
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Generalizing texture transformers for
super-resolution and inpainting

Author:
Teodor ROMANUS

Supervisor:
Roman RIAZANTSEV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Teodor ROMANUS, declare that this thesis titled, “Generalizing texture transform-
ers for super-resolution and inpainting” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Generalizing texture transformers for super-resolution and inpainting

by Teodor ROMANUS

Abstract

The new multi-camera smartphones and recent advancements in generalized
Machine Learning models make it possible to bring new types of photo editing neu-
ral networks to the market. This thesis covers methods of image enhancement with
texture transfer. The known high-resolution regions (reference) can be utilized to
restore degraded areas of an image. The task of restoring partially degraded im-
ages can be defined “partial super-resolution.” The task of restoring missing parts of
images is called inpainting. We propose to use the novel Texture Transformer Net-
work for Image Super-Resolution (TTSR) to solve the partial super-resolution and
inpainting tasks.

The fully convolutional networks are unable to copy image patches. This inabil-
ity forces the model to store textures using the train weights. The usage of the atten-
tion mechanism allows taking advantage of joint feature learning in low-resolution
and high-resolution parts of images simultaneously, in which deep feature corre-
spondences can be discovered by attention. This approach exhibits an accurate
transfer of texture features.

The experiments confirm that the TTSR network can be used to solve the partial
super-resolution and inpainting tasks simultaneously. Modifications of the network
(different embedding sizes, soft-attention, trainable projections) study the architec-
ture capacity to solve the specified tasks. The evaluation of results includes compar-
ing the TTSR network with an inpainting network for the inpainting task.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I am incredibly grateful to Roman Riazantsev, my supervisor, whom this project

would be impossible without. All the ideas, research questions, and suggestions
gave me priceless experience in Deep Learning and Computer Vision.

Many thanks to Maksym Davydov, who helped identify the research direction
and mentored the project along the way. Maksym also taught the Computer Vision
course at the university, and I heard about Attention in Computer Vision first time
from him.

Lastly, I would like to mention my family, especially my parents. Words cannot
express my gratitude for the invaluable patience, help, and moral support at every
moment of my study.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Related work 3
2.1 Single-image super-resolution . 3
2.2 Reference-based super-resolution . 3

2.2.1 Classical Approaches . 3
2.2.2 Generative Adversarial Networks 4
2.2.3 Transformers . 4

2.3 Inpainting . 4
2.4 Summary . 5

3 Background 6
3.1 Texture Transformer . 6

3.1.1 Learnable Texture Extractor . 6
3.1.2 Relevance Embedding . 6
3.1.3 Attention . 7
3.1.4 Cross-scale feature integration 7

3.2 Loss Function . 8
3.3 Quality Metrics . 8
3.4 Summary . 9

4 Problem setting and Approach to Solution 10
4.1 Question 1. Training a multi-task network 10
4.2 Question 2. Reducing the number of parameters 11
4.3 Question 3. Soft-Attention . 11
4.4 Question 4. Trainable Projections . 12
4.5 Approach . 12
4.6 Hypotheses verification . 12
4.7 Comparing to other solutions . 13
4.8 Summary . 13

5 Datasets 14
5.1 SR-RAW dataset . 14
5.2 Quick Draw Irregular Mask Dataset . 15
5.3 FFHQ Dataset . 15
5.4 Applying the inpainting mask . 16
5.5 Experimental configuration . 16
5.6 Summary . 18

vi

6 Experiments 19
6.1 Preparation . 19

6.1.1 Train Texture Transfer Network with a single loss function . . . 19
6.1.2 Train Texture Transfer Network with all loss functions 20
6.1.3 Summary . 20

6.2 Hypotheses check . 20
6.2.1 Training TTSR for super-resolution and inpainting 20
6.2.2 Training TTSR with reduced feature space 22
6.2.3 Training TTSR with Soft-Attention 23
6.2.4 Training TTSR with Trainable Projections 25

6.3 Evaluation of results . 25
6.3.1 Evaluation of TTSR for inpainting 25
6.3.2 Training TTSR with pre-trained data 28

6.4 Summary . 29

7 Conclusions 30

A Code listings 31

B Reproducing the original paper 33

C Training TTSR 34

Bibliography 35

vii

List of Figures

3.1 The Texture Transformer architecture (the image from [Yang et al.,
2020]). 7

4.1 Example of the partial super-resolution task. Left to right: low-resolution
wide-angle image, high-resolution image, and resulting wide high-
resolution image (images from [Hidane et al., 2016]). 10

4.2 Example of the image damage by inpainting by the NVIDIA Inpaint-
ing Network [Liu et al., 2018] (free-to-use image from www.pexels.com) 11

5.1 The SR-RAW dataset sample (the image from [Zhang et al., 2019b]). . . 14
5.2 The QD-IMD dataset sample (the image from [Liu et al., 2018]). 15
5.3 The FFHQ dataset sample (the image from [Karras, Laine, and Aila,

2019]). 16

6.1 PSNR and SSIM metrics at each epoch, Experiment 1 (blue) 22
6.2 PSNR and SSIM metrics at each epoch, Experiment 2: embedding size

2304 (blue) and 576 (orange) . 23
6.3 PSNR and SSIM metrics at each epoch, Experiments 3 and 4: Baseline

TTSR (blue), TTSR with Soft-Attention (red) and TTSR with trainable
Attention weights (dark blue) . 24

6.4 PSNR and SSIM metrics at each epoch, Experiment 6: Default-initialized
weights (blue) and Texture-Transfer initialized weights (pink) 28

www.pexels.com

viii

List of Tables

5.1 Examples of the train dataset: Input and Reference images as an input
and Ground Truth as an output . 17

6.1 Comparing the results which were reported by the TTSR authors (Re-
ported) and our results (Ours). * Higher is better. 19

6.2 Comparing the results of different architectures of the super-resolution
and inpainting tasks. * Higher is better. † Lower is better. 20

6.3 Examples of TTSR solving the super-resolution task (above) and the
inpainting task (below) . 21

6.4 Comparing the results of TTSR, trained with different embedding sizes,
Experiment 2. * Higher is better. † Lower is better 23

6.5 Comparing the results of different architectures of the inpainting task
for HR (High-res ground truth) and LR (Low-res ground truth). *
Higher is better. † Lower is better. 26

6.6 Comparizon of the inpainting task results: Input and Reference im-
ages as an input and outputs of the TTSR and Palette networks 26

B.1 Loss functions of Exp. 0.1 (single loss function, first line) and Exp. 0.2
(all loss functions, second line): 20 ticks/epoch 33

B.2 Example images of Exp. 0.1 (single loss function, first line) and Exp.
0.2 (all loss functions, second line) . 33

C.1 Combined loss functions for experiments 1-4: TTSR (light blue), TTSR
with reduced feature domain (orange), TTSR with Soft-Attention (red),
TTSR with Trainable Projections (dark blue) 34

C.2 Combined quality metrics for experiments 1-4: TTSR (light blue), TTSR
with reduced feature domain (orange), TTSR with Soft-Attention (red),
TTSR with Trainable Projections (dark blue) 34

ix

List of Abbreviations

SISR Single Image Super-Resolution
RefSR Reference-based Super-Resolution
TTSR Texture Transformer Network for Image Super-Resolution
SR-RAW Super-Resolution Raw dataset
QD-IMD Quick Draw Irregular Mask Dataset
MSE Mean Squared Error
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity index
FID Fréchet Inception Distance
GAN Generative Adversarial Network
LR Low Resolution
HR High Resolution
GPU Graphics Processing Unit

1

Chapter 1

Introduction

Image super-resolution aims to recover realistic high-resolution images from rele-
vant low-resolution images. The recent advancements in this area helped greatly in-
crease the quality of media content for better user experiences. The super-resolution
spheres include but are not limited to entertainment industry, multimedia [Mal-
czewski and Stasiński, 2009], medical imaging [Oktay et al., 2016] and satellite imag-
ing [Yıldırım and Güngör, 2012]. For example, the NVIDIA Deep Learning Super
Sampling technology increases graphics performance many times by rendering low-
resolution images and applying super-resolution techniques to increase the image’s
resolution to very high values [NVIDIA, 2020].

The task of software-based image enhancement is very important nowadays. Ev-
ery capturing device (an analog camera, a digital camera, a set of multiple cameras)
inevitably has information loss and errors while measuring the amount of light re-
ceived, which creates a task of processing raw data to acquire as much useful in-
formation as possible. After applying hardware image acquisition techniques, more
advanced algorithms might be used to reconstruct image features lost by noise. The
camera manufacturers employ their software algorithms which fuse the information
of separate sequential captured images in order to produce a single high-resolution
image [Wronski et al., 2019]. It is also a common practice to use a set of cameras to
collect image information at different camera configurations (focus distances, aper-
tures, etc.) [Carles, Downing, and Harvey, 2014].

The main direction in the super-resolution area is single-image super-resolution
(SISR). The first SISR algorithms tended to lose the high-resolution features and re-
sulted in blurry effects. The state-of-the-art SISR algorithms [Wang et al., 2021] use
Generative Adversarial Networks to solve some of these issues. The alternative ap-
proach of reference-based super-resolution (RefSR) transfers high-resolution tex-
tures from a given Ref image to produce visually plausible results[Zheng et al., 2018;
Zhang et al., 2019c]. However, many RefSR solutions use a straightforward way of
textures transfer which may result in visually unacceptable images. The most recent
works use high-level semantic features to solve this problem[Zhang et al., 2019c].

