
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Reinforcement Learning Agents in
Procedurally-generated Environments

with Sparse Rewards

Author:
Oleksii NAHIRNYI

Supervisor:
Dr. Pablo MALDONADO

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
https://www.researchgate.net/profile/Oleksii-Nahirnyi
https://scholar.google.com/citations?user=cF15oG4AAAAJ&hl=en
http://researchgroup.university.com
https://apps.ucu.edu.ua/en/

i

Declaration of Authorship
I, Oleksii NAHIRNYI, declare that this thesis titled, “Reinforcement Learning Agents
in Procedurally-generated Environments with Sparse Rewards” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“All that is gold does not glitter,
Not all those who wander are lost...”

J.R.R. Tolkien

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Reinforcement Learning Agents in Procedurally-generated Environments with
Sparse Rewards

by Oleksii NAHIRNYI

Abstract

Solving sparse-reward environments is one of the most considerable challenges for
state-of-the-art (SOTA) Reinforcement Learning (RL). Recent usage of sparse-rewards
in procedurally-generated environments (PGE) to more adequately measure agent’s
generalization capabilities via randomization makes this challenge even harder. De-
spite some progress of newly created exploration-based algorithms in MiniGrid PGEs,
the task remains open for research in terms of improving sample complexity. We
contribute to solving this task by creating a new formulation of exploratory intrinsic
reward. We base this formulation on a thorough review and categorization of other
methods in this area. Agent that optimizes an RL objective with such a formulation
performs better than SOTA methods in some small or medium sized PGEs.
Keywords: reinforcement learning, exploration, sparse rewards, procedurally-generated
environment, intrinsic reward

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/

iv

Acknowledgements
I am thankful to my supervisor Pablo Maldonado for all patience and helpful

feedback during the process of writing diploma.
I am also very grateful and feel highest respect to Oleksii Molchanovskyi for

his major contribution into a golden mean of challenge and friendship inside this
educational program. It is truly unique. It goes without saying that all my life will
be followed by great memories and knowledge from study and cooperation inside
such a great collective of UCU lecturers and students.

I express a deep gratitude to my all closest ones for being with me all this time
and to Armed Forces of Ukraine for the ability to express at all.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Background . 2

1.2.1 Sparse rewards in RL . 2
1.2.2 Procedurally-generated environment 2

1.3 Research Goals . 4
1.4 Structure of Master Thesis . 4

2 Related Work 6
2.1 Categorization . 6
2.2 Prediction-based approaches . 8

2.2.1 Sub-categorization . 8
2.2.2 ICM . 8
2.2.3 RND . 9
2.2.4 AMIGo . 9
2.2.5 AGAC . 10

2.3 Novelty-based approaches . 12
2.3.1 Sub-categorization . 12
2.3.2 COUNT . 12
2.3.3 RIDE . 13
2.3.4 RAPID . 14
2.3.5 DoWhaM . 15
2.3.6 C-BET . 15

2.4 Combination of Prediction and Novelty: NoveID 17
2.5 Gap Analysis . 18

3 Proposed approach: OneRIDE 19
3.1 Intrinsic reward formulation . 19
3.2 Architectural details and scheme of work 20

4 Experiments 23
4.1 Environments . 23
4.2 Approaches comparison . 23

5 Results 25
5.1 Benchmarking . 25
5.2 Discussions and Future Work . 26

vi

6 Conclusions 29

A 30

B 31

Bibliography 34

vii

List of Figures

2.1 Top panel: An environment where future is independent of past. Here,
it is optimal for the agent to be curious about novel stimuli in the
present to maximize future rewards (highlighted in the red box, bot-
tom row). Bottom panel: An environment where future is related to
past and present. Here, it is optimal for the agent to be curious about
moderately complex stimuli (highlighted in the red box, bottom row).
Source: Dubey et al. Fig.2 [32] . 7

2.2 Sub-categorization of Prediction-based approaches. 8
2.3 Sub-categorization of Novelty-based approaches. 12
2.4 Possible situations on exploration in NovelD (lower row) versus RND

(upper row), with regards to intrinsic reward (IR) distribution. Nov-
elD constantly expands the exploration boundary while RND gets
caught in already over-explored areas. Source: T.Zhang et al. Fig.1
[34] . 17

3.1 OneRIDE intrinsic reward inheritance from RIDE and NoveID. 19
3.2 OneRIDE scheme of work based on IMPALA[39] and RIDE[13], where

experience collection (performed by Worker) and optimization (per-
formed by Learner) are separated. Collected experience from Work-
ers (st, at, rt, st+1) transmits to Learner in order to update parameters
of Embedding, Forward, Inverse and Policy neural (target policy) net-
works. 22

5.1 Sample complexity comparison between OneRIDE, RIDE and NoveID
in environments with smaller map . 25

5.2 Sample complexity of OneRIDE vs. RIDE in MultiRoom-N7-S4 medium-
sized map . 26

5.3 Intrinsic reward of RIDE and OneRIDE 26
5.4 Average episode return of OneAdversarialRIDE and OneRIDE 28

A.1 Novelty-based approaches conceptual table: intrinsic reward defini-
tion and explanation per each method. 30

B.1 Prediction-based and Combined (NoveID) approaches conceptual ta-
ble: intrinsic reward definition and explanation per each method. . . . 31

viii

List of Tables

2.1 Different sizes of MiniGrid environment used by SOTA. Small size en-
vironment were excluded from reports apart from one case in AMIGo
(underlied by black), however AMIGo works only for fully-observed
environment. 18

5.1 Compiled results from Comparison with SOTA for MiniGrid environ-
ments . 26

ix

List of Abbreviations

RL Reinforcement Learning
PGEs Procedurally Generated Environments
SOTA State-of-the-art (approaches)
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process

x

Dedicated to Gosha, Jenny, Masya and Myshka . . . our lovely
cats from Bucha.

1

Chapter 1

Introduction

1.1 Motivation

It is often the case in real-world that a human or animal is seeking to satisfy some
prioritized goal. In reinforcement learning framework formulation it can be ex-
pressed via sparse reward piecewise function, e.g. 1 if the goal is reached and 0
otherwise ([31]). Also a path to the same goal in real-world can differ dependently
on some inner or external context like time, space, brain development etc. Artifical
procedurally-generated environments (PGE) attempt to simulate that feature of a re-
ality. It is a well-established to be hard for an RL agent to solve tasks defined in a
sparse reward manner and generalize to unknown situations. Combining these two
problems into one makes RL research closer to solving real-world tasks. The topic
in question exactly concerns such a problem and has recently given appearance to
several new benchmarks and algorithms to solve them ([17], [18], [13], [16], [23]).

There is no exclusive list with all possible applications of above-mentioned al-
gorithms, but it may contain a range of industries apart from games. A necessary
condition of application is to build a simulation in the form of sparse-reward PGE
for industries processes. Solutions then may be may be useful in the following areas:

- Autonomous car driving. A car may need to successfully or quickly get some
distant goal with practically no reward on the way and different conditions at each
step along the route [29]. However, infinite set of combinations of maps, road events,
terrains, weather and other conditions is impossible neither to encounter over one’s
real lifetime nor code it manually. Moreover, field tests with real autonomous cars
may be too costly or dangerous in terms of resources and lives. If realistic sparse-
reward PGE is created, it may, for instance, cover such simulated scenario as rare
events handling, when new town intersections and rare event types in different con-
ditions are generated in order to test how system handles them [40]. Reward sparsity
in such a case is ensured by giving any reward only on basis of how event was han-
dled. Also the task of lane keeping [42] may be tested by agent in PGE as proposed
by Gambi et al. [42]. Solutions to such tasks in sparse-reward PGE may be helpful
to improve public safety on real roads.

- Space exploration. Apart from above-mentioned considerations on public safety,
solutions to sparse-reward PGE simulations may be critical for successful unmanned
spaceship completion of extraterrestrial missions with previously unseen landscape
[41]. In particular, unknown terrains investigation in order to create a map of sur-
roundings, cover it and find some goal is similar to hard exploration problem in
sparse-reward PGE [41]. Training an agent in such sparse-reward PGE may be help-
ful afterwards in unpredictable field conditions. Depending on the environment
configuration, reward in such case may only be located at one place of the map or
just be a negative signal that some resource (like fuel) ran out etc. MarsExplorer
environment for this purposes is already proposed by Koutras et al [41].;

Chapter 1. Introduction 2

- Healthcare. Simulated sparse-reward PGE environment in the form of unique
patient cases flow may be used for training healthcare professionals [43]. Treat-
ment of patients even with similar deceases can be modelled as sequential decision-
making problem with each patient representing a certain context [29]. Thus, a trained
RL agent may be used to help monitoring professional diagnostics. Reward in this case
may be sparse in a sense of only signalling whether patient recovered or not.

