
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Object detection in automotive vehicle
domain based on real and synthetic data

Author:
Roman ILECHKO

Supervisor:
Viktor SDOBNIKOV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Roman ILECHKO, declare that this thesis titled, “Object detection in automotive
vehicle domain based on real and synthetic data” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Thanks to my solid academic training, today I can write hundreds of words on virtually any
topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Object detection in automotive vehicle domain based on real and synthetic data

by Roman ILECHKO

Abstract

In recent years, we have seen an incredible increase in deep learning. With increasing
interest, we also have an increasing number of bold and even revolutionary studies
that drive progress and boost models performance. Despite the fact that the number
of large and high-quality data-sets is growing rapidly, we could often observe that
models need even more data for many domains and tasks. Usually, additional data
is needed not only for giant models. Even though the domains like autonomous
vehicles, which mainly focus on lightweight models, require extra data. We should
state that sometimes data labeling is not a panacea. Especially for autonomous ve-
hicles, as the data provided must have a great variety and low error risk. The ad-
ditional synthetic could be an excellent booster for existing approaches or even a
must-have part of training data. For example, simulators give the ability to manage
the scene’s complexity by controlling the number of objects, their size, and their in-
teraction with the environment, which could be very helpful for such tasks as object
detection. Nowadays, the researcher should intuitively balance the ratio of natural
and generated data simultaneously, considering the possibility of gaps between the
two domains. Despite the fact that the mentioned task is not evident, constraints like
model size and count of classes could bring additional unclarity. In this paper, we
precisely analyze the impact of synthetic data on the training process, cover possible
training strategies, and provide guidance on defining the amount of artificial data
with existing constraints.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I want to thank my supervisor, Viktor Sdobnikov, for mentoring and supporting me
during my diploma project.
Additionally, I want to express my gratitude to Oleksii Molchanovskyi for diploma
meetings and regular support. Separate thanks to my good friend Roman Vei.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Related work 4
2.1 VGG . 5
2.2 MobilenetV1 . 5

2.2.1 Depthwise Separable Convolution 6
2.2.2 Width multiplier . 7
2.2.3 Resolution multiplier . 7

2.3 MobileNetV2 . 7
2.3.1 Inverted residual blocks . 8
2.3.2 Linear bottleneck . 8
2.3.3 ReLU6 . 8

2.4 SqueezeNet . 9
2.4.1 Fire module . 9
2.4.2 SqueezeNet modification . 10

2.5 SSD . 10
2.5.1 Grid cells . 10

2.6 YOLO . 11
2.7 Algorithms summary . 11

3 Datasets 12
3.1 Berkeley Deep Drive . 12
3.2 Kitti-CityScapes . 14
3.3 NuScenes . 15
3.4 Synscapes . 16
3.5 Playing for Benchmark . 17

4 Evaluation 19
4.1 IoU . 19
4.2 Precision and Recall . 19
4.3 AP . 20
4.4 mAP . 20

5 Experiments 21
5.0.1 Training details . 21

vi

6 Conclusions 24
6.0.1 Result Summary . 24
6.0.2 Future work . 24

Bibliography 25

vii

List of Figures

1.1 Example of different sensors output Dosovitskiy et al., 2017 simula-
tor. From left to right: monocular camera, depth camera, semantic
segmentation . 2

2.1 VGG architecture . 6
2.2 ReLU activation function. 8
2.3 ReLU6 activation function. 8
2.4 Fire module . 9
2.5 SqueezeNet mmodification from left to right: default SqueezeNet,

SqueezeNet with simple bypass, SqueezeNet with complex bypass . . 10

3.1 Images from BDD Yu et al., 2020 dataset 14
3.2 Images from Kitti-CityScapes Geiger, Lenz, and Urtasun, 2012 dataset 15
3.3 Images from NuScenes Caesar et al., 2019 dataset 16
3.4 Images from Synscapes Wrenninge and Unger, 2018b dataset 16
3.5 Images from Playing for Benchmark Richter, Hayder, and Koltun,

2017b dataset . 17

viii

List of Tables

3.1 The class distribution . 13
3.2 The groups and classes in dataset . 14

5.1 Training parameters . 22
5.2 Launched experiments 1 . 22
5.3 Launched experiments 2 . 22
5.4 Launched experiments 3 . 23
5.5 Launched experiments 4 . 23
5.6 Evaluation on data from another region 23

ix

List of Abbreviations

CARLA Car Learn to Act
RADAR Radio Detection And Ranging
LIDAR Light Detection And Ranging
CNN Convolution Neural Network
ML Machine Learning
AI Artificial Intelligence
IMU Inertial Measurement Units
IOU Intersection Over Union
AR Average Recall
AP Average Precision
mAP mean Average Precision
SOTA State of the Art

x

Dedicated to those who defend our freedom. . .