In this work, we study Reference-based image reconstruction problems. One of
the tasks is partial super-resolution: by having the higher resolution data of the
image part, we aim to transfer the high-resolution details to the whole image. An-
other task is inpainting: reconstructing the damaged, impaired, or missing parts.
These two tasks (super-resolution and inpainting) can be used to improve the ex-
perience of current multi-camera setups; for example, in phone cameras: one can
use the information from the wide-angle camera to increase the field of view of the
photo captured with the regular camera, preserving the regular quality. By apply-
ing reconstruction techniques, one can reduce the damage of sun or lamp glares in
the image. To solve these challenges, we use the Texture Transformer Network ar-
chitecture, described in Section 3. TTSR is a RefSR architecture that leverages the

2 Chapter 1. Introduction

Attention mechanism to transfer the most relevant features from the existing parts
of the image.

The work raises the following research questions:

Question 1. Is it possible to make a neural network that does the super-resolution and
inpainting tasks simultaneously?

Question 2. Is it possible to reduce the number of parameters of the network and preserve
model accuracy?

Question 3. How does using soft-attention for texture transfer impact the network results?

Question 4. How does using hard-attention with trainable projections for texture transfer
impact the network results?

An essential part of the research is exploring networks, which can solve multiple
tasks simultaneously. The most recent research in Deep Learning studies joint learn-
ing of different tasks for better individual task accuracy (for example, DeepMind in
[Reed et al., 2022]). As a side benefit, multi-task networks run faster than sequential
execution of the same tasks, which becomes essential in real-time applications.

The main part of the work consists of 5 chapters. Chapter 2 explores Related
Work on the super-resolution and inpainting tasks. Chapter 3 (Background) intro-
duces the network architecture, loss functions and metrics. Chapter 4 (Problem set-
ting and Approach to Solution) sets the research hypothesis and outlines the research
and evaluation plan. Chapter 5 introduces the Datasets used for network training.
Chapter 6 describes conducted Experiments and analyses their results.

3

Chapter 2

Related work

2.1 Single-image super-resolution

With the recent advancements in the Deep Learning area, various Deep Learning
methods were applied to the super-resolution problem which greatly overcome tra-
ditional non-learning based methods. The most successful architecture appears to
be Convolutional Neural Networks (CNNs) with various loss functions, with one of
the pioneering architectures of SRCNN - Super-Resolution CNN [Dong et al., 2014].
This paper was a foundation for a whole set of methods, most of them trying to
optimize PSNR as well as the original paper did. As was shown later [Ledig et al.,
2017], the PSNR metric highly disagrees with the human perception of resolution
and cannot be used.

Opposing the SRCNN algorithms, state of the art (SOTA) super-resolution pa-
pers investigate Generative Adversarial Networks (GANs) [Ledig et al., 2017; Menon
et al., 2020] and target to improve the perceptual quality of the images (ESRGAN
- Enhanced Super-Resolution GAN [Wang et al., 2018], Real-ESRGAN is the im-
proved version, trained with pure synthetic data [Wang et al., 2021]). The authors
use the perceptual loss metric that optimizes the super-resolution model in a fea-
ture space instead of pixel space. The most recent papers in the area try to leverage
the Attention mechanism for Convolutional Neural Networks, which uses Resid-
ual in Residual Blocks with Channel Attention to make the model focus on learning
high-frequency information better and achieve better multi-channel (color) images
super-resolution as well [Zhang et al., 2018; Zhang et al., 2019a].

2.2 Reference-based super-resolution

2.2.1 Classical Approaches

One of the first papers in the field [Gur and Zalevsky, 2007] described the research
field as "Texture Reconstruction Guided by a High-Resolution Patch". At that time,
the researchers were focused on fixing the artifacts which naturally occur by the
imaging process: misfocus, compression and other forms of losing high-frequency
information in images. They propose an iterative method of imposing the high-
frequency information from the patch to the rest of the image in the Fourier fre-
quency domain. The authors mention that this method may be applied only to im-
prove image content slightly or as a preprocessing step for other image processing
algorithms. The work does not provide any comparison to other methods.

Another classical algorithm was proposed in [Hidane et al., 2014; Hidane et al.,
2016]. The authors refer to the task as image zooming completion problem. The method
learns nonlocal interactions between low- and high-resolution images in patches and

4 Chapter 2. Related work

then applies them to a low-resolution image. The results show much better similar-
ity metrics, compared to bicubic interpolation of the missing part. The subsequent
works of the same authors investigate different minimization objective functions [El
Gheche et al., 2016] and reason them in terms of human perception of image resolu-
tion.

2.2.2 Generative Adversarial Networks

The successful deep learning algorithms for partial super-resolution started with
Generative Adversarial Networks [Mao et al., 2016]. The task was to reconstruct
pixelated/damaged parts of an image. The resulting method combines the adver-
sarial autoencoder with two depixelate layers together with the SRCNN architecture
from [Dong et al., 2014] and the deconvolution idea from [Haris, Shakhnarovich,
and Ukita, 2018], both already described above. The results outperformed SISR ap-
proaches. On the other hand, the reconstruction quality depends on the size of the
pixelated area or different kinds of blurrinesses.

The state-of-the-art method [Zeng et al., 2021] questions the results of regular
Generative Adversarial Networks, claiming they suffer from generating distorted
structures and blurry textures in high-resolution images. To solve those challenges,
the authors propose an enhanced GAN-based model, named Aggregated Contextual
Transformation GAN (AOT-GAN), for high-resolution images inpainting.

2.2.3 Transformers

A relatively novel approach in image processing is Visual Transformer Networks
[Wu et al., 2020]. This architecture drastically differs from all other approaches.
While all other approaches (GANs, CNNs) typically operate on the pixel-level or
(recently) features level, Transformers operate in semantic token space, using dif-
ferent image parts based on context. This is especially valuable for the considered
application, where textures of the specific semantic category might be transferred to
the requested locations instead of a random similar feature in the image. This modi-
fication only (the Attention mechanism) is considered to be the main justification to
use Transformer architecture for the feature transfer and super-resolution tasks.

The architecture application in the super-resolution area is presented in [Yang
et al., 2020]. The authors present Texture Transformer Network for Image Super-
Resolution (TTSR), which shows how taking high-resolution images as references
can help to transfer the high-resolution textures to low-resolution images (more de-
tails in the section 3).

2.3 Inpainting

Image inpainting aims to recover damaged or missing parts of images. This task has
been in demand for a long time because of numerous practical applications in image
editing (restoring photographs, removing objects in images, etc.).

The first inpainting algorithms tried to sample patches from an input image
and paste them into the synthesized output. [Criminisi, Pérez, and Toyama, 2004]
proposed an algorithm to remove large objects in an image by combining texture
restoration and inpainting techniques to fill small image gaps. The most popular

2.4. Summary 5

algorithm which does not use neural networks is PatchMatch, which finds approxi-
mate nearest neighbor matches between image patches by using a randomized im-
age sampling algorithm, outperforming all previous inpainting algorithms by orders
of magnitude in the inference time [Barnes et al., 2009].

One of the first learning solutions used the encoder-decoder architecture, map-
ping the missing regions to the image in a low-dimensional feature space [Pathak et
al., 2016]. The solutions struggled with visual artifacts and blurriness. Further work
in this field fixed most of the drawbacks of the initial ideas though by significantly
increasing the algorithm working time[Yu and Koltun, 2015].

The most recent Deep Learning solutions use Generative Adversarial Networks
to achieve visually satisfying results with fast inference time. Various improvements
are applied to increase the models accuracy: Contextual Attention mechanism [Yu et
al., 2018], multi-pass algorithms [Nazeri et al., 2019], Aggregated Contextual Trans-
formations [Zeng et al., 2022].

The state-of-the-art inpainting networks use Diffusion Models, which recently
emerged with substantial results for image generation. The Palette Network [Saharia
et al., 2021] can do image colorization, inpainting, uncropping, and JPEG restoration
tasks by using conditional diffusion models.

2.4 Summary

This section reviews the previous work on single image super-resolution (SISR),
reference-based super-resolution (RefSR), and inpainting, which are the most rel-
evant to this work.

6

Chapter 3

Background

In this chapter we present a Texture Transformer Network architecture which is go-
ing to be a baseline of the whole research process. The in-detail explanations can be
found in the original paper [Yang et al., 2020].

3.1 Texture Transformer

The network is designed to increase the resolution of a low-resolution image (LR) to
the scale of the reference image (Ref).

The architecture of the Texture Transformer is presented in Figure 3.1. LR and
Ref represent the input data. LR↑ corresponds to the bicubic up-sampled LR image
to the resolution of the Ref image. Ref↓↑ corresponds to the bicubic down-sampled
to the LR image resolution and up-sampled back image to be the domain-consistent
with LR↑ . The transformer takes Ref , Ref↓↑ , LR↑ , and LR features produced by a
backbone and outputs a feature map which is used later to generate an HR image.

