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Abstract: We study spectral properties of a wide class of differential operators with frozen arguments
by putting them into a general framework of rank-one perturbation theory. In particular, we give a
complete characterization of possible eigenvalues for these operators and solve the inverse spectral
problem of reconstructing the perturbation from the resulting spectrum. This approach provides a
unified treatment of several recent studies and gives a clear explanation and interpretation of the
obtained results.
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1. Introduction

In the recent few years, there has been an increased interest in the inverse spectral
problems for the so-called Sturm–Liouville operators with frozen arguments that are given
by the differential expression

`(y) = −y′′(x) + y(a)q(x), x ∈ (0, π), (1)

and subject to some boundary conditions. Here a ∈ (0, π) is a fixed (or “frozen”) value
of the argument x and q is a function in H = L2(0, π). The corresponding differential
operator is non-self-adjoint, unbounded, and has compact resolvent in H. A natural
question arises, what spectra such operators may have and whether their eigenvalues
completely characterize potentials q, i.e., whether q can be reconstructed from the known
freezing point a and the corresponding eigenvalues.

A thorough study of these questions was made in several recent articles. Buterin
and Vasiliev [1] studied the problem of reconstructing the potential q from the spectrum
of the Sturm–Liouville-type operator (1) in case when q ∈ L2(0, π) is a complex-valued
function and a/π is a rational number. They used the so-called transformation operators
to get an integral representation of the solutions of the equation `(y) = λy, derived
an integral representation of the characteristic function, and then obtained asymptotics
of the eigenvalues and eigenfunctions. That allowed the authors to study the inverse
spectral problem and identify the iso-spectral sets of potentials q sharing the same spectrum
and thus causing non-uniqueness of reconstruction; uniqueness was established for the
class of potentials possessing some symmetry. Bondarenko et al. [2] extended the above
research to the case of various boundary conditions. A more difficult case when a/π is
irrational was recently discussed in [3]; uniqueness of q was proved and the reconstruction
algorithm suggested. In [4], the authors considered the periodic boundary conditions for
the differential expression (1); then the unperturbed operator with q ≡ 0 has eigenvalues
of multiplicity 2, and the analysis of both direct and inverse spectral problems becomes
technically more involved. Trace formulas and the inverse nodal problems were discussed
in [5].
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We also mention the paper of Nizhnik et al. [6], in which Sturm–Liouville eigenvalue
problems (1) on (0, 1) were considered with a = 1 and non-local boundary conditions
y(0) = y′(1) + (y, q)L2 = 0. Here, q is an arbitrary complex-valued function in the Hilbert
space L2(0, 1) and (y, q)L2(0,1) denotes the scalar product therein. The corresponding
operator is self-adjoint in L2(0, 1), and the authors studied the inverse spectral problem of
reconstructing the potential q from its eigenvalues. In [7,8], Nizhnik extended the results
of [6] to some other differential expressions and boundary conditions. The inverse problem
for a class of self-adjoint perturbations that are integral operators with degenerate kernels
was recently studied by Zolotarev [9].

The purpose of this note is to suggest a different approach to the spectral study of the
Sturm–Liouville-type operators with frozen arguments. Namely, the operator generated
by (1) can be viewed as a rank-one perturbation of the reference operator A corresponding
to q ≡ 0; indeed, the term y(a)q(x) can be represented as 〈y, ϕ〉ψ with ϕ = δa being
the Dirac delta-function, ψ = q, and 〈 · , · 〉 denoting the pairing in the Hilbert space
scale generated by A; see details in the next section. We observe that this perturbation is
unbounded as ϕ does not belong toH; however, it is bounded (and even compact) relative
to A, and that allows a generalization of the preliminary results obtained for the bounded
case with ϕ, ψ ∈ H.

Generic bounded rank one perturbations of self-adjoint operators are studied quite well, see
e.g., the reference lists of [10–13]. In our resent work [12,13], we gave a complete characterization
of possible spectra σ(B) of bounded non-self-adjoint rank-one perturbations

B = A + 〈·, ϕ〉ψ, ϕ, ψ ∈ H, (2)

of self-adjoint operators A with simple discrete spectrum. In particular, we proved therein
that geometric multiplicities are at most 2 while the algebraic ones can be arbitrary; the
only essential restriction on the eigenvalues of B comes from their asymptotics.

