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Abstract

Ambulatory EEG is a widespread test used in hospitals for the neurological evalu-
ation of patients. EEG waveforms are typically reviewed by a trained neurologist
to classify EEG into clinical categories. Methodologically, there is a need to clas-
sify EEG recordings automatically. Ideally, the classification models should be inter-
pretable, able to deal with EEG of varying durations, and robust to various artifacts.
We aimed to test and validate a framework for EEG classification, which satisfies
such requirements by symbolizing EEG signals and adapting a method previously
proposed in natural language processing (NLP). We considered an extensive sample
of routine clinical EEG (n=5’850), with a wide range of ages between 0 and 100 years
old. We symbolized the multi-variate EEG times series and applied a byte-pair en-
coding (BPE) algorithm to extract a dictionary of the most frequent patterns (tokens)
reflecting the variability of EEG waveforms. To demonstrate the performance of
such an approach, we used newly-reconstructed EEG features to predict the biolog-
ical age of patients with Random Forest. We also correlated the relative frequencies
of tokens with age. We found that the age prediction model achieved the mean ab-
solute error of 15.9 in years. The correlation between actual and predicted age was
0.56. The most significant correlations between the frequencies of tokens and age
were observed at frontal and occipital EEG channels. Our findings demonstrate the
feasibility of an approach based on applying NLP methods to time series classifica-
tion. Notably, the proposed algorithms could be instrumental in classifying clinical
EEG with minimal preprocessing and sensitivity to the appearance of short events,
such as epileptic spikes.
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Chapter 1

Introduction

1.1 Background

EEG is a record of the electrical activity of a human brain, measured as the time-
varying electrical potential difference between pairs of electrodes on the scalp. In
clinical practice, EEG is used as an objective test of brain function. EEG is widely
available, relatively cheap, and captured in a standardized fashion making it widely
available in hospitals worldwide. A typical EEG is acquired either for a short (20-
30 min) period (routine EEG) or more extended periods (many hours to days) in
in-patients or ambulatory patients at home.

We can highlight two major trends causing increased interest in the neuroimaging
and, specifically, electroencephalography:

• Increasing population and life expectancy lead to rising of neurodegenerative
diseases that were not so widespread in the last century, such as cognitive de-
cline and dementia. These disorders appear more often with aging. That’s
why the healthcare system needs to understand how brain aging process af-
fects neurodegenerative diseases, and how to effectively monitor and prevent
them at early stages, since mental health is one of the main factor of maintain-
ing a high quality of life during aging (Puvill et al., 2016)

• Aging does not affect people uniformly (Cole et al., 2018). Different aspects
of the environment and individual genetics cause different aging speeds. Thus
we need individual markers, which might help to identify subject-specific health
characteristics, as well as a potential risk of neurodegenerative diseases.

Individual “biological age” can be viewed as a result of factors combination, such as
genes, environment, lifestyle, health, and lifetime. Shifting focus towards “biologi-
cal age” from “chronological age” allows developing more personalized treatment.
There is a set of measurements used to assess personal biological age, such as DNA
methylation status, accumulation of genetic damage, telomere length, and allostatic
load, etc. (Franke and Gaser, 2019). However, since we focus more on cognitive
health, there should be a marker closer to the brain function, that will allow quanti-
fying the brain degenerative process.

Here is where “brain age” comes from. The concept of Brain age (BA) is based on
the idea that a 50-year-old can “have the heart of a 20-year-old” or that the lungs
of a 30-year old smoker “work like they’re 80”. There are various neuroimaging
technics used to estimate individual BA, that we will cover later. The main idea
is the following: comparing the brain age (that shows actual neurophysiological
health) to the chronological age can show, how bad or good things are. This marker
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on its own is a strong predictor not only for neurodegenerative dis-eases, but also
physical disabilities, typical for aging people, and even mortality (Cole et al., 2018).

1.2 Motivation

Estimation of brain functions with neuroimaging tools is already broadly used and
has a great potential for early detection and prevention of neurogenerative diseases.
While most of the brain aging research has been done based on MRI scans datasets
(Franke and Gaser, 2019), EEG has also recently appeared in the brain aging esti-
mation field. For decades before, several studies have demonstrated that features
like EEG rhythmic activity (e.g., delta, theta, alpha, beta, and gamma) change as a
function of age (Al Zoubi et al., 2018). The cost of such systems might be the most
important factor nowadays: EEG toolkit price starts at around $500, and MRI ma-
chines prices are ranging from $200k to $1M. Doing fieldwork with MRI / fMRI also
is not going to happen, as there is no way to make such a machine truly portable.
Therefore, for quicker, affordable, and accessible insights into brain function, with a
tight temporal resolution, EEG is the method of choice.

