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Abstract

Endoscopy is a widely used clinical procedure for the detection of different diseases
in internal gastrointestinal tract’s organs such as the stomach and colon. Modern en-
doscopes allow getting high-quality video during the procedure. Computer-assisted
methods might support medical specialists in detecting or segmenting anomaly re-
gions on the picture. Many datasets are available and methods to detect polyp re-
gions have been proposed. One kind of task is polyps segmentation on images and
videos. The best results in semantic segmentation of polyps are now achieved with
fully supervised approaches. In this thesis, we describe experiments with CaraNet
model. We checked robustness on cross-validation on several publicly available
datasets and small private dataset, tried a few modifications of attention layer in
order to improve performance, presented and discussed results.
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Chapter 1

Introduction

1.1 Context

Polyp is an unusual growth of tissue within the inner lining of the stomach or
colon. They occur in adult men and women of all ages and usually do not cause
symptoms. Most stomach polyps are not cancerous, but there are some which have
higher chance of malignancy. Polyps are usually diagnosed during an endoscopy.
Endoscope is either a flexible tube with a camera on the end or a capsule camera.
Although most stomach polyps do not lead to cancer, some types of polyps need
further investigation. In this case, biopsy (tissue sample) can be taken.

To help doctors detect polyps, and further cancer, computer-assisted tools can be
used. Creating automated, precise, and robust medical image segmentation meth-
ods have been one of the main problems in medical imaging. It is crucial component
for computer-aided diagnosis and image-guided surgery systems. Segmentation of
organs, lesions, or anomalies from a medical image helps doctors make a correct
diagnosis, plan the surgery, and propose treatment plans.

In our work, we research abilities of existing supervised methods for polyps de-
tection and segmentation on different datasets and study how these results could be
improved. For now, we do not approach real-time video segmentation solution. Still,
polyps segmentation from endoscopy images can be used in verification diagnosis
or creation of training materials for doctors.

1.2 Goals of the master thesis

1. To make an overview of the existing state-of-the-art approaches on polyps seg-
mentation and select one of them as a baseline.

2. To explore it’s robustness on several public and custom datasets.

3. To formulate hypotheses what modifications can be done to selected approach
architecture and conduct experiments.

4. To make conclusions and present results.

1.3 Structure of the thesis

Chapter 2. Medical background This chapter contains general information about
colonoscopy, colorectal cancer, and polyps.
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Chapter 3. Related works In this chapter we briefly overview existing approaches
for medical image segmentation, from classical to supervised. Several state-of-the-
art supervised approaches for polyp segmentation which show the best results on
HyperKvasir segmented images dataset benchmark are explored in detail.

Chapter 4. Data This chapter contains description of four public datasets on
polyp segmentation - HyperKvasir segmented images, CVC-ClinicDB,
CVC-EndoSceneStill, and ETIS-LaribPolypDB. We also mention small private cus-
tom dataset we run model’s inference on. We describe preprocessing algorithm and
visualize datasets comparison. We also describe data from EndoCV challenge 2022
we participated in during the project and its preprocessing for our experiments.

Chapter 5. Experiments In this chapter we list all runned cross dataset exper-
iments and experiments with CaraNet architecture and discuss each experiment
group results. Experiments from EndoCV challenge 2022 and brief explanation of
the results are also added here.

Chapter 6. Conclusions and discussion In this section, we make final conclu-
sions on achieved results and also mention hypotheses for future work.
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Chapter 2

Medical background

Polyps The human gastrointestinal (GI) tract consists of different sections, one of
them being the large bowel. One of the severe diseases that can affect the large
bowel is colorectal cancer. Colorectal cancer is the second most common cancer type
among women and the third most common among men1.

Colorectal cancer usually begins as a polyp, a noncancerous growth that may
develop on the inner wall of the colon or rectum as people get older. If not treated or
removed, a polyp can become a potentially life-threatening cancer. There are several
forms of polyps. Adenomatous polyps, or adenomas, are growths that may become
cancerous. They can be found with a colonoscopy. About 10% of colon polyps are
flat and hard to find with a colonoscopy unless a dye is used to highlight them.
These flat polyps have a high risk of becoming cancerous. Hyperplastic polyps may
also develop in the colon and rectum. They are not considered precancerous.2

Colorectal cancer Colorectal cancer can begin in either the colon or the rectum.
Colorectal cancer begins when healthy cells in the lining of the colon or rectum
change and grow out of control, forming a mass called a tumor. A tumor can be
cancerous or benign. A cancerous tumor is malignant, meaning it can grow and
spread to other body parts. It usually takes years to develop. Both genetic and envi-
ronmental factors can cause the changes.3

Colonoscopy Polyps are predecessors to colorectal cancer. They are found in
about half of the patients after 50 years who have a colonoscopy and are increasing
with age. Colonoscopy is the procedure for detecting and assessing these polyps
with biopsy and removing the polyps. Early disease detection has a significant
impact on survival from colorectal cancer. That is why polyp detection is essen-
tial. In addition, some studies have shown that polyps are often missed during
colonoscopies, with polyp miss rates of 14%-30% depending on the type and size
of the polyps. It may depend on endoscopists’ skills, as colonoscopy is an operator-
dependent procedure. The most frequently missed polyps are flat and smaller polyps
(Heresbach et al., 2008). So increasing the detection of polyps decreases the risk of
colorectal cancer.

Statistics on colorectal cancer shows that if the cancer is diagnosed at a localized
stage, the survival rate is 91%. If the cancer has spread to surrounding tissues or
organs and/or the regional lymph nodes, the 5-year survival rate is 72%. If colon
cancer has spread to distant parts of the body, the 5-year survival rate is 14%.

Thus, automatic detection of more polyps at an early stage can play a crucial
role in improving both prevention of and survival from colorectal cancer. This is the
primary motivation behind works on automatic polyp detection and segmentation.