In this paper, we shall first show that even when ϕ or ψ are allowed to be singular, the
statements on the multiplicity of eigenvalues of B remain valid while their asymptotic dis-
tribution should accordingly be modified. The effective tool for proving the main results of
the paper is the characteristic function F of the operator B; namely, the eigenvalues of B that
are not in the spectrum of A are zeros of F of required multiplicity. By studying the latter, we
completely characterize eigenvalue asymptotics as stated in Theorems 1 and 2. We stress
that this asymptotics differs from the one derived in [13] for the bounded case ϕ, ψ ∈ H,
and its derivation requires essential changes in the proofs. Next, zeros of F allow for a
unique reconstruction of F, thus specifying ψ up to an iso-spectral set, see Corollary 5.
Since F is given by explicit formulae, this approach suggests a constructive algorithm of
determining ψ from the spectrum of the perturbation B. After establishing these abstract
results, we specialize them to a wide variety of differential operators with frozen argu-
ments including those of Sturm–Liouville type (1) thus providing a unified treatment of
the questions discussed in the papers [1–4].

The paper is organized as follows. In the next section, we introduce necessary defini-
tions and specify the setting of the paper, recall auxiliary results, derive the characteristic
function and explain why the results of [12,13] are applicable here. In Section 3, we establish
the asymptotics of the eigenvalues of B and in Section 4, we solve the inverse problem of
reconstructing the vector ψ given ϕ. Several examples are given in Section 5.

2. Preliminaries

In this section, we collect some properties of rank-one perturbations of self-adjoint
operators A acting in a fixed separable (infinite-dimensional) Hilbert spaceH established
in [12,13] that will be used to prove the main results of this work. The reader can find
further references and examples of applications in the monographs [10,11].

Throughout the paper, we shall assume that

(A1) the operator A is self-adjoint and has simple discrete spectrum.
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Without loss of generality, we assume that A is either bounded below or else is
unbounded from both below and above. In both cases, we list the eigenvalues in increasing
order as λn, n ∈ I, where I = N in the former case and I = Z in the latter case. Since
the motivation for this work stems from differential operators, we make an additional
assumption that

(A2) the eigenvalues of A are d-separated, i.e.,

d = inf
n∈I

(λn+1 − λn) > 0. (3)

To treat rank-one perturbations (2) with ϕ not a regular function as in (1), we introduce
the scale of Hilbert spacesHα, α ∈ R [14]. Without loss of generality, we assume that A is
invertible, adding to it εI otherwise. Then for α > 0,Hα coincides with dom(|A|α/2) and
is equipped with the scalar product 〈 f , g〉α = 〈Aα/2 f , Aα/2g〉. For negative α, Hα is the
completion ofH in the norm generated by the above scalar product. The standard scalar
product 〈 f , g〉 extends by continuity to f ∈ Hα and g ∈ H−α via

〈 f , g〉 = 〈|A|α/2 f , |A|−α/2g〉

and is called the pairing betweenHα andH−α.
In what follows, we assume that ψ ∈ H but ϕ ∈ H−α with some α < 2. Then the

rank-one operator A0 f = 〈 f , ϕ〉ψ is compact relative to A ([15], Ch. IV.1): indeed, in view
of the relation

A0 A−α/2 f = 〈A−α/2 f , ϕ〉ψ = 〈 f , A−α/2 ϕ〉ψ

we find that
‖A0 A−α/2 f ‖ ≤ ‖A−α/2 ϕ‖‖ψ‖‖ f ‖,

so that A0 A−α/2 is bounded and A0 A−1 is compact. It follows that the operator B = A+ A0
is well defined and closed on the domain dom(A) of A and has compact resolvent ([15],
Ch. IV.1).

Next, for λ ∈ ρ(A), we introduce the characteristic function

F(λ) = 〈ψ, (A− λ)−1 ϕ〉+ 1; (4)

this function (in a slightly different form) appears in the Krein resolvent formula for B [11,12],
and its zeros characterise the spectrum of B. The standard form of F as discussed in the
previous work was

F(λ) = 〈(A− λ)−1ψ, ϕ〉+ 1;

this formula also makes sense in the current setting if we interpret the scalar product as the
pairing betweenH2 andH−2 as explained above.