1.2 Problem Background

1.2.1 Sparse rewards in RL

RL agent learns to solve tasks by getting positive or negative reward signal from
environment. Let us recall that the "value" of state-action pair under policy π is
represented by q-value function [1]:

qπ(s, a) = E(Gt | S = st, A = at), (1.1)

where Gt = rt+1 + rt+2 + ... + rT in episodic case, i.e. is a sum of rewards across all
possible sequences of states and actions until last timestep T of an episode starting
from timestep t. However, in many games and real-world scenarios most states
contain no reward at all, i.e. reward function r(s, a) is mostly zero. It may take
a long time before RL agent learns how to distinguish valuable actions from whole
sequence, given that reward is located far away in time from that action [5]. In such a
case agent may get no signal on whether it approaches its goal and not learn optimal
policy π∗. In extreme case, reward can be located only in one state ("goal-state") from
all state space at some distant timestep. It can be seen from a definion of a sparse
reward r(s, a) given by Riedmiller et al. [28]:{

δsg(s) d(s, sg) ≤ ϵ

0 d(s, sg) > ϵ
, (1.2)

where sg - goal state; d(s, sg) - some distance measure between goal state sg and
current state; δsg(s) - reward surface withing epsilon region. In extreme case, men-
tioned above, ϵ-value may be so small, that a reward surface set will only contain
state goal sg itself, i.e. only d(sg, sg) ≤ ϵ. The problem may be solved by mak-
ing a reward proportional to d(s, sg). However, such a reward design would re-
quire to build a precise measurement system[27]. Moreover, some environments are
partially-observable Markov Decision processes (POMDP), where the state s may
contain not all information about the final goal. Classical RL strategies of randomly
taking actions with an intent to learn a transition dynamics p(st+1, rt|st, at) (as a way
to solve exploration-exploitation dilemma) are generally not convergent to solution
in such a case, which makes it a hard exploration problem. It requires from an agent
to learn more effective strategies of exploration than in dense rewards environments.

1.2.2 Procedurally-generated environment

The main issue with environments most frequently used in up-to-date RL re-
search (such as Atari-based) is a risk of overfitting: even a slight change of a game
level can lead to agent failing with a task at hand. One of the reasons is that those en-
vironments have all game levels to be mostly manually designed with gradual tran-
sitions from one level to another with agent encountering same states during the

Chapter 1. Introduction 3

(A) (B)

FIGURE 1.0: Two randomly (procedurally) generated levels from
MiniGrid env with the same goal: reaching green cell. Source: D.Zha

et al. Fig. 9 [15]

training. This scenario contradicts supervised learning methodology, which mea-
sures generalisation gap via the following function [29]:

GenGap(ϕ) := E(x,y) Dtest [L(ϕ, x, y)]− E(x,y) Dtrain
[L(ϕ, x, y)], (1.3)

where ϕ - model parameters; Dtest - testing data; Dtrain - training data; L - loss func-
tion. The need to establish such benchmarks that will be able to measure algorithm’s
genuine generalization capabilities motivated usage of procedurally-generated en-
vironments. Cobbe et. al [18], inspired by Nichol et al. [20], proposed CoinRun,
first PGE in RL research. In order to diversify skills needed to be learned, it was
expanded to Procgen environment [19], having 16 game environments.

Main features of those environments are the following:

• Usage of random seed to generate game levels. It means that a certain game
level seed would generate multivariate distribution where each variable relates
to certain feature of game environment, like layout, enemies or entities location
etc. At the same time the goal for two levels can be the same (finding some
point on the maze) [Figure 1];

• Sequence of generated levels is random,i.e. there is no gradual difficulty in-
crease, however one can switch on such a mode;

• In some environments like ProcGen authors separate/fix certain amount of
holdout seeds from training seeds (similar to supervised learning) to measure a
level of overfitting as a difference between training and holdout performance,
however such methodology is not universal in research [19].

Above configuration makes harder for an agent to learn optimal behavior, given
that an agent is highly unlikely to get to exactly the same state twice. PGEs train and
test environment elements can be generated from same distribution, from different
distribution or from combination of both. PGEs can be formally described in classic
MDP-framework terminology via introduction of context space C, where each ele-
ment of such space, context c ∈ C, may be a seed or any parameter vector defining
a level (environment) [44]. Ghosh et al. defined a contextual MDP as an MDP M
in which state s can decomposed into tuple (c, s

′
), where s

′
is an underlying state,

Chapter 1. Introduction 4

while in case of POMDP some emission function also transforms s [44]. If we split
C into Ctrain and Ctest then agent’s objective is to maximize expected return on Ctest
with policy π [29]:

argmax
π

E[r(π, M |Ctest)] (1.4)

Addition of sparse rewards into PGE setting makes this problem even harder to
solve. The most popular benchmark in research among sparse-reward PGEs is Mini-
Grid [26], which is basically 2D-maze, uses procedure described above. See example
in Figure 1 above. Having lower dimensions avoid some issues with computational
resources in training an agent and allows to have greater freedom in design of ex-
periments. At the same time, procedurally-generated sparse-reward nature of game
allows to make conclusions about generalization capabilities of an agent. There are
three main types of MiniGrid PGEs used in benchmarking: MultiRoom, KeyCorri-
dor and ObstructedMaze. In MultiRoom an agent has to navigate through N empty
rooms with different door colors. In KeyCorridor an agent needs to find a key via
exploring multiple rooms, unlock certain door and take a green ball. Obstructed-
Maze contains distractor objects, boxes needed to be toggled for key retrieval and
randomly connected rooms, making it one of the hardest in MiniGrid [16]. All these
PGEs can have small, medium or large sized maps.

A main metrics used in measuring progress in those environments is a standard
sample complexity, i.e. number of training steps or frames needed for an agent to
solve environment, passing certain mean reward threshold. Also some researchers
show 2D visual coverage to compare amount of explored space between algorithms.

There are also other sparse reward PGEs with higher dimensional (Obstacle Tower
[30] etc.) or more complex grid dynamics (NLE [17] etc.), however principles of
their work remain the same. Given computational simplicity, it is customary in RL
research community to first improve results on MiniGrid benchmarks.

1.3 Research Goals

We have multiple goals to pursue in this work:
1) Given that there is no complete survey of methods used for the problem solu-

tion, we are aimed to provide it. It will include categorization, overview and com-
parison;

2) Based on above 1) we also aim to propose a new formulation of intrinsic re-
ward comparable in its performance to at least some SOTA approches. As a "Proof-
of-Concept" we will test our approach sample efficiency improvement in smaller size
map grid-world PGEs, such as MultiRoom-N2S4,KeyCorridor-S3R1 or ObstructMaze-
1Dl. A confirmation of method efficiency via its testing on medium size grid world
and comparing it some SOTA algorithm is also one of our goals.

1.4 Structure of Master Thesis

In the light of above-defined goals pursuance we will include following parts into
our work:

• Chapter 2 contains existing solutions categorization and sub-categorization
with explanations, together with their overview and limitations. It also has
a gap analysis, setting foundations for the proposed solution;

Chapter 1. Introduction 5

• Chapter 3 contains proposed solution description and its architectural compo-
nents;

• Chapter 4 contains experimental setup, where we describe used metrics, envi-
ronmental states-actions and how we compare SOTA approaches to our solu-
tion;

• Chapter 5 describes results in order to compare proposed solution from Chap-
ter 3 with already existent SOTA described in Chapter 2. It also has a discus-
sion part where some modifications are proposed and limitations considered.
Based on discussion, directions of future research are proposed;

• Chapter 6 summarizes obtained results.

6

Chapter 2

Related Work

2.1 Categorization

Sparse-reward PGE solution approaches have a directed exploration strategy, i.e. in
addition to extrinsic reward re provided by environment an agent also receives an
intrinsic reward ri, constituting a total reward:

r(s, a) = re + ri. (2.1)

Intrinsic reward here follows optimism in face of uncertainty principle, by which
the higher the measure of state-action pair uncertainty the higher its value estimate
[22]. Solutions evolve around the goal to create a "better" formulation of intrinsic
reward.

They may be differentiated across several axes of comparison. However, the
main categorization criterion is based on what type of uncertainty information about
environment the agent uses for intrinsic reward definition itself. The most widespread
one which has proponents in reinforcement learning [13] prefers dividing such in-
formation into novelty-based and prediction-based. Despite some confusion in liter-
ature with regards to usage of terms "prediction", "novelty", "curiosity" and "intrinsic
motivation", above-mentioned classification is the most general one:

• Novelty-based approaches concentrate on measuring uncertainty with how
"similar" a state-action pair or state is to some reference point. This "similar-
ity" relies on different ideas, that can be divided into agent-centric (COUNT[6],
RAPID[15],DoWhaM[16]), environment-centric (RIDE[13]) or some combina-
tion of both (C-BET[33]), depending on whether reference point is agent’s own
experience or some immanent interestingness of the state in question [Ap-
pendix A.1].

• Prediction-based approaches ground their intrinsic reward on how uncertain
is agent’s prediction model about some part of environment transition dynam-
ics. They seek to minimize such model loss. At the same time they either
reward agent for maximum deviation of the model predictions from certain
ground truth (RND[9], ICM[10]) or reward agent for useful adversarial inter-
action (AMIGo[14], AGAC[23]) [Appendix A.2].