1

Chapter 1

Introduction

Over the last decade, artificial intelligence was deeply integrated into the route life.
The field of machine learning experienced exaltation and oblivion due to many rea-
sons. The domain of computer vision expected the same participation. One of the
most significant challenges during all periods which researchers met was the ques-
tion of feature extraction. Starting from the ’50s of the last century, researchers
worldwide have been working on an algorithm to present the images to the com-
puter system and teach them to understand as humans do. Two pioneers of AI
started the ambitious program - the Summer Vision project Papert, 1966. The main
goal of the two-month project was to develop a computer system that could recog-
nize the objects on the images. Such a simple task for the human recognition system
was an insurmountable task. Despite the fact that the Summer Vision project Papert,
1966 did not provide the revolution approach, it caused the discussion. A few years
later, the computer vision solution will be proposed based on neural science research
named neocognitron Fukushima and Miyake, 1982. Inspired by this idea, the CNN
for digit recognition was presented LeCun et al., 1999. The first layer reveals basic
things such as vertical and horizontal edges. As you move inside the neural net-
work, the layers reveal more complex features, including angles and shapes. The
latest layers of CNN reveal specific things such as faces, doors, and cars. The source
layer of CNN provides a table of numerical values that represent the probability
of detecting a particular object in the image. Decades after, when we dramatically
improved the approach to visual understanding, we still can state that we are far
away from ideal. In recent years the deep learning domain rapidly grew. While
the quality of brought solutions increased, simultaneously, the model’s complexity
rose dramatically. Despite the fact that available public datasets are an acceptable
solution for many machine learning and research projects, there is always a temp-
tation to increase the training data with the aim to attain a more pleasing result.
Even more, domain-specific cases often require additional data, which is usually
not publicly available. Data labeling is an obvious solution in the faced situation; it
also has weaknesses. Manually collected and labeled data is not the panacea due to
time-consuming and high error risk. The synthetical data could be a suitable solu-
tion based on the facts above but also have drawbacks. Nowadays, the researcher
should intuitively balance the ratio of natural and generated data simultaneously,
considering the possibility of gaps between the two domains. Despite the fact that
the mentioned task is not evident, constraints like model size and count of classes
could bring additional unclarity. In this work, I precisely analyze the impact of syn-
thetic data on the training process, cover the possible training strategies, and provide
guidance on defining the amount of artificial data with existing constraints.

In Simonyan and Zisserman, 2015, the researchers proposed to focus on the
depth of the convolution neural network with small filters, as this strategy could
improve the accuracy of the image classification taskDeng et al., 2009 significantly.

Chapter 1. Introduction 2

In comparison, GoogleNetSzegedy et al., 2015 introduced the new Inception mod-
ule, which allows rich state-of-the-art performance by concentrating on the design
of the network and keeping in mind not only depth but either width of the model.
Paper He et al., 2015 demonstrated one of the solutions to overcome the problem
of vanishing gradient. While the mentioned convolution neural network provides
the ability to extract features more efficiently, the pay for improvements was high.
With increasing the performance, the training time increased dramatically. Includ-
ing the fact that robust but straight-forward methods such as batch normalization
Ioffe and Szegedy, 2015 nowadays defacto is a gold standard for most of the current
works, as it provides the ability to reduce the amount of training data and improve
the model convergence by normalizing the layer inputs, still the training process of
such networks requires a considerable amount of diverse data. Nevertheless, men-
tioned models have a strong ability for generalizing, and they are perfect for feature
extracting. Moreover, using such architecture as the backbone of Redmon et al.,
2015; Liu et al., 2016 for object detection will provide the coveted result, in conjunc-
tion with the GPU algorithm will work in real-time. However, the execution time at
embedded and mobile devices could be insupportable. Due to the noted constraints,
the embedded and mobile devices require a particular approach. One of the possible
solutions, which is now the subject of active research, is neural network quantiza-
tion Hubara et al., 2016; Choi et al., 2019; Jin, Yang, and Liao, 2020. Such a tricky ap-
proach provides the ability to increase the model performance by reducing not only
the model size but also the mode speed. Apparent that fact, the system with perfor-
mance limitations needs a slightly different strategy in feature extracting, especially
in backbone architecture designing. The architectures like MobileNet Howard et al.,
2017; Sandler et al., 2019; Howard et al., 2019 were mainly designed to satisfy the de-
scribed demand. With the increasing interest to the domain of automotive driving,
the stated milestones become crucial. Despite legal and ethical issues, the automo-
tive driving system must be safe, aching a massive amount of data. While data
labeling is time-consuming and costly, one of the possible solutions was proposed
in Munoz, Bagnell, and Hebert, 2010; Farabet et al., 2013. Another approach is to
use generated data. As a matter of fact, different data augmentation methods and
strategies Buslaev et al., 2020; Xie et al., 2020; Zoph et al., 2020 are commonly used in
computer vision. The synthetic data generated from simulators like CARLA Doso-
vitskiy et al., 2017 is more inherent in the research automotive driving area. This
source of training data is very attractive because of its versatility, in Figure 1.1, we
can see examples of the outputs from different sensors. Besides, they are also essen-
tially free. On the other hand, such a strategy also has a drawback - domain gap.
Our goal is to provide hands-on recommendations for convolution neural network
training, focusing on object detection tasks.