1https://www.cancer.net/cancer-types/colorectal-cancer/statistics
2https://www.cancer.net/cancer-types/colorectal-cancer/introduction
3https://www.cancer.net/cancer-types/colorectal-cancer/diagnosis

https://www.cancer.net/cancer-types/colorectal-cancer/statistics
https://www.cancer.net/cancer-types/colorectal-cancer/introduction
https://www.cancer.net/cancer-types/colorectal-cancer/diagnosis
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Chapter 3

Related work

3.1 General methods overview

Most classical approaches to polyp segmentation are based on contours detection,
pixel intensity estimation, filtering and postprocessing (Salman, Ghafour, and Hadi,
2015; Ghosh et al., 2011). Some, use feature descriptors such as geometric and texture
descriptors (Figueiredo et al., 2019) while others apply iterated graph cuts (Rother,
Kolmogorov, and Blake, 2004). However, all these methods require handcrafting
of various parameters per each dataset. Since we aim to develop a generalizable
system applicable to any set of new endoscopy data, we decided to avoid classical
approaches and move to learnable methods.

State of the art approaches to unsupervised segmentation (Hwang et al., 2019;
Kim, Kanezaki, and Masayuki, 2020; Gansbeke et al., 2021) are developed for natural-
world images such as in ImageNet, Pascal datasets. One of the risks of using such
methods on medical tasks is their adaptivity to binary problems. It is unclear if their
performance could be transferred to an anomaly detection pipeline, where only one
class (anomaly) is segmented.

Semi-supervised methods depend on generative models which are trained for
reconstruction task on general (i.e. ImageNet dataset) set of images. Such trained
model can be used for anomaly detection by calculating the deviation between the
input with potential anomaly (polyp) and generated output, which tried to recon-
struct the image according to learned distribution of normal (healthy) samples. One
of the variants of such methods is GANomaly (Akcay, Abarghouei, and Breckon,
2018), which uses a conditional generative adversarial network that jointly learns
the generation of high-dimensional image space and the inference of latent space. It
was already tested on medical datasets and proved to be efficient in solving anomaly
detection task. GANomaly is a semi-supervised approach which doesn’t require any
per-pixel annotations, thus, it is auspicious to use for medical problems and opens
an opportunity to use a larger set of data, since per-pixel labelling is omitted. As
authors mention in their paper, the main limitation of this model is its computa-
tional complexity since it employs a two-stage approach, and remapping the latent
vector is expensive. Another drawback lies in the architecture itself, GANomaly is
used to predict the probability of a certain video frame being anomalous, meaning it
doesn’t produce a segmentation mask for a detected polyp. There are modifications
of GANomaly, such as Skip-GANomaly (Akçay and P. Breckon, 2019) which build
on the original architecture and improve it.

The best results in semantic segmentation of polyps on HyperKvasir Jha et al.,
2020 dataset benchmark1 are now achieved with fully supervised approaches (Lou
et al., 2022; Srivastava et al., 2021; Zhang, Liu, and Hu, 2021).

1https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg

https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
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3.2 Supervised models for polyp segmentation

All illustrations are taken from the corresponding papers.

ResUNet++ + TTA + CRF
In this paper, authors describe how the ResUNet++ architecture can be extended

by applying Conditional Random Field (CRF) and Test-Time Augmentation (TTA)
to improve its prediction performance on polyps segmentation (Jha et al., 2019, Jha
et al., 2021a).

FIGURE 3.1: ResUNet++ architecture

ResUNet++ is a semantic segmentation deep neural network designed for medi-
cal image segmentation. The backbone for ResUNet++ architecture is ResUNet. The
difference between ResUNet++ and ResUNet is the use of squeeze-and-excitation
blocks at the encoder, the ASPP block at bridge and decoder, and the attention block
at the decoder - see Figure 3.1.

Authors also introduce a series of additional skip connections from the residual
unit of the encoder section to the attention block of the decoder section for the propa-
gation of information. Residual connections improve the training process by directly
routing the input information to the output and help to avoid exploding/vanishing
gradient during backpropagation. The squeeze and excitation (SE) block is the build-
ing block for the CNN that learns the channel weights through global spatial infor-
mation that increases the sensitivity of the effective feature maps. The feature maps
produced by the convolution have only access to the local information, meaning
they have no access to the global information left by the local receptive field. To
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address this limitation, they perform a squeeze operation on the feature maps using
the global average pooling to generate a global representation. Then use the global
representation and perform sigmoid activation that helps us to learn a non-linear
interaction between the channels, and capture the channel-wise dependencies, so
the sigmoid activation output acts as a simple gating mechanism. ASPP is used as
a bridge between the encoder and the decoder sections, and after the final decoder
block to capture the useful multi-scale information between the encoder and the de-
coder. The attention block gives importance to the subset of the network to highlight
the most relevant information. (Jha et al., 2019, Jha et al., 2021a)

Conditional Random Field (CRF) is a statistical modeling method that can model
useful geometric characteristics like shape or region connectivity. The use of CRF can
improve the models capability to capture contextual information of the polyps and
thus improve overall results. In this architecture, they used a dense CRF. (Jha et al.,
2019, Jha et al., 2021a)

Test-Time Augmentation (TTA) is a technique of performing reasonable modifi-
cations to the test dataset to improve the predictions quality. In TTA, augmentation
is applied to each test image, and multiple augmented images are produced. After
that, predictions are made on these augmented images, and the average prediction
of each augmented image is calculated as the final prediction. In this paper, authors
used horizontal and vertical flips for TTA. (Jha et al., 2019, Jha et al., 2021a)

In result, proposed modifications outperform previous ResUNet++ model on the
HyperKvasir segmented images dataset and achieve 0.8508 Dice score.

NanoNet
Authors of NanoNet target real-time polyp segmentation in video capsule en-

doscopy and colonoscopy. It is a lightweight Convolutional Neural Network (CNN)
model, computationally efficient and requires less memory. Authors target to cre-
ate a lightweight model for limited resources constraints for real-time prediction in
clinics. Model is optimized for fast inference and high accuracy (Jha et al., 2021b).