The Texture Transformer consists of five modules: the learnable texture extractor
(LTE), the relevance embedding module (RE), the hard attention module for feature
transfer (HA), the soft-attention model for feature synthesis (SA), and the cross-scale
feature integration module (CSFI) which is added at the top of the Texture Trans-
former. A short description of all modules is presented below.

3.1.1 Learnable Texture Extractor

The Learnable Texture Extractor is a feature extraction module which is trained to-
gether with the model. Such design results in joint feature learning between the LR
and Ref images. The process can be explained as:

Q = LTE(LR ↑), (3.1)

K = LTE(Re f ↓↑), (3.2)

V = LTE(Re f) (3.3)

The extracted features Query, Key, and Value are the basic elements of the atten-
tion mechanism and used in the relevance embedding module.

3.1.2 Relevance Embedding

Relevance embedding finds the relevance between the LR and Ref images by calcu-
lating the similarity between Q and K. Both Q and K are unfolded into patches, and
then a scalar product denotes the similarity measure between two patches in Q and
K.

3.1. Texture Transformer 7

FIGURE 3.1: The Texture Transformer architecture (the image from
[Yang et al., 2020]).

3.1.3 Attention

The Hard-Attention module transfers features V from the Ref image. The Attention
mechanism introduced in [Vaswani et al., 2017] takes a weighted sum of all patches
in Q. The authors claim this might cause an undesired blur effect in the image. To
avoid it, only the patch with a maximum similarity is picked from the Q so we get
1-1 correspondences, which represents the most relevant position in the Ref image to
transfer to a specific position in the LR image. We are going to question the selected
approach and will experiment with the Soft-Attention layer in Section 3.

A Soft-Attention module is used to synthesize features from the transferred HR
texture features T and features F of the LR image from a DNN backbone. To leverage
only relevant features transfer, a soft-attention map is computed between the LR
and Ref patches. For each patch in the LR image, a patch in the Ref image with the
highest similarity score is selected. After that, the features F are fused with the patch
with the weight of that similarity score.

As an output of this module (and the whole texture transformer) we get the syn-
thesized output features.

3.1.4 Cross-scale feature integration

The original TTSR architecture mainly focuses on 4x super-resolution. The authors
highlight the need to use features from the Ref image at different scales to facilitate
the features of different domains to be transferred. The Texture Transformer (Soft-
Attention as the last layer) returns texture features at different scales (1x, 2x, and 4x).
The proposed CSFI module receives the exchanged features from other scales by
up-sampling or down-sampling, followed by the channel-wise concatenation. The
ending convolutions reduce the number of channels to three (for an RGB image) and
produce the resulting SR image.

8 Chapter 3. Background

3.2 Loss Function

The Texture Transformer Network uses a combination of three loss functions:

Loverall = λrecLrec + λadvLadv + λperLper, (3.4)

where λrec, λadv, λper correspond to the weights of the selected loss function, spec-
ified at the training time. The loss functions are:

• Lrec is reconstruction loss: L1 norm between the expected and the actual image:

Lrec =
1

CHW

∥∥∥IHR − ISR
∥∥∥

1
, (3.5)

where (C,H,W) denotes the size of the HR image, ISR is a predicted SR image.

• Ladv is generative adversarial loss: generates clear and visually favorable im-
ages. The WGAN-GP[Gulrajani et al., 2017] approach is used:

Ladv = −log(D(ISR), (3.6)

LD = −log(D(IHR))− log(1 − D(ISR)), (3.7)

where LD corresponds to the loss function of the discriminator network, D(·)
is the output of the discriminator network.

• Lpec is perceptual loss: similarity in feature space between the expected and
the actual image. Here it is an L2 norm between the corresponding VGG19
layers of two networks with expected and actual images passed. The second
part is transferal perceptual loss, which compares features, extracted by LTE:

Lpec =
1

Ci HiWi

∥∥∥ϕVGG
i (IHR)− ϕVGG

i (ISR)
∥∥∥2

2
+

1
CjHjWj

∥∥∥ϕLTE
j (IHR)− ϕLTE

j (ISR)
∥∥∥2

2
,

(3.8)

where ϕVGG
i (·) describes the features of VGG19 with the image specified, and

ϕLTE
j (·) describes the feature map of LTE.

As was shown in [Johnson, Alahi, and Fei-Fei, 2016], adding perception loss to
the model training process provides more human-plausible results, comparing
to using the reconstruction loss only.

3.3 Quality Metrics

The most common quality metrics (similarity functions) to be used in image process-
ing are:

1. MSE, the mean squared error. Given a m × n target image I and its noisy
approximation K, MSE is defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (3.9)

3.4. Summary 9

2. PSNR, the peak-signal-to-noise ratio: penalizes for the high contrast differ-
ences:

PSNR = 10 · log10

(
MAX2

I
MSE

)
, (3.10)

where MAXI is the maximum pixel value in the image.

3. SSIM, the structural similarity index measure: penalizes for the loss of the
structural information. For the image patches I and K.

SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ2
I + σ2

K + c2)
, (3.11)

where:

• µI , µK are average of images I and K,

• σI , σK, σIK are the respective variances and the covariance of images I and
K,

• c1 = (k1L)2, c2 = (k2L)2 stabilize the division with the weak denominator,

• L = 2bitsperpixel − 1 is the dynamic range of the pixel-values,

• k1 = 0.01, k2 = 0.03.

The structural similarity of an image is computed as an average of scores of
each pixel.

4. FID, the Fréchet inception distance: allows to assess the quality of images cre-
ated by a generative model. As introduced in [Heusel et al., 2017], it can be
computed from the mean and the covariance of the activations when the syn-
thesized and real images are fed into the Inception network as:

FID = ∥µI − µK∥2
2 + tr

(
ΣI + ΣK − 2(Σ

1
2
K · ΣI · Σ

1
2
K)

1
2

)
, (3.12)

where N (µI , ΣI) and N (µK, ΣK) are the Gaussian distributions of the Incep-
tion network activations of the target images I and the generated images K re-
spectively. As the internal network, Inception-v3 trained on ImageNet is used
[Heusel et al., 2017].

The authors of the Texture Transformer Network use PSNR and SSIM to compare
their solution with other networks. For SSIM, 5x5 sliding windows are used. As dis-
cussed in [Ledig et al., 2017], when applied in super-resolution tasks, these similarity
functions often disagree with the human perception of resolution. For example, the
inferred images with high PSNR are often blurred. This raises the need for careful
examination of the obtained results. The authors partially overcome this issue by us-
ing the perception loss in training, which takes into account image features extracted
from the VGG network, as described in the section 3.2.

3.4 Summary

This chapter introduces the Texture Transformer Network, all the network modules,
the loss functions, and quality metrics.

10

Chapter 4

Problem setting and Approach to
Solution

This section discusses the research questions, specifies the problems to solve, and
outlines the research plan. There are four main research questions introduced in
Chapter 1. They are discussed in detail below.

4.1 Question 1. Training a multi-task network

Problem formulation.
Partial super-resolution. Given two images with the overlapping fields of view:

a low-resolution input image and a high-resolution reference image, generate an
image with the resolution of the high-resolution image and the scene of the low-
resolution image.

An example of the partial super-resolution task is image zoom completion: given
a high-resolution image and a wide field-of-view image , generate an image with the
resolution of the high-resolution image and the field of view of the wide image. The
output image is a wide high-resolution image (Figure 4.1).

Inpainting. Given an image with the damaged part, generate an image that is
identical outside of the damaged part, with this part to look visually plausible and
unidentifiable as a damaged part by humans (Figure 4.2).

A "damaged part" can be defined differently. One of the proposed research direc-
tions is the sun or a lamp producing the artifacts (lens flares) onto the camera sensor.
In another definition, it is the user-supplied parts of the image, provided as a binary
mask, which should be inpainted.

FIGURE 4.1: Example of the partial super-resolution task. Left to
right: low-resolution wide-angle image, high-resolution image, and
resulting wide high-resolution image (images from [Hidane et al.,

2016]).

4.2. Question 2. Reducing the number of parameters 11

FIGURE 4.2: Example of the image damage by inpainting by the
NVIDIA Inpainting Network [Liu et al., 2018] (free-to-use image from

www.pexels.com)

Hypothesis 1 (Multi-task network). The Texture Transformer Network can solve
the partial super-resolution and inpainting tasks at the same time because the
reference image contains missing information.

4.2 Question 2. Reducing the number of parameters

In an attempt to explore the possibilities and limitations of the chosen architecture,
we study the differences between the Attention mechanism for feature transfer in
the original TTSR paper [Yang et al., 2020] and the baseline Attention mechanism,
introduced in [Vaswani et al., 2017].

One of the significant differences of the TTSR architecture is that the Relevance
Embedding module (Section 3.1.2) encodes all pixels with embeddings of size 2304
(9 × 256). Since the authors of the original papers did not justify the need for such
embedding size and other papers use a lot smaller embedding size (600 in [Vaswani
et al., 2017]), the optimal embedding size selection was made a part of the research
plan.

Hypothesis 2 (Reducing number of parameters). It is possible to reduce the
embedding size of the TTSR network because other methods work just fine with
smaller embeddings.