FIGURE 1.1: Example of different sensors output Dosovitskiy et al.,
2017 simulator. From left to right: monocular camera, depth camera,

semantic segmentation

One of the most crucial parts of the manuscript is the analysis of the existing

Chapter 1. Introduction 3

works. In Chapter 2 reveals the state-of-the-art techniques and briefly introduces
the existing domain gap, helps expose the most crucial parts of research and out-
lines the intended contribution. The Chapter 3 and Chapter 4 mainly focus on cov-
ering the existed public available datasets and method of model evaluation, here,
we briefly described metrics we will use to compare the results. In Chapter 5 was
described the trained experiments. The last section contains the conclusions which
describe the current achievements their potential impact and sketch the future steps
and improvement.

4

Chapter 2

Related work

Synthetic data is widely used for numerous tasks in Computer Vision. It is a com-
mon strategy for object detection Hinterstoisser et al., 2019, instance segmentationFeng
et al., 2019, face verificationKortylewski et al., 2018, and even 3D object detectionBrekke,
Vatsendvik, and Lindseth, 2019. One of the significant benefits of synthetic data is
the ability to generate specific scenes. Such an advantage is essential, for example,
for the robotics domainTremblay et al., 2018. Simulators like CARLA Dosovitskiy
et al., 2017 provide the ability to generate different pictures with various scenarios.
By adjusting the number of road users, researchers could control the complexity of
the scene. In addition to a complexity control, researchers also already have free la-
beled data. Despite the fact that suitable data-sets Yu et al., 2020; Fritsch, Kuehnl,
and Geiger, 2013; Caesar et al., 2019, which contain examples of different daytime
and weather conditions, are available for research purposes, they are often insuf-
ficient. On another side, there is always a temptation to train the model on more
comprehensive data. Evident of that fact, data from artificial and real sources vary
a lot. Such a combination of natural and synthetic data could provide unpredictable
results. The final ratio between the sources of data and the learning strategy rests
squarely on the shoulders of the researcher. Comparing the benchmark result for
object detection task on realYu et al., 2020; Fritsch, Kuehnl, and Geiger, 2013; Cae-
sar et al., 2019 and syntheticGaidon et al., 2016; Cabon, Murray, and Humenberger,
2020; Wrenninge and Unger, 2018a; Richter, Hayder, and Koltun, 2017a data-sets
could provide some clearness about the impact of artificial data but do not provide
answers entirely. In contrast, Hartwig and Ropinski, 2019 considered this problem
from another angle and proposed reducing the difference between the domain of
data instead of finding the perfect balance. In Hartwig and Ropinski, 2019 was in-
vestigated three approaches in generating photo-realistic reflecting objects:

• Reflection Approximation

• Domain Randomization

• Physically-Based Rendering with Domain Randomization

Essential to notice the fact that mixing data sources is the hottest topic not only
for object detection with RGB image input but also for thermal imagesBongini et al.,
2021. The impact of the data generated from a military simulator was provided at
the researchÖhman, 2019. The difference between research areas does not allow pro-
jecting the results to the domain of automotive vehicles. In Gao, Tang, and Wang,
2021 was researched YOLOv4Bochkovskiy, Wang, and Liao, 2020, CenterNetDuan
et al., 2019, and Faster-RCNN Ren et al., 2015 models trained on synthetic data. Since
evaluation was made on the generated data, the behavior on the real-world example
is not covered. In contrast, in Nowruzi et al., 2019 demonstrated the performance of

Chapter 2. Related work 5

a few object detectors trained with different data ratios in detail. Additionally, was
covered the variants with transfer learning and model fine-tuning. We should re-
member that the automotive vehicle area has few constraints. First of all, the amount
of diverse labeled data is not enough for real-life scenarios. Additionally, the model
performance should be at a sky-high level. Moreover, object detection algorithms
must run in real-time at the embedded devices. Due to that point, we could not
wholly project the result of the previous work. From another point of view, the men-
tioned papers do not provide the general advice or guidelines which could be at
least partly applicable for the specific field.

From the mentioned fact, we can understand that previous works cover the sub-
ject only partly and do not disclose the impact of synthetic data for object detection
in the automotive vehicle domain. As my work consists of the analysis of the per-
formance of different models, obviously that we need firstly to cover the necessary
algorithms. This section mainly focuses on the algorithms that could be a significant
part of experiments and reveal their strong and weak sides. The goal is to construct a
list of suitable algorithms to research the impact of synthetic data for object detecting
tasks in the automotive vehicle domain.

