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Abstract

Remote sensing of the Earth using satellites helps analyze the Earth’s resources,
monitor local land surface changes, and study global climate changes. In particu-
lar, farmland information helps farmers in decision-making, planning and increases
productivity to achieve better agro-ecological conditions. In this work, we primar-
ily focus on panoptic segmentation of agricultural land, a combination of two parts:
1) delineation of parcels (instance segmentation) and 2) classification of parcel crop
type (semantic segmentation). Second, we explore how multi-temporal satellite im-
agery data compares to a single image query in segmentation performance. Third,
we conduct experiments using the recent advances in Deep Learning and Computer
Vision that improve the performance of such systems. Finally, we show the perfor-
mance of the state-of-the-art panoptic segmentation algorithm on the agricultural
land of Ukraine, where the farmland market has just opened.
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Chapter 1

Introduction

Many countries have had open farmland markets for many years, which provides
economic growth, investments, more jobs, and greater productivity. In the USA
(Huete and Ponce, 2010), in France (Garnot and Landrieu, 2021), in China (Frolking
et al., 1999), there are already developed country-specific methods to help farmers
analyze the land using satellite imagery to make better decisions on how to grow
crops more optimally. However, in Ukraine, such a market opened just in 2021.
While remote sensing for farmland is a known problem and research direction glob-
ally, almost no existing works use Ukrainian cropland data. Therefore we aim to use
the available best practices, hopefully improve these practices, and apply the result
to Ukrainian farmland.

Open access to satellite imagery data has given researchers worldwide a new
way to conduct various earth observation tasks. Remote sensing using space explo-
ration technology helps to analyze Earth resources (Schmitt et al., 2020), to monitor
local changes of the land (Chen et al., 2021) and to study global (Dubovik et al.,
2021), e.g. climate changes (McDowell et al., 2015). 20 Terabytes of new data are
generated every day just through European Space Agency’s Sentinel 1-3 satellites
(Tarasiou and Zafeiriou, 2021). Such big amounts of data inspire us to help analyze
it with cutting-edge methods.

Land cover mapping using traditional classification methods (rule-based with
hand-crafted features) is ineffective and less accurate (Yu et al., 2022; Tsagkatakis
et al., 2019). Deep learning (DL) has been recently introduced to classify land cover
utilizing multi-scale automated feature extraction (Dubovik et al., 2021). The DL-
based approach has shown significant potential for high resolution, multi-spectral,
multi-temporal satellite images (Yuan et al., 2020).

In our work, we use Deep learning methods for panoptic land-cover segmen-
tation focusing on agricultural fields (parcels). Information about crop type, field
contours, field quality change in time and even prediction of how a particular crop
will grow in the cropland is a must for the 21st-century agricultural business.
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Chapter 2

Related Works

2.1 Remote Sensing

Satellite remote sensing is a method of surveying and analyzing information about
the Earth from space. Satellite imagery is possible with satellites, which fly in the
Earth’s upper thermosphere and lower exosphere. For example, popular Sentinel-2
satellite orbiting at mean altitude of 786 km above Earth and sensing land surface in
range of 443 nm - 2.19 µm electromagnetic spectrum (Fig. 2.1).

In Fig. 2.1, one may see the percentage of atmospheric opacity at different elec-
tromagnetic wavelengths. When opacity is at 100 % it is impossible to sense any
information. There are some wavelengths at which atmospheric opacity is less than
5-10 %, and it is very convenient to observe the Earth at such ranges (Ashraf, Maah,
and Yusoff, 2011). Those are wavelength that penetrates Earth’s atmosphere: 1. in-
frared and visible light spectrum from 400 nm to ≈ 60 µm, and 2. radio spectrum
from ≈ 1 cm to ≈ 20 m wavelength. Satellite Remote Sensing of the Planet Earth

Gamma rays, X-rays
and ultraviolet light
blocked by the upper atmosphere
(best observed from space).

Visible light
observable
from Earth,
with some
atmospheric
distortion.

Most of the
infrared spectrum
absorbed by
atmospheric
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FIGURE 2.1: Electromagnetic transmittance, or opacity, of the Earth’s
atmosphere. (Illustration Source: Wikimedia Commons)

from space is used in many fields of science and supports the daily functionality of
humans, e.g. predicting the weather (Dubovik et al., 2021). This instrument helps to
monitor environmental pollution, climate change, ocean currents changes, sea level,
land cover, exploration of mineral resources (Zhang et al., 2017a), soil moisture (Lak-
shmi, 2013), vegetation (Xie, Sha, and Yu, 2008), deforestation, forest fires (Lentile et
al., 2006) and many more.
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2.2 Panoptic Segmentation

Image Segmentation is a computer vision problem that aims to assist in image anal-
ysis or in scene understanding (Minaee et al., 2020). Panoptic segmentation (PS,
Fig. 2.2) is a novel task introduced by (Kirillov et al., 2019) which rises in popularity.
PS combines two segmentation problems: 1. semantic segmentation (assigning class
labels to each pixel) and instance segmentation (detecting and segmenting each ob-
ject instance). As the authors of the unified task mention, this type of segmentation
is one crucial step toward automated real-world vision systems. Previous methods
dealt with instance and semantic segmentation separately.

There are different methods to solve panoptic segmentation: Panoptic Feature
Pyramids (Lin et al., 2016) or attention-aided networks (Li et al., 2018) for scene
panoptic parsing. However, the growth of the task is limited due to the lack of
diverse panoptically annotated datasets, as it is with image recognition or semantic
segmentation tasks because data for PS is much more costly and time-consuming to
annotate.

FIGURE 2.2: Vizualization of panoptic segmentation task.

2.3 Segmentation of Agricultural land

Panoptic segmentation (PS) for crop mapping has only been introduced in remote
sensing research. It is an exciting topic to explore and challenging to attempt apply-
ing this method for the Ukrainian land where the farmland market has just opened,
and very few works are published. Hardly any are reproducible.

To the best of our knowledge, PS of agricultural land was first introduced by Gar-
not and Landrieu, 2021. This work conducts panoptic segmentation of agricultural
parcels on French land.
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In our work, we are primarily interested in finding the edges of parcels in order
to make them distinct, to be able to discriminate one crop field from the other and,
second, to classify the parcel type. Such a problem can be formulated as a panop-
tic segmentation, outlined in Sec. 2.2. It consists of assigning a class and a unique
instance identifier to each pixel.

Garnot and Landrieu, 2021 work is very related to our topic of interest. Their
work argues that one should address complex temporal patterns of crops with tem-
poral sequences of images to achieve higher segmentation accuracy. Garnot and
Landrieu introduced the first end-to-end method for panoptic segmentation of Satel-
lite Image Time Series (SITS). In Fig. 2.3 one may see the high-level visualization
of the proposed method: using a sequence of satellite images (time series) output
panoptic segmentation labels. Authors claim that having one image, it is impossible
to accurately segment and classify parcels due to the temporal nature of the crop. In
this research work, we will verify this statement.