4.3 Question 3. Soft-Attention

Another notable difference between the two approaches is TTSR using Hard At-
tention (introduced in Section 3.1.3). In contrast, the classic approach suggests Soft
Attention (so-called "Scaled Dot-Product Attention") when calculating correspon-
dences between the Query and Key matrices, represented by embeddings of input
and reference images in our architecture.

As mentioned in Section 3.1.3, using TTSR for the texture transfer task results in
blurred images. We will test this hypothesis, too.

www.pexels.com

12 Chapter 4. Problem setting and Approach to Solution

Hypothesis 3 (Soft-Attention). The accuracy of super-resolution and inpainting
tasks can be increased when using the Soft-Attention layer for the feature trans-
fer inside the TTSR network because Soft-Attention works efficiently in many
transformer models.

4.4 Question 4. Trainable Projections

Another difference between the classic Attention mechanism in [Vaswani et al., 2017]
and the Texture Transfer Network in [Yang et al., 2020] is using Trainable Attention
projection weights, which "linearly project the queries, keys, and value into different
subspaces to jointly attend to information from different representation subspaces at
different positions."

As a part of this work, we explore if there exists any subspace projection of Query
and Key matrices where the super-resolution task shows better results. Adding these
projections potentially introduces the application of Multi-Head attention for the
super-resolution and inpainting tasks.

Hypothesis 4 (Trainable Projections). The accuracy of the super-resolution and
inpainting tasks can be increased when using trainable projections Q and K for
the feature transfer inside the TTSR network because an input image and a ref-
erence image can have different features due to the inpainting mask.

4.5 Approach

The research questions and hypotheses above outline the need to have a well-structured
plan to validate them.

The selected research methodology inherits the scientific method. It contains the
next steps:

1. Problem formulation: Ask questions and formulate hypotheses.

2. Data analysis: Ask questions and formulate hypotheses.

3. Prediction: Describe the proposed solution.

4. Testing: Implement the proposed solution and run experiments.

5. Evaluation: Evaluate the solution. Estimate the impact.

6. Refinement.

4.6 Hypotheses verification

While answering the questions in Section 1 and testing hypotheses in the sections
4.1-4.4, one needs a way to evaluate the outcomes of the proposed solution. In all
hypotheses described above, the outputs are the proposed neural network architec-
tures together with the corresponding dataset to train it.

In order to check of the network can be used to the applied problems, are:

4.7. Comparing to other solutions 13

1. Training time evaluation, based on loss functions. During the training process
the loss function should generally decrease. The loss functions described in
the section 3.2 penalize both image similarity in the contrast space as well as
the feature space.

2. Post-training time evaluation. The validation of the networks which output
images is performed by comparing the expected and actual generated images
by computing a similarity score between them.

During the hypothesis validation the inspection of the loss functions as well all
aggregated similarity metrics will be used. If all loss functions converge, the hypoth-
esis is very likely to be accepted.

4.7 Comparing to other solutions

We plan to compare our solution for the tasks of super-resolution and inpainting. To
the best of our knowledge, there are no solutions that can solve both tasks simulta-
neously.

The main novelty of the thesis is exploring the inpainting task by using the net-
work designed for a different task. Thus, we will compare TTSR with an inpainting
network for the inpainting task. The comparison will allow us to analyze the pros
and cons of the selected architecture for the main challenging task. The original Tex-
ture Transformer Network is not a good candidate for comparison because it does
reference-based super-resolution, as was shown by the original paper authors, and
it cannot challenge the inpainting part of the solution.

Palette is an state-of-the-art inpainting network. This is a multi-task diffusion
model which uses a class-conditional U-Net architecture with Self-Attention [Sa-
haria et al., 2021]. The network can solve image colorization, inpainting, uncrop-
ping, and JPEG restoration tasks. The authors show that the network performs as
well or better than task-specific specialist counterparts. The Palette network shows
the best results on the inpainting task at the Papers With Code website 1.

In the comparizon, the PSNR, SSIM and FID metrics will be examined as de-
scribed in Section 3.3.

4.8 Summary

This chapter discusses the research questions, sets the research hypothesis, describes
the methodology of comparing the TTSR networks with different networks. Four
main hypothesis are formulated which are planned to be evaluated by the experi-
ments in Chapter 6. The Palette network is selected as a candidate for evaluating the
inpainting capabilities of the TTSR network.

1https://paperswithcode.com/task/image-inpainting

https://paperswithcode.com/task/image-inpainting

14

Chapter 5

Datasets

The CUFED dataset, used by the TTSR authors, can be used for the inpainting task.
However, it cannot be used for the partial super-resolution task since the input and
reference images do not capture the same scene, and we do not have texture infor-
mation at different spatial resolutions.

An exhaustive search has been made to tackle the partial super-resolution datasets.
Many datasets contain the low-resolution images constructed from the correspond-
ing high-resolution images by using some degradation process (blurring, down-
sampling, etc.). Using such datasets creates a risk of training the model to over-
come that degradation process. As the primary dataset for the research, the SR-RAW
dataset[Zhang et al., 2019b] was selected. It contains ultra-high-resolution images
taken with the same camera at different focus distances, thus achieving different
scales (Figure 5.1).

5.1 SR-RAW dataset

The SR-RAW dataset consists of 500 scenes. Each scene has seven images taken
from the camera in the same spot but with different focal lengths. Each resolution is
4240x2832.

Let’s consider two subsequent image pairs in each scene (for example, 240mm
and 150mm in Figure 5.1). The right image, taken with a smaller focal length, can be
considered a "zoomed out" version of the left image, containing the same scene as in
the left image (yellow bounding box) in smaller resolution and additional resolution
information at a wider field of view. The zoomed-out image also captures the scene
with a wider field of view (outside the yellow bounding box), highlighting our main
task: increase the resolution of an image outside the yellow bounding box, given the
high resolution inside of it.

FIGURE 5.1: The SR-RAW dataset sample (the image from [Zhang et
al., 2019b]).

5.2. Quick Draw Irregular Mask Dataset 15

FIGURE 5.2: The QD-IMD dataset sample (the image from [Liu et al.,
2018]).

The chosen dataset is a good candidate for super-resolution tasks. The main ben-
efit of the SR-RAW dataset compared to all others is that high- and low-resolution
images have the same degradation models (noise sources, lens distortions) as in the
real-word multi-lens systems (stereo cameras, smartphone cameras, etc.), so the neu-
ral network can learn to handle natural image features, not simply "unblur" the im-
age. As an additional feature, the low- and high-resolution pairs of the images are
independent of each other (one was not created from another by applying a degra-
dation model).

Due to the lens distortion effects (radial and tangential distortion), it is not straight-
forward how each pixel of the high-resolution image can be mapped to the low-
resolution image. Fortunately, this is one of the concerns addressed by the authors
of the original SR-RAW dataset [Zhang et al., 2019b]. The authors provide a script to
undistort images and align them to get a simple 1-to-1 mapping which is helpful for
the training. Removing the distortion step is vital for the network not to learn about
some specific distortion types. In all the experiments below, the SR-RAW images are
undistorted at the preprocessing step.

5.2 Quick Draw Irregular Mask Dataset

In order to solve the inpainting task, we should obtain damaged images with the
corresponding reconstruction images. The amount and nature of such damage are
also subject to discussion.

To get realistic damage configurations, a Quick Draw Irregular Mask Dataset
(QD-IMD) was chosen. The dataset contains binary (black-and-white) image masks,
which are actual human drawings. The authors’ hypothesis is that the combination
of strokes drawn by the human hand is a good source of patterns for irregular masks
[Liu et al., 2018].

The dataset consists of 50 million images, each in 512x512 resolution. An exam-
ple of masks is provided in Figure 5.2.

5.3 FFHQ Dataset

We want to ensure that the Texture Transformer Network can successfully solve the
super-resolution and inpainting tasks in multiple scenarios. This includes the need
to test the network with multiple datasets. So, we will train the network on the
SR-Raw dataset and test it on the FFHQ dataset.

The Flickr-Faces-HQ (FFHQ) dataset consists of 70,000 high-quality images at
1024×1024 resolution and contains considerable variation in terms of age, ethnicity
and image background. The images were crawled from Flickr, thus inheriting all the

16 Chapter 5. Datasets

FIGURE 5.3: The FFHQ dataset sample (the image from [Karras,
Laine, and Aila, 2019]).

biases of that website, and automatically aligned and cropped [Karras, Laine, and
Aila, 2019]. An example of the dataset is presented in the Figure 5.3.

The FFHQ dataset differs from the SR-Raw dataset in a way that it does not
contain pairs of images that can be used for the reference-based super-resolution
task. So the pairs will be constructed in the next way: each image in the dataset
will be considered a reference image, a low-resolution image will be generated by
taking the central part of the reference image and upscaling it by 1.4 times by using
the bicubic interpolation to ensure similar zoom with the SR-Raw dataset. This way,
we will obtain a low-resolution input image and a high-resolution reference image,
which have similar properties to the SR-Raw dataset.

It is worth to mention that the degradation model of the low-resolution image
is not the same as in the SR-Raw dataset, so the trained network might be unable
to perform resolution with the same quality in the FFHQ dataset, but in theory the
model should learn different noise sources from the real images in the FFHQ dataset.
The assumption of the noise invariability is going to be tested in the experiments.