2.1 VGG

One of the most impactful works in computer vision was Simonyan and Zisserman,
2015. In this publication, the researcher proposed going deeper with a convolutional
neural network and investigating the impact of increased model depth on the accu-
racy of the network. In contrast to AlexNet Krizhevsky, Sutskever, and Hinton, 2012,
where was actively used large filters like 7× 7, scientists introduced the using an ar-
chitecture with a small 3 convolution filter. While the convolution filter of 7 × 7 size
has a large receptive field, it also has a considerable number of learnable parame-
ters. Researchers proved that it could be effectively replaced by 3 3× 3 filters, which
reduce the number of parameters by 81%. Additionally, the 1× 1 convolution layers
were actively used with the aim of improving the decision function by increasing
non-linearity. As an activation function was used ReLU. Also, after some convolu-
tional block performed 2× 2 max-pooling layer, with a stride 2, which helps to cover
high-level information and decrease the dimensionality. The whole architecture of
the model is displayed in Figure 2.1.

As this model took participation in the ImageNet challenge, where SOTA results
were gained, it was trained for the classification task. The convolutional part of the
pretrained on this challenge model was commonly utilized as a feature extractor in
many computer vision tasks, such as object detection, image segmentation, and even
style transfer Gatys, Ecker, and Bethge, 2015.

While this model performed an excellent result, the main disadvantage is the
giant network size. The total number of learnable parameters in this model is 138
million, which causes a long inference time and is unsuitable for the automotive
vehicle domain. Weighing all the pros and cons, we decided not to use this model
as a part of the detector in our experiment.

2.2 MobilenetV1

While AI from day to day becomes a routine part of our life, the issue of deployment
of models for phones and portable gadgets is acute. While the are a lot of web
services that allow using GPU for fast inference even of large neural networks, the

Chapter 2. Related work 6

FIGURE 2.1: VGG architecture

portable devices or systems like automotive vehicles often cannot use such a benefit.
At the same time, the general trend was focused on achieving a higher result in the
challenges like ImageNet. The acute was a question of the accurate and fast model
which could perform in real-time on the inference stage.To solve such problem was
introduced a new type of efficient feature extractor - MobileNet.

The main novelty which optimize thearchitecture of the mentioned model is the
following:

• Depthwise convolution using

• Introducing pointwise convolution

• Model width multiplier

• Model resolution multiplier

2.2.1 Depthwise Separable Convolution

The architecture of MobileNet is mostly conducted from a block called - Depthwise
Separable Convolution, which consists of:

• Depthwise convolution

• Pointwise convolution

The depth-wise convolution works the following, for each input channel, this
block applies the single filter. After the mentioned operation is succeeded, the 1 × 1
convolutional filter, also known as pointwise convolution, will be applied. If we go
deeper, the standard convolutional layer makes this operation into one step, while
the newly depthwise separable convolution layer performs it in two stages:

• Depthwise convolution part is responsible for filtering the input

• Pointwise convolution layer is responsible for combining the result of depth-
wise convolution layer.

Chapter 2. Related work 7

As a result, we gain a lower number of parameters. Let us compute the number
of parameters in the default convolution block. Let DK be the size of the kernel, DF
- the size of the feature map, and M, N stands for a number of input and output
channels, respectively. Then the total number of parameters will be computed using
the next formula:

DK · DK · M · N · DF · DF (2.1)

As a depth wise convolution works on the channel wise level, the total number of
parameters will not depend on the number of output channel N, as in the previous
case, and will be the following:

DK · DK · M · DF · DF (2.2)

The overall complexity of sepearable depthwise convolution will be computed as
eqution and number of parameters in the pointwise layer, which computed as:

DK · DK · M · DF · DF + M · N · DF · DF (2.3)

As a result the reduction will be:

1
N

+
1

D2
K

As a result the reduction will be:
1
N

+
1

D2
K

2.2.2 Width multiplier

The MobiliNet model is comparatively tiny, but sometimes there is a need to make
the model even smaller. For such purposes, a new hyper-parameter α was intro-
duced, which is responsible for thining the models layer. §the number of input
channel M and output channel N will be multiplied by α.

2.2.3 Resolution multiplier

The last but not least parameter that can reduce the computational cost is the reso-
lution multiplier, which reduces the resolution of the input image and feature map
by value ρ.

Such a feature of MobileNet made it extremely useful for domains that require
SOTA performance and low latency. That’s why the mentioned model will partici-
pate in our experimental process and help refine the effect of generated data.