FIGURE 2.3: Diagram of Satellite Image Time Series panoptic segmen-
tation: parcel edges and classes. (Fig. 1 in Garnot and Landrieu, 2021)

The authors developed one end-to-end network consisting of two modules: 1) a
Spatio-temporal encoder, a feature extractor, and 2) a panoptic segmentation net-
work that inputs extracted features and produces panoptic segmentation masks.
Garnot and Landrieu discuss the limitation of their approach, which is the geog-
raphy of the dataset they used and developed their solution. The authors mention
that approach is suitable for the same meteorological context, terrain condition and
farmland crop types. They also suggest that further work may be in advanced satel-
lite image preprocessing, e.g. adding speckle filtering, elevation information, meteo-
rological data. In our research work, we want to explore how we can adopt such an
approach to Ukrainian terrain, its crop fields and weather context.

Kussul et al., 2017 proposed a CNN-based approach to multi-temporal satellite
land cover and crop type classification. The authors discuss that the most com-
mon approach in remote sensing prior to neural networks was a random-forest
approach (Belgiu and Drăguţ, 2016). The authors compared that approach to the
CNN-based and showed how CNN could improve segmentation quality. They used
Landsat-8 and Sentinel-1A images to classify wheat, maize, sunflower, soybeans and
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sugar beet, with reported 85% accuracy in the Kyiv region, Ukraine, in 2015. The au-
thors note that an essential factor in satellite images is the presence of clouds which
needs to be addressed in the data-processing stage. However Vivien and Loic, 2021
believe that advanced deep-learning methods should learn how to tackle cloud cov-
erage with multi-temporal SITS.

Unfortunately, the Kussul et al., 2017 did not publish the dataset or code. There-
fore it is impossible to verify their approach or use the data to compare with our
approach. Kussul et al. is the first work that we discovered that tries to classify land
in Ukraine. However, they do only classification, i.e. semantic segmentation, while
we aim to conduct panoptic segmentation, delineate parcels additionally, and assign
identifier labels to each field.

Rußwurm et al., 2019 presented a method for early classification of crop type
before the end of the vegetative period. One can augment their method into existing
classification models with an additional stopping probability based on previously
seen satellite data.

Zorzi, Bittner, and Fraundorfer, 2020 noticed that it is hard to keep the up-to-
date cadastre maps and problematic to trace new buildings or old destruction. In
addition, the authors observed that the current cadastre data have inconsistencies
and errors in the form of misalignment (Fig. 2.4). They propose a method to solve
this problem with DL to correct label noises and misalignments. We believe their

FIGURE 2.4: Results from Zorzi, Bittner, and Fraundorfer, 2020.
MapRepair result. Misaligned annotations in red, corrected map in

cyan.

approach may be applied to the agricultural area as well, as, in Ukraine, we also
have a cadastre land map.

Zhao et al., 2017 proposed a method to conduct semantic segmentation for street
scene parsing using a pyramid pooling module. Their work uses multiple scales
of extracted features by CNN to get local and global context information of the
input image. In 2015 they achieved state-of-the-art on many public benchmark
datasets. Such a pyramid module may help improve segmentation accuracy in satel-
lite images. Even recent Multi-scale Vision transformers use the pyramid-based ap-
proach. Fan et al., 2021. We would also want to consider multi-scale, multi-level
feature extraction for panoptic segmentation.

Vaze et al., 2020 compare different methods of leveraging multi-band informa-
tion from satellite images with CNNs. They show that the standard selection of
bands in the industry leads to worse performance than other methods. Authors
compare band selection by an expert; all available bands, learning attention maps;
and using Bayesian optimization to make the selection. Results show that compared
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to standard band selection, using all bands for CNN improves the test-time perfor-
mance by 3% and using Bayesian optimization further boosts accuracy by 5.4% in
total improvement. In our work, we would experiment with different bands selec-
tion.

Guérin et al., 2021 discuss that satellite images at different places were not made
at the same time, and this influenced the segmentation quality. One may address
this problem with multi-temporal satellite data (time-series).

Another aspect of the work is their unique motivation: “Virtual worlds in the
context of digital entertainment need to be vast and realistic. In the context of the
ANR project Ampli, we aim to make the task of virtual worlds authoring easier by
providing a way to segment satellite images into six basic landcover classes.”. Au-
thors did their work for Ampli Anr Project, which is learning and inverse procedural
modelling for authoring large virtual worlds. Recently virtual worlds became pop-
ular in the media, and big technology companies started developing such virtual
worlds. It is another application of satellite imagery segmentation in the entertain-
ment domain.

https://projet.liris.cnrs.fr/ampli/
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Chapter 3

Approach

In this chapter, we first define the Problem setting, second, we describe the Data
sources and Data engineering stage, and finally, the modelling stage. We provide an
overview of the model architecture, objective function, and metrics used.

3.1 Problem Setting

Panoptic segmentation may be considered as a combination of semantic segmenta-
tion, i.e. classifying each pixel on the image, and instance segmentation (delineation
of all individual instances, assigning each pixel a unique identifier). In the context of
satellite imagery, each semantic class is a particular type of crop on a parcel, e.g. corn,
barley, wheat or sunflower. While instance label represents a unique parcel, marking
its contour on the Earth’s area of interest. Therefore, while semantic segmentation
classifies only image pixels, our problem of panoptic segmentation is advanced with
identifying unique objects on the image (instance segmentation).

There are several main reasons why this problem is challenging. First of all,
the satellite data is multi-channel. The data which we will use is captured by the
Sentinel-2 satellite. Those images have 13 spectral bands, each of which has a differ-
ent resolution (See Fig. 3.1).

Second, the data is multi-temporal. Multiple works have shown that in order to
obtain high accuracy, one has to use not a single satellite image but satellite image
time series (SITS) for one particular region (Kussul et al., 2017; Garnot and Landrieu,
2021).

Third, a crucial aspect of the problem is the cloud cover. As we want to work with
multi-temporal data, there will be clouds, and some parts will not be fully visible.
Therefore, cloud occlusion is another step one must tackle in the data-prepossessing
part.