Methodologically, there is a need to classify EEG recordings automatically. Ideally,
the classification models should deal with EEG of varying durations, and robust to
various artifacts. The algorithm also should be interpretable. Here we define inter-
pretability as ability to perform revertible transformation, so we can trace extracted
features back to original signal. In this way, the algorithm would be able to sup-
port analysis process performed by human physicians, who explore EEG recording
visually and looking for local abnormalities.

One of the standing challenges in EEG classification is how to formulate input for
machine learning models. At the same time, Natural Language Processing (NLP)
field has various techniques for feature extraction from unstructured data, i.e. text.
Usually it boils down to breaking text into repeating parts, like characters or words,
part of words, or group of words, and counting their appearances in the dataset.
One of the techniques is Byte Pair Encoding (BPE) algorithm: it finds parts of words
– so called tokens – frequently occurred in the text (Gage, 1994).

The goal of this work is to employ BPE algorithm for clinical EEG classifica-
tion. We aim to test the feasibility of this approach on age prediction task. Later
the method can be transferred to other EEG classification tasks, such as finding
epileptic spikes or other abnormalities.

1.3 Thesis structure

In the section ’Related Work’ we cover the basics of existing neuroimaging tech-
niques and focus especially on EEG. We review existing approaches to work with
EEG data and its applications. We identify the current SOTA and research gap.

In the ’Approach to solution’ we describe our pipeline of EEG transformation, fea-
ture extraction and age prediction. Here we also define evaluation metrics.

In ’Result’ and ’Discussion’ we present our main findings, describe the progress in
the course of experiments, the final model score, and compare it to existing bench-
marks.



3

Chapter 2

Related Work

Brain estimated age is just a part of the question. It mainly serves to calculate the
difference between predicted age (PA) and chronological age (CA):

Di f f erence = PA − CA

The terminology of this difference varies from one source to another. You can also
encounter such terms as “brain predicted age difference” or brain-PAD (Cole et al.,
2018), “brain age delta” (Smith et al., 2019), “brain age index” (BAI) (Hogan et al.,
2021), such acronym as BrainAGE (brain age gap estimate) (Al Zoubi et al., 2018),
or just “brain age gap” (Butler et al., 2020), etc. Let us refer to this term as ‘delta’
later in the text. Despite the diversity in naming, all these works define the delta
as a difference between estimated brain age and actual, chronological age (simple
subtraction). The positive delta points out to accelerated brain aging, negative one
means resilience.

While mostly agreeing on this point, these sources focus more on various stages
of brain age and delta analysis. Based on reviewed sources we can highlight the
following questions/topics:

• What tools are used to collect raw data describing the physiology and pro-
cesses of the brain?

• What measurement approaches applied to capture brain activity?

• How to decode raw neuroimaging data to extract meaningful features?

• What machine learning models are used to predict the age based on neu-
roimaging data

• How to estimate performace and what is the current State-of-the-Art for such
predictions?

2.1 Neuroimaging techniques

EEG (electroencephalography) measures the electrical activity of our brain via elec-
trodes that are placed on the scalp. It tells us, from the surface measurements, how
active the brain is. This can be useful for quickly determining how brain activity
can change in response to stimuli, and can also be useful for measuring abnormal
activity, such as with epilepsy. (Noachtar and Rémi, 2009)
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FIGURE 2.1: Sketch of recording an EEG, capturing electrical activity
on the scalp using electrodes fixated on an EEG-cap (Nagel, 2019)

The brain is an electrical system – and this electricity is generated through a network
of neurons, that send signals to each other with the help of electrical currents. The
more electrical signals, the more neuronal communication, which corresponds to
more brain activity. The electrodes of an EEG headset can’t detect changes in single
neurons, but instead detect the electrical changes of thousands of neurons signalling
at the same time. A computer then receives this signal 2.1, and can generate various
maps of brain activity, with a rapid temporal resolution. (Farnsworth, 2019)

MRI (magnetic resonance imaging) provides a map of the brain – how it looks at
a set moment in time 2.2. This structural information can be useful for determining
how the sizes of certain brain areas compare across people, or if there is something
abnormal about a particular brain (a tumor for example). (Hennig et al., 2003)

As the name suggests, magnets are central to magnetic resonance imaging. The
magnetic field from the MRI interacts with the protons in our hydrogen atoms (Mills
et al., 2017). Happily, we are 70% water.

Usually, these protons are facing in random directions, but the magnetic field makes
most of them align in the same direction. For the next step, a radio pulse is emit-
ted. This also interacts with the protons, essentially turning them to the side. But,
as the radio frequency only happens for a moment, the protons relax back to their
aligned state before. As the protons relax, energy is released which can be detected
by sensors in the MRI machine. (Farnsworth, 2019)

Through some calculations (Jung and Weigel, 2013) the computer can determine
what the tissue looked like, depending on this energy that is released, and show us
an image of the tissue. MRI only shows us a static image of the brain – an anatomical
image, not of the brain’s actual activity.