2.3 MobileNetV2

The first generation of MobileNet architecture showed impressive results in terms of
accuracy and computational complexity, but it is always a temptation to improve the
work. That is how MobileNetV2Sandler et al., 2019 was introduced. The building
block in MobileNetV2Sandler et al., 2019 as in its predecessor is a depthwise separa-
ble convolution but slightly modified. The main innovations in this paper were the
following: Inverted residual blocks Linear bottleneck Using ReLU6 instead of ReLU

Chapter 2. Related work 8

FIGURE 2.2: ReLU
activation func-

tion.

FIGURE 2.3:
ReLU6 activation

function.

2.3.1 Inverted residual blocks

The initial idea of residual blocks was mainly focused on preventing the gradient
from vanishing. At the input of the block, the information was compressed by a
convolution filter with size 1× 1. The 3× 3 filter goes further, and as the information
increased, we compressed it again using 1 × 1. After all these operations, the output
signal is added to input one. In the MobileNetV2, the sequence is inverted, as instead
of the default convolution block, the depthwise convolution is used. The described
idea of using skip connection was introduced as an inverted residual and had a
lower number of parameters.

2.3.2 Linear bottleneck

To capture the data’s non-linear behavior, the researcher uses the deep neural net-
work with a non-linear activation function. Usually, the role of such a function ac-
crues the ReLU activation function, which cuts off the negative values to zero. Ap-
parent the fact that we have the information loss with such an operation, commonly,
to level the impact of this operation researcher uses a larger number of channels. The
inverted residual operation does the opposite. To tackle the impact of ReLU and the
inverted residual block researcher proposed to use the linear activation at the end of
inserted residual.

2.3.3 ReLU6

Additionally to another modification, instead of using the default ReLU(Fig. 2.2)
function as an activation after the convolution layer researcher recommend using
ReLU6(Fig. 2.3), which cuts off the values greater than 6.

As in previous cases with the lightweight model, the SquuezeNet is suitable for
the automotive vehicle domain due to its fast and accurate inference. Our experi-
ments will use it as a feature extractor in the object detection algorithm.

Chapter 2. Related work 9

2.4 SqueezeNet

The willingness to create an efficient and accurate model is very desirable among
many researchers. In the Iandola et al., 2016 researcher has the motivation to create
the small and robust network as it has the next benefits:

• The process of distributed training is more straightforward.

• Easier process of exporting the new model from the cloud to an automotive
car.

• Suitable for hardware with a small amount of memory

The main building block of SqueezeNet is called Fire(Fig. 2.4). It consists of two-
part:

• squeeze

• expand

2.4.1 Fire module

The squeeze part of the fire module is made from a 1 × 1 convolutional layer. The
hyper parameter for this building block of the fire module is a number of 1× 1 layer.
After processing the input squeeze part feeding the data to the expand part. This
module includes not only 1 × 1 layers but also 3 × 3 layers. The hyper-parameters
for this part of the fire module are responsible for the number of 1 × 1 and 3 × 3
layers. The sum of layers in expanding section must be bigger than in the squeeze
part.

FIGURE 2.4: Fire module

Chapter 2. Related work 10

2.4.2 SqueezeNet modification

The idea of skip connection is not new, and many researchers were impressed by this
approach. The SqueezeNet also decided to implement this idea as a modification of
the SqueezeNet model. Additionally, two models were proposed SqueezeNet with
simple bypass and SqueezeNet with complex bypass(Fig. 2.5).

FIGURE 2.5: SqueezeNet mmodification from left to right: default
SqueezeNet, SqueezeNet with simple bypass, SqueezeNet with com-

plex bypass

2.5 SSD

The reviewed feature extraction method could be a backbone part of object detection.
As was mentioned earlier, one of the model’s main characteristics is the latency for
the automotive vehicle. Obviously, an object detector as part of such a system must
be lightweight and real-time. For this task, suitable are object detection methods that
predict the objects and their location from a single run.

The SSD model was designed for real-time object detection and consisted of two-
part:

• SSD feature extractor

• SSD head

We are interested in the SSD head part.

2.5.1 Grid cells

To find objects in the image, we want to cover the whole picture obviously that
the sliding window approach will take too much time. For such a purpose, the re-
searcher proposed the idea of splitting the image into parts. Each of the cells has

Chapter 2. Related work 11

the default bounding boxes with different orientations and aspect ratios. By split-
ting an image into many parts and generating the multiple default boxes for each
cell, we could cover the image with the predefined boxes. After the passing im-
age through the feature extractor, features from different levels will be collected and
passed through the blocks where the bounding boxes predict. The reason why we
collect features from different backbone levels is very straightforward - as we want
to capture features for large and for small objects as well. After that, the prede-
fined default boxes will be corrected by corresponding correcting values. There is a
linked vector with per class confidence for each of the boxes. After that, corrected
bounding boxes from each level will be collected and passed to the Non-Maximum
Suppression algorithm.