3.2 Data

3.2.1 Sentinel-2 Satellite

Copernicus European Space Agency (ESA) conducts seven Satellite Missions, named
Sentinel Missions, for earth observation tasks. Most popular in the research com-
munity for land surface analysis are Sentinel 1, 2 and most recently, 3. This work
focuses on Sentinel 2 Mission due to its high resolution and optimal revisit period.
Sentinel-2 (S2) consists of two satellites operating in a twin configuration. Each twin
spacecraft carries a single Multi-Spectral Instrument (MSI) payload. MSI provides
access to 13 spectral bands (from Visible, to near infrared to shortwave infrared)
with varied resolution of 10m / 20m / 60m (Table 3.1). S2 has a high revisit time
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Band Used Description Wavelength (nm)
Spatial Resolution

10 m/pixel 20 m/pixel 60 m/pixel

B1 Ultra blue (Coastal and Aerosol) 443 x
B2 + Blue 490 x
B3 + Green 560 x
B4 + Red 665 x
B5 + Visible and Near Infrared (VNIR), Vegetation red edge 705 x
B6 + Visible and Near Infrared (VNIR), Vegetation red edge 740 x
B7 + Visible and Near Infrared (VNIR), Vegetation red edge 783 x
B8 + Visible and Near Infrared (VNIR) 842 x
B8A + Visible and Near Infrared (VNIR) 865 x
B9 Short Wave Infrared (SWIR), Water vapour 940 x
B10 Short Wave Infrared (SWIR) 1375 x
B11 + Short Wave Infrared (SWIR) 1610 x
B12 + Short Wave Infrared (SWIR) 2190 x

TABLE 3.1: Spectral bands of Sentinel-2

of 5 days at the equator. The data it captures is available via Copernicus Open Ac-
cess Hub (https://scihub.copernicus.eu/), which is free and open to all. Data
is incapsulated into elementary granules of 100 × 100 km2 tiles (ortho-images) that
covers earth (Fig. 3.1). An example of such granule one may see in Fig. 3.2 extracted
and vizualized as RGB image (10980 × 10980 px. with resolution of 10 m/pixel).

To conclude, Satellite imagery is significantly different from commonly used
RGB HD pictures. They have more pixels: 104 vs 2 · 103 for width and height (W, H);
10-13 channels vs 3 RGB channels (C). Additionally, we will use temporal-dimension:
stacking a 3-dimensional array in time (T), forming T × C × W × H tensors.

FIGURE 3.1: Granule tiling vizualization.

3.2.2 PASTIS Dataset for France

Panoptic Agricultural Satellite TIme Series (PASTIS), created by Vivien and Loic,
2021, is one of the best datasets for our problem of interest. The dataset is developed
for SITS segmentation with panoptic labels of parcels for ca. 4000 km2 of France ter-
ritory. One may see in Fig. 3.3 the location of four clusters, each cluster is divided
into hundreds of 128 × 128 px patches, 2433 patches in total. Each patch consists of
satellite time series with varied temporal lengths, from 33 to 61 timestamps. Times-
tamps dates are in the range from September 2018 to November 2019. Each satellite
timestamp has 10 Sentinel-2 spectral bands data. The authors selected all bands ex-
cept the atmospheric bands B1, B9 and B10 (Table 3.1). Data is not filtered by cloud
percentage cover because authors believe that DL algorithms should be able to learn

https://scihub.copernicus.eu/
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FIGURE 3.2: An example of Sentinal-2 granule.
VIzualized as RGB image (B4 + B3 + B2 band composition).

Data volume of 13 bands is 800 MB in size and covers 100 × 100 km2.

to be robust to cloud occlusions. Each patch SITS has appropriate annotations of
parcel instances and the crop type for each field (Fig. 3.4).

Overall there are 18 crop types annotated with 10 m/pixel resolution, totalling
2 billion pixels. Authors made the dataset available via https://github.com/VSain-
teuf/pastis-benchmark.

Training-validation-test split was done by randomly splitting patches into five
splits (1, 2, 3 - for training, 4 - for validation and 5 - for testing), forming five different
folds to allow cross-validation. However, we are using only the first fold in our
experiments due to computing time-to-train limitation. The split distribution is the
following: train 1455, validation 482, and test 496 patches. The authors ensured that
adjacent patches do not appear in different folds to avoid data leakage.

In our research, we would consider the PASTIS dataset our initial main dataset
due to its rich annotations, large area, and European region in which we are most
interested. Using the aforementioned dataset, we would also have a benchmark
for comparing our experiments. As the dataset has a benchmark-leaderboard page
at https://paperswithcode.com/sota/panoptic-segmentation-on-pastis where
anyone can submit his proposed advancements.

https://github.com/VSainteuf/pastis-benchmark
https://github.com/VSainteuf/pastis-benchmark
https://paperswithcode.com/sota/panoptic-segmentation-on-pastis
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FIGURE 3.3: PASTIS dataset regions location (outlined in four black
polygon-scatter plots).

FIGURE 3.4: PASTIS Sentinel-2 satellite 10 optical bands data.
(Fig. 4 in Garnot, Landrieu, and Chehata, 2021)

3.2.3 Dataset for Ukrainian territory

Since we wanted to focus on the panoptic segmentation of agricultural land in Ukraine
in our research, we ought to have a dataset with similar characteristics as PASTIS for
France. To the best of our knowledge, there are no such datasets with instance and
semantic labels published for Ukraine. We believe that having such a dataset can
open many opportunities for farmers and businesses through Data Science appli-
cations. Hopefully, this will change in nearest future, and government or research
institutions will publish such a dataset. Since the land market has recently opened
in Ukraine, the lack of such a dataset blocks speeding up the market growth.
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FIGURE 3.5: Data regions.
Red - bounding boxes of clusters. Green - downloaded Sentinel 2

tiles.

3.2.4 Data Engineering of Ukrainian cropland data

Thankfully, one businessman, a farmland owner, who decided to remain anony-
mous, provided us with some of his raw archival spreadsheets (xlsx format) and
cropland polygon map (kmz format).

FIGURE 3.6: An example region of provided polygon map as a source
of data, plotted on Google Earth satellite layer for visualization.

Therefore, following PASTIS dataset guidelines by Vivien and Loic, 2021, we
processed the data to form a PASTIS-like structure for Ukrainian data. Here we
describe the Data Engineering steps we performed during the processing, since the
procedure requires multiple steps with attention to detail and has many nuances
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in the geography domain. First, for exploratory data analysis, we found that data
has ca. 700 parcel polygons scattered throughout Ukraine. We sampled the parcels
with crop types similar to the biological taxonomy of 18 classes in PASTIS. After
mapping, we ended up with six crops: Winter rapeseed, Corn, Soybeans, Sunflower,
Soft winter wheat, and Leguminous fodder. The provided data consisted of a very
narrow list of crops compared to 18 in PASTIS.