For fMRI (functional magnetic resonance imaging) the same things happen as with
MRI – the energy emitted from the relaxation of protons is measured – but the cal-
culations are instead aimed at determining how the amount of oxygenated blood
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FIGURE 2.2: MRI images of a brain in all three planes: axial, sagittal
and coronal (Cole et al., 2018)

FIGURE 2.3: fMRI output sample, image credit: American Health
imaging

flow changes 2.3 (Farnsworth, 2019). If there is more oxygenated blood in one part
of the brain compared to others, then chances are that this brain area is more active
(Hillman, 2014). This is known as the Blood-Oxygenation Level Dependent response
(BOLD).

In comparison with simple MRI, fMRI gives us an image of brain activity. However,
a weak point of fMRI is the temporal resolution. As it takes several seconds for the
blood flow to change, and the actual recording is limited by computational factors,
the data collection is slowed down. (Hennig et al., 2003)

2.2 Measurement approach

EEG recording is sensitive to the environment, since brain electroactivity quickly
reacts to external stimuli, such as sound or light. Some authors rely on EEG data
recorded in a short period of time, lasting 8 min. The participants were instructed
to relax and keep their eyes open and fixate on a cross.(Al Zoubi et al., 2018). Also,
there are attempts to collect data both with open and closed eyes and compare them
to each other. Thus open-eyed EEG data allowed researchers to estimate brain age
that better correlate with actual age. (Dimitriadis and Salis, 2017)
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Other researchers rely on EEG recording taken during night sleep. Human sleep un-
dergoes predictable changes with age, reflected in both overall sleep architecture and
EEG oscillations/waveforms. At the level of EEG microstructure, older participants
exhibit reduced slow waves during deep sleep; decreased sleep spindle amplitude,
density, and duration; and less phase coupling between slow oscillations and sleep
spindles (Sun et al., 2019).

Also, there is a discussion about how reliable are single time measurements for an
accurate brain age estimation. The research group (Hogan et al., 2021) showed that
subsequent measurements of night-sleep EEG reduce variance and error of brain age
estimation. The estimated within-patient night-to-night standard deviation in BAI
(‘brain age index’ = delta) was 7.5 years. Estimates of BAI derived by averaging over
2, 3, and 4 nights, had lower estimated standard deviations of 4.7, 3.7, and 3.0 years,
respectively.

2.3 Preprocessing methods

EEG data is inherently noisy because EEG electrodes also pick up unwanted elec-
trical physiological signals, such as the electromyogram (EMG) from eye blinks and
muscles on the neck. There are also concerns about the motion artifacts occurring
from cable movement and electrode displacement when the subject moves. Accord-
ing to the review (Craik, He, and Contreras-Vidal, 2019) of works related to solve
EEG classification tasks, researchers have applied following approaches to prepro-
cess data:

• 41% of studies did not address any specific artifact removal process,

• 29% - manual artifacts removal,

• 8% - automatic removal,

• 22% - no cleaning/removal, intentionally.

More than a quarter of the studies (26 of 90 studies) removed artifacts manually. It is
indeed easy to visually identify abrupt outliers, for example when signals are lost or
when intense EMG artifacts are present. However, it is difficult to identify persistent
noisy channels; manual data processing is highly subjective, rendering it difficult for
other researchers to reproduce the procedures. Together with the 22% of studies that
did not take any actions to remove artifacts, 63% of the studies reviewed did not
systematically remove EEG artifacts. The most frequent artifact removal algorithms
used in the remaining 8% of the studies reviewed were independent component
analysis (ICA) and discrete wavelet transformation (DWT)

2.4 Feature extraction

Feature extraction is a quintessential phase in any EEG analysis that depends on
finding common features representation among EEG samples. (Teplan et al., 2002).
Therefore, one of the standing challenges in EEG data analysis is how to formulate
inputs. According to the review (Craik, He, and Contreras-Vidal, 2019), studies fell
into three types of input formulation categories: calculated features (41%), images
(20%), and the signal values (39%). The selection of input formulation relied heavily
on the task and model architecture.
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Calculated features. EEG data is commonly analyzed in frequency domain because
they are often found to be associated with behavioral patterns. Power spectral den-
sity (PSD), wavelet decomposition, and statistical measures of the signal (i.e. mean,
standard deviation) are the three most common input formulations used in the re-
viewed studies. Therefore, the approach is to handcraft a set of meaningful features
from EEG data 2.1 (Toole and Boylan, 2017).