2.6 YOLO

As in the case of the SSD model, the YOLO network is also on stage object detector,
which could perform in real-time. We could also divide the YOLO model into a few
parts, such as:

• feature extractor

• detection head

As a feature extraction model often researcher takes a pretrained, for example,
on ImageNet, CNN model, which could effectively extract different level features
from the image. After the image is passed through the feature extractor module, it
goes to the learnable module, which is responsible for object detection. This module
consists of a few rapidly convolution layers and two fully connected layers. At the
end output of the fully connected layer will be reshaped to tensor 7 × 7 × N. In con-
trast to the SSD network, the YOLO model takes features only from one feature level,
which causes some limitations in detecting small objects. Each of the 49 vectors from
the tensor describes the respective area at the input image. The output dimension of
the vector could be calculated as N = 5 ∗ D + C, where d is the number of default
boxes per cell and C is the number of classes. The end bounding box confidence
is computed as P(obji|objinbox). After this step, all bounding boxes will be filtered
with non Maximum Suppression algorithm.

2.7 Algorithms summary

To conclude the algorithm research work, in sets of experiments to identify the im-
pact of generated data for object detection tasks in the automotive vehicle domain,
as a feature extraction will be used the models:

• MobileNetV1

• MobileNetV2

• SqueezeNet

The SSD algorithm was chosen to detect objects in the outdoor environment.

12

Chapter 3

Datasets

The dataset is one of the main parts of each research. The quality of the dataset
and its size influence the algorithm’s performance. The automotive vehicle systems
could process different types of data, solving various tasks. The complex system
could work with signals from RADAR, LiDAR, and monocular images, solving a
long list of tasks. This work focused on the object detection part of the automotive
vehicle system. As discussed earlier, the large amount of high-quality data com-
monly could be a bottleneck not only for many studies but for the industry at all.
This chapter describes the available datasets, their limitation, and advantages for
both actual and synthetic data.

The domain gap problem is a common issue we could meet in various deep
learning tasks. Such difficulties appear when data significantly differ and are col-
lected from different domains. For example, mentioned problem manifests itself in
the automotive vehicle field, when the model is trained mainly on the data from one
region and testing in another. Additionally, we could face troubles with the domain
gap when a dataset is created from actual and synthetic data. To mimic the natural
data, we could improve it to make it as close to the real as possible. At the same
time, the mentioned improvements could direct different properties, such as visual
and scenario similarity. We divided the type of synthetic data by the following crite-
ria to determine the potential gains.

• A zero-level synthetic dataset contains generated data without enhancements
to reduce the domain gap.

• A first-level dataset contains photorealistic data, which, for example, considers
the impact of lighting and weather conditions on the resulting image.

• Second-level additionally focuses on a complex and realistic scenario genera-
tion from surroundings.

• Third-level focuses on domain randomization to create the data with random-
ized domain properties.

This work focused on the first-level synthetic data with photorealistic images
generated with a base scenario without imitating the complex scenes.

3.1 Berkeley Deep Drive

The sizeable high-quality data is one of the main aspects of significant scientific re-
search which push the domain forward in progress. It provides the ability for the
experimenter to build a complex model. BDD100K Yu et al., 2020 is basically the

Chapter 3. Datasets 13

largest latest dataset of videos for automotive driving. This dataset contains 100K
driving videos and ten tasks. In Figure 3.1, we can see examples of the images from
the dataset. Collected data are accurately labeled on people, objects, road markings,
sidewalks, and road signs for automotive driving. Also, the dataset retains a lot of
variety of data in different fields such as climate, environment, and geography. Be-
cause of these, we exclude the model from falling into unknown conditions. The
automotive vehicle system is complex and could contain a vast amount of computer
vision models, each of them focuses on a particular task, like:

• Object detection

• Line Segmentation

• Object tracking

• Instance Segmentation

To teach the system to perform well on the different mentioned task, scientist
requires a significant amount of various labeled data. It is a common situation when
researchers meet the limitations of the dataset. The great advantage of this dataset
- it contains labels for all mentioned tasks, which reduces the models development
time a lot. The process of collection of real-world data was made in the USA. For
such purposes was chosen the for cities:

• New York

• Berkeley

• San Jose

• San Francisco

The dataset also has a wide range of classes.

Car Sign Light Person Truck Bus Bike Rider Motor Train

1021857 343777 265906 129262 42963 16505 10229 6461 4296 179

TABLE 3.1: The class distribution

The table with the classes is presented in Table 3.1.
To provide the ability to train the robust model and cover the highest amount

of possible situations, the dataset was collected during different weather conditions
during different times of the day. The dataset contains the following weather condi-
tion:

• clear weather

• overcast

• snowy

• rainy

Chapter 3. Datasets 14

FIGURE 3.1: Images from BDD Yu et al., 2020 dataset

• cloudy

• foggy

No less critical to notice that an automotive vehicle is a complex system that
takes the various information from the surrounding environment. Also, the data was
captured in different locations, such as city streets, tunnels, highways, and parking.