The architecture of NanoNet (Figure 3.2) has an encoder-decoder approach. Net-
work uses an pre-trained on ImageNet dataset MobileNetV2 model as an encoder.
Authors claim that it helps the model converge faster and achieve higher perfor-
mance compared to the non-pre-trained model. The decoder is built using a mod-
ified version of the residual block. The pre-trained encoder starts with a standard
convolution, followed by the bottleneck layer with ReLU6 as the activation function.
The entire encoder network progressively downsamples the feature maps by using
strided convolution. Decoder uses a bilinear upsampling to increase the spatial di-
mension (height and width) of the input feature maps. After that, it is concatenated
with the appropriate feature maps from the pre-trained encoder using the skip con-
nections. The output of the decoder is fed to a convolution and sigmoid activation
(Jha et al., 2021b).

Authors present three NanoNet architectures: NanoNet-A, NanoNet-B, and NanoNet-
C. The difference among them is in the number of feature channels. Reduction of
trainable parameters simplifies the model complexity and gives a light-weight net-
work (Jha et al., 2021b).

On HyperKvasir segmented images benchmark NanoNet-A model (32, 64 and
128 feature channels) achieves 0.8227 Dice score, authors report (Jha et al., 2021b).
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FIGURE 3.2: NanoNet architecture
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3.3 State-of-the-art supervised models for polyp segmenta-
tion

MSRF-Net
Methods based on convolutional neural networks have shown good performance

of biomedical image segmentation. However, most of these methods cannot effi-
ciently segment objects of variable sizes and train on small and biased datasets,
which are common for biomedical use cases, claim authors MSRF-Net (Srivastava
et al., 2021).

To address the challenges arising with variable sizes, they propose a novel archi-
tecture called Multi-Scale Residual Fusion Network (MSRF-Net, Figure 3.3), which is
specially designed for medical image segmentation. The proposed MSRF-Net is able
to exchange multi-scale features of varying receptive fields using a Dual-Scale Dense
Fusion (DSDF) block. DSDF block can exchange information rigorously across two
different resolution scales, and MSRF sub-network uses multiple DSDF blocks in
sequence to perform multi-scale fusion. This allows the preservation of resolution,
improved information flow and propagation of both high- and low-level features
to obtain accurate segmentation maps. The proposed MSRF-Net allows to capture
object variabilities and provides improved results on different biomedical datasets
(Srivastava et al., 2021).

MSRF-Net achieves the dice coefficient of 0.9217, 0.9420, and 0.9224, 0.8824 on
Kvasir-SEG, CVC-ClinicDB, 2018 Data Science Bowl dataset, and ISIC-2018 skin
lesion segmentation challenge dataset respectively. Although, this approach cur-
rently gives a slightly higher result on HyperKvasir segmented images dataset than
CaraNet,multi-block structure may lack customization ability. This can make an
effect on a generalization ability. And further generalizability tests conducted by
authors providea dice coefficient of 0.7921 and 0.7575 on CVC-ClinicDB and Kvasir-
SEG, respectively (Srivastava et al., 2021).

FIGURE 3.3: MSRF-Net architecture

TransFuse
Authors propose a novel parallel-in-branch architecture, TransFuse (Zhang, Liu,

and Hu, 2021), to address medical segmentation challenge. TransFuse combines
Transformers and CNNs in a parallel style (Figure 3.4), where both global depen-
dency and low-level spatial details can be efficiently captured in a much shallower
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manner. Besides, a novel fusion technique - BiFusion module is created to efficiently
fuse the multi-level features from both branches (Zhang, Liu, and Hu, 2021).

Experiments demonstrate that TransFuse achieves the newest state-of-the-art re-
sults on both 2D and 3D medical image sets including polyp, skin lesion, hip, and
prostate segmentation, with significant parameter decrease and inference speed im-
provement. Regarding polyp segmentation, this approach demonstrates 0.918 mean
Dice result (same as in CaraNet) on HyperKvasir segmented images dataset (Zhang,
Liu, and Hu, 2021).

FIGURE 3.4: TransFuse architecture

CaraNet
Authors describe a novel neural network called Context Axial Reserve Attention

Network (CaraNet, Lou et al., 2022, Lou and Loew, 2021) to improve the segmenta-
tion performance on small objects compared with recent state-of-the-art models. Re-
cently, many CNNs have been designed for segmentation tasks and achieved great
success. However most didn’t consider the sizes of objects and demonstrate poor
performance on small objects segmentation. This can have significant impact on
early detection of disease (Lou et al., 2022, Lou and Loew, 2021).

The architecture uses a parallel partial decoder to generate the high-level se-
mantic global map and a set of context and axial reverse attention operations to
detect global and local feature information. CaraNet uses Res2Net as a backbone
network to extract low- and high-level features. Then it applies a parallel partial de-
coder to aggregate high-level features. The partial decoder feature is computed by
PD = pd( f1, f2, f3), and they get a global map Sg from the partial decoder. Next, it
uses Channel-wise Feature Pyramid (CFP) module to obtain contextual information
from high-level features - f ′3, f ′4, f ′5. Axial reverse attention module contains of two
parts: axial attention route and reverse attention route. To capture structural details
on tissue, not only approximate location, they erasure foreground object by apply-
ing reverse attention Ri = 1− Sigmoid(Si). For another route, axial attention is used
to keep the global connection and for efficient computing. And the output of A-RA
module is represented as ARAi = AA

⊙
Ri where

⊙
is element-wise multiplication

and the AAi is feature from the axial attention route (Lou et al., 2022, Lou and Loew,
2021).