• Some combination of novelty and prediction based (NoveID[34]) [Appendix
A.2].

Notably, this view on intrinsic reward classification is accepted in behavioral sci-
ences research [32]. It is hypothesized that division into novelty-based and prediction-
based reward is a real-world consequence stemming from environmental causal
structure differences. As was noted by Dubey et al.[32], in environments, where

Chapter 2. Related Work 7

states are not expected to be encountered second time in future, there is no incentive
for an agent to learn any environment prediction model, but instead he is induced to
find the most novel stimulus nearby. On the other hand, if environment states will
be encountered in future multiple times it means that agent is motivated to learn
prediction model to be able to navigate in such environment more effectively, being
induced to find moderately novel stimulus [32] [Figure 2.1].

FIGURE 2.1: Top panel: An environment where future is independent
of past. Here, it is optimal for the agent to be curious about novel
stimuli in the present to maximize future rewards (highlighted in the
red box, bottom row). Bottom panel: An environment where future
is related to past and present. Here, it is optimal for the agent to
be curious about moderately complex stimuli (highlighted in the red

box, bottom row). Source: Dubey et al. Fig.2 [32]

During policy training all approaches are built upon some variation of exist-
ing SOTA actor-critic architectures, such as A3C or IMPALA, already benchmarked
against dense-reward Atari environments.

Chapter 2. Related Work 8

2.2 Prediction-based approaches

2.2.1 Sub-categorization

Prediction-based approaches can be divided into two main sub-categories, based
on two criteria of what is a prediction target of the model built for intrinsic reward
and also how such reward is assigned to an agent:

• State-prediction: (prediction target is correct state distribution, while intrinsic
reward is for not error in prediction):

- ICM;

- RND.

• Adversarial prediction (prediction target are other agent action distribution or
skills, while intrinsic reward is for correct prediction) [Figure 2.2]:

- AGAC;

- AMIGo.

FIGURE 2.2: Sub-categorization of Prediction-based approaches.

2.2.2 ICM

In order to increase agent motivation in exploring different parts of environment
one way is to reward it for visiting such states for which it is difficult to learn predic-
tion model, but is simultaneously possible ("learnability"). Schmidhuber et al. [35]
proposed an idea of intrinsic reward, that corresponds to the error between actual
state st+1 and predicted ˆst+1. However, the "learnability" of high-dimensional states
is not evident.

To this end Pathak et al. [10] created ICM (Intrinsic Curiosity Model), such that
an agent will receive no rewards for getting environmental states that are unpre-
dictable by their nature. Their architecture contains training a sub-module with an
embedding model ϕ encoding an arbitrary state st into such feature representation
ϕ(st) that is more relevant for agent action at than raw data, i.e. decreased state di-
mensionality to the most important features. Such representation with the most im-
portant environment features is used simultaneously to train two other sub-modules
[10]:

• Inverse-dynamics function finv that classifies an action used in transition from
state st to state st+1, helping encoder to crystallize such feature encoding of
environment that is important for actions of an agent:

finv(ϕ(st), ϕ(st+1)) = ât; (2.2)

Chapter 2. Related Work 9

• Forward-dynamics function f f orw that helps encoder to learn feature represen-
tation relevant for predictability of environment transition dynamics, by pre-
dicting feature encoding of the next environment state:

f f orw(ϕ(st), at) = ϕ̂(st+1). (2.3)

Intrinsic reward is defined using feature representation of next state prediction
generated from forward-dynamics model [10]:

ri
t =

η

2
∥ϕ̂(st+1)− ϕ(st+1)∥2

2, (2.4)

where η > 0 - scaling factor. Thus, the agent receives reward only for states that are
valuable for his interaction with environment.

Limitation. In ICM you may encounter famous noisy TV issue: an agent get
stuck in region where it sees random TV-noise due to huge intrinsic reward it gets
[10].

2.2.3 RND

Burda et al. [9] made a progress in solving noisy TV issue with proposing quiet
simple approach RND (Random Network Distillation) approach. Its idea is to learn
predictor network to predict state embedding generated from random fixed target
network. Then it gives an intrinsic reward for getting into unpredictable states to in-
duce effective exploration and, at the same time, to solve above-mentioned problem.
It works in the following way [9]:

1) Creating a randomly initialized fixed target network which outputs state em-
bedding f (s) at each time-step, given raw state s:

f : O → Rk (2.5)

2) Training a predictor network to output at each time-step such f̂ (s, θ) that min-
imizes mean squared error distance from target net output f (s), which also consti-
tutes an intrinsic reward:

ri
t = ∥ f̂ (s, θ)− f (s)∥2, (2.6)

This way, when target net gets into state representation similar to that it has seen
before (even not exactly the same as in TV-noise), a trained predictor network will
be able to find this out. It means that all random noise interactions are filtered out
and agent is able to concentrate on more fruitful areas to be explored [9].

Limitation. The only issue with RND is that it’s intrinsic reward vanishes, mak-
ing it impossible for an agent to explore after some time, which can be critical in
environments with many time-steps [9].

2.2.4 AMIGo

Campero et al. [14] noted that child exploration can be guided by goals gener-
ated while playing with the world. Moreover, such goals may be independent to
motivation connected to extrinsic reward goals.

In order to reproduce such kind of exploration, the authors of [14] proposed new
approach based on AMIGo (Adversarially Motivated Intrinsic Goals). It originally
implements an idea of automated curriculum learning, adapting it to sparse PGEs.
Agent here has an ability of goal self-proposal and is rewarded each time the goal

Chapter 2. Related Work 10

is reached irrespective of the time passed, while AMIGo alleviates this problem. It
also conditions the goal generator on observation in contrast to GoalGAN, given that
each episode starts completely anew in PGEs [14].

AMIGo divides learning system into a student and teacher policies, where "stu-
dent" makes actions in environment and "teacher" provides goals to "student". They
are operated and optimized at different temporal frequency [14]:

• Student policy is stochastic and works at each time-step to sample action at via
πθ(at | st, g) conditioned with g and parameterized by θπ, given state st. At
each time step it receives intrinsic reward:

rπ
t (st, g) =

{
+1 st = g
0 st ̸= g

, (2.7)

where g - goal state, generated by teacher policy and pursued by student pol-
icy. A student policy gets reward of one in an episode only if it reaches a goal
at any moment during the episode. In the worst case scenario student will re-
ceive zeroes at all time-steps of an episode and in the best case it will be able
to reach multiple goals during one episode.

• Teacher policy G(s0) parameterized by θg generates new goal (works) only at
time-steps when the episode ends or student policy reaches old goal. It has a
following intrinsic reward formulation:

rG(t∗, t, rS
t) =

{
+α t ≥ t∗

−β t < t∗
, (2.8)

where t∗ - time threshold such that the teacher policy is rewarded only when
student makes more steps than a time threshold established in order to reach
a set goal; t - current time index; α and β - hyperparameters, while t∗ shall
generally be fixed for particular environment. The rationale is that a "teacher"
receives positive intrinsic reward α if generated task was not to easy or too
hard for "student", otherwise it receives negative intrinsic reward β. In this
context "too easy" means that goal was reached at timestep t before some fixed
threshold t∗, while "too hard" means it was not reached at all by the end of an
episode. This configuration has "constructively adversarial" nature, given that
for success teacher has to make sure student success is possible.

In order to show "student" progress in goals "difficulty" the authors addition-
ally decided to linearly increase t∗ after some fixed amount of times when student
reaches intrinsic goal. If "student" fulfills the goal before t∗ it gets an intrinsic reward
of one and otherwise it gets zero [14].

Limitation. The biggest problem with AMIGo is that it works only in fully-
observable environments [14], as this goal from teacher takes a form of (x,y) co-
ordinates.

2.2.5 AGAC

Adversarially Guided Actor-Critic (AGAC) was proposed by Flet-Berliac et al.
[23], where a protagonist was added into the scheme of standard actor-critic archi-
tecture. Such protagonist goal is to mimic behavior of an actor, while goal of the
actor is to make its behavior more unpredictable.

Chapter 2. Related Work 11

This scheme works using discrepancy between protagonist policy and actor pol-
icy action distributions. Discrepancy takes a form of Kullback-Leibner divergence
[23]:

DKL(π(· | s) ∥ πadv(· | s)) = Eπ(·|s)[log π(· | s)− log πadv(· | s)], (2.9)

where π - actor policy, πadv - protagonist policy. The protagonist’s mimicking goal
is satisfied via minimizing discrepancy quantity, while actor’s unpredictability goal
is reached via maximizing it.

This discrepancy is used as an intrinsic reward to modify generalized advantage
estimator A for each state-action pair in a trajectory used in actor loss computation
[23]. Hyperparameter c is used to control dependence of advantange function on
log probability difference. It is also added to critic and protagonist loss functions
respectively. Thus, AGAC minimizes the following loss [23]:

LAGAC = Lactor + βcriticLcritic + αadvLadv, (2.10)

where The terms βcritic and βadv are fixed hyperparameters for critic and protago-
nist losses.