When we filtered the data, we had annotations of parcel contours (instance) and
crop type (semantic) information for the 2018 crop-yield year, however, in XML-like
kmz format. Regarding satellite imagery, since we couldn’t download all the parcel
location Sentinel-2 tiles due to storage limitations and annotation processing time,
we decided to group the data. So that each tile region we commit to downloading
will be most optimal for us, i.e. will cover a maximum number of parcels within
the bounding box. To achieve this, we used the DBSCAN algorithm from the Scikit-
learn library by Pedregosa et al., 2011 to cluster all scattered parcels into groups. We
find DBSCAN algorithm (Schubert et al., 2017; Ester et al., 1996) is appropriate here
because it finds core samples of high density and expands clusters from them by
measuring the distance between instances in the feature vector. Our data had parcel
centre coordinates included as (latitude, longitude) (World Geodetic System 1984,
used in GPS, EPSG:4326 projection) (Slater and Malys, 1998). In the algorithm, we
used the haversine formula by converting Lat-Long coordinates degree into radians
to compute great-circle distances between parcel centre points. Knowing that Earth’s
radius is r ≈ 6371 km, we set the maximum distance between two samples, to be
considered as neighbours, as 30 km (ϵ = 30 km arc length

6371 km Earth’s radius ≈ 0.0047 rad, central
angle) and set the minimum number of samples in a neighbourhood for a point to
be considered as a core point as 30 parcels. The result of the DBSCAN one can see
in Fig. 3.7, where we scattered all parcels as black polygons and coloured ones that
are in a specific cluster. Overall, we obtained 7 clusters with minimum density of
30 parcels in 30 km neigbourhood. For final step in clustering we found bounding
boxes coordinates for each of the cluster with 3 km padding (to cover all parcels).

FIGURE 3.7: DBSCAN clustering result.
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As the next step, we proceeded with downloading the Sentinel-2 archives hav-
ing GeoJSON (https://geojson.org/) polygon as the bounding box of each cluster.
We downloaded Sentinel-2 Ukrainian territory data for each cluster from Septem-
ber 2017 to November 2018. One should note that in PASTIS (3.2.2) dataset data
is 2018-2019. However, as our semantic and instance annotations were only for
2018, we shifted the date range for one year while maintaining the same month
range. This date selection is important in the temporal encoder of the model archi-
tecture (3.3). In total, we downloaded 800 GB of Sentinel-2 data using SentinelSat
Python API (Wille et al., 2017). As bands in the data granule have different spatial
resolutions, we applied bilinear interpolation (Kirkland, 2010) using Scipy (Virtanen
et al., 2020) to upscale every band to 10 m/pixel resolution. Then we made a grid
of non-overlapping squares of 1.28 × 1.28 km area using GeoPy by Esmukov et al.,
2021 and made 128 × 128 px patches from each 100 × 100 km granule if in each spe-
cific patch there were parcels covering more than 5 ha of area. Using Rasterio, a
library for geospatial raster data (Gillies et al., 2013), we reprojected and plotted an-
notations from GeoJSON format onto 2-dimensional arrays to form labelled instance
and semantic masks. An important aspect that one should consider when working
with geo-referenced data is coordinate systems projection. Since the Earth is not flat
but an irregularly shaped ellipsoid (Johns, 1959), there are multiple cylindrical map
projections (Snyder and Steward, 1989; Miller, 1942), with Mercator projection being
the most common. It has usual for us properties, e.g. north direction as upward,
south as downward, west leftward and east rightward. Albeit, it has a negative
side-effect of showing the sizes of objects away from the equator bigger than they
actually are (Fig. 3.8). There is EPSG registry created to list all known coordinate

FIGURE 3.8: Mercator projection comparison to actual sizes of the
countries. (Illustration author: Neil Kaye)

reference system (CRS). GPS uses EPSG:4326, the coordinate being a tuple of (longi-
tude, latitude) represented in degrees, with axes of Greenwich (0◦ meridian) and the
Equator (0◦ parallel) (Fig. 3.9). While tiles in Sentinel-2 may have different EPSG,
which in our case were EPSG:32635 and EPSG:32636. Due to this projection differ-
ence we had to apply coordinate reprojection in our data processing pipeline from
EPSG:4326 coordinates into coordinate system of the specific tile.

https://geojson.org/
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FIGURE 3.9: Latitude and Longitude of the Earth.
(Illustration Source: Wikimedia Commons)

After the “patchify” process, we formed 4-dimensional arrays of Sentinel-2 im-
ages in 10 bands with timestamps ranging from 33 to 61 scans. Each patch mapped
the respective instance and semantic masks annotation aligned with satellite image
EPSG projection.

N.B, However, it is important to remind the reader that the data quality of the
provided Ukrainian data is not validated, i.e. we cannot state with 100% certainty
that the provided crop type or region is entirely accurate for each parcel. Neverthe-
less, we proceed with such data because it is the only data source we have managed
to find.

FIGURE 3.10: Crop types color-mapping nomenclature from PASTIS.
Source: Fig. 2 in Vivien and Loic, 2021
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For dataset generation, we use the PASTIS semantic nomenclature of crop types
shown in Fig. 3.10.

3.2.5 Data processing stage hardware requirements

Since the satellite images are very high in spatial resolution (10000 × 10000 px) and
consist of multiple channels (13 bands), they consume a minimum of 800 MB while
in ZIP-archive. For our work, we need to have also multi-temporal SITS. Therefore
we downloaded Sentinel-2 granules for ≈ 800 GB. During processing and complex
Data Engineering, we downloaded to one server satellite archives and, in parallel,
sent one-by-one cluster data to the processing server via a 1 Gbps Ethernet network.
When more space was available after processing one cluster in the queue, we fed the
following cluster to processing. For the ideal scenario, one needs at least 2-3 TB of
high-speed data storage, SSD prefered, and office-grade networking with minimum
Cat-5e Ethernet cables. 1 Gbps internet from ISP is preferred to work with Satellite
imagery in the most efficient manner. For scaling, storage requirements are expected
to scale vertically as well.

3.3 Model architecture

As a baseline for our experiments, we are using the first end-to-end Deep learning
method for panoptic segmentation of SITS, named Parcel-as-Points (PaPs) devel-
oped by Garnot and Landrieu, 2021 which we introduced in Sec. 2.3. In this section,
we will describe its components.

Each input patch (multi-spectral SITS) to the neural network is 4-dimensional
tensor with the shape of T × C × H × W, where T - temporal dimension (sequence
from 33 to 61 timestamps), C - spectral component (10 channels, Eq. 3.1), H and W
(are height and width of the patch respectively, 128 px). Following LeCun et al.,
2012, before feeding the Neural network model, each channel of the input data is
standardized (Eq. 3.2) to have a mean µ = 0 and standard deviation σ = 1 (unit
variance).

10
⃝
c=1

X = X1 ◦ · · · ◦ X10 (3.1)

∀Xc =
Xc − µc

σc
(3.2)

3.3.1 Feature extractor

The first module of the pipeline is the feature extractor or Spatio-temporal encoder
(Fig. 3.11), Garnot and Landrieu, named this module U-TAE (U-Net with Temporal
Attention Encoder). It reminds well-known in the deep-learning research commu-
nity convolutional neural network (CNN), named U-Net (Ronneberger, Fischer, and
Brox, 2015), for its “U”-shaped design. The feature encoder we used also has an
encoder as a contractive path (downsampling, left part) and a decoder as an expan-
sive path (upsampling, right part). There are three parts to the module: 1. Spatial
encoder, 2. Temporal encoder, and 3. Spatial decoder.