To see that both interpretations of F coincide, we suggest yet another representation of
F using the spectral theorem for the operator A. Namely, let vn be a normalized eigenvector
of A corresponding to the eigenvalue λn (so that the set {vn}n∈I is an orthonormal basis
ofH), and let an and bn denote the corresponding Fourier coefficients of the vectors ϕ and
ψ, so that

ϕ = ∑
k∈I

akvk, ψ = ∑
k∈I

bkvk. (5)

We point out that the Fourier coefficients an of ϕ are well defined since the formula

an = 〈ϕ, vn〉 = 〈A−1 ϕ, Avn〉

makes sense as a pairing betweenH−2 andH2. Set also

I0 = {n ∈ I | anbn = 0}, I1 = {n ∈ I | anbn 6= 0};
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then the characteristic function F of (4) can be written as

F(z) = ∑
k∈I1

akbk
λk − z

+ 1 (6)

and thus can be analytically extended to σ0(A) = {λn | n ∈ I0}; we keep the notation F for
this extension. (Note that in (6) and in what follows, the summations and products over
the index sets that are not bounded from below and above are understood in the principal
value sense.) It is known [12] that σ0(A) = σ0(B) = σ(A) ∩ σ(B) is the common part of the
spectra of A and B, while the spectrum of B in C \ σ0(A) coincides with the set of zeros
of F. For convenience, we set σ1(A) = {λn | n ∈ I1}.

It turns out that the function F also characterizes eigenvalue multiplicities of the
operator B. We recall that the geometric multiplicity of an eigenvalue λ of B is the dimension
of the null-space of the operator B− λ, while its algebraic multiplicity is the dimension of
the corresponding root subspace, i.e., of the set of all y ∈ dom(B) such that (B− λ)ky = 0
for some k ∈ N. As proved in [12], the geometric multiplicity of every eigenvalue µ of B is
at most 2; multiplicity 2 is only possible when µ ∈ σ0(A), i.e., µ = λn for some n ∈ I0 and,
in addition, an = bn = F(λn) = 0. It should be pointed out that the equality an = bn = 0
implies that the subspace ls{vn} is invariant under both B and B∗ and thus is reducing
for B. Denoting byH0 the closed linear span of all such subspaces, we conclude thatH0
and H	H0 are reducing for B and the operators A and B coincide on H0. As a result,
only the part of B inH	H0 is of interest, and we may assume thatH0 = {0} without loss
of generality.

Under such an assumption, every eigenvalue µ of B is geometrically simple and the
main results of [12] can be summarised as follows:

(a) the algebraic multiplicity m of an eigenvalue µ ∈ σ(B) \ σ0(B) coincides with the
multiplicity l of z = µ as a zero of F;

(b) if µ ∈ σ0(B), then the above multiplicities m and l satisfy the relation m = l + 1;
(c) for any n-tuple z1, z2, . . . , zn of pairwise distinct complex numbers and any n-tuple

m1, m2, . . . , mn of natural numbers, there exists a rank-one perturbation B of A such
that every zj is an eigenvalue of B of algebraic multiplicity mj;

(d) the eigenvalues of B can be enumerated as µn, n ∈ I, in such a way that µn − λn → 0
as |n| → ∞; in particular, B has at most finitely many non-simple eigenvalues.

Property (c) means that locally the spectrum of B can be arbitrary, while (d) describes
the asymptotic behavior of the eigenvalues of B at infinity. One of the main aims of this
note is to provide a complete characterization of the possible spectra of A under rank-one
perturbations by refining the asymptotics of µn, cf. Theorems 1 and 2. In view of (a) and
(b), this task amounts to the study of zero distribution of the characteristic function F of (4),
which will be done in Sections 3 and 4.

3. Eigenvalue Distribution of the Operator B

As we mentioned in the previous section, the eigenvalues of the operator B are
determined by the characteristic function F which, in turn, is completely determined by
the Fourier coefficients an and bn of the vectors ϕ and ψ through their products cn = anbn,
n ∈ I. For typical applications we have in mind (with A a differential operator and ϕ the
Dirac delta-function), the eigenfunctions vn are uniformly bounded and so are the Fourier
coefficients an. Therefore, we assume throughout the rest of the paper that

(A3) the Fourier coefficients an of ϕ are uniformly bounded.

Under (A3), the sequence cn = anbn belongs to `2(I); however, we need a more precise
characterization of cn.

Definition 1. For ϕ as above, we denote by `2(ϕ) the set of sequences (cn)n∈I of the form cn = andn
with (dn) ∈ `2(I) and an the Fourier coefficients of ϕ in the basis (vn)n∈N.
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Under assumption (A3), we have `2(ϕ) ⊂ `2(I); moreover, the inclusion is strict if
some of an are zero or if lim inf|n|→∞ |an| = 0. The main result of this section establishes
the asymptotic distribution of the eigenvalues of B in the following form.

Theorem 1. Under the above assumptions, the eigenvalues of the operator B can be labelled as µn,
n ∈ I, in such a way that the sequence (µn − λn)n∈I belongs to `2(ϕ); in particular,

∑
n∈I
|µn − λn|2 < ∞ (7)

and all but finitely many eigenvalues of B are simple.