Limitation. It appears that convergence of this method is highly sensitive to
linearly annealed hyperparameter c, so that more robust process is needed.

Chapter 2. Related Work 12

2.3 Novelty-based approaches

2.3.1 Sub-categorization

Novelty-based approaches can be divided into two main sub-categories (plus com-
bination of those), based on whether novelty of the state is computed based on some
measure of inherent state attractiveness or agent own experience, which can also be
measured in different manner given particular environment [Figure 2.3]:

• Agent-centric (based on agent own experience):

- COUNT (based on state-action pair visitation count);

- RAPID (based on episode exploration score);

- DoWhaM (based on counting action impact);

• Environment-centric (based on state interestingness): RIDE;

• Combination of environment and agent centric (include both agent and envi-
ronment reference point): C-BET.

FIGURE 2.3: Sub-categorization of Novelty-based approaches.

2.3.2 COUNT

Main idea of visitation count is to keep track if each state-action occurrence count
in order to encourage an agent in future visiting states with smaller amount of visits.
It can be done via keeping track of quantity Nn(s), i.e. number of occurences of state
s in sequence of states s1:n. In algorithmic setting intrinsic reward based on Nn(s)
quantity takes mostly one of the following forms [22]:

ri =

√

ln n
Nn(s)
1√

Nn(s)
1

Nn(s)

, (2.11)

An idea of Nn(s) square root can be traced back to Upper Confidence Bounds
algorithm from Multi-armed bandits setting and Dyna-Q algorithm from model-
based RL, where in both cases having an upper bound for deviation from mean
extrinsic reward is intended [22].

One issue with pure visitation count is that it is applicable in practice only in
low-dimensional tabular settings. In high-dimensional states probability of visiting
particular state more than once is almost zero. Bellemare et al. [6] solve such an issue

Chapter 2. Related Work 13

by using a density model which outputs pseudo-count ˆNn(s) per state in replace of
pure state visitation count Nn(s). Thus, variation of Markov model was applied.
This approach is shortly referred to as COUNT in different benchmark comparisons.
It works in the following order [6]:

1) treats state s as a factored state in which each (i, j) pixel is a factor si,j;
2) trains a location dependent model to output probability (conditioned on cor-

responding pixel upper-left neighbors) for si,j;
3) outputs a probability of state s as a product of all state factors si,j probabilities.
In order to make density modelling more efficient one approach was proposed

to replace Markov model by CNN [7].
Simplicity of pseudo-count ˆNn(s) and its asymptotic relationship with Nn(s) [6]

makes its usage in sparse-reward PGEs widespread. It is also used as a intrinsic
reward discount in other approaches like RIDE.

Limitation. The issue with COUNT is its reward vanishing problem for visited
states without knowing exactly whether such states are explored enough. As was
noted by Burda et al. [9] there also exists an issue with scalability. In particular, it
is not trivial to use such methods in the setting where multiple agents are learning
from different environments in parallel.

2.3.3 RIDE

RIDE[13] learns forward-inverse dynamics and trains embedding network ϕ for
feature extraction, similar to ICM [10]. However, prediction error of forward net is
not used by RIDE in intrinsic reward formulation. Instead, it is defined in numerator
as an L2-norm between successive (at timesteps t and t + 1) state embeddings ϕ(s),
i.e. between important features of next and current state [13]:

∥ϕ(st+1)− ϕ(st)∥2. (2.12)

It is in contrast to ICM, where intrinsic reward ri is based on L2-norm between
predicted and actual state representations at timestep t + 1. The idea of exploration
bonus in the form of consecutive states difference idea was already used in RL re-
search, but contribution here is in using embeddings instead of raw data. Thus,
RIDE stimulates agent to take actions that change important features of agent’s en-
vironment surroundings, while ICM stimulates agent to reach more complex (un-
predictable) subspace of environment with important features [13].

Formal definition of RIDE intrinsic reward also includes uses above-mentioned
visitation counts idea as a discount to ensure that agent does not go back an forth
between consecutive states in one episode [13]:

ri
t(st, at) =

∥ϕ(st+1)− ϕ(st)∥2√
Nep(st+1)

, (2.13)

where Nep(st+1) - number of times state st+1 was encountered until time-step t + 1.
Limitation. One of RIDE constraint is that it receives intrinsic rewards for impact

only one state ahead, however action at t can influence states that are far ahead. As
was noted by Zhang et al.[34] there is also a problem with asymptotic inconsistency
of RIDE because after training embedding network always some type of change can
occur in the environment which can cause a environment change and bring intrinsic
reward, so it never vanishes when number of training samples approaches infinity.
It means that extrinsic reward re is not maximized, which contradicts main goal of

Chapter 2. Related Work 14

RL. One of the reasons is that visitation count value Nep(st+1) is calculated without
any regard to long-term novelty [34].

2.3.4 RAPID

Zha et al. [15] noticed that a human judges whether an agent explored envi-
ronment sufficiently by looking at agent’s behavior from an episode perspective.
For example, you can tell how many rooms through which paths were visited and
compare this behavior to another agent. It contradicts how most approaches (both
novelty and prediction) assesses its own exploration quality, looking from a nar-
rower perspective of whether particular state visitation was useful for environment
space exploration. It motivated the authors of [15] to propose RAPID (Ranking the
Episodes), a new method of encouraging exploration in environment which from
more general perspective works in the following three steps [15]:

• Finding exploration score S per whole episode (instead of intrinsic reward per
timestep);

• Recording in small buffer state-action pairs of best episodes ranked by their
exploration score S;

• Using imitation learning to reproduce best exploration behavior from above-
mentioned buffer.

Exploration score S of episode, being in essence episodic intrinsic reward ri
episode,

is computed via equation of three separate scores [15]:

ri
episode = S = w0Sext + w1Slocal + w2Sglobal , (2.14)

where Sext - total extrinsic reward from environment, Slocal - score from novelty of
states encountered during episode with respect to each other, Sglobal - score for nov-
elty of states encountered during episode with respect to states encountered during
whole training process.

In order to make novelty assessment of an episode as a whole (instead of timestep-
by-timestep basis) and extend novelty to continuous state space authors define episode
exploration score as a mean standard deviation across all states in the episode [15]:

Slocal =
∑l

i=1 std(si)

l
, (2.15)

where l - dimension of the state, std(si) - standard deviation along the i-dimension
of the states in the episode.

In contrast to Slocal global exploration score should be computed per each state
st during episode separately as this value is updated across all training and serves to
establish how much more exploratory rich was this particular episode in the context
of all previous experience [15]:

Sglobal =
1

Ntotal
∑

s

1√
Ntotal

, (2.16)

where l - dimension of the state, std(si) - standard deviation along the i-dimension
of the states in the episode. RAPID basically tries to overcome the constraint of RIDE
rewarding agent for whole episode instead of impact for next state.

Limitation. A core issue with RAPID is introducing a bias on iterations by using
state-actions from previous ranking, that were neither selected nor forgotten [15].

Chapter 2. Related Work 15

2.3.5 DoWhaM

Seurin et al. [16] provided following situation to motivate their new formula-
tion of intrinsic reward and new exploration method DoWhaM (i.e. Don’t Do What
Doesn’t Matter). Consider an infant that discovered a button that switched on a
light. Authors of [16] hypothesized that such child will likely start to instinctively
push everywhere in order to switch on new lights. In its turn, it can lead child
to discover other buttons, learn common features between buttons and associate
state "button" with action "push". Thus, it may be useful to encourage visiting states
which allow to perform actions that can only be performed in rare occasions.

In order to implement this in RL setting, the authors of [16] proposed following
intrinsic reward [16]:

ri =

B(at)√

Nn(s)
st ̸= st+1

0 otherwise
, (2.17)

where Nn(s) - discussed above visitation count and used as a discount factor as in
RIDE, and B(at) is defined as follows:

B(at) =
η

1− EH (att)
UH (at) − 1
η − 1

, (2.18)

where η(·) is an approximation of exponential decay, U is a number of times when
action was taken and E is the number of times when action changed environment
state, H - whole history of transitions (across all episodes) (sh, ah, sh+1).

The main takeaway is that the lesser is ratio E(a)t
U(a)t

the higher is ri, i.e. agent is
rewarded for actions which cause rare environment state changes. An explanation
of this formula is similar to above-mentioned example with infant: it may be useful
for an agent to visit states, such that usually ineffective (not changing environment)
actions become effective (changing environment). For instance, in most cases an
action "grabbing non-existent objects" doesn’t change environment state, but cases
when it does may be interesting to explore [16].

Limitation. There is a problem with author assumption that only actions with
rare environment effect has exploratory value. What if some frequently encoun-
tered and environment changing actions constitute a necessary condition for con-
stant faster exploration and that’s why they need to be repeated ? For instance,
moving can be frequently performed action leading to environment changes and if
we stop rewarding it we are hampering progress.

