 5.8 and 5.9 show that modifications of existing entities were successfully re-
flected in the generated meta-models. Both also share similar comments that express
the need for more time for evaluaton.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

FIGURE 5.8: Responses to the statement: The meta-model genera-
tion mechanism was acting correctly in response to the renaming /

deletion of an entity.

Chapter 5. Evaluation 31

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.9: Responses to the statement: The meta-model generation
mechanism was always correctly adapting the latest modifications

to the conceptual model.

5.6 Intuitiveness and ease of use

Responses illustarted by Figure 5.10 indicate that all participants found meta-models
easy to understand and use. One respondent identified a problem that he experi-
enced while using the meta-model that arose from the fact that the metamodeled
properties were mixed with other methods that are inherited by a meta-model class,
thus making it difficult to distinguish them. This effect can be observed in Figure
4.8, where only property related methods are highlighted.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.10: Responses to the statement: Overall structure of the
entity meta-model was easy to understand and intuitive in its use

for referencing and chaining properties of an entity.

Figure 5.11 shows that the majority of responses indicate an uncertainty in regards
to improvements of meta-model structure. One of the respondents commented that
it would be beneficial to broaden the scope of meta-models to cover Java types that
are not a part of a domain (e.g. BigDecimal, Integer). This further shows that there
is an evident need for metamodeling facilities in programming languages.

Chapter 5. Evaluation 32

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.11: Responses to the statement: The entity meta-model
could be structured in a better way.

Figure 5.12 shows that all participants felt positively about their experince of using
meta-models. One of the respondents even admited that despite his reluctancy to
changes he felt that the addition of meta-models was useful.

Strongly Agree Agree Hard to tell Disagree Strongly Disagree
0

1

2

3

4

5

FIGURE 5.12: Responses to the statement: Overall, I am rather sat-
isfied with the experience of utilizing the meta-model generation

tool.

33

Chapter 6

Conclusion and future work

In this chapter, the research findings are reviewed against the original objectives set
out in Chapter 1. This is followed by some suggestions for future work.

6.1 Review against the original objectives

Chapter 1 outlined three aspects of software construction to be improved: domain
discoverability, system reliability and system evolvability.

In Chapter 1 we stated our hypothesis that the lack of metamodeling facilities on
the level of programming language that provide design-time domain discoverability
features is an accidental complexity involved in the process of software construction.
It was shown that the consequences of this complexity limit the extent to which
systems can be made reliable and software evolvable.

In Chapter 3 by examining related work we showed that the grounds for our
hypothesis find their place in the software engineering field. It was found that the
developers of Hibernate, a widely-used ORM framework in Java, were also aware
of the issue at the core of our hypothesis. Their solution, while satisfying the needs
of the framework, was deemed to be not advanced enough to facilitate domain dis-
coverability.

Chapter 4 introduced an approach built around the concept of meta-model. It
uses the Java annotation processing API to perform semantic analysis of the domain
model in order to generate a meta-model of the domain.

Chapter 5 described the results obtained by evaluating the implementation. Our
findings showed that when the approach was used in application to transactional
business information systems it led to improvements in all three aspects, as was
judged by the focus group of software engineers.

6.2 Future work

During the course of the research several potentially valuable areas of improvement
have been identified. Some of them were brought to our attention during the exper-
iment stage.

6.2.1 Integration with IDEs

Considering the significant role of IDEs in software engineering, the need for inte-
gration with the meta-model was identified as one of the most beneficial improve-
ments. Firstly, it is desirable to enhance the refactoring capabilites of an IDE by
instructing the underlying mechanism to take the references to meta-models into

Chapter 6. Conclusion and future work 34

account during this process. This would reduce the time spent on the repetitive ac-
tivity of modifying the entity graph paths in the source code. Secondly, it would be
fitting if the methods of a meta-model class would benefit from syntax highlighting
features of an IDE in the same way as the fields of a class do when they are refer-
enced. This would result in better code readability.

6.2.2 Compile time constant values

As was mentioned by one of the participants of the experiment, the meta-model’s
nature does not allow software engineers to use it as a constant value at compile
time, forcing them to revert to the usage of unreliable textual representation. We
admit that our implementation of the meta-model is not able to manifest its true
power at compile time due to the limits of Java programming language. However,
this limitation can be partially overcome by providing a single level entity graph
traversal capabilities at compile time, thus it is considered an attainable goal. Also,
the need for traversing an entity graph deeper than a single level at compile time
has not been identified yet.

6.2.3 Support for external metadata

During the experiment one participant invented a new use for the meta-model. He
identified the need for insertion of external metadata into the constructed paths from
traversing an entity graph. Using this approach would make it possible to combine
the meta-model with other sources of metadata. We believe that this would further
expand the metamodeling capabilites and recognize this as a feasible improvement.