We should point out the effect on the asymptotic distribution of eigenvalues that sin-
gularity of ϕ makes: for regular ϕ ∈ H, the sequence of µn − λn was absolutely summable
([13], Theorem 3.1), while here it is only square summable.

As explained in the previous section, the spectrum of B is the union of two parts, σ0(B)
and σ1(B); σ0(B) = σ(A) ∩ σ(B) is the common part of the spectra of A and B, while σ1(B)
is the set of zeros of the characteristic function

F(z) =
∞

∑
n∈I1

cn

λn − z
+ 1

in the domain C \ σ1(A); moreover, the algebraic multiplicity of an eigenvalue µ ∈ σ(B) is
determined by its multiplicity as a zero of the characteristic function F.

First, we shall show that large enough elements of σ1(B) are located near σ1(A), which
will enable their proper enumeration. To begin with, for k ∈ I we define the functions Gk
and Hk by the formulae (here and hereafter, the symbol ∑(1) will denote summation over
the index set I1)

Gk(z) =
akbk

λk − z
+ 1, Hk(z) = ∑(1)

|n|≤k

anbn

λn − z
+ 1

and introduce the sets

Qk={z ∈ C | Re(z), Im(z) ∈ [λ−|k| − d
2 , λ|k| +

d
2 ]},

Rk={z ∈ C | |z− λk| < d
2},

(8)

where we replace λ−|k| with −λ|k| if I = N. Due to the assumption (A2), the sets Rk are
pairwise disjoint and also Rk ∩Qn = ∅ if |k| > |n|.

Lemma 1. The series

∑
n∈I1

1
|λn − z|2

converges locally uniformly in z ∈ C \
(⋃

k∈I1
Rk

)
and its sum is uniformly bounded therein.

Proof. If I = Z, then we choose k ∈ Z such that

λk−1 + λk
2

≤ Re z <
λk + λk+1

2
;

if I = N, then we set λ0 = 0 for convenience and define k ∈ N as above provided
Re z > λ1/2; otherwise, set k = 0. Observing that |λn − λk| ≥ d|n− k|, we conclude that
|λn − z| > d|n− k|/2 if n 6= k; as a result, we derive the uniform bound

∑
n∈I1

|λn − z|−2 ≤ 4
d2 +

8
d2

∞

∑
j=1

j−2 =
4(3 + π2)

3d2 .
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The proof is complete.

Remark 1. We observe that the same statements on uniform convergence and uniform boundedness
hold when the radius d/2 of the circles Rk is replaced by an arbitrary ε or when z is taken within
the union of Rk but n = k is omitted in the sum; these modifications will be used below.

Lemma 2. For every ε > 0, there exist integers Kε > 0 and K′ε > Kε such that the following holds:

(a) for every k with |k| > Kε and every z ∈ Rk = ∂Rk ∪ Rk

∑(1)

|n|>Kε
n 6=k

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε; (9)

(b) for every z ∈ C \QK′ε

∑(1)

|n|≤Kε

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε. (10)

Proof. Since the sequence (cn)n∈I1 belongs to `2(I1), for every ε′ > 0 there exists a K
such that

∑(1)

|n|>K
|cn|2 < ε′.

In view of the Cauchy–Bunyakowsky–Schwarz inequality and Lemma 1, we find that

∑(1)

|n|>K
n 6=k

∣∣∣∣ cn

λn − z

∣∣∣∣ ≤ ( ∑(1)

|n|>K
|cn|2

)1/2(
∑(1)

|n|>K
n 6=k

|λn − z|−2
)1/2

≤
(

ε′
4(3 + π2)

3d2

)1/2
.

Part (a) follows by choosing ε′ > 0 so that the above value is less than ε and denoting by Kε

the corresponding integer K.
For part (b), note that |λn − z| > (K′ε − Kε)d if |n| ≤ Kε and z ∈ C \ Qk with |k| ≥

K′ε > Kε; therefore, by choosing K′ε large enough, we arrive at (10).

Corollary 1. Take an arbitrary ε ∈ (0, min{1/2, d/2}) and fix K′ε as in the above lemma; then

σ(B) ⊂ QK′ε ∪
(⋃

n∈I
Rn

)
.