2.3.6 C-BET

Parisi et al. [33] assume that there are some states or scenarios that are inher-
ently interesting, apart from what is perceived as interesting by agent subjectively.
Thus, C-BET (Change-Based Exploration Transfer) approach was proposed in order
to cover both scenarios. In the spirit of above-described DoWhaM approach, C-BET
also favors transitions that produce rare environment change. It borrows pseudo-
counts from COUNT approach and environment change idea from RIDE. Intrinsic
reward here is the following [33]:

ri =
1

N(s′) + N(c)
, (2.19)

Chapter 2. Related Work 16

where c(s, s
′
) - environment change of transition (s, a, s

′
), N - pseudo(counts) of

changes and states. From this formula it is evident that the highest intrinsic reward
will get those transitions (s, a, s

′
) that are rarely encountered and rarely change en-

vironment.
C-BET training is divided into two stages [33]:
1) Agent learns exploration policy fi(s, a) across different environments with

defined-above intrinsic-reward only ("task-agnostic"):

πexp(s, a) = σ(fi(s, a)), (2.20)

where σ - softmax function;
2) Agent transfers this exploration policy to learn task policy fe(s, a) per each en-

vironment separately to maximize extrinsic reward. Exploration policy here works
as a fixed bias for interaction, especially useful at the beginning of task policy train-
ing:

πtask(s, a) = σ(fe(s, a) + fi(s, a)), (2.21)

It is assumed that after some training is passed agent will become more greedy
to extrinsic reward with fe having higher influence at final result [33].

In order to avoid situation when initial states of an episode will always get higher
reward C-BET introduce random pseudo(count) reset. Hence, state pseudo(count)
reset is not done each time when episode starts or ends, but has a probability p at
each time-step instead [33].

Limitation. The biggest limitation of C-BET is a possible misalignment between
exploration and task policies, as some exploration moves can slow down extrinsic
reward discovery, e.g. harmful states encounter [33]. Also the same limitation here
as in above-described DoWhaM - assumption that only rarely encountered actions
that rarely change environment do have exploratory value.

Chapter 2. Related Work 17

2.4 Combination of Prediction and Novelty: NoveID

T.Zhang et al.[34] noticed that it is often the case when there are multiple regions
of interest for exploration, many SOTA approaches get caught into one area very fast
without sufficiently exploring others [Figure 2.4]. It is also known as a detachment
problem in RL [12].

FIGURE 2.4: Possible situations on exploration in NovelD (lower row)
versus RND (upper row), with regards to intrinsic reward (IR) distri-
bution. NovelD constantly expands the exploration boundary while
RND gets caught in already over-explored areas. Source: T.Zhang et

al. Fig.1 [34]

One of agent aims may be to explore environment with weighting explored ar-
eas equally in order to cover more state space. Thus, the authors of [34] propose
new formulation of intrinsic reward which provides a bigger intrinsic reward at the
boundary between the explored and the unexplored regions:

ri
t = max[RND(st+1)− α · RND(st), 0] · 1[Ne(st+1) = 1], (2.22)

where α - scaling factor, Ne(st+1) - episodic state count, RND - prediction from Ran-
dom Network Distillation, already described previous section. Episodic state count
is reset at each episode. From indicator function we can see that intrinsic reward
is assigned at time-step t only if state is visited for the first time. In such a way it
avoids going back and forth between unpredictable state and previous ones even in
stricter way that RIDE.

NoveID also clips negative intrinsic reward if agent went back to same region.
Also we can see that the closer is agent to area of it’s exploration boundary the lower
is reward, i.e. ri is lower for all familiar states even if these were not visited before
[34].

According to this definition next state is rewarded only if its predictability is
lower than predictability of current state. From above equation we can derive some
explored region as {s : RND(s) ≤ m} and can say that agent receives reward only if it
explores beyond the boundary of explored regions. It becomes even more important
across longer trajectories [34].

Limitation. A main limitation of NoveID is similar from RND limitation, which
is vanishing intrinsic reward problem. It also more computationally intensive.

Chapter 2. Related Work 18

TABLE 2.1: Different sizes of MiniGrid environment used by SOTA.
Small size environment were excluded from reports apart from one
case in AMIGo (underlied by black), however AMIGo works only for

fully-observed environment.

MultiRoom KeyCorridor ObstructedMaze
RIDE N7-S8,N10-S4,N12-S10,N10-S10 S3R3 2Dlh
AMIGo - S3R3, S4R3, S5R3 2Dlhb, 1Q, 1Dl
RAPID N10-S10, N7-S8, N10-S10, N12-S10, N7-S4 S3-R2, S3-R3, S4-R3 -
DoWhaM N7-S4, N12-S10 S4R3,S5R3 2Dlh,2Dlhb,1Q,Full
AGAC N10-S10 S4R3,S5R3 1Q,2Q,2Dlhb,
Other (C-BET,RND,ICM,COUNT) same as above same as above same as above

2.5 Gap Analysis

We found following main gaps in solutions of sparse reward PGEs SOTA ap-
proaches :

• We created a Table 2.1 containing all MiniGrid envs tried by SOTA. We can see
that SOTA methods are simply not reporting any results from small-sized en-
vironments (like KeyCorridor-S3R1, MultiRoom-N2S4 or ObstrMaze-1Dl (1Dl
was used only in AMIGo and in not in standard partially-observable setting).
However, smaller size of environment should not pose a problem for them if
such methods are aimed at generalization capable agent.

• There exist no generally accepted quantitative metrics in PGE-oriented meth-
ods that can be used to report improvement in "exploration" per se. The most
important part is still a sample complexity, but those methods use qualitative
analysis to show increase in agent’s state-space coverage, i.e. how much space
is visually seen to be explored.

First gap fully corresponds to one of our initial research goals from Chapter 1:
trying out improvements on MiniGrid envs with smaller maps, trying to surpass at
least some SOTA methods. The second gap may be a subject of a different research,
however we will provide our idea with regard to it in Discussion section in the next
Chapter.

19

Chapter 3

Proposed approach: OneRIDE

3.1 Intrinsic reward formulation

Our approach OneRIDE is based on a new intrinsic reward formulation. The latter
is derived from the combination of RIDE with a simple regularization idea from
NoveID. It was mainly inspired by some limitations of those approaches mentioned
in the previous section. OneRIDE benchmark results improvements in MiniGrid
environments are discussed in the next section.

The formulation of intrinsic reward is the following:

ri
t = ∥ϕ(st+1)− ϕ(st)∥2 · 1[Ne(st+1) = 1], (3.1)

where ϕ(·) - embedding network for feature extraction (similar to RIDE embedding
net) from current and next states, 1[·] - indicator function, Ne(st+1) - episodic count
of next state occurrences.

Thus, our formulation inherits a novelty-based numerator from RIDE formula-
tion, i.e. L2-norm between features of consecutive states. However, instead of using
soft RIDE regularization 1√

Ne(st+1)
we propose more strict form of 1[Ne(st+1) = 1]

originated from NoveID [Figure 3.1].

FIGURE 3.1: OneRIDE intrinsic reward inheritance from RIDE and
NoveID.

There are three main advantages of OneRIDE intrinsic reward formulation over
RIDE, NoveID or other SOTA approaches:

• OneRIDE inhibits repeated visits to already visited states with a simpler regu-
larization criterion than that of NoveID via removing bounding max[·, 0] from
formulation, leaving only indicator function 1[·]. In fact indicator function is
completely enough to encourage agent visiting not explored areas of space;

• At the same time OneRIDE decreases a level of asymptotic inconsistency, i.e.
decreases an average intrinsic reward level in case of convergence to solution;

Chapter 3. Proposed approach: OneRIDE 20

• It removes a RND neural network training layer from approach, making it less
computationally complex.

Limitation. Main limitation concerns its strictness. OneRIDE discourages agent
forever from returning to previously seen state withing an episode however some-
times such states or state-actions can be practical to return to in order to get out from
environment trap or finding new trajectories. It concerns a problem of detachment
described by Ecoffet et al [12].

Importantly, our intention was creating a novel formulation that can be easily
combined with other machine learning ideas, such as adversarial agent, time-based
bonus or attention. That is why Proof-of-Concept goal from Chapter 1 is regarded
as close to satisfaction if the method beat some SOTA on some of smaller maps. We
will look into such ideas more carefully in Discussion section.