Loss contains of weighted intersection over union (IoU) and weighted binary
cross entropy (BCE) loss components. Ltotal = L(G, Sup

g ) + ∑5
i=3 L(G, Sup

i ), where G
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is ground-thruth map, and Si and global map Sg are upsampled to size of G.
The method achieves achieves the top-rank mean Dice segmentation accuracy

and shows a distinct advantage in segmentation of small medical objects.
Five polyp datasets: ETIS-LaribPolypDB, CVC-ClinicDB, CVC-ColonDB, CVC-

EndoSceneStill and Kvasir are used for evaluation. Authors compare CaraNet with
six SOTA medical image segmentation methods: UNet, U-Net++, ResUNetmod, Re-
sUNet++, SFA and PraNet. 80% images from Kvasir and CVC-ClinicDB are used in
training set and the remained as a testing dataset. Authors claim that CaraNet not
only outperforms compared models according to overall performance, but also on
samples with small size polyps. Object’s size is considered as a the ratio (proportion)
of the number of pixels in the object to whole image.

FIGURE 3.5: CaraNet architecture

3.4 State-of-the-art supervised segmentation models not tested
for polyp segmentation

Medical Transformer: Gated Axial-Attention for Medical Image Segmentation
In this new paper (Valanarasu et al., 2021), authors explored the use of transformer-

based architectures for medical image segmentation. In the result, they proposed a
gated axial attention layer which is used as the building block for multi-head at-
tention models - Figure 3.6. On (a) the main architecture diagram of MedT which
uses LoGo strategy for training is presented. In (b) the gated axial transformer layer
which is used in MedT is shown. And in (c) the Gated Axial Attention layer struc-
ture presented, which is the basic building block of both height and width gated
multi-head attention blocks found in the gated axial transformer layer (Valanarasu
et al., 2021).

They also proposed a LoGo training strategy to train the image in both full res-
olution as well in patches. The global branch helps learn global context features by
modeling long-range dependencies, where as the local branch focus on finer features
by operating on patches. Combined, they propose MedT (Medical Transformer) ar-
chitecture which has gated axial attention as its main building block for the encoder
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and uses LoGo strategy for training. Unlike other transformer-based model the pro-
posed method does not require pre-training on large-scale datasets. (Valanarasu et
al., 2021)

Although authors conducted experiments on three medical datasets (Brain US,
GlaS, and MoNuSeg) and achieved a good performance, they didn’t try their ap-
proach on HyperKvasir segmented images dataset yet.

FIGURE 3.6: Medical Transformer architecture

MaskFormer: mask classification-based segmentation
MaskFormer approaches the problem of semantic segmentation as a classifica-

tion of masks. This approach is an alternative to the per-pixel classification, which
predominates in semantic segmentation problems. Instead of classifying each pixel
separately, mask classification approaches disjoins the process of semantic segmen-
tation into a division of the image into regions and classification of these regions.
MaskFormer is divided into three modules: pixel-level, transformer, and segmenta-
tion - Figure 3.7 (Cheng et al., 2021b).

Pixel-level module is an encoder-decoder architecture typically used for the se-
mantic segmentation task. The encoder part (a backbone) generates a high-level
feature representation of the image. Further, pixel-level embeddings are obtained by
iteratively upsampling feature representation from the encoder (Cheng et al., 2021b).

Transformer module generates N learnable positional embeddings (i.e., queries).
This module architecture is adapted from transformers (Vaswani et al., 2017), pop-
ular for sequence data. The attention mechanism encodes information about the
relation of these segments and enhances them with the image context (Cheng et al.,
2021b).
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The segmentation module utilizes a linear classifier and a softmax activation
function to acquire class probabilities from each query. An MLP (Multi-Layer Per-
ceptron) with two hidden dimensions converts queries into mask embeddings for
further conversion. The dot product between mask embeddings and per-pixel em-
beddings is used to calculate mask predictions (Cheng et al., 2021b).

Model training given matching is performed by utilizing mask classification com-
posed of cross-entropy classification loss and a binary mask loss. Where mask loss
is a linear combination of dice and cross-entropy loss (Cheng et al., 2021b).

Although MaskFormer approach has not been tested on medical data, authors re-
port results for ADE20K dataset. The ADE20K semantic segmentation dataset con-
tains more than 20K scene-centric images exhaustively annotated with pixel-level
objects and object parts labels. There are 150 semantic categories in total, i.e. sky,
road, grass, person, car (Zhou et al., 2017, Zhou et al., 2019). Maskformer achieves
a new state-of-the-art of 55.6 mIoU, which is 2.1 mIoU better than the prior state-
of-the-art Swin Transformer (Liu et al., 2021). MaskFormer approach also has fewer
parameters and faster inference time (Cheng et al., 2021b).

FIGURE 3.7: MaskFormer architecture
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Chapter 4

Data

4.1 Public datasets

4.1.1 HyperKvasir segmented images

HyperKvasir dataset (Jha et al., 2020; Borgli et al., 2020), which is the largest multi-
class image and video dataset from the gastrointestinal tract available today. The
data is collected during real gastro- and colonoscopy examinations at a Hospital
in Norway and manually annotated and verified by an experienced gastroenterol-
ogist. Hyperkvasir segmented images was the first endoscopic dataset where seg-
mentation masks were created in addition to framewise annotations. This allowed
computer vision researchers to contribute in the field of polyp segmentation and
automatic analysis of colonoscopy videos.

HyperKvasir dataset’s segmented images sectiong provides the original image, a
segmentation mask and a bounding box for 1,000 images from the polyp class. In the
mask, the pixels depicting polyp tissue, the region of interest, are represented by the
foreground (white mask), while the background (in black) does not contain polyp
pixels. The bounding box is defined as the outermost pixels of the found polyp.
The bounding boxes for the corresponding images are stored in a JavaScript Object
Notation (JSON) file. The image and its corresponding mask have the same filename
(Jha et al., 2020; Borgli et al., 2020).