TABLE 2.1: Set of features extracted from EEG data

Amplitude
Total power, mean, standard deviation, skewness, kurtosis,
envelope mean, and standard deviation

Peak-to-peak
Mean, median, 5th and 95th percentiles, standard deviation,
the coefficient of variation and the measure of symmetry

Spectral power

Spectral power and relative power, spectral entropy (using
Wiener and Shannon methods), spectral edge frequency
(the cut-off frequency at which encompasses 95% of spectral
power) and spectral differences between consecutive
short-time spectral estimations

Connectivity
Brain symmetry index, correlation, mean and maximum of
frequency at which the maximum coherence is achieved

Fractal dimension Fractal dimension

Images input. Neural networks, especially CNN’s, use spectrograms generated
from the EEG data as inputs. Spectrograms are traditionally used as a postprocess-
ing tool to visualize the data. However, CNN’s ability to learn images has enabled
spectrograms to be used as an input to the model. Other image formulations include
creating Fourier feature maps and designing 2D or 3D grids.

Signal values. Traditionally, this approach is usually associated with particular
hand-engineered time domain features, such as the power spectral density features.
Neural networks promise to automatically learn complicated features from large
amounts of data, prompting the idea of end-to-end learning. Feeding raw signal
values directly into the neural network without hand-designed features may con-
tribute to the practice of directly analyzing raw EEG data with deep learning. Also,
it might be some statistical methods and PCA (Dimitriadis and Salis, 2017), others
employ convolutional neural nets (CNN) to reduce the dimensionality and turn sig-
nal into features (Schirrmeister et al., 2017). Anyway, with this approach, we lose the
interpretability of the data and results, what exactly has caused higher or lower brain
age. In some cases, we can at least reconstruct it on the channel level, and see which
area of the brain and scalp provides more information and explained variance.

2.5 ML algorithms for age prediction

Choosing the appropriate algorithm heavily depends on the feature extraction ap-
proach, that we have discussed in the previous subsection. In case when researchers
use handcrafted features, they are free to use any classical ML algorithm that works
well with tabular data: Elastic Net, Support Vector Regression, Random Forest, ex-
treme gradient boosting tree, and Gaussian Process with Polynomial Kernel. They
trained on a set of healthy individuals, so the model will capture the patterns of
healthy brains aging. Then a stacked in ensemble to make a prediction on the test set
(Al Zoubi et al., 2018). Deep neural networks and convolutional networks are used
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TABLE 2.2: A summary of related work for predicting age from brain
imaging data

Work Data No. of Samples Performance
(Franke et al., 2010) MRI 650 r = 0.92, MAE = 5 years
(Cole et al., 2018) MRI 2,001 r = 0.96, MAE = 4.16 years
(AL, 2010) fMRI 238 R2 = 0.55
(Qin et al., 2015) fMRI 183 MAE = 4.6 years
(Valizadeh et al., 2017) MRI 3,144 R2 = 0.77

(Dimitriadis and Salis, 2017) EEG 94
R2 = 0.6 for eyes open
R2 = 0.48 for eyes closed

(Liem et al., 2017) fMRI + MRI 2,354 MAE = 4.29 years

(Al Zoubi et al., 2018) EEG 468
R2 = 0.37, MAE = 6.87 years,
RMSE = 8.46 years

(Sun et al., 2019) EEG of sleep 4,506 r = 0.83, MAE = 7.6 years

(Hogan et al., 2021)
subsequent
EEG of sleep

86
Standard deviation
for 2 nights = 4.7 years,
4 nights = 3 years

when researchers want to extract insights directly from neuroimaging data. The
training task might be not only to extract patient brain age (Al Zoubi et al., 2018),
but also sex (Van Putten, Olbrich, and Arns, 2018) and understand body movements
(Schirrmeister et al., 2017).

2.6 State-of-the-art

It is hard to define any State-of-the-art solution, since there are different datasets and
no single well-defined task, on which we can compare different approaches (as it is
in machine translation or image recognition). As an evaluation metric most of the
research use:

• R2 - coefficient of determination, or r - correlation coefficient between actual
subject age and estimated brain age;

• mean absolute error (MAE) or residual mean squared error (RMSE) as a differ-
ence between estimated brain age and actual age.

However, even if both research use R2, it does not mean they are simply comparable.
For example, (Dimitriadis and Salis, 2017) report achieved R2= 0.6, while (Al Zoubi
et al., 2018) get R2= 0.4. However, they explicitly stated that results are not compa-
rable since they define R2 in a different way. We can understand the current SOTA
by looking at the performance of various approaches and datasets 2.2.

As we may conclude from the table above, MRI-based methods overall perform bet-
ter than EEG based. However, EEG researchers are getting better results last years,
employing various approaches to measurements and analysis (EEG of sleep, subse-
quent EEG of sleep measurements).



9

Chapter 3

Approach to solution

3.1 Problem setting

We see the main research gap in the question: how to effectively feed EEG signal
into machine learning algorithms? This includes selecting proper preprocessing
steps and feature extraction pipeline. Currently, choosing feature extraction method
heavily depends on the applications, and turns out to be a compromise between
interpretation and performance.