5.4 Applying the inpainting mask

Applying the inpainting mask to an image is a challenging task. We cannot simply
put zero pixels in the input image because it might already contain zero pixels in
the dark areas of the image, which cannot be considered damaged. A typical imple-
mentation of passing masks is adding a separate channel with the mask to an input
image. This way, the model can learn based on data from a separate image channel.

In our case, the decision was made to preserve the structural inputs of the TTSR
architecture and pass 3-channel images as an input, the same as the original model.
The input image pixel values are mapped from the range [0-255] to [1-255] by assign-
ing all zero pixels a value of 1. This change has a minimal impact on the structural
image information, including features and edges; it is also indistinguishable to the
human eye. This way, zero pixels in the input image can be exclusively reserved by
the mask and recognized by the model accordingly. The experimental evaluation of
such design is made in the section 1.

5.5 Experimental configuration

The train dataset chosen for the following experiments is a combination of the SR-
RAW dataset and the QD-IMD dataset. The train dataset samples are provided in
Table 5.1. The test dataset is a similar combination of the FFHQ dataset and the
QD-IMD dataset.

An algorithm for combining images in the train dataset is the following:

5.5. Experimental configuration 17

Input image Reference image Ground truth

TABLE 5.1: Examples of the train dataset: Input and Reference images
as an input and Ground Truth as an output

18 Chapter 5. Datasets

1. Pick a pair of subsequent images from the SR-RAW dataset from the same
scene (the high-resolution and the low-resolution images). Run the prepro-
cessing step (undistorting and aligning).

2. Crop a sub-image in both high- and low-resolution images at a random loca-
tion. This is going to be the reference image (both low- and high-resolution
parts of it)

3. Crop a sub-image in the low-resolution image close to the reference image.
This is going to be the input image.

4. Apply the damaging mask to the input image: zero pixels in the locations
specified by the mask.

For the test dataset, the algorithm is the same, however the pair of images is se-
lected by manually degrading the FFHQ dataset. This process is explained in details
in Section 5.3.

In the following experiments, the image size is 256x256. The input and reference
images partially overlap (the overlap area is 20-60%). The overlap simulates the par-
tial super-resolution task, where the high-resolution outcome of the super-resolution
task is partially known. Also, the inpainting mask is only applied to the dataset part,
in our case, to 60% of input images.

A side effect of overlapping input and reference images is that one part of the
inpainting mask lies inside the reference image, while another part is outside the
reference image. This means that the model should identify if the missing pixels of
the input image are present in the output image and take the textures from there. In
case there are no such pixels, the actual inpainting task appears. This facilitates the
feature transfer even inside the inpainting task.

The train/validation/test split is performed as follows:

• The training dataset consists of 450 scenes (90%) of the SR-RAW dataset, re-
sulting in 3150 train images.

• The validation dataset consists of 50 scenes (10%) of the SR-RAW dataset, re-
sulting in 350 test images.

• The test dataset consists of 350 images of the FFHQ dataset.

All the metrics in the Experiments chapter are computed for the test dataset.
An essential extension of the training processing is the randomized runtime gen-

eration of the training dataset. Since we take a 256x256 sub-image from a 4240x2832
raw image, at each epoch, we select a random part of the image to be cropped, giving
us unique training images at every epoch with minimal data duplication.

5.6 Summary

This chapter introduces the Super-Resolution RAW (SR-RAW) and FFHQ datasets
for the super-resolution task and the QD-IMD dataset for inpainting, discusses the
pros and cons of the datasets and explains the dataset generation for the experiments
in Chapter 6.

19

Chapter 6

Experiments

The Experiments chapter includes validation of the selected architecture, hypothesis
verification, and evaluation of results.

6.1 Preparation

Evaluation of the original paper is an important part of the research. It allows to
reason about the results reported in the paper, as well as with the hypothesis tested
there.

In an attempt to confirm the original paper results, we obtained the source code1

implementation of the original TTSR paper as well as the original dataset, CUFED,
the CUration of Flickr Events Dataset. The dataset consists of 11’871 train image
pairs (image + reference image) and 756 test images. All images have resolution
160x160 pixels.

As already mentioned in the section 3.2, the model can be trained with multiple
loss functions. The authors of the original paper use two loss functions combinations
and report their training results accordingly:

• train the model with the Reconstruction Loss only;

• train the model with all 3 loss functions (Reconstruction Loss, Adversarial
Loss, Perceptual Loss).

6.1.1 Train Texture Transfer Network with a single loss function

Experiment 0.1. Train TTSR using a single loss function (reconstruction loss).

Configuration. batch size: 8, epoch count: 30, train time: 11 hours, recw = 1, all
other = 0

Analysis. We can clearly see that the model can be trained further. The paper’s
authors say the model needs 200 epochs to achieve a PSNR of 27.09 (we are at 26.69).
This seems feasible.

1https://github.com/researchmm/TTSR

Loss coefficients PSNR* SSIM*
Experiment Rec Adv Per Reported Ours Reported Ours
Experiment 0.1 1 0 0 26.24 26.7 0.784 0.785
Experiment 0.2 1 0.001 0.01 25.6 25.2 0.764 0.755

TABLE 6.1: Comparing the results which were reported by the TTSR
authors (Reported) and our results (Ours). * Higher is better.

https://github.com/researchmm/TTSR

20 Chapter 6. Experiments

Architecture PSNR* SSIM* FID†

Experiment 1 TTSR 34.89 0.9014 47.64
Experiment 2 TTSR with reduced feature space 34.23 0.9031 43.90
Experiment 3 TTSR with soft-attention 34.49 0.8962 47.63
Experiment 4 TTSR with trainable projections 34.15 0.8890 59.36

No super-resolution 31.33 0.8758 140.2

TABLE 6.2: Comparing the results of different architectures of the
super-resolution and inpainting tasks. * Higher is better. † Lower

is better.

Loss function, metrics, and samples are attached in Appendix B.

6.1.2 Train Texture Transfer Network with all loss functions

Experiment 0.2. Train TTSR using all loss functions (Reconstruction Loss, Adversar-
ial Loss, Perceptual Loss).

Configuration. batch size: 6, epoch count: 30 + 2 (first two epochs only rec loss,
then all losses), train time: 13 hours, wrec = 1, wper = 0.01, wadv = 0.01

Analysis. The model performed a lot better than Experiment 0.1. It also seems it
can be trained further (because loss functions did not achieve saturation yet).

The PSNR/SSIM metrics of this model drastically differ from the previous (the
best PSNR is 25.2 compared to 26.69 in Experiment 0.1); however, the visuals are a lot
more plausible. This confirms the sentence of the paper where the authors said that
high PSNR does not mean high-quality perception for humans [Yang et al., 2020].

What is interesting is that adversarial loss became negative and decreased.
Loss function, metrics, and samples are attaches as Appendix B.

6.1.3 Summary

By following the train instructions, we confirmed the paper results. Additionally,
the authors provide pre-trained network weights that confirm the paper results for
the specified task.

6.2 Hypotheses check

In this section the Hypotheses, defined in Sections 4.1 - 4.4, are checked.

6.2.1 Training TTSR for super-resolution and inpainting

Experiment 1. Train the TTSR network for the super-resolution and inpainting tasks
by using the SR-RAW and QD-IMD datasets.

The dataset SR-RAW + QD-IMD, introduced in the section 5, was explicitly de-
signed to tackle the hypothesis 4.1 which states that the TTSR architecture can be
used to solve the super-resolution and inpainting tasks together. The dataset con-
tains low-resolution images, which need to be enhanced both at the boundaries (the
input and reference images do not overlap completely) and inside (inpainting mask
applied in the image).

Hardware. 2 x NVIDIA GeForce RTX 3090 24Gb, AMD Ryzen Threadripper
3990X, 128 Gb RAM.

6.2. Hypotheses check 21

Input image Reference image Ground truth

TTSR TTSR Soft-Attention TTSR Trainable Projections

Input image Reference image Ground truth

TTSR TTSR Soft-Attention TTSR Trainable Projections

TABLE 6.3: Examples of TTSR solving the super-resolution task
(above) and the inpainting task (below)

22 Chapter 6. Experiments

FIGURE 6.1: PSNR and SSIM metrics at each epoch, Experiment 1
(blue)

Configuration: Batch size: 20, epoch count: 500+10, train time: 24 hours, wrec =
1, wper = 0.01, wadv = 0.01

Before the experiment, multiple preliminary training runs were performed to
obtain optimal epoch count and batch size. The number of epochs is such that there
is no visible metrics improvement for the last 100 epochs.

Each model is initially trained with reconstruction loss only for the first ten
epochs. This preprocessing step is needed to stabilize the training process and intro-
duce good initial weights for the perceptual and adversarial losses. 500+10 means
running ten initial epochs with reconstruction loss and 500 epochs with all losses
after that.

Additionally, all the metrics are computed without super-resolution by compar-
ing the low-resolution input image and the corresponding high-resolution ground
truth.

Results. The validation dataset metrics PSNR and SSIM are provided in Figure
6.1. On the test dataset, PSNR is 34.89, SSIM is 0.9014, and FID is 47.64. The loss
functions are available in Appendix C.