FIGURE 4.1: Examples of images and masks in HyperKvasir dataset
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4.1.2 CVC-ClinicDB

CVC-ClinicDB (Bernal et al., 2015; Fernández-Esparrach et al., 2016) is a database of
frames extracted from colonoscopy videos. These frames contain several examples
of polyps. In addition to the frames, ground truth for the polyps are provided. This
ground truth consists of a mask corresponding to the region covered by the polyp in
the image.

CVC-ClinicDB is the official database used in the training stages of MICCAI 2015
Sub-Challenge on Automatic Polyp Detection Challenge in Colonoscopy Videos.
Overall, dataset contains 612 sequential WL images with polyps extracted from 31
sequences with 31 different polyps acquired from 23 patients.

FIGURE 4.2: Examples of images and masks in CVC-ClinicDB dataset

4.1.3 CVC-EndoSceneStill

CVC-EndoSceneStill dataset (Vázquez et al., 2017) is composed of 912 images ob-
tained from 44 video sequences acquired from 36 patients. It has annotations to
account for lumen, specular highlights with hand-made pixel-wise annotations, and
defined void class for black borders present in each frame. In the annotations, back-
ground only contains mucosa (intestinal wall).

FIGURE 4.3: Examples of images and masks in CVC-EndoSceneStill
dataset
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4.1.4 ETIS-LaribPolypDB

Dataset contains 196 WL images with polyps extracted from 34 sequences with 44
different polyps. It was created for ’Endovis’ Challenge, polyp detection sub-challenge.
(Silva et al., 2014)

FIGURE 4.4: Examples of images and masks in ETIS-LaribPolypDB
dataset

Public datasets information
Statistical dataset information is provided in Table 4.1 (Lou et al., 2022). All

datasets images differ in image size and polyp object size.

TABLE 4.1: Public datasets statistics

Dataset Image size Number of images Polyp sizes
HyperKvasir 1070 × 1348 1000 0.79% - 62.13%
CVC-ClinicDB 288 × 384 612 0.34% - 45.88%
CVC-EndoSceneStill 288 × 384, 500 ×574 912 0.30% - 63.15%
ETIS-LaribPolypDB 966 × 1225 196 0.11% - 29.05%

4.2 Custom dataset

We also checked models results on small custom private dataset which is unfortu-
nately not available for us for training due to data usage restrictions. Overall, it
contains Stryker Pinpoint endoscopy camera video frames for 20 different patients
(1-2 selected frames per patient). For these images there are no segmentation masks
available.

FIGURE 4.5: Examples of images from custom dataset
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4.3 Preprocessing

To make training images more similar to custom dataset (no black border, edge rect-
angles, image of size 480 x 360) we also created a cropped version of each dataset in
order to make training camera view more similar to test dataset.

Cropping algorithm is simple:

1. convert image to grayscale

2. mask pixels of intensity less than threshold_black (see Table 4.2 for values)

3. mask and remove rows and columns with number of such pixels more than
threshold_black_lines (see Table 4.2 for values)

4. resize image to target size 480 x 360

As light conditions differ in datasets, we used configurations of thresholds described
in Table 4.2.

TABLE 4.2: Configurations of thresholds for cropping.

Dataset threshold_black threshold_black_lines
HyperKvasir 15 100
CVC-ClinicDB 20 80
CVC-EndoSceneStill 0.08 90
ETIS-LaribPolypDB 2 180

See examples of original and cropped images from different datasets on Fig. 4.6.

FIGURE 4.6: Examples of cropped images and masks
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4.4 Datasets comparison

To visualize differences between images in different datasets we took flattened out-
put of third attention layer of default CaraNet model trained only on HyperKvasir
images (both original and cropped versions) and then applied T-SNE (n_components=2,
learning_rate=’auto’, init=’random’) and UMAP (default configuration) dimension-
ality reduction algorithms to visualize clustering of image embedding vectors in 2D.
Fig. 4.7.

FIGURE 4.7: T-SNE (left column) and UMAP (right columns) image
embeddings visualizations on original (first row) and cropped (sec-

ond row) images. Black points are custom dataset images

From visualizations we can see that original images create strong clusters. And
cropped images are more similar between themselves. Representations of custom
dataset images are located on the edge of green "HyperKvasir cluster". These differ-
ence from "average" image may affect model performance on custom dataset.

Also, we noticed that there are some images in ETIS-Larib dataset, which are
more close to HyperKvasir and CVC- images compared to other images in ETIS-
Larib. Fig. 4.8.

FIGURE 4.8: Nontypical images in ETIS-LaribPolypDB dataset
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4.5 EndoCV2022 challenge data

During work on this project, we also participated in 4th International Endoscopy
Computer Vision Challenge and Workshop (EndoCV2022). Endoscopic computer
vision is a challenge designed to collaborate and curate multicenter datasets and
promote building of generalisable models and assess deep learning methods.1

This year’s challenge consisted of two sub-challenges - (Endoscopy artefact de-
tection) EAD 2.0 and (Polyp generalization) PolypGen 2.0. The data provided is for
research purpose only, can be used only for EndoCV2022 challenge participation and
will be free to use after the publication of a joint journal paper (Ali et al., 2021a, Ali
et al., 2021b, Ali et al., 2021c, Ali et al., 2020).

Proceedings of this challenge are now available online2.
The PolypGen2.0 subchallenge dataset consists of 46 sequences with 3348 images

with polyp labels. Different endoscopes produced these images with various sizes
and artifacts - black section located at the left part of the image, blue rectangle with
endoscope position, text artifacts, and others (Kokshaikyna, Yelisieiev, and Dobko,
2022). Overall, we can distinguish 15 types of images among these sequences - ex-
amples are shown of Figure 4.9. Statistics about different types is shown on Fig 4.10.