3.2 Architectural details and scheme of work

OneRIDE follows RIDE and IMPALA in terms of scheme of work and architec-
tural details. Experience collection (performed by Worker) is decoupled from opti-
mization (performed by Learner) [39]. After some predetermined time of Workers
using Policy network with old parameters (behavior policy), collected experience
(st, at, rt, st+1) goes to Learner in order to update parameters of Embedding, For-
ward, Inverse and Policy neural (target policy) networks. More detailed separate
explanation of those networks will be below. In short, "mechanics’ of their learning
is the following [39] [Figure 3.2]. Embedding network extracts feature vector ϕ(s)
from raw observation st and st+1, transmitting it to Inverse and Forward networks.
Inverse net identifies what action a has been taken given ϕ(st) and ϕ(st+1). For-
ward net predicts ϕ(st+1) from ϕ(st) and a. Embedding net feature vectors ϕ(st) and
ϕ(st+1) are also used to calculate intrinsic reward. Policy network (target net) loss is
calculated with collected experience and intrinsic reward. Networks are updated af-
ter total loss is calculated. Following loss function is minimized by gradient descent
[13]:

LOneRIDE = ωπ LRL(θπ) + ω f L f (θ f , θemb) + ωinvLinv(θinv, θemb), (3.2)

where θ - parameters of a corresponding neural network, ω - coefficient (hyperpa-
rameter), π - policy, RL - RL agent, f - Forward network, inv - Inverse network,
emb - Embedding network, L - loss function. Each loss component will be explained
below.

Embedding network ϕθemb . Its main aims are the following [13]:

• Reduce raw state space dimensionality via transforming it into feature space;

• Construct feature space in such a way that it contains only features relevant
for minimizing loss of both Forward and Inverse dynamics networks as seen
from Eq.(3.2).

Given that input state is an image and convolutional neural network (CNN) is a
widespread way to process images, Embedding network ϕθemb is a CNN that maps
such input into a feature vector. It uses three layers with ELU activation after each,
kernel size 3x3. First two layers have 32 filters, while the last one has 128. An output
of 128-element vector is then separately transmitted into both Forward and Inverse
neural networks [13]. Embedding network does not have its own loss function and
its weights are updated via gradient of Eq.(3.2): ∇LOneRiDE.

Chapter 3. Proposed approach: OneRIDE 21

Forward dynamics network fθ f . Forward network direct aim is to predict feature
vector of next state st+1 given current state st and action at [13]. Forward net is a feed-
forward neural networks with one layer and ReLU activation. It gets st and action
at in a concatenated form. Its loss is just an Euclidean distance between actual and
predicted feature vector of next state st+1 and is computed in the following manner
[13]:

L f (θ f , θemb) = ∥ϕθemb(st+1)− fθ f (ϕθemb(st), at)∥2. (3.3)

Inverse dynamics network invθinv . Inverse network learns to correctly classify
action at taken in environment given feature vectors of current state st and next state
st+1 [13]. Inverse net is also a feed-forward net with one layer and ReLU activation,
but with input in the form of two concatenated state feature vectors and output
in the form of action value. Given a classification problem, loss function Linv of
Inverse network is a negative log-likelihood of true action at, which was taken in
environment [13]:

Linv(θinv, θemb) = − ln [invθinv(ϕθemb(st), ϕθemb(st+1)) = at]. (3.4)

Policy network. Two-headed policy network is used by RL agent to learn pa-
rameters θπ with the following goals [13]:

1) To learn an optimal policy π∗
θ which outputs action distribution per each state

st (classification head);
2) To learn an optimal state-value V∗

θ (st) of input state st (regression head).
Policy net training in OneRIDE is based on RIDE, which is derived from IMPALA

actor-critic minimization of LRL loss function [39]. Its main idea is to provide an off-
policy correction to the time lag between learner policy πθ (which is few steps ahead)
and behavior actor policy µθ (which is basically an old learner policy taking actions
in environment) in the form of V-trace target vk for state-value approximation V(sk)
[39]:

vk = V(sk) +
k+n−1

∑
t=k

γt−s(
t−1

∏
i=k

ci)δtV, (3.5)

where δtV is temporal difference pt(rt + γvs+1 − V(st)), pt and ci are truncated im-
portance sampling weights equal to min[1, π(at|st)

µ(at|st)
]. This allows to decouple acting

and learning more efficiently. For details and proofs see Section 4 and Supplemen-
tary material by Espeholt et al [39]). LRL is comprised of three components [13]:

LRL = Lπθ
+ LVθ

+ Lentropy, (3.6)

where Lπθ
- regression loss, LVθ

- classification loss, Lentropy - entropy bonus. Each
component of LRL is defined in the following manner [13]:

Lπθ
= − ln [πθ(aµθ

t | st)] · δtV, (3.7)

LVθ
=

1
2
(vs − Vθ(sk))

2, (3.8)

Lentropy = −
|A|

∑
i=1

πθ(ai | st) ln [πθ(ai | st)], (3.9)

where πθ(aµθ

t | st) - probability of action aµθ

t taken by behavior policy µθ in state st
given learner policy πθ action distribution, A - action set, i - index of action from A,

Chapter 3. Proposed approach: OneRIDE 22

πθ(ai | st) - probability of action ai given the learner policy πθ in state st. Impor-
tantly, we are not using Embedding network output to train Policy net, used only
for Forward-Inverse networks. Policy net trains with its own separate embedding
convolutional neural net to avoid agent intentionally maximizing distance between
consecutive state embeddings to receive more intrinsic reward [13]. LSTM is used
in RIDE Policy network as well as in OneRIDE in order to take account of time in
partially observable MDPs after extraction of features from convolutional net. In
comparison to RIDE we decreased number of LSTM layers to 1 from 2 and number
of hidden neurons from 1024 to 256. Output of LSTM is transmitted to two Fully-
connected layers which constitute a two "heads" of Policy net π. Number of hidden
neurons is also decreased for those from 1024 to 256 in comparison to RIDE. Thus,
from RIDE we leave only CNN untouched in Policy net. Such a configuration makes
training less computationally intensive given limited amount of CPU resources that
we had.

FIGURE 3.2: OneRIDE scheme of work based on IMPALA[39] and
RIDE[13], where experience collection (performed by Worker) and
optimization (performed by Learner) are separated. Collected expe-
rience from Workers (st, at, rt, st+1) transmits to Learner in order to
update parameters of Embedding, Forward, Inverse and Policy neu-

ral (target policy) networks.

23

Chapter 4

Experiments

4.1 Environments

We evaluate OneRIDE on such MiniGrid environments that are mostly often used
by SOTA methods for benchmarking solution in the world of sparse-reward PGEs:
MultiRoom, KeyCorridor and ObstructedMaze.

Our main metrics will be sample complexity, i.e. how quickly in terms of frames
agent reaches a solution or some maximum bound. Solution is indicated by reaching
stable flow of certain level episode returns. Average episode return is used as a
standard in those PGE benchmarks and we follow the same rule. It is computed as
the mean return over past finished episodes in N steps, where N in our case will
be equal to 50. Agent receives return only when it reaches certain state. The faster
agent reaches such state the bigger is the final return.

We concentrate on approaching our desired Proof-of-Concept from the Chap-
ter 1, which is succeeding in sparse-reward PGEs with smaller maps. Each of above
PGEs has some smaller version of its own, which are: MultiRoom-N2S4,KeyCorridor-
S3R1 or ObstructMaze-1Dl.

• MultiRoom-N2S4. Solved when average reward is approximately equal to 0.8;

• KeyCorridor-S3R1. Solved when agent reaches mean reward of 0.9;

• ObstructMaze-1Dl. Solved when agent receives 0.9 on average.

Some description of those environments is given in Chapter 1. In general state
st in MiniGrid world is NxM grid of tiles, where each tile is a three-dimensional
tuple that contains object id, color id and state of an object [26]. Action set is dis-
crete and contains the following actions: Turn left, Turn right, Move forward, Pick
up an object, Drop the object, Toggle (open doors, interact with objects), Done (task
completed, optional). Detailed description of actions and states in MiniGrid envi-
ronments is provided by Chevalier-Boisvert et al. at [26]. We take into account that
we do not need for our research goal satisfaction to be better than all or even most
of SOTA approaches, but at least to approximate one of them. However, in order to
confirm whether OneRIDE has a potential application in bigger map we will test it
in medium-sized environment, such as "MultiRoom-N7S4".

4.2 Approaches comparison

We compare OneRIDE against two SOTA approaches (we do not need to compare
to all of them according to our goal) such as RIDE and NoveID for the following
reasons:

Chapter 4. Experiments 24

• OneRIDE intrinsic reward is a combination of those methods and it is natural
to test it’s performance against "parent" SOTA methods;

• NoveID authors claim that they were able to solve all large and medium-sized
environment faster than other methods, being among top SOTA methods;

• RIDE is traditionally a baseline method used in benchmarking all other PGE-
oriented methods and is the closest to OneRIDE in terms of the intrinsic reward
formula.

We will use NoveID and RIDE neural net architectures and hyperparameters
from specifications included into their papers and open-source implementation. RIDE
we already described. NoveID, apart from having RND computation, uses addi-
tional LSTM layer in Embedding net training. NoveID CNN is bigger, as well as
amount of neurons in its MLP.

Our computational constraints are 8 CPUs and 32Gb of memory RAM.
OneRIDE code implementation is open-sourced1.

1https://github.com/nalexus/OneRIDE

https://github.com/nalexus/OneRIDE

25

Chapter 5

Results

5.1 Benchmarking

Smaller maps. Results of benchmarking are present in Figure 5.1 and Table 5.1. It is
visible that in for all three small map PGEs OneRIDE approach demonstrates better
results in terms of sample complexity than that of RIDE and NoveID.