Indeed, it suffices to note that if z does not belong to the above set, then

∑(1)

|n|>Kε

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε,

which together with part (b) of Lemma 2 shows that

|F(z)| ≥ 1− ∑(1)

|n|≤Kε

∣∣∣∣ cn

λn − z

∣∣∣∣− ∑(1)

|n|>Kε

∣∣∣∣ cn

λn − z

∣∣∣∣ > 1− 2ε > 0

so that such z cannot be an eigenvalue of B.

Lemma 3. There exists a K > 0 such that for all k ∈ I1 with |k| > K the following holds:

(a) the function F has exactly one zero in Rk;
(b) the functions Hk and F have the same number of zeros in Qk.

Proof. Fix an ε ∈ (0, min{1/3, d/2}); we shall show that (a) and (b) hold for K = K′ε of
Lemma 2.
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If k satisfies |k| > K, then by Lemma 2 for every z ∈ ∂Rk we get

|F(z)− Gk(z)| ≤ ∑(1)

|n|≤Kε

∣∣∣∣ cn

λn − z

∣∣∣∣+ ∑(1)

|n|>Kε
n 6=k

∣∣∣∣ cn

λn − z

∣∣∣∣ < 2ε.

On the other hand, |ck|/|λk − z| < ε if k ∈ I1 satisfies |k| > K > Kε and z ∈ ∂Rk, and then

|Gk(z)| ≥ 1−
∣∣∣∣ ck
λk − z

∣∣∣∣ > 1− ε

for all z ∈ ∂Rk. By the choice of ε we conclude that then

|Gk(z)| > |F(z)− Gk(z)| (11)

for all such z. As the functions Gk and F both have the same number of poles in Rk (namely,
a simple pole at λk), by estimate (11) and Rouché’s theorem [16] they have the same number
of zeros in the set Rk. Since |ck| < d/2 for large enough |k|, the unique zero z = λk + ck of
the function Gk belongs to the circle Rk for all k ∈ I1 with |k| > K, and thus the function F
has exactly one zero in Rk for such k as well. This completes the proof of part (a).

Next, by the definition of the set Qk, we see that ∂Qk belongs to the set C \
(⋃

n∈I Rn
)
;

repeating the arguments used in the proof of part (a) of Lemma 2, we conclude that

|F(z)− Hk(z)| ≤ ∑(1)

|n|>|k|

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε

and

∑(1)

Kε<|n|≤|k|

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε (12)

if |k| > Kε and z ∈ ∂Qk. Also, by part (b) of Lemma 2 we have

∑(1)

|n|≤Kε

∣∣∣∣ cn

λn − z

∣∣∣∣ < ε (13)

as soon as |k| > K and z ∈ C \Qk. Combining estimates (12) and (13), we conclude that

|Hk(z)| ≥ 1− ∑(1)

|n|≤k

∣∣∣∣ cn

λn − z

∣∣∣∣ > 1− 2ε (14)

for all k with |k| > K and all z ∈ C \ Qk. It follows that for k with |k| > K and for all
z ∈ ∂Qk

|Hk(z)| > |F(z)− Hk(z)|.

Since the functions Hk and F have the same poles in Qk (namely, simple poles λn for n ∈ I1
with |n| ≤ k), we conclude by Rouché’s theorem that they have the same number of zeros
in Qk for all k > K. The proof is complete.

Remark 2. Take k larger than K of the above lemma and denote by Nk the cardinality of the set
σ1(A)∩Qk. The function Hk is a ratio of two polynomials of degree Nk and due to (14) all its zeros
are in Qk. Therefore, the function F has precisely Nk zeros in Qk counting with multiplicities.

Corollary 2. The zeros of F in C \ σ0(A) can be labelled (counting with multiplicities) as µk with
k ∈ I1 in such a way that |µk − λk| < d

2 for all k ∈ I1 with |k| > K.

Recalling the results of the previous section on the relation between the eigenvalues
of B and zeros of the function F in C \ σ1(A), we arrive at the following conclusion.
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Corollary 3. Eigenvalues of the operator B can be labelled (counting with multiplicities) as µk
with k ∈ I in such a way that |µk − λk| < d

2 when |k| > K, K being the constant of Lemma 3.

Combining the above corollary with Lemma 4.3 of [12], we conclude that |µk−λk| → 0
as |k| goes to infinity, cf. Theorem 4.7(ii) of [12]. However, the estimates established above
will enable us to prove a stronger statement of Theorem 1 on the asymptotics of |µk − λk|.

Proof of Theorem 1. We fix an enumeration of µk as in Corollary 3. Then µk = λk for all
k ∈ I0 with large enough |k|, whence it suffices to prove that the differences µk − λk for
k ∈ I1 of sufficiently large absolute value are square summable.