6.2.4 General framework indepent approach

The idea of creating an abstraction for metamodeling capabilities opens the door to
vast improvements in information systems design and software engineering in gen-
eral. Such an abstraction could be designed in the form of an annotation processor
with the core logic similar to that presented in this research. A framework inde-
pendent implementation in Java is a task that can be accomplished by designing a
general interface for a framework to conform to. The use of reflection is proposed to
link the interface implementation to the abstraction (meta-model generation mecha-
nism).

35

Bibliography

[Art] Yuriy Artamonov. Java alternative to nameOf operator. URL: https : / /
github.com/strangeway-org/nameof.

[BM06] Peter Marks Ben Moseley. “Out of the Tar Pit”. In: (2006).

[Eva03] Eric Evans. Domain-Driven Design: Tacking the Complexity in the Heart of Software.
Pearson Education (US), 2003. ISBN: 9780321125217.

[Fer10] Hardy Ferentschick. Hibernate JPA 2 Metamodel Generator. Mar. 10, 2010.
URL: https://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/
en-US/html_single/.

[FPB86] Jr. Frederick P. Brooks. “No Silver Bullet — Essence and Accident in Soft-
ware Engineering”. In: (1986).

[Fra] Florian Frankenberger. A Java library to programmatically return the name of fields similar to the C# nameof expression.
URL: https://github.com/mobiuscode-de/nameof.

[Jav] Java. Oracle. URL: https://www.java.com.

[JG15] Guy Steele Gilad Bracha Alex Buckley James Gosling Bill Joy. The Java Language Specification.
Feb. 13, 2015. URL: https://docs.oracle.com/javase/specs/jls/se8/
jls8.pdf.

[Loma] Project Lombok. @FieldNameConstants. URL: https://notatube.blogspot.
com/2010/12/project-lombok-creating-custom.html.

[Lomb] Project Lombok. URL: https://projectlombok.org/.

[Mica] Microsoft. nameof expression (C# reference). URL: https://docs.microsoft.
com/en-us/dotnet/csharp/language-reference/operators/nameof.

[Micb] Microsoft. Properties (C# Programming Guide). URL: https://docs.microsoft.
com/en-us/dotnet/csharp/programming-guide/classes-and-structs/
properties.

[Nau85] Peter Naur. “Programming as Theory Building”. In: (1985).

[nei11] neildo. Project Lombok: Creating Custom Transformations. Jan. 6, 2011. URL:
https://notatube.blogspot.com/2010/12/project-lombok-creating-
custom.html.

[OH14] Yael Dubinsky Orit Hazzan. “Qualitative Research in Software Engineer-
ing”. In: (2014).

[Oli07] Antoni Olive. Conceptual Modeling of Information Systems. Springer, 2007.
ISBN: 9780321125217.

[Paw04] Richard Pawson. “Naked objects”. PhD thesis. University of Dublin, Trin-
ity College, 2004.

[RB] Ed Ort Rahul Biswas. The Java Persistence API. URL: https://www.oracle.
com/technical-resources/articles/java/jpa.html.

https://github.com/strangeway-org/nameof
https://github.com/strangeway-org/nameof
https://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/
https://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/
https://github.com/mobiuscode-de/nameof
https://www.java.com
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://notatube.blogspot.com/2010/12/project-lombok-creating-custom.html
https://notatube.blogspot.com/2010/12/project-lombok-creating-custom.html
https://projectlombok.org/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://notatube.blogspot.com/2010/12/project-lombok-creating-custom.html
https://notatube.blogspot.com/2010/12/project-lombok-creating-custom.html
https://www.oracle.com/technical-resources/articles/java/jpa.html
https://www.oracle.com/technical-resources/articles/java/jpa.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Domain modeling
	System reliability
	System evolvability
	Technical approach
	Qualitative research
	Structure

	Background
	Conceptual modeling of software systems
	Domain-driven design and its terminology
	Java programming language
	Java reflection
	Java annotations
	Annotation processing

	Related work
	C# nameof
	Java nameof hack
	Method references
	Reflection and byte-code manipulation
	The hack

	Project Lombok
	@FieldNameConstants annotation

	Hibernate Metamodel Generator

	Implementation details
	Entity graph
	Meta-model generation algorithm
	Meta-model structure
	Usage example

	Evaluation
	Discoverability of the domain model
	Reliability
	Evolvability
	Performance
	Correctness of the generation mechanism
	Intuitiveness and ease of use

	Conclusion and future work
	Review against the original objectives
	Future work
	Integration with IDEs
	Compile time constant values
	Support for external metadata
	General framework indepent approach

	Bibliography