Analysis. The PSNR metric of the input image without any super-resolution is
31.33, while for the output image it is 34.89, which corresponds to a much better sim-
ilarity with the high-resolution image, indicating that the image resolution has in-
creased. SSIM and FID metrics show huge improvement, too. These results confirm
the hypothesis #1: the TTSR architecture can be used to solve the super-resolution
and inpainting tasks together.

The image quality metrics achieve very high values. For example, the SSIM met-
ric for the texture transfer task in Experiment 0.2 is 0.755 (out of 1), while for the
selected problem, it is 0.9252. Additionally, the visual inspection of the model out-
puts indicates the high quality of super-resolution and inpainting.

Inspecting the model outputs (Table 6.3) shows that TTSR can solve both super-
resolution and inpainting tasks successfully.

This model will be called a baseline model. All the subsequent modifications will
be compared to it.

6.2.2 Training TTSR with reduced feature space

Experiment 2. Investigate the TTSR network accuracy when using smaller embed-
ding sizes.

6.2. Hypotheses check 23

FIGURE 6.2: PSNR and SSIM metrics at each epoch, Experiment 2:
embedding size 2304 (blue) and 576 (orange)

Embedding size Batch size Training time, hours PSNR* SSIM* FID†

2304 (9 × 256) 20 24 34.89 0.9014 47.64
1152 (9 × 128) 22 22 34.44 0.9012 46.23
576 (9 × 64) 24 20 34.49 0.9031 43.90
288 (9 × 32) 28 16 34.33 0.8971 48.16

TABLE 6.4: Comparing the results of TTSR, trained with different em-
bedding sizes, Experiment 2. * Higher is better. † Lower is better

Configuration: Embedding size: 2304/1152/576/288, batch size: maximum pos-
sible that still fits in the GPU memory, epoch count: 500+10, wrec = 1, wper =
0.01, wadv = 0.01

The embedding size reduction is implemented by applying an additional channel-
reducing convolutional layer at the output of the Learnable Feature Extraction mod-
ule. The schematic implementation is provided in Appendix A.

Results. The comparison table with the metrics obtained at different embedding
sizes is available in Table 6.4. The comparison of the training performance at differ-
ent embedding sizes is available in Figure 6.2.

Analysis. The results show that the embedding size of 576 (9 × 64) results in the
same loss function training speed per epoch and the x1.2 larger batch size. The re-
duced embedding size effectively increases the training speed by x1.2 times without
sacrificing model accuracy. The model accuracy is very similar to the original em-
bedding size, with PSNR being slightly lower and SSIM slightly higher. However,
the FID metric became significantly better, showing that the model focused slightly
less on the Attention and texture transfer and focused more on the generative part of
the TTSR architecture. On the contrary, embeddings of smaller sizes (9 × 32) result
in worse training accuracy. This is probably because such small embedding is not
enough to explain features in an image. This statement needs additional verification
outside the scope of this work.

Additional experiments at a different computer with the 6GB GPU show that
the 576 embedding size allows processing 6 images in a batch instead of 4 earlier,
resulting in x1.5 train speed.

6.2.3 Training TTSR with Soft-Attention

Experiment 3. Investigate the TTSR network accuracy when using the Soft-Attention
mechanism for feature transfer.

24 Chapter 6. Experiments

FIGURE 6.3: PSNR and SSIM metrics at each epoch, Experiments 3
and 4: Baseline TTSR (blue), TTSR with Soft-Attention (red) and TTSR

with trainable Attention weights (dark blue)

The additional motivation of this experiment is to explore the performance of in-
ference by using Soft-Attention and Hard-Attention approaches. Since Soft-Attention
is simple matrix multiplication, it should work faster than Hard-Attention (complex
permutations of the matrices).

Configuration. Batch size: 20, epoch count: 500+10, train time: 28 hours, wrec =
1, wper = 0.01, wadv = 0.01

The Soft-Attention is applied inside the Learnable Feature Extractor module as
explained in [Vaswani et al., 2017]:

SoftAttention(Q, K, V) = softmax(
QKT
√

dk
)V, (6.1)

where Q is an input LR ↑ image features ("query"), K is the degraded reference
Re f ↓↑ image features ("query") and V is the reference Re f image features ("value"),
dk is the embedding size. The schematic implementation is provided in Appendix
A.

Results. The validation metrics PSNR and SSIM are provided in Figure 6.3. The
test dataset PSNR is 34.49; SSIM is 0.8962; FID is 47.63.

Analysis. The results show that Soft-Attention resulted in similar model accu-
racy as the default Hard-Attention. This means that the Soft-Attention mechanism
can be used to solve the super-resolution and inpainting tasks. Since the model ac-
curacy is similar, both Attentions can be used interchangeably, and the choice of the
specific mechanism might be task-specific. Comparing output images of TTSR and
TTSR with Soft-Attention demonstrates that the models work similarly, too (Table
6.3).

The results partially prove the hypothesis #3: Soft-Attention indeed can be used
for the super-resolution and inpainting tasks. However, it does not make the model
observably more accurate. The images are not blurred.

The Soft-Attention modification also highlights the difference between the Tex-
ture Transfer and the Partial Super-Resolution and Inpainting tasks. The authors
of the Texture Transfer Network state that Soft-Attention cannot be used for their
task because it "may cause blur effect which lacks the ability to transfer HR texture
features" [Yang et al., 2020]. There seem not to be such artifacts in both Partial Super-
Resolution and Inpainting tasks.

From the performance point of view, Soft-Attention and Hard-Attention show
different results: the train time of 500 epochs is 24 hours for Hard-Attention and 28

6.3. Evaluation of results 25

hours for Soft-Attention. This can be explained by the Hard-Attention backpropa-
gation having fewer gradients in the Learnable Texture Extractor module, while in
Soft-Attention, all pixels of the Query and Key matrices are connected. Thus, the
calculation of the gradients takes a longer time. Additionally, the inference time for
Hard-Attention is 190ms per image, while for Soft-Attention, it is 200ms per image,
contradicting the initial expectations. In summary, the performance of forward and
backward propagation of the fully-connected matrix multiplication is a lot slower
that the propagation of indexes shuffle.

6.2.4 Training TTSR with Trainable Projections

Experiment 4. Train the Partial Super-Resolution and Inpainting tasks by leveraging
the projective transformations inside the Attention mechanism.

Configuration. Batch size: 20, epoch count: 500+10, train time: 24 hours, wrec =
1, wper = 0.01, wadv = 0.01

The linear layers are added to the Learnable Feature Extraction module and ap-
plied to the Query and Key matrices before computing the attention map. There are
three different Value matrices for different scales inside the LTE module; applying
transformations to them is omitted. The schematic implementation is provided in
Appendix A.

Results. The evaluation metrics PSNR and SSIM are provided in Figure 6.3. On
the test dataset, PSNR is 34.15; SSIM is 0.8890; FID is 59.36.

Analysis. The results show much worse model accuracy than all other archi-
tectures: FID is 47.64 for the baseline model and 59.36 for the modification with
trainable projections. The same goes with SSIM: the difference is larger than com-
paring to all other experiments. The evaluation metrics show that PSNR still shows
the potential to grow while SSIM stopped growing after the epoch 100. This means
that the inferred images become more and more blurred while not adding any addi-
tional structural information to the image. This is confirmed by comparing the TTSR
and TTSR with Trainable Projections network outputs (Table 6.3).

The potential reason of the model degradation is that additional linear transfor-
mations for query and key possibly moved features into separate spaces and made
dot products less meaningful. Projections could improve performance if the input
vectors represented different things. The provided results indicate that the usage
of trainable projections for Attention for the partial super-resolution and inpainting
tasks is questionable. More experiments in this area are needed. The hypothesis #4
cannot be proved.

6.3 Evaluation of results

6.3.1 Evaluation of TTSR for inpainting

Experiment 5. Evaluate and compare the inpainting task accuracy of the TTSR net-
work with the Palette network.

Dataset. To facilitate fair terms for inpainting for both networks, we will mod-
ify the test dataset so that the input and reference images do not overlap. Such
dataset change will make both TTSR and Palette inpaint image parts they have never
seen before. This also means that the reference image will not always contain high-
resolution textures, which can be transferred to the low-resolution input image.

26 Chapter 6. Experiments

HR LR
Architecture PSNR* SSIM* FID† PSNR* SSIM* FID†

TTSR 24.29 0.8357 61.20 25.95 0.8851 80.08
Palette 28.96 0.8485 26.76 32.00 0.8849 40.28

TABLE 6.5: Comparing the results of different architectures of the
inpainting task for HR (High-res ground truth) and LR (Low-res

ground truth). * Higher is better. † Lower is better.

Input image Reference image TTSR Palette

TABLE 6.6: Comparizon of the inpainting task results: Input and Ref-
erence images as an input and outputs of the TTSR and Palette net-

works

6.3. Evaluation of results 27

Metrics. Since TTSR does both super-resolution and inpainting, and Palette does
inpainting only, ground truths for these networks are different. Understanding the
difficulties of this comparison, we compared both networks with two ground truth
images: A high-resolution output image (an expected output for TTSR) and a low-
resolution input image with mask pixels inpainted (an expected output of Palette).
We are going to compute metrics for both ground truths and discuss them. We are
going to compute PSNR and SSIM metrics only for the inpainted pixels. Due to the
complicated implementation of FID, we are going to compute the FID score for the
full images.