We take ε ∈ (0, min{1/4, d/2}) and K = K′ε as in Lemma 2; then, according to
Corollary 3, for every k ∈ I1 with |k| > K the eigenvalue µk ∈ Rk is a zero of F, so that

F(µk) = ∑(1)

|n|≤Kε

cn

µk − λn
+ ∑(1)

|n|>Kε
n 6=k

cn

µk − λn
+

ck
µk − λk

+ 1 = 0

and ∣∣∣∣ ck
µk − λk

∣∣∣∣ > 1− ∑(1)

|n|≤Kε

∣∣∣∣ cn

λn − µk

∣∣∣∣− ∑(1)

|n|>Kε
n 6=k

∣∣∣∣ cn

λn − µk

∣∣∣∣.
By virtue of Lemma 2 we conclude that∣∣∣∣ ck

µk − λk

∣∣∣∣ > 1− 2ε > 1
2 ,

so that
|µk − λk| < 2|ck| (15)

for all k ∈ I1 with |k| > K. Since the sequence (ck)k∈I belongs to `2(ϕ), the proof
is complete.

4. Inverse Spectral Problem

The purpose of this section is two-fold. Firstly, we show that Theorem 1 gives not only
necessary but also sufficient conditions on the eigenvalues µn of B. Secondly, we study
the inverse spectral problem of reconstructing the operator B from its spectrum (µn)n∈I
assuming that the operator A and the vector ϕ are known. As a by-product, we come up
with the constructive algorithm of determining the vector ψ in the rank-one perturbation
〈 · , ϕ〉ψ from the given data—the operator A, the vector ϕ, and the spectrum of the rank-one
perturbation B.

Thus we fix an operator A satisfying the standing assumptions (A1) and (A2), i.e.,
is self-adjoint and has a simple discrete spectrum (λn)n∈I that is d-separated as in (3).
Assume further that ϕ is a vector in the Hilbert spaceH−α for some α < 2 such that (A3)
holds. Then the following statement holds true.

Theorem 2. Assume that a sequence ν of complex numbers can be enumerated as νn, n ∈ I, in
such a way that the differences νn − λn form an element of `2(ϕ). Then there exists a vector ψ ∈ H
such that the spectrum of the operator B coincides with ν counting with multiplicities.

Observe that the assumptions of the theorem imply that the series

∑
n∈I
|νn − λn|2 (16)

converges and that νn = λn for every n ∈ I such that an = 0. More generally, denote by I0
the set of indices n ∈ I for which λn appears in ν and set Λ0 = {λn | n ∈ I0}; then every
n ∈ I for which an = 0 belongs to I0. By virtue of (16), for every ε ∈ (0, d/2) there exists a
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K > 0 such that |νn − λn| < ε for all n ∈ I with |n| > K. Therefore, if n ∈ I0 and |n| > K,
then νn = λn, and without loss of generality we may assume that νn = λn for all n ∈ I0.

We also set I1 = I \ I0, Λ1 = {λn | n ∈ I1}, and introduce the function

F̃(z) = ∏
n∈I1

νn − z
λn − z

. (17)

We first show that F̃ is well defined; to this end, we take an arbitrary ε ∈ (0, d/2), introduce
the sets

Rn(ε) = {z ∈ C | |z− λn| < ε}, R(ε) = C \
(
∪n∈I1 Rn(ε)

)
and prove the following result.

Lemma 4. For each ε ∈ (0, d/2), the product in (17) converges locally uniformly in R(ε) to a
function that is uniformly bounded in R(ε).

Proof. It is enough to show that the series

∑
n∈I1

log
(

1 +
∣∣∣∣νn − λn

λn − z

∣∣∣∣)

converges locally uniformly on the set R(ε). By the standard bound on log(1 + |z|) and the
Cauchy–Bunyakovski–Schwarz inequality, we get

∑
n∈I1

log
(

1 +
∣∣∣ νn − λn

λn − z

∣∣∣) ≤ ∑
n∈I1

∣∣∣∣ νn − λn

λn − z

∣∣∣∣ ≤ ( ∑
n∈I1

|νn − λn|2
)1/2(

∑
n∈I1

|λn − z|−2
)1/2

. (18)

Convergence of the series (16) along with Lemma 1 results in the locally uniform con-
vergence of the product for F̃ on the set R(ε) as well as in the uniform boundedness of
F̃ therein.