FIGURE 4.9: Examples of different endoscope type images from
PolypGen2.0 dataset

For train and validation set, we divided sequences into groups using mannu-
ally labeled endoscope image types. For validation set we selected sequences seq1,
seq1_endocv22, seq2_endocv22, seq3, seq3_endocv22, seq5_endocv22, seq7_endocv22, seq10,
seq13_endocv22, seq14_endocv22, seq15, seq17, seq19_endocv22, seq21_endocv22, and
seq24_endocv22. Other sequences were used in training set. Overall, our train set
contained 3306 images and validation set contained 649 images, which is 19,63% of
total image number.

1https://endocv2022.grand-challenge.org/
2http://ceur-ws.org/Vol-3148/

https://endocv2022.grand-challenge.org/
http://ceur-ws.org/Vol-3148/
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FIGURE 4.10: Different endoscope image types

To bring all images to the same view and use the most informative regions during
training, we made simple preprocessing and automatically cropped images cutting
black areas on the left and right sides of the input. To do that, we took the center
row of the image, sum up values of RGB channels in this row and used a threshold
equal to 48. Continuous left and right parts under this threshold were considered re-
dundant and cut. Examples of cropped images are shown in Fig 4.11. This cropping
improves the informativeness of images and model generalization.

FIGURE 4.11: Examples of cropped images from PolypGen2.0
dataset. First column - before, second - after our pre-processing pro-

cedure



20

Chapter 5

Experiments

Among all existing approaches, we decided to choose CaraNet (Lou et al., 2022),
one of the state-of-the-art models for medical image segmentation on HyperKvasir
segmented images dataset (Jha et al., 2020), as a main baseline architecture.

We trained it using data from all 4 previously mentioned publicly available for
academic purposes endoscopy datasets with polyps, including HyperKvasir (Jha
et al., 2020), CVC-ClinicDB, CVC-EndoSceneStill (Bernal et al., 2015; Fernández-
Esparrach et al., 2016), and ETIS-LaribPolypDB (Silva et al., 2014).

We examined model’s robustness on cross-validation on all datasets, examined
a few hypotheses how model architecture changes inspired by other state-of-the-art
approaches could affect results. We also checked performance of this model on small
custom dataset.

5.1 Scoring methodology

For medical image segmentation task, the most common metric is Dice coefficient.
Kvasir-SEG dataset authors also encourage researchers to use it.

Dice(A, B) =
2 × |A ∩ B|
|A|+ |B|

, where A is predicted mask (set of pixels) and B is ground truth mask.
The Dice coefficient is similar to the IoU, which is also often used in segmentation

tasks.
IoU(A, B) =

A ∩ B
A ∪ B

Both metrics values are from 0 to 1, and a greater value means better performance.
In segmentation tasks, Dice is often used as a loss function. Since IoU is not reported
for all the models on the Kvasir-SEG leaderboard, we also focused on Dice score
more.

Also we measured
precision =

TP
TP + FP

,

recall =
TP

TP + FN
, and

FPR =
FP
N

. FPR is important in medical segmentation because we don’t want to miss the posi-
tive case, so we target recall. And FPR helps us to control overfitting to recall.
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For all experiments, random 60% of images were took for training, 20% for vali-
dation and 20% left for testing.

5.2 Cross datasets experiments

We started experiments with default CaraNet architecture, with small updates in
training process:

1. added custom DataLoader to set up cross validation between datasets "on the
fly". It is managed by –iteration parameter:

• 0-3 defines which dataset is used fully for the test fold, others are splitted
into train/val parts,

• -1 to split each of datasets to train/val/test,

• -100 to use only Hyperkvasir segmented images dataset only.

2. added ImbalancedDatasetSampler with possible options:

• ’dataset’ to sample images from different datasets equally,

• ’mask_size’ to sample images with small mask proportionally more fre-
quent,

• and ’only_anomalies’ to skip images with no anomalies after cropping and
then sample images from different datasets equally.

Default parameter values are:

• learning rate is 1e-4,

• optimizer is Adam,

• batch size is 6,

• image train size is 352×352.

• gradient clipping margin is 0.5,

• decay rate is 0.1,

• decay epoch is 50,

• augmentations are RandomRotation (up to 90 degrees) and RandomFlip (ver-
tical and horizontal, both with probability 0.5),

Default CaraNet’s multi-scale training strategy (size_rates = [0.75, 1.0, 1.25]) was
used in all experiments, except experiments with gated axial attention module in the
next section, where it is stated clearly.

Default CaraNet normalization coefficients were used for all datasets.
Training conditions:

1. one NVIDIA GeForce GTX TITAN X was used for model training,

2. training time took approximately 6-7 hours / 50 epochs,

3. inference time is approximately 0.12 seconds per image (i.e. for 363 images it
took 43 seconds).
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Cross-dataset experiments In this section of experiments 1-4, we used 3 datasets
in training process and 1 in testing. The idea of this was to test model’s general-
ization ablity. From results of experiments, we see noticeable drop in model perfor-
mance for ETIS-LaribPolypDB dataset. Our assumption was, the reason is smaller
average polyp size in this dataset - so we need to focus attention on small polyps in
further experiments.

TABLE 5.1: CaraNet experiments 1-4

№ Experiment Test dataset Dice on valida-
tion

Scores on test

1 CaraNet default
+ Imbalance
Sampler (CV on
4 datasets)

CVC-ClinicDB 0.9038
(CVC-
EndoSceneStill
0.9209,
ETIS-Larib 0.905,
HyperKvasir
0.8931)

Dice 0.9367
precision 0.9283
recall 0.9493

2 – CVC-
EndoSceneStill

0.8943
(ETIS-Larib
0.8976,
HyperKvasir
0.8752,
CVC-ClinicDB
0.9244)

Dice 0.9399
precision 0.9378
recall 0.9465

3 – ETIS-Larib 0.9124
(HyperKvasir
0.8901,
CVC-
EndoSceneStill
0.9305,
CVC-ClinicDB
0.9305)

Dice 0.5542
precision 0.5415
recall 0.8242

4 – HyperKvasir 0.921
(ETIS-Larib
0.914,
CVC-
EndoSceneStill
0.9221,
CVC-ClinicDB
0.9221)

Dice 0.8387
precision 0.8320
recall 0.9119

Experiment on all datasets In experiment 5, we checked that model’s training is
stable and shows no sings of overtraining - train, validation and test scores doesn’t
differ significantly.