In case of ObstructedMaze environment no algorithm was able to converge in
a limited timeframe, which was expected as it is considered to be the hardest even
among larger map variations. It is also clear that OneRIDE progress at the beginning
is more substantial that of others. However, until one of the algorithms converges
to solution we cannot be sure that such situation will not change in future to the
favour of RIDE or NoveID. Taking such theoretical possibility into account, we are
also not excluding a hypothesis that OneRIDE simple neural network architecture
in combination with intrinsic reward formulation criteria plays some role in such a
behavior.

FIGURE 5.1: Sample complexity comparison between OneRIDE,
RIDE and NoveID in environments with smaller map

Medium map. In order to confirm that OneRIDE has also ability to solve big-
ger MiniGrid maps we decided to look at its performance in medium-sized map,
MultiRoom-N7-S4. We compare it only with RIDE as it is sufficient to prove above

Chapter 5. Results 26

TABLE 5.1: Compiled results from Comparison with SOTA for Mini-
Grid environments

MultiRoom-N2S4/N7S4 KeyCorridor-S3R1 ObstrucredMaze
OneRIDE 0.8 (Solved) in 800k steps 0.9 (Solved) in 1m steps. 0.01 is 3m steps
RIDE 0.6 in 800k steps 0.01 in 1m steps 0.0012 in 3m steps
NoveID 0.7 in 800k steps 0.45 in 1m steps 0.0 in 3m steps

hypothesis. As we can see from Figure 5.2, OneRIDE works even better in this par-
ticular environment than RIDE. It means that OneRIDE has a potential for testing in
at least medium-sized MiniGrid environments.

FIGURE 5.2: Sample complexity of OneRIDE vs. RIDE in MultiRoom-
N7-S4 medium-sized map

It was established during experiments that asymptotic inconsistency of RIDE has
less influence in case of OneRIDE. When average episode return approaches optimal
solution average intrinsic reward of OneRIDE is smaller than that of RIDE [Figure
5.2]. It means that optimal solution in RL sense is not that affected by "eternal" flow
of intrinsic reward.

FIGURE 5.3: Intrinsic reward of RIDE and OneRIDE

5.2 Discussions and Future Work

Using benchmarking only against smaller or medium maps may trigger the ques-
tion of applicability of such methods for large maps. It is an important issue to be
resolved in a future work. On the other hand, does an agent really generalize if he is
not able to solve smaller maps, but solves only larger ones ? Some SOTA methods in
this field progressively increase an amount of computational power needed for an
agent training, however one of implicit advantages of grid-world PGE are their sim-
plicity for experiments. Hypothetically, OneRIDE should work in all other MiniGrid

Chapter 5. Results 27

environments (apart from KeyCorridor,MultiRoom and ObstructedMaze), including
those for which action that produces environment change may be harmful, such as
LavaCrossing or Dynamic-Obstacles. Only RIDE among all SOTA methods tested
and converged for Dynamic-Obstacles. LavaCrossing and other MiniGrid envs are
not used in benchmarking at all by any SOTA approaches. Not benchmarking men-
tioned envs also constitutes a limitation of our proposed approach. Hence, we plan
to include in our future work experimental setup all MiniGrid environments, that
are not covered in this work.

During first episodes of training, agent may need to return to previously tried
options for disclosing potentially unseen trajectories. Thus, OneRIDE has also a
limitation of strict regularization that discourages agent forever from returning to
previously seen state within an episode, invoking a detachment problem [12]. It may
be useful for an agent to be able to get rewards for returning to states that he visited
long time ago. Moreover, an idea of bonus for long tried state-action pair already
exist from Dyna-Q+ method [37], which introduced an intrinsic bonus dependent on
time passed from last time when certain state-action pair was active. Additionally,
some threshold can be defined per areas of space when after certain time pass they
all become exploratory attractive again.

Apart from this ideas, an interesting direction of thought could be using some
adversary during training, generally comparable to AGAC or AMIGo approaches.
For instance we, in one experiment of ours with smaller MultiRoom environment,
where number of rooms equal 2 (not 7) an adversarial modification of OneRIDE
showed reasonable perspectives in terms of sample complexity [Figure 5.4], how-
ever for bigger amount of rooms it did not confirm its applicability as OneRIDE.
Such modification (OneAdversarialRIDE) replaces indicator function regularization
of OneRIDE with classifier prediction of whether st+1 has previously occured in the
episode given only st. If from st it is possible to predict whether agent will get into
already visited state then such state is not "novel" even being practically different in
terms of distance. Such classifier AdvClassi f ier is trained to correctly predict binary
output, while policy network is encouraged to act in more unpredictable way from
previous state flow:

ri
t = ∥ϕ(st+1)− ϕ(st)∥2 · 1[AdvClassi f ier(Ne(st+1)) = 1], (5.1)

We hypothesize that for OneAdversarialRIDE more hyperparameter configura-
tion or some modifications of network architecture are needed to approach SOTA
in at least medium size map, making it an another perspective direction of future
research.

Finally, there was no attention mechanism applied in SOTA approaches for PGE,
similar to that of Tang et al. [36], when agent is capable of dynamically using it to
base its decision only on those pixel patches which were regarded as important by
attention layer. However they report that their agent does not generalize to slightly
changed environment, which directly concerns nature of PGEs. Some researchers
suggest that attention is important for intrinsic motivation in a living organism [38].
Hence, integrating attention into existing SOTA approaches for solving sparse re-
ward PGEs could be a promising choice of future work.

Chapter 5. Results 28

FIGURE 5.4: Average episode return of OneAdversarialRIDE and
OneRIDE

29

Chapter 6

Conclusions

Given information from previous Chapters, it may be concluded that we achieved
the following results:

• We reviewed and categorized all sparse-reward PGE approaches thoroughly,
choosing their most general classification based on the type of uncertainty in-
formation about environment;

• Proposed new intrinsic reward formulation OneRIDE based on some of the
SOTA approaches, such as RIDE and NoveID. We also took into account some
limitations of those approaches;

• In a set of experiments we showed OneRIDE agent capability of getting re-
sults comparable to SOTA in some small size PGE MiniGrid maps such as
MultiRoom-N2-S4, KeyCorridor-S3R1. We also were able to confirm efficiency
of our method in a medium size map MultiRoom-N7-S4 comparing it to RIDE;

• Discussed some limitations of our proposed method;

• Proposed potential improvements to OneRIDE intrinsic reward definition for
the future work.

30

Appendix A

FIGURE A.1: Novelty-based approaches conceptual table: intrinsic
reward definition and explanation per each method.

31

Appendix B

FIGURE B.1: Prediction-based and Combined (NoveID) approaches
conceptual table: intrinsic reward definition and explanation per each

method.

32

Bibliography

[1] R.Sutton and A.Barto. "Reinforcement learning: An introduction (2nd ed.).". The MIT
Press. 2020.

[2] R. McFarlane. "A survey of exploration strategies in reinforcement learning". URL:
https://www.cs.mcgill.ca/ cs526/roger.pdf

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Ried-
miller. "Playing Atari with Deep Reinforcement Learning". In arXiv: 1312.5602 Dec.
2013.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K.
Kavukcuoglu. "Asynchronous Methods for Deep Reinforcement Learning". In arXiv:
1312.5602 Feb. 2016.

[5] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z Leibo, D. Silver, K.
Kavukcuoglu. "Reinforcement Learning with Unsupervised Auxiliary Tasks". In arXiv:
1611.05397 Nov. 2016.

[6] M.Bellemare, S.Srinivasan, G.Ostrovski, T.Schaul, D.Saxton, R.Munos. "Unifying
Count-Based Exploration and Intrinsic Motivation". In arXiv: 1606.01868 Nov. 2016.

[7] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, Remi Munos. "Count-Based
Exploration with Neural Density Models". In arXiv: 1703.01310 Dec. 2017.

[8] H.Tang, R.Houthooft, D.Foote, A.Stooke, X.Chen2, Y.Duan2, J.Schulman, F.De Turck,
P.Abbeel. "Exploration: A Study of Count-Based Exploration for Deep Reinforcement
Learning". In arXiv: 1611.04717 Dec. 2017.

[9] Y.Burda, H.Edwards, A.Storkey, O.Klimov. "Exploration by Random Network Distilla-
tion". In arXiv: 1810.12894 Oct. 2018.

[10] D.Pathak, P.Agrawal, A.Efros, T.Darrell. "Curiosity-driven Exploration by Self-
supervised Prediction". In arXiv: 1705.05363 May 2017.

[11] A.P.Badia, P.Sprechmann, A.Vitvitskyi, D.Guo, B.Piot, S.Kapturowski, O.Tieleman,
M.Arjovsky, A.Pritzel, A.Bolt, C.Blundell. "Never Give Up: Learning Directed Explo-
ration Strategies". In arXiv: 2002.06038 Feb. 2020.