To summarize, the main drawbacks of the current approaches are the following:

In preprocessing:

• manual EEG cleaning is time-consuming and requires high-paid qualified em-
ployees and routine work. It is also subjective and thus impossible to repro-
duce by other researchers;

• on the other hand, leaving artifacts as-is, without cleaning, may cause prob-
lems for feature extraction methods such as calculated features, that utilize
statistical measures of the signal.

In feature extraction:

• calculated features are not fully interpretable and noise-sensitive;

• images also require defining many hyperparameters in advance, such as length
of the frame and numbers of frames in the sequence of CNN input; same as the
previous method, it also relies on existing domain knowledge, which may pre-
vent us from finding new insights/patterns in the raw data;

• raw signal values are currently used mostly as input to deep neural networks;
same as with CNN for images, their activation maps are hardly interpretable.

Thus, we will focus our later work on finding an approach for preprocessing and
feature extraction, which allows us to overcome most of these gaps, thus has the
following characteristics:

1. robust to artifacts, noise and requires minimal automatic preprocessing/cleaning;

2. extract features from signal values and discovers patterns of various lengths;

3. produce interpretable results, so it will be possible to trace what exactly in raw
data has influenced a prediction.
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FIGURE 3.1: Electrode locations of International 10-20 system for EEG
recording. Schematic top view of a scalp. Credits: Wikipedia

3.2 Dataset description

We analyzed routine clinical EEG recorded and evaluated in the process neurolog-
ical assessment of patients in a public hospital in the Greater Vancouver area. The
data is clinical, so it was not captured specifically for the experiment. The original
sample included virtually all EEG scans (n=7048) recorded between 2012 and 2018
in the same EEG Unit, with several EEG stations, in general, by different EEG tech-
nicians.The hardware and firmware were identical across all the EEG stations, each
equipped with a Natus Xltek EEG32U EEG amplifier (Natus, n.d.). The EEG mon-
tage was uniform as well: 10/20 system positioning, 22 EEG electrodes, two elec-
trooculographic (EOG), and two electrocardiographic (ECG) electrodes 3.1. We take
into account only signals from 20 channels - electrodes placed directly on a scalp.
The location of the reference and ground electrodes was unknown. Each sample is
10-20 minutes of recorded EEG of a human brain, sampled with a frequency rate of
500 Hz or 512 Hz.

The data is a mix of inpatients and outpatients recordings. Inpatients are those who
stay in a hospital for a long time, probably with serious pathology; outpatients who
have an appointment in a hospital or clinic but do not need to stay overnight. Also,
the data is a mix of male and female patients. We don’t take into account conditions
that patients have or the reason why they do EEG scans. We know the age of a
patient for each sample. The age has a close to normal distribution from 0 to 100
years 3.2.

EEG data were converted from the Natus proprietary format into the EDF format
with Natus Neurworks EEG software. If EEG recording in an original EEG study
were turned off and then turned off again, potentially several times, the recorded
EEG segments were linked with zeros in the EDF file. EEGs were deidentified with
the PyEDFlib Python toolbox (Nahrstaedt, 2015-2022).
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FIGURE 3.2: Distribution of EEG samples number across ages in the
dataset

Before applying the pipeline described later, we have applied the following cleaning.
We resample each recording’s signal to 500 Hz frequency, since some recordings
might have different sampling frequencies. Also the recordings contain intervals
with no signal. It is th results of turned off equipment or disconnected electrode. So
we have to remove these flat intervals without a signal (with zero signal).

We have also applied frequency filtering that keeps only signal with frequencies
between 1 and 55 Hz, to exclude unwanted noise such as electricity grid frequency
(it is 60 Hz in Canada) or sudden patients‘ moves, which have frequencies up to
1 Hz. In this way the signal still include major brain waves - from delta waves
(0.5-4 Hz) to gamma (>35 Hz) (Abhang, Gawali, and Mehrotra, 2016). Also applied
detrending to remove linear trend along time axis from data.

We have also removed intervals of special procedures performed on patients dur-
ing recordings, such as hyperventilation (deep breathing) and photic stimulation
(flashing light). Physicians apply these tests to patients in order to detect abnormal
activity of a brain for epilepsy diagnosis. Since these procedures burst abnormal
activity, and weren’t performed for all subjects, we exclude them from the analysis.
Finally we acquired 10 minutes clean intervals from each EEG, without flat intervals,
hyperventilation and photic stimulation. Those recording that do not have a clean
intervals of needed length were not included into final dataset. After this cleaning
the new sample size is n=5850

3.3 Method

To identify variable length patterns in time series, we use the Byte Pair Encoding
(BPE) compression technique (Gage, 1994). BPE has been around for a long time,
however, since it was used in (Sennrich, Haddow, and Birch, 2015) it received much
more recognition. BPE is a compression technique in which the most common pair of
consecutive symbols is replaced by a new symbol. In (Sennrich, Haddow, and Birch,
2015) it was used to address the rare word problem in neural machine translation by
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FIGURE 3.3: A slice of raw EEG signal, one of 20 channels, original
length = 200,000 data points

subword tokenization. Traditionally in NLP, lemmatized or stemmed words were
considered tokens in text. With subword tokenization, now characters are consid-
ered as tokens and with each iteration, a pair of tokens that most frequently occurred
together are merged together to build a new token. In this way, compound words
like “authorship“ could be understood by the model without having observed it
beforehand and by breaking it into subwords “author-“ and “-ship“.