Experiments with Imbalance Sampler by mask size In experiments 6-7 we added
Imbalance Sampler by mask size in order to try to handle model’s bad performing
on ETIS-LaribPolypDB dataset. Dice score when this dataset is used only in test in-
creased from 0.55 to 0.60 which is rather significant improvement. Imbalance Sam-
pler by mask size also increases overall model performance (experiment 7) slightly.

Inference on custom dataset Although results on public datasets are quite good,



5.2. Cross datasets experiments 23

TABLE 5.2: CaraNet experiments 5

№ Experiment Test dataset Dice on valida-
tion

Scores on test

5 CaraNet default
+ Imbalance
Sampler (each
of datasets is
splitted into
train/val/test)

All 0.9109 Dice 0.9026
precision 0.9086
recall 0.9166

TABLE 5.3: CaraNet experiments 6-7

№ Experiment Test dataset Dice on valida-
tion

Scores on test

6 CaraNet default
+ Imbalance
Sampler by
mask size

ETIS-Larib 0.9049 Dice 0.6087
precision 0.5655
recall 0.8204

7 CaraNet default
+ Imbalance
Sampler by
mask size

All 0.9099 Dice 0.9032
precision 0.9131
recall 0.9143

on custom dataset model struggled to find a polyp, and experiment 8 with cropped
images which have to be more similar to private ones didn’t help either.

While state-of-the-art approaches may show great performance in polyp detec-
tion and segmentation when trained and tested on publicly available datasets, there
is a large gap between images from real colonoscopy and those in public datasets
(Sun et al., 2021). Usually, public datasets contain carefully picked clear images with
reasonably sized polyps that stand out from the background, without various arti-
facts often present in real operations. On the other hand, a considerable portion of
the images in colonoscopy operations has different degrees of blurring due to the
movement of the camera and intima, camera out-of-focus, or water flushes during
an operation. Also, the images frequently contain various artifacts such as fluid, de-
bris, bubbles, reflection, specularity, contrast, saturation, and medical instruments
(Ali et al., 2021a, Ali, 2019). Moreover, a wider variety of polyps with different sizes,
shapes, or textures can occur in a colonoscopy than in public datasets.

TABLE 5.4: CaraNet experiments 8

№ Experiment Test dataset Dice on valida-
tion

Scores on test

8 CaraNet de-
fault (croppped
images) + Im-
balance Sampler
only anomalies

All 0.8975 Dice 0.8759
precision 0.8440
recall 0.9013
fpr 0.0391

The best and the worst (using Dice metric) segmentation results of experiment 8
can be seen in Figure 5.1 and Figure 5.2.
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FIGURE 5.1: The best segmentation results

FIGURE 5.2: The worst segmentation results
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5.3 Experiments with CaraNet architecture

In this section, all experiments were conducted on HyperKvasir segmented images
dataset only.

Partial Decoder CaraNet uses a parallel partial decoder to generate the high-
level semantic global map and a set of context and axial reverse attention operations
to detect global and local feature information. Firstly, it uses Res2Net as a backbone
network to extract low- and high-level features. Then it applies a parallel partial
decoder to aggregate high-level features. The partial decoder feature is computed
by PD = p_d(x4_r f b, x3_r f b, x2_r f b). The hypothesis was to test if adding x1_r f b
as an additional input to partial decoder improves the performance. Result Dice
score increased a little, precision and FPR metrics improved too, but recall slightly
dropped.

In this experiment, only original images with polyps (non empty mask) from
HyperKvasir segmented images dataset were used.

TABLE 5.5: CaraNet experiment with Partial Decoder

№ Experiment Dataset Dice Precision Recall FPR
9 Original

CaraNet
HyperKvasir 0.8782 0.8769 0.9166 0.0237

10 CaraNet
PD input

HyperKvasir 0.8790 0.8918 0.8993 0.0188

Gated axial attention Next experiments were inspired by Medical Transformer
(Valanarasu et al., 2021) approach.

Authors of Medical Transformer claim that for small-scale datasets tasks, which
is often the case in medical image segmentation, the positional bias is difficult to
learn and hence will not always be accurate in encoding long-range interactions. In
the case where the learned relative positional encodings are not accurate enough,
adding them to the respective key, query and value tensor would result in reduced
performance. So they proposed a modified axial-attention block that can control the
influence positional bias can exert in the encoding of non-local context. With the pro-
posed modification the self attention mechanism applied on the width axis creates
gating mechanism which control influence of the learned relative positional encod-
ings have on encoding non-local context. Typically, if a relative positional encoding
is learned accurately, the gating mechanism will assign it high weight compared to
the ones which are not learned accurately. (Valanarasu et al., 2021)

As in our task we also usually work with typically small-scale images, our model’s
performance might be also not that good. So we replaced CaraNet axial attention
layers with Gated Axial Attention layers taken from Medical Transformer approach.
This modification required fixed image size during the training, so we fixed in code
size_rates = [1] and tested image_size values 320 and 384, which are closest to initial
350 (experiments 11-12).

We also tried architecture with several sequential blocks (experiment 13) and
added extra Gated Attention layer to global features from Res2Net (experiment 14).
The last experiment gave the best result among all experiments with adding gated
axial attention to CaraNet architecture, and even very slightly improved results com-
pared to original, but this improvement can’t be called notable (Table 5.6).