3.2 Kitti-CityScapes

Kitti-CityScapes Geiger, Lenz, and Urtasun, 2012 is a combined dataset that consists
of some samples from CityScapes and KITTI. The samples of this dataset are dis-
played in Figure 3.2. The dataset contains a large amount of images that provide
information about urban street scene understanding. This dataset contains high-
quality examples of complex scenes with fine annotation on pixel and instance lev-
els. While there are numerous great object detection datasets, there are a compar-
atively lower amount of datasets that address the problem of image segmentation
in the urban domain. The dataset contains the following classes, which belongs to
groups shown in Table 3.2.

Group Classes
flat road, sidewalk, parking, rail track
human person, rider

vehicle
car, truck, bus, on rails, motorcycle,
bicycle, caravan, trailer

construction
building, wall, fence, guard rail,
bridge, tunnel

object pole, pole group, traffic sign, traffic light
nature vegetation, terrain
sky sky

TABLE 3.2: The groups and classes in dataset

The data were collected during different daytime with different weather condi-
tions. Moreover, the images were captured over several months in over 50 cities.

Chapter 3. Datasets 15

FIGURE 3.2: Images from Kitti-CityScapes Geiger, Lenz, and Urtasun,
2012 dataset

3.3 NuScenes

NuScenes Caesar et al., 2019 dataset were camptured of 1000 automotive driving
scenes, each of them has 20s duration. The automotive driving systems could make
the streets safer and improve the driver experience. While the monocular camera
is an excellent type of sensor which could provide various information about the
surrounding environment, it also has drawbacks. For example, the processed output
of cameras could provide information about the location of the agents in the domain
and their type. From another hand has difficulties measuring the distance to the
objects. The solution for such a problem is to use multimodal data from different
sensors, which will overcome each other weak sides. The system which combines
the lidars, which could measure the distance to close objects, radars, which estimate
the far objects, and monocular cameras, which help identify and track the objects
using their semantic information precisely, could more accurately classify the status
of the surrounding environment and as a result, make the decision faster. For such
purposes the NuScenes Caesar et al., 2019 dataset was perfectly designed. One data
collection platform consist of:

• Front camera

• Left front camera

• Right front camera

• Front RADAR

• Left front RADAR

• Right front RADAR

• Back camera

• Left back camera

• Right back camera

• Back RADAR

• Left back RADAR

• Right back RADAR

• LIDAR on the top

Chapter 3. Datasets 16

• IMU

This dataset has 3d object annotations (Fig. 3.3). Also, provide detailed map infor-
mation on two cities, Boston and Singapore.

FIGURE 3.3: Images from NuScenes Caesar et al., 2019 dataset

3.4 Synscapes

Synscapes Wrenninge and Unger, 2018b is a dataset that consists of 25K unique im-
ages with all detail captured from sunlight and clouds to the composition and angles
of the city(Fig. 3.4). The current level of technologies and algorithms could make the
impressively realistic simulation, which could be, maybe, not an alternative but at
least a good solution for the situation when the amount of data is relatively small.
The Synscapes Wrenninge and Unger, 2018b dataset was generated with the focus
on the photo and physic realism of the images. The generation algorithm included
the impact of sun rays and weather conditions. Additionally, was taken into ac-
count the geometric of the scene, the reflecting ability of the materials, motion blur,
and optics deformation. It is a common situation when the dataset for automotive
vehicles is generated using the sequences. For some tasks, like object tracking, such
a feature could be only beneficial. On the other hand, we have many images with
pretty similar information. One of the unique characteristics of this dataset is that all
25k images were procedurally generated with unique scene and environment con-
ditions.

FIGURE 3.4: Images from Synscapes Wrenninge and Unger, 2018b
dataset

Chapter 3. Datasets 17

3.5 Playing for Benchmark

Playing for Benchmark Richter, Hayder, and Koltun, 2017b is the next benchmark
dataset which consists of synthetic images. This benchmark was generated using
high-quality frames from around 250k videos. It could be used for numerous amount
of tasks, such as:

• Optical flow

• Object detection

• Tracking

• Image segmentation

• Object-level 3D scene layout

• Visual odometry.

Each of the frames contains the annotated data, which was collected during the
autopilot exploring of the virtual world(Fig. 3.5). The generation of the scene takes
into account the composition of the environment agent and closely matches the nat-
ural environment. Moreover, all videos are photorealistic, which reduces the gap
between domains.