In the work (Tavabi and Lerman, 2021) authors have recently introduced the appli-
cation of this approach to time series analysis. They have employed BPE to classify
time series data of heart rate and step count from wearable devices to predict sub-
jects’ personality traits, which is close to our task of predicting patients’ age based
on EEG data. Thus, we reproduce their transformation approach in order to: (1)
convert signal value time series into symbolic (character) series, (2) tokenize string,
(3) use tokenized data to train a simple machine learning model for patients’ age
prediction.

3.3.1 Piecewise Aggregate Approximation (PAA)

PAA reduces the dimension of the input time series 3.3 by splitting them into seg-
ments of a given length (window size) and averaging the signal values in these seg-
ments (Keogh et al., 2001). As the result, it reduces input length and at the same time
preserves patterns. Taking into account frequency sampling of 500 Hz, we want to
keep the signal from gamma brain waves, which correspond to frequencies up to 50
Hz. Thus we use a window size of length 10 to average the signal 3.4.

3.3.2 Discretization / symbolization

We define outliers as data points outside +- 1.5 Inter Quartile Range (IQR). After
setting the outliers aside, values are binned (discretized) by equal-width bins. In the
original work (Tavabi and Lerman, 2021), both outlier detection and the binning are
based on the entire dataset, as opposed to each time series independently. Defining
outliers and binning the values based on the entire data helps better capture the
differences between series. However, due to the nature of our data and the high
variance of signal value across samples, we define outliers for each channel within
each sample (EEG record). Each discrete bin is assigned a symbol (character), which
we use to identify patterns.
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FIGURE 3.4: Same data as in 3.3 after PAA transformation with win-
dow size=10, resulted length = 20,000 data points

FIGURE 3.5: Slice of PAA transformed signal, with outliers bound-
aries (dashed)

FIGURE 3.6: Same data 3.5 ‘zoomed in’ between outlier boundaries,
with dotted lines indicating discretization bins.
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FIGURE 3.7: Example of BPE on discretized time series: The first line
shows the original discretized series. In each iteration, the most com-

mon pair is identified and joined in a new token.

The output of such discretization is a string of characters, each representing a bin
that the signal value belongs: ijjijiiijkllllllhfgilligjfefhighilljjlihhjjijjjklllllljhjheffgihlji...

3.3.3 Patterns identification

Here we applied BPE algorithm, illustrated in Figure 4. Another difference from
the original paper, here we apply the existing Hugging Face implementation of BPE
algorithm (HuggingFace, 2021). BPE creates a base vocabulary consisting of all sym-
bols that occur in the set of unique words and learns merge rules to form a new
symbol from two symbols of the base vocabulary 3.7. It does so until the vocabulary
has attained the desired vocabulary size. We train tokenizer on the whole corpus of
symbolic series that we have in the dataset.

3.3.4 Tokens to features

Then we tokenize each treat each token as a ‘word’ and count the number appear-
ances of them for each sample, similar to the bag-of-words approach, divided by the
length of sample, weighted by the length of the token. Thus we get the frequency of
each token appearance in the sample.

Token Frequency, % =
No. of appearances × No. of the symbols in the token

Total number of symbols in the sample
× 100

We have applied tokenizer separately to each channel, occurence frequency also cal-
culated for tokens per channel 3.8. Thus resulted dimensionality is approximately
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FIGURE 3.8: Scheme of preprocessed and tokenized dataset later used
for age prediction

FIGURE 3.9: Example of treating symbolic tokens with an absolute or
relative position

equal to VS multiplied by number of channels, where VS is vocabolary size of tok-
enizer. ‘Approximately’ is because some tokens might not appear across all samples
in a specific channel, so the channel lacks the corresponding token feature.

3.3.5 Relative tokens

Our goal is to identify patterns that carry some information relevant for, in our case,
the age prediction task. Thus we should take into account cases when two tokens
have the same shape but have different absolute positions. In order to handle these
cases, we transform tokens from absolute to relative form, calculating the distance
between symbols. Here is the example 3.9: for token ‘bdc’, the distance between ‘b’
and ‘d’ is 2 bins up, and between ‘d’ and ‘c’ is 1 bin down. Thus the token now
having the form [+2, -1]. Same with the token ‘dfe’. In this way instead of having
two different tokens/features - we have only one.