Each Convolution block in the feature extractor has the following design: Conv 3×
3 � Norm� ReLU1 � Conv 3 × 3 � Norm� ReLU2 � Skip connection from ReLU1
output. Where Normalization in the encoding path is Group Normalization (Wu
and He, 2018) with 4 groups and Batch Normalization (Ioffe and Szegedy, 2015) in



Chapter 3. Approach 16

the decoder. Since each sequence consists of images from different timestamps, the
samples are not identically distributed in batches. Therefore Group Normalization
is used here instead of Batch normalization.

Spatial Encoder

In the feature extractor, each image of the 4-dimensional tensor is encoded by a con-
volutional encoder. Where from an input tensor of size T × C × W × H multi-level
features are extracted with sizes:

1. T × 64 × W × H

2. T × 64 × W
2 × H

2

3. T × 64 × W
4 × H

4

4. T × 128 × W
8 × H

8

N.B, As in our case each tensor also have batch dimension, i.e., full tensor is
B × T × C × W × H. And T - temporal component may have a varied length from
33 to 61, 2D-Convolutions are not dynamic to this variance. Therefore to make it
static, additional preprocessing is implemented before each convolution: temporal
and batch components are flattened as B × T = B∗.
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FIGURE 3.11: Feature extractor as spatio-temporal encoding.
(Source: Fig.2 in Garnot and Landrieu, 2021)

Temporal Encoder

The next step is to collapse the temporal dimension into a single representation. To
achieve this, there is an attention-based method which processes temporal dimen-
sion only at the lowest feature map resolution level. Garnot and Landrieu claim
that processing the higher resolution would result in a small spatial receptive field
and increased memory requirements. Lightweight-Temporal Attention Encoder (L-
TAE) (Garnot and Landrieu, 2020) is used in this module due to its accuracy and
efficiency. L-TAE was inspired by multi-head self-attention methods (Vaswani et al.,
2017). The temporal encoder with G heads, i.e. G = 16 in our case, is applied at
the lowest resolution feature map extracted in 3.3.1, spatial encoder paragraph. It
outputs G masks, with values [0, 1] and T × HL × WL shape, where L denotes the
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lowest feature map resolution level, i.e. WL × HL = W
8 × H

8 with W = 128, H = 128
in our case.

Then these G tensors are resized with bilinear interpolation to match the spatial
resolution of all higher-level feature maps produced by the spatial encoder. Next,
interpolated masks are multiplied with feature maps at each spatial level and are
fed into Conv 1 × 1 � Norm� ReLU and passed further to the Spatial decoder as
skip connections from each spatial resolution level.

Spatial Decoder

In the spatial decoder part, all feature maps from the temporal encoding step are
combined by concatenation with feature maps upsampled from the previous spatial
resolution level. Each concatenated feature map enriched with temporal and spatial
encoded information is then fed into a convolution block with the same design as
described at the beginning of Sec. 3.3.1.

Finally Spatio-temporal feature extractor produces the following feature maps
shapes:

1. 128 × W
8 × H

8

2. 64 × W
4 × H

4

3. 32 × W
2 × H

2

4. 32 × W × H

These four feature maps are then passed forward to the panoptic segmentation mod-
ule.

3.3.2 Panoptic Segmentation module
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FIGURE 3.12: Panoptic segmentation module diagram.
(Source: Fig.4 in Garnot and Landrieu, 2021)

Parcel-as-Points (PaPs) module (Fig. 3.12) inspired by CenterNet (Zhou, Wang,
and Krähenbühl, 2019) and CenterMask (Wang et al., 2020) methods is used here for
producing pantoptic segmentation masks (as instance masks with respective class
label) from multi-scale feature maps returned by the feature extractor.

Each parcel in the patch is time-invariant, i.e. does not change its position with
time. Therefore in this approach, each particular parcel is associated with: 1. cen-
terpoint coordinates; 2. bounding box; 3. binary instance mask in the bounding box
region and semantic class information identifier (k ∈ [1, 20], 20 crop types).
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Centerness heatmap

First, a centerness heatmap is predicted, supervised by ground truth parcels’ bound-
ing boxes, which are used to find centres of all parcels in the patch. The heatmap
consists of Gaussian kernels with standard deviations, taken as 1

20 of the height and
width of the respective parcel bounding box associated with each parcel following
Eq. 6 in Garnot and Landrieu, 2021. Heatmap is produced by a convolutional layer
fed with a feature map from the feature extractor at the highest resolution level. Then
parcel centres are computed as local maxima of the predicted heatmap in the neigh-
bourhood of 8 adjacent neighbours. After this operation, we have centre coordinates
for parcel candidates.

The predicted heatmap is supervised with the following loss:

Lcenter=− 1
|P| ∑

i=1...H
j=1...W

{
log(mi,j) if m̂i,j = 1
(1−m̂i,j)

β log(1−mi,j) else,
(3.3)

where β = 4, mi,j - ground truth heatmap, m̂i,j - predicted centerness heatmap and
H, W - height and width of the heatmap, P - number of parcels.

Size and class estimation

Each estimated parcel centre is associated with a multi-scale feature vector con-
structed by concatenating pixels at the centre coordinate from all channels at each
feature map scale level. This vector has a shape (128 + 64 + 32 + 32)× M, where M
- is the number of detected centers. We feed the feature vector into three multi-layer
perceptrons (MLPs) to get three vectors: 1. size of the parcel (vector size = 2); 2.
semantic class of the crop (vector size = K, K = 20 for us); 3. shape patch (size S × S,
S = 16 in our experiments).

Class estimation MLP is supervised with cross-entropy loss for a particular par-
cel p:

Lp
class = −kp log(k̂p) (3.4)

While size estimation is supervized with a normalized L1 loss:

Lp
size=

|hp − ĥp|
ĥp

+
|wp − ŵp|

ŵp
, (3.5)

where (ŵ, ĥ) - predicted size scalars for width and height, (w, h) - ground truth
bounding box size scalars for parcel p.

Shape estimation

In this step, we combine a rough shape estimation patch with a full-resolution global
saliency map to receive an instance segmentation mask.

In the Fig. 3.12, estimated parcel shape patch (S × S, S = 16), is rescaled with
predicted size for height and width. The resized shape is then added to cropped
saliency feature map. Then follows residual convolution layer, which is then added
as skip connection, final prediction is achieved with a sigmoid activation function.
For inference, the sigmoid output is thresholded with a value of 0.4 to achieve a
binary instance mask.
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The supevision is provided with the following binary cross-entropy loss (BCE):

Lp
shape = BCE(l̂p, cropp(sp)) , (3.6)

where l̂p is the estimated shape, cropp(sp)) ground truth binary instance mask cropped
at the predicted bounding box over the parcel center.

3.3.3 Objective function

Objective function is defined by combination of Eq. 3.3, Eq. 3.4, Eq. 3.5 and Eq. 3.6
as follows:

L = λcenter × Lcenter +
1
|P′| ∑

p∈P′

(
λclass × Lp

class + λsize × Lp
size + λshape × Lp

shape

)
,

(3.7)
where P′ is the subset of detected parcels, i.e. for which center coordinate is esti-
mated; λcenter = 1, λclass = 1, λsize = 1, λshape = 1.