[12] A.Ecoffet, J.Huizinga, J.Lehman, K. O.Stanley, J.Clune "Go-Explore: a New Approach
for Hard-Exploration Problems". In arXiv: 1901.10995 Jan. 2020.

[13] R.Raileanu,T.Rocktäschel. "RIDE: Rewarding Impact-Driven Exploration for
Procedurally-Generated Environments". In arXiv: 2002.12292 Feb. 2019.

[14] A.Campero, R.Raileanu, H.Küttler, J.Tenenbaum, T.Rocktäschel, E.Grefenstette.
"Learning with AMIGo: Adversarially Motivated Intrinsic Goals.". In arXiv: 2006.12122
Feb 2021.

https://www.cs.mcgill.ca/~cs526/roger.pdf

BIBLIOGRAPHY 33

[15] D.Zha, W.Ma, L.Yuan, X.Hu, J.Liu. "Rank the Episodes: A Simple Approach for Explo-
ration in Procedurally-Generated Environments.". In arXiv: 2101.08152 Feb 2021.

[16] M.Seurin, F.Strub, P.Preux, O.Pietquin. "Don’t Do What Doesn’t Matter: Intrinsic Mo-
tivation With Action Usefullness.". In arXiv: 2105.09992 May 2021.

[17] H.Küttler, N.Nardelli, A.Miller, R.Raileanu, M.Selvatici, E.Grefenstette, T.Rocktäschel.
"The NetHack Learning Environment.". In arXiv: 2006.13760 Dec. 2020.

[18] K.Cobbe, O.Klimov, C.Hesse, T.Kim, J.Schulman. "Quantifying Generalization in Rein-
forcement Learning.". In arXiv: 1812.02341 Dec. 2018.

[19] K.Cobbe, C.Hesse, J.Hilton, J.Schulman. "Leveraging Procedural Generation to Bench-
mark Reinforcement Learning.". In arXiv: 1912.01588 Dec. 2019.

[20] A.Nichol, V.Pfau, C.Hesse, O.Klimov, J.Schulman. "Gotta Learn Fast: A New Bench-
mark for Generalization in RL.". In arXiv: 1804.03720 Apr. 2018.

[21] OpenAI, I.Akkaya, M.Andrychowicz, M.Chociej, M.Litwin, B.McGrew, A.Petron,
A.Paino, M.Plappert, G.Powell, R.Ribas, J.Schneider, N.Tezak, J.Tworek, P.Welinder,
L.Weng, Q.Yuan, W.Zaremba, L.Zhang. "Solving Rubik’s Cube with a Robot Hand.".
In arXiv: 1910.07113 Oct. 2019.

[22] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, Doina Precup. "A
Survey of Exploration Methods in Reinforcement Learning.". In arXiv: 2109.00157 Sep.
2021.

[23] Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist. "Ad-
versarially Guided Actor-Critic.". In arXiv: 2102.04376 Feb. 2021.

[24] A.P.Badia, B.Piot, S.Kapturowski, P.Sprechmann, A.Vitvitskyi, D.Guo, C.Blundell.
"Agent57: Outperforming the Atari Human Benchmark.". In arXiv: 2003.13350 Mar.
2020.

[25] J.Li, W.Monroe, A.Ritter, M.Galley, J.Gao, D.Jurafsky. "Deep Reinforcement Learning
for Dialogue Generation.". In arXiv: 1606.01541 Sep. 2016.

[26] M. Chevalier-Boisvert, L. Willems, and S. Pal. "Minimalistic gridworld environment
for openai gym". URL: https://github.com/maximecb/gym-minigrid

[27] G.Paolo. "Learning in Sparse Rewards settings through Quality-Diversity algorithms".
Sorbonne Université, 2021.

[28] M.Riedmiller, R.Hafner, T.Lampe, M.Neunert, J.Degrave, T. Van de Wiele, V.Mnih,
N.Heess, J.T.Springenberg. "Learning by Playing - Solving Sparse Reward Tasks from
Scratch". In arXiv:1802.10567 Feb. 2018.

[29] R.Kirk, A.Zhang, E.Grefenstette, T.Rocktäschel. "A Survey of Generalisation in Deep
Reinforcement Learning". In arXiv:2111.09794 Nov. 2021.

[30] A.Juliani, A.Khalifa, V.-P.Berges, J.Harper, E.Teng, H.Henry, A.Crespi, J.Togelius,
D.Lange. "Obstacle Tower: A Generalization Challenge in Vision, Control, and Plan-
ning". In arXiv:1902.01378 Nov. 2021.

[31] M.Vecerik, T.Hester, J.Scholz, F.Wang, O.Pietquin, B.Piot, N.Heess, T.Rothörl, T.Lampe,
M.Riedmiller. "Leveraging Demonstrations for Deep Reinforcement Learning on
Robotics Problems with Sparse Rewards". In arXiv:1707.08817 Jul 2017.

https://github.com/maximecb/gym-minigrid

BIBLIOGRAPHY 34

[32] R.Dubey, T.Griffiths. "Understanding Exploration in Humans and Machines by For-
malizing the Function of Curiosity". In PsyArXiv Jul 2020.

[33] S.Parisi, V.Dean, D.Pathak, A.Gupta. "Interesting Object, Curious Agent: Learning
Task-Agnostic Exploration". In arXiv:2111.13119 Nov 2021.

[34] T.Zhang H.Xu1 X.Wang Y.Wu K.Keutzer, J.E.Gonzalez, Y.Tian. "Nov-
elD: A Simple yet Effective Exploration Criterion". In Proceed-
ings of 35th Conference on Neural Information Processing System:
https://proceedings.neurips.cc/paper/2021/file/d428d070622e0f4363fceae11f4a3576-Paper.pdf
2021.

[35] J.Schmidhuber. "A possibility for implementing curiosity and boredom in model-
building neural controllers". In From animals to animats: Proceedings of the first inter-
national conference on simulation of adaptive behavior 1991.

[36] Yujin Tang, Duong Nguyen, David Ha. "Neuroevolution of Self-Interpretable Agents".
In arXiv:2003.08165 2020.

[37] R.Sutton. "Integrated Modeling and Control Based on Reinforcement Learning
and Dynamic Programming". In Advances in Neural Information Processing Sys-
tems 3: https://proceedings.neurips.cc/paper/1990/file/d9fc5b73a8d78fad3d6dffe419384e70-
Paper.pdf 1990.

[38] Nazmul Siddique, Paresh Dhakan, Inaki Rano, and Kathryn Merrick. "A Review of the
Relationship between Novelty, Intrinsic Motivation and Reinforcement Learning". In
https://doi.org/10.1515/pjbr-2017-0004 2017.

[39] L.Espeholt, H.Soyer, R.Munos, K.Simonyan, V.Mnih, T.Ward, Y.Doron, V.Firoiu,
T.Harley, I.Dunning, S.Legg, K.Kavukcuoglu. "IMPALA: Scalable Distributed Deep-
RL with Importance Weighted Actor-Learner Architectures". In arXiv:1802.01561 2018.

[40] I.Paranjape, A.Jawad, Y.Xu, A.Song, J.Whitehead. "A Modular Architec-
ture for Procedural Generation of Towns, Intersections and Scenarios for Test-
ing Autonomous Vehicles". In 2020 IEEE Intelligent Vehicles Symposium (IV):
https://ieeexplore.ieee.org/document/9304625 2020.

[41] D.Koutras, A.Kapoutsis, A.Amanatiadis, E.Kosmatopoulos. "MarsExplorer: Explo-
ration of Unknown Terrains via Deep Reinforcement Learning and Procedurally Gen-
erated Environments". In arXiv:2107.09996 2021.

[42] A.Gambi and M.Muller and G.Fraser. "Automatically testing self-driving
cars with search-based procedural content generation". In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis:
https://dl.acm.org/doi/10.1145/3293882.3330566 2019.

[43] J.Duffy and Z.Wang. "Application of Procedural Generation as a Medical Train-
ing Tool". In Int’l Conf. Health Informatics and Medical System: http://worldcomp-
proceedings.com/proc/p2015/HIM3115.pdf 2015.

[44] D.Ghosh, J.Rahme, A.Kumar, A.Zhang, R.Adams, S.Levine. "Why Generalization in RL
is Difficult: Epistemic POMDPs and Implicit Partial Observability". In arXiv:2107.06277
2021.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Background
	Sparse rewards in RL
	Procedurally-generated environment

	Research Goals
	Structure of Master Thesis

	Related Work
	Categorization
	Prediction-based approaches
	Sub-categorization
	ICM
	RND
	AMIGo
	AGAC

	Novelty-based approaches
	Sub-categorization
	COUNT
	RIDE
	RAPID
	DoWhaM
	C-BET

	Combination of Prediction and Novelty: NoveID
	Gap Analysis

	Proposed approach: OneRIDE
	Intrinsic reward formulation
	Architectural details and scheme of work

	Experiments
	Environments
	Approaches comparison

	Results
	Benchmarking
	Discussions and Future Work

	Conclusions
	
	
	Bibliography