Similar arguments based on the Lebesgue dominated convergence theorem justify
passage to the limit in

lim
u→+∞ ∑

n∈I1

∣∣∣∣νn − λn

λn − iu

∣∣∣∣ = 0;

as a result, we get

Corollary 4. The function F̃ tends to 1 along the imaginary line, i.e.,

lim
u→±∞

F̃(iu) = 1.

We next develop F̃ in the sum of simple fractions. The function F̃ is meromorphic in C,
and its residue at the point λn ∈ Λ1 is

− cn = lim
z→λn

(z− λn)F̃(z) = (λn − νn) ∏
m∈I1
m 6=n

νm − λn

λm − λn
; (19)

the minus sign is introduced here for convenience. We also set cn = 0 for n ∈ I0.

Lemma 5. Under the assumptions of Theorem 2, the sequence (cn) belongs to `2(ϕ).

Proof. In view of (19) and the assumption of Theorem 2, it suffices to prove that the sequence

∏
m∈I1
m 6=n

∣∣∣∣ νm − λn

λm − λn

∣∣∣∣ (20)
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is uniformly bounded in n ∈ I1.
Applying the same reasoning as in the proof of Lemma 1 (see also Remark 1), we

conclude that the sum of the series

∑(1)

m 6=n
log
∣∣∣∣ νm − λn

λm − λn

∣∣∣∣ ≤ ∑(1)

m 6=n
log
(

1 +
∣∣∣∣νm − λm

λm − λn

∣∣∣∣)
≤ ∑(1)

m 6=n

∣∣∣∣νm − λm

λm − λn

∣∣∣∣ ≤ ( ∑
m∈I1

|νm − λm|2
)1/2(

∑
m 6=n
|λm − λn|−2

)
has an n-independent bound, which implies that the sequence (20) is uniformly bounded.
The proof is complete.

Given the above lemma and the uniform bound established in the proof of Lemma 1,
the series

∑
n∈I1

cn

λn − z

converges locally uniformly in R(ε) for every ε ∈ (0, d/2). It follows that the function

F(z) = 1 + ∑
n∈I1

cn

λn − z
(21)

is well defined and analytic in the set C \Λ1 and has simple poles at the points z ∈ Λ1.

Lemma 6. For every ε > 0, the function F is uniformly bounded in the set R(ε) and, moreover,

lim
u→±∞

F(iu) = 1.

Proof. To prove the first statement, it suffices to apply the Cauchy–Bunyakowski–Schwarz
inequality to the sum in (21) and use Lemmas 1 and 5. Since for real u we have∣∣∣∣ cn

λn − iu

∣∣∣∣ ≤ |cn|
|λn|

and since the series ∑n∈I1
|cn|/|λn| converges, the Lebesgue dominated convergence the-

orem justifies term-wise passage to the limit in the series of (21) and thus produces the
required limit.

Now we are ready to show that the functions F and F̃ coincide.

Lemma 7. The function F− F̃ is equal to zero identically in C.

Proof. The function G = F − F̃ is entire: indeed, it is meromorphic in C with possible
single poles at the points of Λ1, and since the residua of F and F̃ at the point λn ∈ Λ1 are
equal to −cn, each such a singularity is removable. Being uniformly bounded over C by
virtue of Lemmas 4 and 5, G is constant by the Liouville theorem. Since

lim
u→+∞

G(iu) = lim
u→+∞

F(iu)− lim
u→+∞

F̃(iu) = 0

according to Corollary 4 and Lemma 6, this constant is zero. The proof is complete.

Proof of Theorem 2. Given any sequence ν of complex numbers satisfying the assumption
of the theorem, we construct the meromorphic function F̃ via (17). Next, we calculate the
residua −cn of F̃ at the points λn ∈ Λ1 via (19) and define the sequence (bn)n∈I via

bn = cn/an, n ∈ I1, (22)
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and
bn = 0, n ∈ I0. (23)

Since the sequence (cn)n∈I belongs to `2(ϕ), it follows that the sequence (bn)n∈I defined
this way belongs to `2(I). Therefore, there exists a vector ψ in the Hilbert spaceH whose
Fourier coefficients in the basis (vn) are equal to bn.

We now consider the operator B of the form (2) with the given vector ϕ and the
vector ψ constructed above and conclude by virtue of Lemma 7 that the corresponding
characteristic function F of (6) coincides with F̃. Therefore, zeros of F are precisely the
elements of the subsequence ν1 = (νn)n∈I1 , both counting multiplicity; namely, if a number
ν occurs k times in ν1, it is a zero of F of multiplicity k. The analysis of the paper [12]
summarised in Section 2 shows that each element ν of ν is an eigenvalue of B and its
multiplicity is equal to the number of times ν is repeated in the sequence ν. The proof
is complete.