3.3.4 Metrics

Regarding quantitative measurements, we are using three metrics PQ (panoptic qual-
ity, Eq. 3.8), SQ (Segmentation Quality, Eq. 3.9), and RQ (Recognition quality, Eq. 3.10),
first introduced by Kirillov et al., 2018.

Panoptic Quality is calculated for each class and averaged over all classes. This
metric is as a combination of SQ and RQ.

PQ =
∑(p,g)∈TP IoU(p, g)

|TP|+ 1
2 |FP|+ 1

2 |FN|
(3.8)

Segmentation quality (SQ) may be considered as an average IoU (intersection
over union) of matched true positive segments.

SQ =
∑(p,g)∈TP IoU(p, g)

|TP| (3.9)

While the recognition quality (RQ) is similar to the F1-score (harmonic mean of
precision and recall) classification metric.

RQ =
|TP|

|TP|+ 1
2 |FP|+ 1

2 |FN|
(3.10)

3.3.5 Modelling stage compute requiremnts

Model training requires GPU acceleration. In our experiments, we used one NVIDIA
GeForce RTX 3090, 12 GB of GPU memory (batch size = 4 training). The single exper-
iment takes 11 hours with the PASTIS dataset of 10 bands per SITS for 100 epochs.
We note, however, that it is possible to optimize the training pipeline with dis-
tributed training using mechanisms of Pytorch Machine Learning library by Paszke
et al., 2019.

For model training, we used a learning rate (LR) of 0.01 at the start and a multi-
step LR scheduler reducing LR twice at 60 and 80 epochs by a factor of 0.3. For gra-
dient descent we used Adam optimization (Kingma and Ba, 2014). For monitoring
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training, experiment tracking, and metrics logging, we extensively use Weights & Biases
by Biewald, 2020.
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Chapter 4

Experiments and Results

This chapter describes the experiments we conducted and the results we obtained.
Experiments are divided into two parts: 1. French Data and model architecture
modifications; 2. Ukrainian Data and its specificities.

We planned experiments with two goals in mind: 1. Improve model architecture
to outperform the PASTIS benchmark, and 2. Showcase panoptic segmentation on
Ukrainian territory.

4.1 Experiments with French Data

4.1.1 Multi-temporal Satellite imagery vs Single timestamp

Multi-temporal satellite imagery has very recently been introduced to the problem
of agricultural land segmentation, and the relevant problem of instance segmenta-
tion previously was done using only a single satellite image (Rieke, 2019). Therefore
in this experiment, we wanted to verify how important it is to have multiple times-
tamps for a satellite patch to have a good panoptic segmentation quality.

We compared a single timestamp with multi-temporal satellite image time series.
For multi-temporal, we used a sequence from 33 to 61 satellite images per patch
taken from September 2018 until November 2019. While for a single timeframe, we
used the 1st of June 2019.

In Table 4.1 one may see quantitative results: the first row shows numerical re-
sults from the original paper Garnot and Landrieu, 2021, the second row our repro-
duced metrics, and the third - only a single satellite scan per patch.

The experiment resulted in an almost 2x lower panoptic quality (PQ) measure-
ment when using a single timestamp compared to a multi-temporal sequence, while
the Segmentation quality difference is not so drastic. It may signify that in order
to estimate correct semantic information, i.e. crop type, the model needs to see a
time series of satellite scans. The reasoning here might be that different classes of
crops grow differently, and in order to understand the difference, there is a need
to have this crop grow change encoded into the features. Our result complies with
some other findings. In Kussul et al., 2017 authors describe non-static crop nature
and state that a single timestamp does not capture differences in plant phenological
profiles and human interventions during harvests. When the crop has started grow-
ing, it may look similar, but the difference is more visible once it grows enough.
Therefore, this task needs to work with satellite time series.

Qualitative results also show worse performance with single-date patches. One
may see that fewer parcels are delineated, and some of the highlighted parcels have
the wrong crop class predicted. In comparison, the multi-temporal model produces
more correctly segmented parcels. Therefore our focus will be on multi-temporal
satellite imagery time-series (SITS) for the rest of our experiments.
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FIGURE 4.1: Qualitative results comparing single timestemp with
multi-temporal SITS.

Additionally, we reproduced the experiment from the original paper of Garnot
and Landrieu, 2021 to verify reproducibility. To our surprise, in RQ and PQ, our
reproduced results showed better results but worse in SQ. We will be using repro-
duced variant metrics for other comparisons because these numerical results might
be hardware or software dependent.

Experiment SQ RQ PQ

Multi-temporal, 10 bands (from paper) 81.44% 47.90 % 39.37 %
Multi-temporal, 10 bands (reproduced) 81.30 % 48.09% 39.43%
Single timestamp, 10 bands 77.08 % 25.52 % 20.06 %

TABLE 4.1: Mono date vs multi-temporal

4.1.2 Shape prediction MLP vs UNET-decoder

While analysing panoptic segmentation module architecture, we found that parcel
shape patch is estimated with very little feature information. In panoptic segmen-
tation module (Fig. 3.12), shape patch estimation is conducted with simple MLP.
The MLP is fed with a feature vector consisting only of the pixel values of the par-
cel centre coordinate from all feature map channels. Whereas our feature encoder
produced spatial feature maps. Therefore our hypothesis was to utilise better this
spatial property of the feature maps i.e. use neighbourhood around parcel centre co-
ordinate, rather than just using only a single pixel from each channel of the feature
maps.

We developed a shape estimation CNN submodule to conduct the experiment
mentioned above. Inspired by the effectiveness of U-NET (Ronneberger, Fischer, and
Brox, 2015) for various segmentation tasks, we created a modified decoder which
was fed with feature maps produced by the feature extractor (3.3.1) and which re-
turned one channel (S × S, S = 16 as in original architecture) shape patch.
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Experiment SQ RQ PQ

Original shape MLP 81.30% 48.09% 39.43%
U-Net decoder for shape estimator 81.05 % 47.69 % 39.07 %

Quantitative results showed that simple MLP works better for the PASTIS dataset
than larger spatial feature neighbourhood fed to the U-Net CNN decoder module.
This is surprising because rough parcel shape is estimated only with a single centre
pixel taken from each feature channel. However final pixel-precise instance mask is
produced with an additional saliency map and convolution at the final stage. Even
though in this experiment numerical results are better, we believe hyperparameter
tuning, e.g. shape patch size or neighbourhood region might produce better perfor-
mance. In this experiment, we wanted to make the first test, and in the future, we
might conduct experiments with all hyperparameters tested with higher computa-
tional resources.

4.1.3 Micro-design architectural change of activation function

FIGURE 4.2: Vizualization of activation functions: ReLU, GELU and
Mish.