Configuration. The weights of the TTSR network are taken from the Experiment
1. The weights for the Palette network are available at the project website2. Weights
from the Places2 dataset were used.

Results. The train metrics PSNR and SSIM are provided in Figure 6.5. TTSR and
Palette inputs are available in Table 6.6.

Analysis. The results show that both TTSR and Palette networks can successfully
solve the inpainting task with the specified dataset.

When comparing the metrics of the high-resolution image as ground truth (Fig-
ure 6.5), both networks show average accuracy, with Palette being significantly bet-
ter. High PSNR of the Palette network shows it produces colors which describe the
expected image better; the SSIM values are similar, indicating the networks recon-
struct similar features. The reason why the color are different might be TTSR overfit-
ting for the SR-Raw dataset: with the same exposure time, different focal distances
mean different amount of light reaching the camera sensor, which might cause color
bias to be remembered by the model.

The FID value is a lot better in Palette, which is probably caused by the imperfec-
tion of the FID metric in this experiment. TTSR changes pixels outside the inpainting
mask, resulting in score impact of those pixels to be non-zero while its always zero
for Palette which does not change these pixels. Nevertheless, the FID value of 60
shows a good result for TTSR, this is at the same level as Trainable Projections exper-
iment before, but with a much harder dataset: there are no high-resolution textures
to transfer features from in most cases.

When comparing the metrics of the low-resolution image as ground truth, both
TTSR and Palette show better results. The SSIM of both networks got significantly
higher, indicating that the structural information in the inpainted parts of an image
is closer to the low-resolution image than the reference image. Additionally, Palette
now generates correct color intensities of the inpainted parts, which fall into the
color gamma of the input image, while TTSR colors are still far off. This is illustrated
by the increased PSNR for Palette while only model increase for TTSR.

Table 6.6 shows the results of inpainting of both TTSR and Palette networks.
First row of the table illustrates that both networks deal well with the inpainting
task: both model can identify semantic features of an image (eyes, eyebrows, nose)
and inpaint them properly.

The second row of the table illustrates a systematic Palette issue: when an in-
painting mask consists of thin lines, the network produces artifacts. On the other
side, the same case is a favorable scenario for TTSR, which can transfer textures on
multiple scale levels and inpaint really nice features.

The two last rows in the table demonstrate the issues of TTSR. The first issue
is already mentioned above: the input and reference images of the SR-Raw dataset

2https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models

https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models

28 Chapter 6. Experiments

FIGURE 6.4: PSNR and SSIM metrics at each epoch, Experiment
6: Default-initialized weights (blue) and Texture-Transfer initialized

weights (pink)

have different color intensities, and in case the reference image does not have rele-
vant high-resolution textures, a constant color bias is added to the input image. This
is exactly the case in the third row in the table: there is no skin in the reference image,
so in the TTSR output the whole skin becomes more red. The last row shows that
TTSR was not trained well on the large inpainting masks: the model cannot identify
the image semantic features properly and decide where to transfer high-resolution
textures from. The resulting features become pixelated and contain artifacts.

It is worth mentioning that the state-of-the-art inpainting networks, including
Palette, can reconstruct huge areas. In this work, we apply relatively small inpaint-
ing masks as proof that the proposed architecture can solve the inpainting task in
principle. After the baseline hypothesis is proved, it makes sense to explore inpaint-
ing capabilities of the TTSR architecture at the larger mask sizes.

6.3.2 Training TTSR with pre-trained data

Motivation. One of the features of the TTSR model is that it is already used to solve
a Texture Transfer task. This domain is related to the Partial Super-Resolution and
Inpainting tasks. Thus, we can conclude that all the mentioned tasks might have
similar feature extraction module weights.

There is not much scientific novelty in this experiment. However, by using
weights of one task to train a model for a similar task, we can achieve faster training
speed and potentially better accuracy due to the Transfer learning mechanism.

Experiment 6. Take a TTSR model weights from the result of the Texture Transfer
training and use them as the starting point of the Partial Super-Resolution and In-
painting training process.

Configuration: Batch size: 20, epoch count: 500+10, train time: 24 hours, wrec =
1, wper = 0.01, wadv = 0.01

Results. The train metrics PSNR and SSIM are provided in Figure 6.4.
Analysis. The results confirm the assumption of having a Transfer learning effect

here: the model showed higher accuracy than the default-initialized weights. This
shows that initializing training weights properly is an important part of the model
architecture.

A notable improvement happens with the training accuracy: the model shows
high PSNR and SSIM values from the beginning of the training process, achieving

6.4. Summary 29

the highest accuracy at the 200-th epoch, compared to the 400-500 epochs needed
for the baseline model to achieve the same accuracy. This means that by selecting
appropriate initial weights the training time can be reduced by a factor of 2.

6.4 Summary

This chapter describes conducted experiments and analyses their results. The re-
sults confirm the hypothesis 1-3 and show that the TTSR network can successfully
solve the super-resolution and inpainting tasks. Comparing the TTSR and Palette
networks for the inpainting task shows that TTSR is capable of solving the task. The
pros and cons of the network decisions are discussed.

30

Chapter 7

Conclusions

The thesis studies image transformer networks for the tasks of super-resolution and
inpainting. The main research task is to generalize the Texture Transformer Network
(TTSR) for solving the super-resolution and inpainting tasks simultaneously.

The experiments confirm that the TTSR network can be used to solve the super-
resolution and inpainting tasks. Additional research shows that the number of pa-
rameters in the model’s encoder is too large and can be reduced, preserving the
model’s accuracy. Using Soft-Attention for feature transfer produces similar results
as the original Hard-Attention approach. Adding trainable projections does not im-
prove the model accuracy in the experimental setup.

Exploring the inpainting capabilities of the TTSR network shows that the model
produces visually plausible results and, in combination with high-resolution tex-
tures, can produce better results than specialized inpainting networks. When com-
paring the isolated inpainting capabilities of the TTSR network, the competitor in-
painting network shows better results.

The thesis results add more understanding to the domain of multi-task trans-
former super-resolution networks. The obtained results might be used by other re-
searchers to conduct studies in the related domains.

31

Appendix A

Code listings

The full implementation of all Attention layers is available at Github1. The simpli-
fied implementation of the Attention forward passes:

import torch
import torch.nn as nn
import torch.nn.functional as F

default implementation
def HardAttention(in_feats_unfold , ref_feats_unfold):

...

reduced embedding size
def HardAttentionEmbedding(in_image , ref_image , embedding_dim =64):

in_image -> (*, H, W, 3)
in_feats -> (*, H, W, 256)
in_feats_reduced -> (*, H, W, embedding_dim)
in_feats_unfold -> (*, H*W, embedding_dim *9)

in_feats = LearnableTextureExtractor(in_image)
ref_feats = LearnableTextureExtractor(ref_image)

in __init__:
self.reduce_channels =
nn.Conv2d(in_channels =256, out_channels=embedding)

in_feats_reduced = self.reduce_channels(in_feats)
ref_feats_reduced = self.reduce_channels(ref_feats)

in_feats_unfold = F.unfold(in_feats_reduced , kernel_size =(3, 3))
ref_feats_unfold = F.unfold(ref_feats_reduced , kernel_size =(3, 3))

return HardAttention(in_feats_unfold , ref_feats_unfold)

def SoftAttention(in_image , ref_image):
in_image -> (*, H, W, 3)
in_feats -> (*, H, W, 64)
in_feats_unfold -> (*, H*W, 64*9)
attn -> (*, H*W, H*W)

1https://github.com/romanus/TTSR/blob/master/model/SearchTransfer.py

https://github.com/romanus/TTSR/blob/master/model/SearchTransfer.py

32 Appendix A. Code listings

in_feats = LearnableTextureExtractor(in_image)
ref_feats = LearnableTextureExtractor(ref_image)

in_feats_unfold = F.unfold(in_feats_reduced , kernel_size =(3, 3))
ref_feats_unfold = F.unfold(ref_feats_reduced , kernel_size =(3, 3))

Q*K^T
attn = torch.matmul(ref_feats_unfold.transpose(1, 2), in_feats_unfold)

(Q*K^T)/sqrt(d_k)
embedding_dim = in_feats_unfold.size (1)
attn *= 1/math.sqrt(embedding_dim)

softmax ((Q*K^T)/sqrt(d_k))
attn = F.softmax(attn , dim=1)

return attn

trainable projections
def HardAttentionProjections(in_image , ref_image):

in_feats -> (*, H, W, 64)
in_feats_unfold -> (*, H*W, 64*3*3)

in_feats = LearnableTextureExtractor(in_image)
ref_feats = LearnableTextureExtractor(ref_image)

in_feats_unfold = F.unfold(in_feats_reduced , kernel_size =(3, 3))
ref_feats_unfold = F.unfold(ref_feats_reduced , kernel_size =(3, 3))

in __init__:
self.w_qs = nn.Linear (64*9, 64*9, bias=False)
self.w_ks = nn.Linear (64*9, 64*9, bias=False)

in_feats_unfold = self.w_qs(in_feats_unfold.transpose(1, 2))
ref_feats_unfold = self.w_ks(ref_feats_unfold.transpose(1, 2))

return HardAttention(in_feats_unfold , ref_feats_unfold)

33

Appendix B

Reproducing the original paper

Reconstruction loss Adversarial loss Perceptual loss

TABLE B.1: Loss functions of Exp. 0.1 (single loss function, first line)
and Exp. 0.2 (all loss functions, second line): 20 ticks/epoch

Input image Reference image Inferred result

TABLE B.2: Example images of Exp. 0.1 (single loss function, first
line) and Exp. 0.2 (all loss functions, second line)

34

Appendix C

Training TTSR

The loss functions for experiments 1-4 are presented. During each epoch, the cumu-
lative loss function was collected and cleared up at the beginning of the next epoch.