Later we used preprocessed data both with absolute and relative tokens for age pre-
diction in order to compare performance.

3.3.6 Train model for age prediction

Since the work is focuses more on feature extraction stage for EEG classification, we
pick the simplest model that can capture non-linear relations. Here we apply the
Random Forest Regressor model, where features are frequencies of tokens/patterns
appearances, and the target label is patients’ age. The dataset was split into train
and test subsets (80% train and 20% test) with a constant random seed. We use cuML
RAPIDS implementation of the Random Forest model (RAPIDS, n.d.) to utilize high-
performing training on GPU (Tesla T4 16GB).
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3.3.7 Hyperparameters tuning

The whole pipeline has the following hyperparameters:

• WS - window size for PAA transformation, 10 < WS < 200

• NB - number of bins (characters) for symbolization, 10 < NB < 20

• MF - minimal frequency of the token appearance in the corpus, required for
tokenizer to include the token into the vocabulary. We manually fit MF to
obtain a reasonable vocabulary size of 1500 tokens per channel.

• NE - number of estimators for Random Forest Regressor age prediction, 100 <
NE < 2000

• MD - max depth of each tree for Random Forest Regressor age prediction, 8 <
MD < 32

3.3.8 Evaluation

We evaluate the performance of the age prediction model with the following metrics:

• Mean Absolute Error (MAE) between actual and predicted subject’s age in
years. Our goal is to minimize it.

• Pearson correlation coefficient and distance correlation coefficient. Distance
correlation also takes into account non-linear relations in the data (Richards,
2017).

• Explained variance score which measures the proportion to which a model
accounts for the variation of a dataset.
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Chapter 4

Results

4.1 Age prediction

In a course of the project we have run multiple experiments. We were continuously
increasing the number of samples in the dataset and the level of detalization of our
symbolization pipeline. The issue with symbolization parameter tuning is that it’s
impossible to fix some hyper-parameters and change others. When we change win-
dow size of PAA transformation, we change the resolution and thus - the number of
tokens in the dataset. Changing the number of bins within the discretization step,
we change the number of unique symbols. This also affects the number of unique to-
kens in the tokenizer vocabulary. That is why we can not fix the minimal frequency
of tokenizer: changing any of the previous parameters completely change number
of tokens in our corpus and requires new value of minimal frequency, at least to
maintain the same vocabulary size. This fact makes hyper-parameter tuning more
complicated and required manual adjustments.

We have run first experiments employing only one of 20 channels (C3) form each
EEG recording. Then we switched to using all channels. Also due to high computing
time for Random Forest training on CPU’s, for later experiments we switched into
training the model on GPU with RAPIDS framework. The progress of improving
MAE score and experiment setup is described in the following table 4.1

TABLE 4.1: Experiments setup and corresponding MAE score in years

Ex # No of samples WS NB MF RF Model NE MD MAE
1 1237 (C3 only) 200 10 2 sklearn 100 default 21.3
2 2287 (C3 only) 200 10 10 sklearn 100 default 18.0
3 4380 (C3 only) 200 10 200 sklearn 100 default 17.6
4 4380 (C3 only) 200 20 100 sklearn 100 default 17.5
5 5850 (C3 only) 200 20 200 sklearn 100 default 17.7
6 5850 (C3 only) 200 20 200 sklearn 500 default 17.7
7 5850 (C3 only) 200 20 1000 sklearn 100 default 17.5
8 5850 (C3 only) 200 20 5000 sklearn 100 default 17.8
9 5850 (all chs.) 200 20 20000 sklearn 100 default 17.2

10 5850 (all chs.) 200 20 20000 RAPIDS 1000 16 16.9
11 5850 (all chs.) 50 20 80000 RAPIDS 1000 16 16.3
12 5850 (all chs.) 10 20 120000 RAPIDS 1000 16 15.9
13 5850 (all chs.) 10 20 120000 RAPIDS 1000 32 15.9

14
5850 (all chs.,
relative tokens)

10 20 120000 RAPIDS 1000 32 15.9
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The best performing model was trained on the tokens made of symbolic series ob-
tained by transforming signal with window size = 10 and number of bins = 20. Re-
sulting dataset has a size of 5850 samples with 32,000 features, representing the
appearance frequency of a specific token in a sample.

The model has following parameters n_estimators = 1000, max_depth = 16. Other
parameters were not included in tuning, since we were focused more on preprocess-
ing steps and applying BPE and accurate prediction of the age itself is outside of the
scope of this work.