Following trends in deep-learning neural-network “surgery” or network archi-
tecture design choices to increase model performance (Liu et al., 2022; Ramachan-
dran, Zoph, and Le, 2017) we wanted to experiment with the choice of the acti-
vation function. The activation function provides non-linearity, a crucial property
of a DNN. The selection of the activation function can lower or boost model perfor-
mance. Therefore to test if we can outperform our benchmark with proper activation
function, we compared three functions: the most common ReLU, GELU and newer
one Mish. The selection of functions we made based on our experience in the do-
main and literature suggestions in the research community as in Zhang et al., 2021;
Bochkovskiy, Wang, and Liao, 2020. One may see them plotted in Fig. 4.2.
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ReLU activation function, introduced by Deng et al., 2009 is denoted as: f (x) =
max(0, x). This activation function is the first-to-try choice in almost every deep-
learning problem. This function was introduced as a function which has a lower-
to-no vanishing gradient problem. However, due to being so popular, it may not
always be the best, as there are new functions which bring higher model perfor-
mance.

One of the better alternatives in the research community is Gaussian Error Linear
Unit (GELU) function (Hendrycks and Gimpel, 2020). It allows some negative values
to be passed to other neurons rather than being zeroed as in ReLU.

Third function we wanted to experiment is Mish (Misra, 2020), defined as follows
f (x) = x · tanh (softplus(x)), where softplus(x) = log (1 + ex). Even though this
function has similar properties with GELU, e.g. unbounded positive domain, and
bounded negative domain. As authors of the function claim and show in their re-
sults, empirically, it provides better performance on ImageNet-1k (Deng et al., 2009),
CIFAR-10 than ReLU and GELU.

The experiments show in Table 4.2, that for this model architecture and the dataset
RELU outperforms GELU and Mish design choices. However, in the train-time
panoptic quality measure, GELU outperformed ReLU and Mish, but with lower Seg-
mentation quality. This means that the hard negative bound, as in ReLU, is essential
for accurate parcel contour segmentation.

Experiment test SQ test RQ test PQ train PQ train SQ

ReLU 81.30% 48.09% 39.43% 55.54 % 82.86%
GELU 80.88 % 42.33 % 34.51 % 63.32% 81.66 %
Mish 80.58 % 42.55 % 34.71 % 61.40 % 81.14 %

TABLE 4.2: Quantitative results with activation functions.

4.1.4 Input data channels modality

Experiment SQ RQ PQ

10 bands 81.30 % 48.09% 39.43%
10 bands + elevation 80.35 % 47.39 % 38.53 %
5 bands 81.68% 44.97 % 37.01 %

TABLE 4.3: Quantitative results on data modalities experiments.

By using band combinations, we can extract specific information from an image.
For example, there are band combinations that highlight geologic, agricultural, or
vegetation features in an image. Abraham and Wloka, 2021 remind us to make a
more careful selection of a band set to utilise spectres of satellite data better. In
this experiment, we added elevation to the 10 bands to help model segment parcels
with not-flat relief. Even though France is not a completely flat territory, we see no
improvements in metrics for additional elevation channel (Table 4.3). It seems ten
spectral bands are enough for panoptic segmentation.

We also tested how the model works with the first five bands, which have 10 and
20 m spatial resolution and are most sensitive to vegetation. Interestingly, having
only five spectral channels, the model still shows excellent results, even outperform-
ing segmentation quality: 81.68 % with 81.30 % if using all ten bands. It might signify
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that other channels are responsible for only 2.42 % panoptic quality improvement.
However, to be sure of this clause, we need to make such an experiment using the
other five bands because it might also be possible that information in the first five
and last five bands is interchangeable.

4.2 Application of the algorithm to Ukrainian data

The second part of our experiments is the application of the method to the Ukrainian
data we processed.

4.2.1 10 m/pixel

Experiment SQ RQ PQ

Model trained on France, PASTIS normalization 16.43 % 1.92% 1.39 %
Model trained on France, Ukraine data normalization 16.73 % 1.16 % 0.84 %
Model trained on Ukraine, Ukraine data normalization 40.51% 1.83 % 1.52%

TABLE 4.4: Evaluation on Ukrainian data 10m/pixel test set.

First, we generated annotations and downloaded satellite images the same way
as the French dataset (PASTIS), 10 m / pixel spatial resolution. Therefore each patch
has 128 × 128 px and covers 1.28 × 1.28 km.

FIGURE 4.3: Qualitative results with model train on FR (French data)
and model trained on UA (Ukraine) dataset at 10m/pixel.
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First, we tested how the model trained on French territory works on Ukrainian
territory. Using the same data normalisation as on French patches, we receive a Seg-
mentation quality of 16.43 %, Recognition quality of 1.92 % and panoptic quality of
1.39 %, compared to PQ of 39.43 % on PASTIS (Table 4.4). This result is far from
ideal. When we computed normalisation on Ukrainian data, we saw a minute im-
provement in segmentation quality. But degradation in panoptic quality. Then we
trained the model with weights pre-trained on PASTIS on Ukrainian data. Results
improved significantly for segmentation quality, i.e. finding parcel contours. Recog-
nition quality, i.e. parcel crop type segmentation, however, was not improved as
expected.

If comparing visually, one may see in Fig. 4.3 that performance is indeed not
so good. The model trained on the Ukrainian Dataset makes better guesses of the
field crop type and tries to delineate parcels properly. In contrast, the model trained
on French data produces more instances of more varied crop types, even ones not
labelled in the ground truth.

4.2.2 Parcel area difference in PASTIS and Ukrainian Data

We hoped that the model would work correctly on our carefully generated Dataset
from the data we received. As it turned out, there is a drastic difference between
France and Ukraine in terms of parcel areas. When looking at the patches we gener-
ated for Ukraine and patches from PASTIS, in Fig. 4.5, it becomes evident that while
in France patch may have 100+ fields inside, in Ukraine patch may have only one
parcel.

To validate our hypothesis, we computed the average parcel area in m2, plotted
in Fig. 4.4. From this, we see that parcels in PASTIS have a median area 10.6 · 103 m2

per parcel, while in our Ukrainian dataset median parcel area is 214.15 · 103 m2, 20
times larger median parcel area. We believe that this specific factor may be due to
the Dataset we have and the type of business the person who gave us this Dataset
conducts. However, we think this may also be due to differences between Ukraine
and France in historical factors. In France, there are many small businesses around
the country. In Ukraine, very few people or enterprises may hold many large-area
parcels. We leave the hypothesis for historians to verify why such a difference arose
in the past. On the contrary, to verify our clause about the present state, whether all
parcels in Ukraine are larger than in France, we need a bigger dataset annotated for
Ukrainian agricultural territory.

We decided to change the scale and experimented with 30m/pixel instead of
10m/pixel spatial resolution. The median parcel area is 23.8 · 103 m2 in such case,
which is only 2 times larger than in PASTIS.