The above proof also suggests an algorithm of constructing a particular operator B
whose spectrum corresponds to a sequence ν of complex numbers satisfying (16). Namely,
given such a sequence ν, we

1. construct the product F̃ of (17);
2. then calculate the residua −cn of F̃ at the points λn;
3. construct the sequence (bn)n∈I via (22) and (23);
4. determine the function ψ from its Fourier coefficients bn via (5).

Corollary 5. The above analysis allows to completely describe the isospectral set Iso(ϕ, ν) of
all vectors ψ ∈ H for which the corresponding rank-one perturbations B of (2) have spectrum ν
counting with multiplicity. Namely, all such ψ have fixed Fourier coefficients bn for n ∈ Λ1, which
are given by (22), while bn must be zero for those n ∈ Λ0 for which an 6= 0. Therefore, the “degree
of freedom” in Iso(ϕ, ν) coincides with the number of zero Fourier coefficients of the vector ϕ; in
particular, ψ is uniquely determined by ν if and only if all Fourier coefficients of ϕ are nonzero.

5. Examples and Discussions

We give here two examples illustrating the results of the paper.

Example 1. In the first example, the unperturbed operator A is defined in the Hilbert space L2(0, 2π) via

A =
1
i

d
dx

subject to the periodic boundary condition y(0) = y(2π). The spectrum of A coincides with the
set Z, and a normalized eigenfunction vn corresponding to the eigenvalue λn = n is equal to
einx/

√
2π.

Take an arbitrary a ∈ (0, 2π) and denote by ϕ the Dirac delta-function δa centred at a. Since
the Hilbert space scaleHα coincides with the Sobolev scale W2

α,per(0, 2π) of periodic functions ([17],
Ch. 3), the Sobolev embedding theorem ([17], Ch. 4) shows that δa belongs to H−α for all α > 1

2 .
Next, the Fourier coefficient an of ϕ in the basis of vn is equal to 〈ϕ, vn〉 = eina/

√
2π and satisfies

|an| = 1/
√

2π; therefore, none of an vanishes and, moreover, `2(ϕ) coincides with `2(Z).
As a result, for every ψ ∈ L2(0, 2π) the eigenvalues µn of the rank-one perturbation B of the

operator A of the form (2), i.e., of the operator given by the differential expression

`(y) = −iy′(x) + y(a)ψ(x) (24)

and the periodic boundary condition y(0) = y(2π), can be enumerated in such a way that
εn = µn − n form a sequence in `2(Z).

Vice versa, for every sequence (εn) ∈ `2(Z), there is a unique ψ ∈ L2(0, 2π) such that the
eigenvalues of the operator B given by (24) and the periodic boundary conditions coincide with
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the sequence (n + εn)n∈Z counted with multiplicities. This ψ is given by the trigonometric series
∑ bnvn with bn constructed in the proof of Theorem 2.

Example 2. Consider now the Sturm–Liouville operator B with frozen argument given by (1) with
q ∈ L2(0, π) and some a ∈ (0, π), and, say, the Dirichlet boundary conditions y(0) = y(π) = 0;
other separated boundary conditions are treated in the same way. The unperturbed operator A
with q ≡ 0 is self-adjoint and has simple discrete spectrum (n2)n∈N, the corresponding normalized
eigenfunctions being

vn(x) =
√

2
π sin(nx).

Taking ϕ to be the Dirac delta-function δa centred at a, we find that the corresponding Fourier
coefficients an are

√
2/π sin(na); they are bounded but some of them may vanish or approach zero

over subsequences depending on whether or not a/π is rational.
In the former case, a = πk/m with relatively prime natural k and m, and the sequence an is

periodic of period 2m and an = 0 if and only if n = jm with a natural j. Then the eigenvalues of the
operator B do not determine the potential q uniquely as its Fourier coefficients bn = 〈q, vn〉 with
n = jm, j ∈ N, are then not determined.

If a and π are rationally incommensurable, then none of an vanishes, which by Corollary 5
implies that the potential q of (1) is uniquely determined by the eigenvalues of the operator B.

The above results for Sturm–Liouville-type operators with frozen argument are proved
in several recent papers [1–3] using quite an involved technique that is based on the integral
representation of the eigenfunctions vn and crucially depends on the special properties
of the Sturm–Liouville differential expressions. In the context of the present research,
these results are obtained as special cases of more general abstract statements proved in
Sections 3 and 4, which demonstrates the efficiency of the proposed approach.
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