The model has predicted subjects’ age with

• MAE = 15.9 years,

• Pearson correlation coefficient = 0.56,

• distance correlation coefficient = 0.54,

• and explained variance = 0.287

We also have transformed the dataset of token frequencies from absolute symbolic
tokens, of a form ‘acb’, to relative change tokens, of a form (+1. -1), and trained a
new model with the same parameters tuned 4.1. The new model hasn’t shown a
significant improvement in performance:

• MAE = 15.9 years,

• Pearson correlation coefficient = 0.54,

• distance correlation coefficient = 0.57,

• and explained variance = 0.294

However, this transformation has merged multiple instances of the same relative to-
kens so resulted dataset has 8,000 features instead of 32,000. This has significantly
improved the computational time required for the model training: 40 minutes ver-
sus 90 minutes.

4.2 Interpretability and traceability

The proposed method of preprocessing and feature extraction with BEP ensures full
interpretability. We know the exact positions of the token and can trace it in the orig-
inal EEG signal. Since our input signal has a frequency of 500 Hz and we averaged
it with window size 10 data points, the token of two symbols has a duration of just
0.04 seconds. The method allows finding the corresponding fragments for the most
influential tokens, that correlate the most with age 4.2

4.3 Tokens importance

Besides modeling for age prediction, we explore how token frequencies are chang-
ing with age. Here we also employed the distance correlation coefficient in order
to capture nonlinear dependencies, and calculate it for each token. Top correlated
tokens have distance correlation coefficient values from 0.25 to 0.28. We check how
frequencies of these most correlated token changes with age and find out clear non-
linear dependency. The results are similar for relative tokens as well 4.3
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FIGURE 4.1: Visualised relations between actual and predicted age on
the dataset with relative tokens. Each dot represents a sample from
the test subset, with a fitted linear regression line. For ideal model

predictions, the line should be a bisector.

During the analysis of tokens correlation, we observe that it varies across EEG chan-
nels. Tokens build based on the EEG signal from electrodes placed on frontal and
occipital areas of the scalp have a higher median and mean distance correlation with
age 4.4. It also preserves spatial symmetry between the left and right parts of the
scalp, which was not initially indicated in the dataset. Channel was marked only as
text label: ‘O2’, ‘Fpz’, etc.
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FIGURE 4.2: Highlighted parts of the raw signal that correspond to
the token ‘ae’ from channel O2 in different samples. Original EEG
signal in a light-gray and PAA-transformed (averaged) in black. Each
plot has a duration of 0.84 seconds, the token duration is 0.04 seconds.
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FIGURE 4.3: Relation of token appearance frequency in the sample
with age. There are two symbolic tokens ‘ae’ and ‘ea’ and two rela-
tive [+5, -2] and [+2, +1, 0] from EEG channel O2. The first subplot
shows a token frequency for each sample corresponding to age. The
second one is the same but visualized in a form of 2D Kernel Den-
sity Estimation: darker areas correspond to more dense observation
placement. The third subplot shows a mean token frequency grouped
for each year from 0 to 100. The mean frequency of some tokens de-

clines with age, while others - increase.
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FIGURE 4.4: Schematic top view of a subject’s head. Each cell repre-
sents a specific EEG channel - an area of the scalp where an electrode
sampling the signal. The labels indicate a name of EEG channel with
the median distance correlation of its tokens frequencies with sub-

jects’ age
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Chapter 5

Discussion

We have introduced an automatic method of preprocessing EEG signals with time-
series symbolization and feature extraction with tokenization based on the Byte-Pair
Encoding (BPE) algorithm. The algorithm can handle EEG recordings of arbitrary
length. It is also able to discover important task-related patterns of a variable dura-
tion starting from 0.05 seconds, with no need to define the intended pattern length
in advance.

The features constructed with our method enable us to capture the spatial depen-
dency between channels and the left-right symmetry of the brain. This observation
proves that the method is able to gain functional information about the brain which
allows for making reasonable inferences.

The accuracy of a subject’s age prediction measured with MAE is quite low com-
pared to other works in the field of age prediction based on EEG 5.1

TABLE 5.1: Comparison of performance with best EEG based age pre-
diction algorithms

Source Data of samples Performance
(Al Zoubi et al., 2018) EEG 468 MAE = 6.87 years
(Sun et al., 2019) EEG of sleep 4506 MAE = 7.6 years
our work clinical EEG 5850 MAE = 15.9 years

However, we should take into account that due to the nature of the dataset the results
are barely comparable. Our dataset contains clinical EEG recordings that were not
collected for research purposes. The recordings were taken over a long period of
time in different hospitals, by different technicians. We also do not differentiate
samples by outpatients and inpatients, some of them might have severe conditions.
We focus our later work on applying other approaches for EEG feature extraction to
the same dataset to have a benchmark for age prediction performance.

The feature extraction method we demonstrated can serve for EEG analysis applying
to other tasks outside age prediction. The algorithm can highlight specific regions
of interest in EEG depending on the task. This traceability of features to specific
fragments in EEG opens possibilities for using it in decision-support systems for
neurophysiologists who manually assess EEG recordings.
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