4.2.3 30 m/pixel

Experiment SQ RQ PQ

Model trained on France 15.99 % 5.13 % 4.39 %
Model trained with Ukrainian data 34.17% 7.11% 6.08%

TABLE 4.5: Evaluation on Ukrainian data 30m/pixel test set.

Here we generated a dataset with 30m/pixel spatial resolution for Ukrainian
data to verify the hypothesis whether this scale will help achieve higher performance
due to the large parcel are in the Ukrainian Dataset compared to French data.
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0 200 400 600 800

Ukrainian data 10m/pixel

PASTIS 10m/pixel

Ukrainian data 30m/pixel (scaled)

FIGURE 4.4: Parcel area in thousands (103) of m2 for PASTIS dataset
and for Ukrainian data. 30m/pixel (scaled) means that we used same
128 × 128 px spatial dimension as in PASTIS, due to difference with

10m/pixel Ukraine-France parcels.

(A) French land patch example. Multiple
parcels in one patch.

(B) Ukrainian land patch example. Due to
big parcels, one big parcel covers most of the

patch area.

FIGURE 4.5: Difference between French (PASTIS) and Ukrainian
Dataset. Yellow rectangles have the same physical area of 1.28 × 1.28

km on both images.

In Fig. 4.6 we show qualitative results with a model trained on French territory
and a model trained on concatenated French + Ukrainian Dataset (due to the low
number of training patches at 30m/pixel). The model works slightly better based
on metrics in Table 4.5. Segmentation quality is 34.17%, 2 times higher than the
model trained on France territory, recognition quality is 7.11%, and panoptic quality
is 6.08% still not high as we would expect.

As we worked with both the French and Ukrainian Dataset, we understood how
important the annotations’ quality and quantity are. Regarding PASTIS, a French
mapping agency created this Dataset with farmers’ help, where all parcels in each
patch are annotated with instance and semantic labels. While in Ukrainian Dataset
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that we have, on average, there are 3 parcels annotation present in each patch. Ad-
ditionally, the data we have for Ukraine are limited in the number of parcels and,
hence, patches. While in PASTIS, there are more than 2433 patches, with 1455 pro-
visioned for training, in Ukrainian Dataset, we have only 51 patches, 35 for training
at 30m/pixel, which is why we trained concatenated PASTIS + UA@30m Dataset for
30m/pixel experiment with Ukrainian data.

Although we aspired to have higher quantitative and qualitative results, we
reached our goal to showcase the panoptic segmentation possibility for Ukraine. We
found specificities in working with Ukrainian fields. Hopefully, soon, we will see a
new Dataset with high panoptic quality annotations and a large area of Ukrainian
land, as this will open many new research and business opportunities for the emerg-
ing market economy of Ukraine.

FIGURE 4.6: Qualitative results with model trained on FR (French
data) and model trained on contatenated FR+UA (Ukraine) dataset at

30m/pixel.
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Chapter 5

Conclusions

5.1 Discussion

Garnot and Landrieu, 2021 showed that panoptic segmentation of crop fields using
multi-temporal satellite images time series is feasible. They tested their approach
on French territory. We verified the reproducibility of the PASTIS dataset first, cre-
ated a dataset prototype for Ukrainian territory and adopted the approach further to
Ukraine territory. The geographic location between France and Ukraine is different.
Still, the model transfer approach is not fully explored in the research works. Our
experiments showed that to train a panoptic segmentation model, one needs to have
panoptic annotations of high quality covering as much area of the given country as
possible.

Furthermore, while the research community should primarily focus on improv-
ing the accuracy of panoptic segmentation for agriculture, it is equally important
to explore how to make the model more robust to different input data perturba-
tions and noise. While experimenting, we observed that while the current approach
shows the feasibility of panoptic segmentation of parcels, it is at the same time sensi-
tive to several factors: shift of the image even by 1 pixel in any direction changes the
prediction; taking not enough time stamps into SITS sequence worsen the perfor-
mance; very tiny and very large parcels; patches with only one parcel present. These
primary aspects need to be addressed in the further exploration of this approach,
making it robust and production-ready.

5.2 Conclusions

To conclude, in this written composition, we explored how multi-temporal satel-
lite imagery data can be used for parcel panoptic segmentation. We showcased the
most recent state-of-the-art method for panoptic segmentation on Ukrainian farm-
land data. Described how important are open annotated datasets for the perfor-
mance of this algorithm. Such a project may later be advanced with parcels area
calculation, computation of vegetation index and humidity levels of the farms. It
may help develop a method to track crops over time and even predict how the par-
ticular plant may grow in a specific field. We believe that such a project may further
be used to manage agricultural land better and help achieve good agro-ecological
conditions overall. In developed countries, such data science instruments using
satellite provides analytics and helps make predictions based on historical data of
soil quality, make a/b testing on methods for agriculture soil moisture and meliora-
tion approaches. Assist farmers in choosing when it is better to grow a crop, predict
how the crop will grow and select the best crop for the particular field. Finally, this
method may help plan resources and optimize such resources for the best optimal
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outcome for the global climate change and food supply issues, which will make bet-
ter pricing for the fields based on vegetation index quality change.

We hope our showcase of the panoptic segmentation technology, an AI-driven al-
gorithm, can assist in rapid land recultivation after war damages to parcels (Fig. 5.1).

FIGURE 5.1: Drone photo of war-damaged land in Ukraine.
(Author unknown. Image Source: social media.)
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Chapter 6

Future Advancements

• Hopefully government or businesses of Ukraine will pro-bono publish anno-
tated dataset of Ukrainian farmland for research purposes as French Mapping
Agency did for the French PASTIS dataset. Such labelled data is needed to
develop accurate and robust algorithms for the Ukrainian agriculture sector.

• In Ukraine, there is a cadastre https://bit.ly/cadastre_ukraine map which
also suffers from annotation defects as in Zorzi, Bittner, and Fraundorfer, 2020,
which might be improved using satellite imagery segmentation.

• With the rising popularity of deep-learning methods for satellite imagery tasks,
we anticipate the appearance of new benchmarks and pre-trained models for
more than 3 RGB channels as it is now with ImageNet pre-trained feature ex-
tractors. Therefore we recommend experimenting with more advanced feature
extractors from other Computer vision problems pre-trained on big datasets,
e.g. AlphaNet by Wang et al., 2021, to then apply for panoptic segmentation as
a downstream task.

• Since there are data of similar nature, i.e. multi-temporal and multi-channel,
in other fields of science, we believe this panoptic segmentation approach may
be applied to other fields as well, such as Biomedical imaging or Astrophysics.

• Experiment with recent data augmentation techniques such as RandAugment
(Cubuk et al., 2019), MixUp (Zhang et al., 2017b) or CutMix (Yun et al., 2019)
to make the model more robust.

https://map.land.gov.ua/?cc=3696678.081975548,5940922.086683381&z=16&l=kadastr&bl=ortho10k_all
https://bit.ly/cadastre_ukraine
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