Reconstruction loss Perception loss Adversarial loss

TABLE C.1: Combined loss functions for experiments 1-4: TTSR (light
blue), TTSR with reduced feature domain (orange), TTSR with Soft-

Attention (red), TTSR with Trainable Projections (dark blue)

We observed the strange behavior of the adversarial loss being unstable. The
training parameters and coefficients were the same as the original Texture Trans-
former network, but the original network does not show such behavior. This means
the model hyperparameters may be tuned to observe better accuracy and a more
stable training process.

PSNR SSIM

TABLE C.2: Combined quality metrics for experiments 1-4: TTSR
(light blue), TTSR with reduced feature domain (orange), TTSR with

Soft-Attention (red), TTSR with Trainable Projections (dark blue)

35

Bibliography

Barnes, Connelly et al. (2009). “PatchMatch: A randomized correspondence algo-
rithm for structural image editing”. In: ACM Trans. Graph. 28.3, p. 24.

Carles, Guillem, James Downing, and Andrew R Harvey (2014). “Super-resolution
imaging using a camera array”. In: Optics letters 39.7, pp. 1889–1892.

Criminisi, Antonio, Patrick Pérez, and Kentaro Toyama (2004). “Region filling and
object removal by exemplar-based image inpainting”. In: IEEE Transactions on
image processing 13.9, pp. 1200–1212.

Dong, Chao et al. (2014). “Learning a deep convolutional network for image super-
resolution”. In: European conference on computer vision. Springer, pp. 184–199.

El Gheche, Mireille et al. (2016). “Texture reconstruction guided by a high-resolution
patch”. In: IEEE Transactions on Image Processing 26.2, pp. 549–560.

Gulrajani, Ishaan et al. (2017). “Improved training of wasserstein gans”. In: arXiv
preprint arXiv:1704.00028.

Gur, Eran and Zeev Zalevsky (2007). “Iterative Single-Image Digital Super-Resolution
Using Partial High-Resolution Data.” In: World Congress on Engineering, pp. 630–
634.

Haris, Muhammad, Gregory Shakhnarovich, and Norimichi Ukita (2018). “Deep
back-projection networks for super-resolution”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1664–1673.

Heusel, Martin et al. (2017). “Gans trained by a two time-scale update rule converge
to a local nash equilibrium”. In: Advances in neural information processing systems
30.

Hidane, Moncef et al. (2014). “Super-resolution from a low-and partial high-resolution
image pair”. In: 2014 IEEE International Conference on Image Processing (ICIP).
IEEE, pp. 2145–2149.

Hidane, Moncef et al. (2016). “Image zoom completion”. In: IEEE Transactions on
Image Processing 25.8, pp. 3505–3517.

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). “Perceptual losses for real-
time style transfer and super-resolution”. In: European conference on computer vi-
sion. Springer, pp. 694–711.

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A style-based generator architec-
ture for generative adversarial networks”. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 4401–4410.

Ledig, Christian et al. (2017). “Photo-realistic single image super-resolution using a
generative adversarial network”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4681–4690.

Liu, Guilin et al. (2018). “Image inpainting for irregular holes using partial convo-
lutions”. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 85–100.

Malczewski, K and R Stasiński (2009). “Super resolution for multimedia, image, and
video processing applications”. In: Recent Advances in Multimedia Signal Process-
ing and Communications. Springer, pp. 171–208.

36 Bibliography

Mao, Haiyi et al. (2016). “Super resolution of the partial pixelated images with deep
convolutional neural network”. In: Proceedings of the 24th ACM international con-
ference on Multimedia, pp. 322–326.

Menon, Sachit et al. (2020). “Pulse: Self-supervised photo upsampling via latent
space exploration of generative models”. In: Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, pp. 2437–2445.

Nazeri, Kamyar et al. (2019). “Edgeconnect: Generative image inpainting with ad-
versarial edge learning”. In: arXiv preprint arXiv:1901.00212.

NVIDIA (2020). NVIDIA DLSS 2.0: A Big Leap in AI Rendering. https://www.nvidia.
com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/.
[Online; accessed 31-May-2022].

Oktay, Ozan et al. (2016). “Multi-input cardiac image super-resolution using convo-
lutional neural networks”. In: International conference on medical image computing
and computer-assisted intervention. Springer, pp. 246–254.

Pathak, Deepak et al. (2016). “Context encoders: Feature learning by inpainting”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2536–2544.

Reed, Scott et al. (2022). “A Generalist Agent”. In: arXiv preprint arXiv:2205.06175.
Saharia, Chitwan et al. (2021). “Palette: Image-to-image diffusion models”. In: arXiv

preprint arXiv:2111.05826.
Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-

formation processing systems 30.
Wang, Xintao et al. (2018). “Esrgan: Enhanced super-resolution generative adversar-

ial networks”. In: Proceedings of the European conference on computer vision (ECCV)
workshops, pp. 0–0.

Wang, Xintao et al. (2021). “Real-esrgan: Training real-world blind super-resolution
with pure synthetic data”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1905–1914.

Wronski, Bartlomiej et al. (2019). “Handheld multi-frame super-resolution”. In: ACM
Transactions on Graphics (TOG) 38.4, pp. 1–18.

Wu, Bichen et al. (2020). “Visual transformers: Token-based image representation
and processing for computer vision”. In: arXiv preprint arXiv:2006.03677.

Yang, Fuzhi et al. (2020). “Learning texture transformer network for image super-
resolution”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 5791–5800.

Yıldırım, Deniz and Oğuz Güngör (2012). “A novel image fusion method using
IKONOS satellite images”. In: Journal of Geodesy and Geoinformation 1.1, pp. 75–83.

Yu, Fisher and Vladlen Koltun (2015). “Multi-scale context aggregation by dilated
convolutions”. In: arXiv preprint arXiv:1511.07122.

Yu, Jiahui et al. (2018). “Generative image inpainting with contextual attention”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5505–5514.

Zeng, Yanhong et al. (2021). “Aggregated Contextual Transformations for High-Resolution
Image Inpainting”. In: arXiv preprint arXiv:2104.01431.

— (2022). “Aggregated contextual transformations for high-resolution image in-
painting”. In: IEEE Transactions on Visualization and Computer Graphics.

Zhang, Han et al. (2019a). “Self-attention generative adversarial networks”. In: In-
ternational conference on machine learning. PMLR, pp. 7354–7363.

Zhang, Xuaner et al. (2019b). “Zoom to learn, learn to zoom”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3762–3770.

https://www.nvidia.com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Bibliography 37

Zhang, Yulun et al. (2018). “Image super-resolution using very deep residual channel
attention networks”. In: Proceedings of the European conference on computer vision
(ECCV), pp. 286–301.

Zhang, Zhifei et al. (2019c). “Image super-resolution by neural texture transfer”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7982–7991.

Zheng, Haitian et al. (2018). “Crossnet: An end-to-end reference-based super resolu-
tion network using cross-scale warping”. In: Proceedings of the European conference
on computer vision (ECCV), pp. 88–104.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related work
	Single-image super-resolution
	Reference-based super-resolution
	Classical Approaches
	Generative Adversarial Networks
	Transformers

	Inpainting
	Summary

	Background
	Texture Transformer
	Learnable Texture Extractor
	Relevance Embedding
	Attention
	Cross-scale feature integration

	Loss Function
	Quality Metrics
	Summary

	Problem setting and Approach to Solution
	Question 1. Training a multi-task network
	Question 2. Reducing the number of parameters
	Question 3. Soft-Attention
	Question 4. Trainable Projections
	Approach
	Hypotheses verification
	Comparing to other solutions
	Summary

	Datasets
	SR-RAW dataset
	Quick Draw Irregular Mask Dataset
	FFHQ Dataset
	Applying the inpainting mask
	Experimental configuration
	Summary

	Experiments
	Preparation
	Train Texture Transfer Network with a single loss function
	Train Texture Transfer Network with all loss functions
	Summary

	Hypotheses check
	Training TTSR for super-resolution and inpainting
	Training TTSR with reduced feature space
	Training TTSR with Soft-Attention
	Training TTSR with Trainable Projections

	Evaluation of results
	Evaluation of TTSR for inpainting
	Training TTSR with pre-trained data

	Summary

	Conclusions
	Code listings
	Reproducing the original paper
	Training TTSR
	Bibliography