The possible reason of that can be lack of LoGo (Local branch+ Global branch)
training, proposed in Medical Transformer approach. We haven’t added it to out



26 Chapter 5. Experiments

TABLE 5.6: CaraNet experiments with Gated Axial Attention

№ Experiment Dataset Dice Precision Recall FPR
11 CaraNet

with
Gated
Attention
(320)

HyperKvasir 0.8707 0.8898 0.8873 0.0178

12 CaraNet
with
Gated
Attention
(384)

HyperKvasir 0.8585 0.8600 0.8979 0.0258

13 CaraNet
with
Gated
Atten-
tion Se-
quential
Blocks
(320)

HyperKvasir 0.8663 0.8596 0.9081 0.0272

14 CaraNet
with
Gated
Atten-
tion Se-
quential
Blocks
(320) on
global
features

HyperKvasir 0.8784 0.8847 0.9073 0.0228

CaraNet training. CaraNet doesn’t use patches during training, and parallel branch
with patches and gated axial attention could make an effect on model’s performance.

TABLE 5.7: CaraNet architecture experiments on all datasets

№ Experiment Dataset Dice Precision Recall FPR
15 CaraNet

PD input
All 0.9086 0.9238 0.9150 0.0080

16 CaraNet
with Gated
Attention
Sequential
Blocks
(320) on
global
features

All 0.8973 0.8981 0.9179 0.0142

We also run two best experiments - with partial decoder input and the last one
with gated axial attention - on all datasets. Results prove stability of this approach,
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but no significant improvement compared to original CaraNet architecture was achieved.
Metrics can be seen in Table 5.7.

The best and the worst (using Dice metric) segmentation results of experiments
15 and 16 can be seen in Figures 5.3, 5.4, 5.5, 5.6.

FIGURE 5.3: The best segmentation results (PD input)

FIGURE 5.4: The worst segmentation results (PD input)
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FIGURE 5.5: The best segmentation results (gated axial attention)

FIGURE 5.6: The worst segmentation results (gated axial attention)
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5.4 EndoCV2022 challenge experiments

For this challenge we decided to choose MaskFormer (Cheng et al., 2021b) as the
primary model for our approach.

Since we used MaskFormer for binary segmentation, most ground truth classes
for each query will be zero, and the cross-entropy loss will rapidly converge to zero.
Therefore we changed cross-entropy loss to focal loss to mitigate class imbalance in
the classification.

Whereas the challenge dataset is rather small compared to large datasets as ADE20k
and COCO-Stuff-10k model was designed for originally, some model hyperparam-
eters were changed to increase the performance and generalizability of our model.
Among other, we decreased the number of queries from 100 to 50, FC layers dimen-
sionality from 2048 to 24, and pixel- from 256 to 64. We used a standard convolution
ResNet backbone (R50 with 50 layers) instead of SWIN. Normalization coefficients
were also recalculated for the PolypGen dataset.

We compared this approach against default CaraNet model settings (Lou et al.,
2022, Lou and Loew, 2021). On this challenge training data (validation set), pro-
posed MaskFormer solution has shown better performance. Despite this, in the sec-
ond test round (test II) MaskFormer approach has shown significantly worse perfor-
mance. According to leaderboard and workshop rules, participants are not allowed
to visualise test samples, so during the challenge we were not able to visually ana-
lyze why results on data from this test set worsened so much. Metrics can be found
in Table 5.8.

Examples of generated segmentation masks are shown on Figure 5.7.
We also experimented with boundary loss, which showed promising results in

other medical imaging tasks, but didn’t work well in our case. Detailed discussion
on this and other experiments conducted, and impact of TTA (test time augmenta-
tion) and CCA (connected-component analysis) during postprocessing can be found
in our paper for this challenge (Kokshaikyna, Yelisieiev, and Dobko, 2022).

We assume that including sequence information as an input to MaskFormer
(Cheng et al., 2021b) can potentially improve the results. One of the options to
do this is to use a Mask2Former (Cheng et al., 2021a) model, which was created
for video segmentation and inspired by MaskFormer. Mask2Former is based on
Masked-attention Mask Transformer for universal image and video segmentation.
It is possible to incorporate their idea in combining the images from the same se-
quence into a single input with additional dimension responsible for time frames.

Method Data Dice Dice std FNR
CaraNet val 0.37516 0.31954 0.71444
MaskFormer val 0.73587 0.30823 0.28758
MaskFormer test II 0.5497 0.4319 0.556

TABLE 5.8: MaskFormer model’s results on PolypGen2.0 subchal-
lenge
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FIGURE 5.7: Examples of MaskFormer model segmentation masks on
PolypGen2.0 dataset
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Chapter 6

Conclusions and discussion

Conclusions on results
In this master thesis, we made an overview of the existing state-of-the-art ap-

proaches on polyps detection and segmentation, selected one of them as a baseline,
and explored its robustness on public and custom data.

Unfortunately, we were not able to achieve adequate results on custom data. The
most probable reason for that is the difference between public datasets and real-
world data. We can state that current model is not robust to all data - to varying
degrees, it underperforms for ETIS-LaribPolypDB, second part of the test data from
EndoCV 2020 challenge, and our custom dataset.

We also tried a few modifications of the model architecture. These modifications
helped to improve the model’s performance slightly but did not bring tremendous
improvement.

Achieved results with metrics and visualizations provided in the work.

Further work
Further work on this research may include work closer with custom data, abla-

tion study on the influence of augmentations, investigating difference between pub-
lic data and real world data, collecting more images and annotating.

We also recently got access to PICCOLO dataset1, which we haven’t tried to use
in training and testing process yet.

Architecture modifications may include experiments with encoder features (i.e.
trying different encoders), combing CaraNet and TransFuse approaches.

One more important thing, which we didn’t mention previously, is model ex-
plainability, which is important for healthcare domain.

And after achieving desired performance, we would like to target real-time seg-
mentation from endoscopy video frames.

1https://www.biobancovasco.org/en/Sample-and-data-e-catalog/Databases/PD178-PICCOLO-
EN.html
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