FIGURE 3.5: Images from Playing for Benchmark Richter, Hayder,
and Koltun, 2017b dataset

Summarising the dataset research, we could state that there is an acceptable
amount of labeled data that could be used to train models for an automotive ve-
hicle system to solve a wide range of tasks using different data inputs. At the same
time, datasets like Kitti-CityScapes Geiger, Lenz, and Urtasun, 2012 provide large-
high-quality images and segmentation labels for them, which give the ability to un-
derstand the urban street scene but are not suitable for the object detection task.
NuScenes Caesar et al., 2019 dataset is also a great source of real data as it contains
multimodal data from different sensors, which is quite useless in my research topic.
The datasets like BDD100K Yu et al., 2020, will be used as a source of real data, as

Chapter 3. Datasets 18

it contains a considerable amount of suitable quality images and labels for the ob-
ject detection task. It is important to remember that this dataset was captured in the
USA cities, so it will be interesting to validate it on images taken from another loca-
tion. On the other hand, all generated datasets that were reviewed earlier could not
be used as a source of data. Although the mentioned spawned data contains high-
quality photorealistic images, we cannot manually control the environment, which
provides a limitation in further research. A synthetic part of the dataset will be cre-
ated with images generated from the CARLA Gao, Tang, and Wang, 2021 simulator.

19

Chapter 4

Evaluation

4.1 IoU

To make a quantitive comparison of the training network, we need to measure their
performance. It is the place where the metrics come to the scene. In object detection,
models predicting not only the location of the object but also the class of the detected
instance. To count the rightly detected object, we will IoU, following the next logic.
Intersection over union is a metric for evaluating the performance of the object de-
tection model by comparing predicted and ground truth bounding boxes. Obvious
that fact that the ideal prediction should follow the ground truth label by covering
the same area with the same bounding box size.

IoU =
area(gt ∩ pd)
area(gt ∪ pd)

(4.1)

Equation 4.1 considered the ratio between the intersection of the ground truth
and predicted bounding box, and the union of actual and predicted bounding boxes.
It is also known as the intersection over the union. IoU changes from 0 to 1, and the
higher value, the better prediction was generated. This metric gives us the ability
to set the threshold value. The output wich crossed this value will be counted as
correctly classified, which will help us evaluate the model. As a threshold value for
IoU, we use 0.5 and 0.75. That means the following, each bounding box with IoU
higher than the threshold value will be marked as positive detection.

4.2 Precision and Recall

Analyzing the model output, we could have four situations:

• True Positive (TP) — correctly detected object.

• False Positive (FP) — detected the object did not exist.

• False Negative (FN) — object not detected by the object detector.

• True Negative (TN) —covers the cases when the background was correctly not
detected by the model. This metric is not used in object detection.

Precision describes the degree the model detects the relevant object. Calculated
as a ratio between correctly detected bounding boxes and all detected bounding
boxes. Equation 4.2

P =
TP

TP + FP
(4.2)

Chapter 4. Evaluation 20

Recall describes the proportion all bounding boxes and calculated as correctly
detected bounding box to all ground truth bounding box. Equation 4.3

R =
TP

TP + FN
(4.3)

The excellent model has high precision and recall value. By rasing the threshold
value of the IoU, the correctly classified will be objects with the most accurate pre-
diction. In this case, we will have a higher value of FN. In the opposite situation, we
will have a higher FP, as a result low precision and high recall values.

4.3 AP

Another way how to evaluate the performance of the trained model is to compute
the Average Precision. The AP@α is an area under the curve that is computed for
specific IoU threshold value α and computed as in equation 4.4. Important to note
that the high value of the area under the curve means that model has considerable
precision and recall value.

AP@α =
∫ 1

0
p(r)dr (4.4)

4.4 mAP

As was mentioned earlier in this section, object detection algorithms predict not only
the location of the object but also the class of the belonging instance. Obviously that
this kind of prediction is also needed to be measured with an aim to compare the
model performance correctly.

mAPα =
1
n

n

∑
i=1

APi (4.5)

For such purposes, the mAP@α was used. This metric takes into account the
precision and recall for all classes. As a result, it will have few AP values, which will
be averaged. The equation 4.5 displaying the whole formula, where n stands for the
number of classes.

21

Chapter 5

Experiments

. The SSD was chosen as an object detection algorithm due to its accuracy and low
inference time, which is suitable for the automotive vehicle domain. As mentioned
earlier, one of the main characteristics we should focus on while looking for an ap-
propriate algorithm is low computational requirements. Keeping in mind this con-
straint was chosen three networks as a backbone for the SSD algorithm:

• MobileNetV1

• MobileNetV2.

• SqueezeNet.

5.0.1 Training details

At the very beginning, we decided to understand which training strategy was the
best one. We launched experiments with 75% of actual data and 25% synthetic. The
first set of experiments trained, as usual, the second one trained on synthetic and
finetuned on real data. The result of experiments with finetuning. The approach
with finetuning stage, on average, has 20% worse results compared to the default
strategy. To avoid wasting time and computational resources e decided to research
the default training strategy.

As a matter of fact, the training o a deep neural network is a computationally
expensive process. Frameworks with parallel computing on GPU are highly used
to reduce the training time. While there are many great choices, we decided to use
the PyTorch framework due to its simplicity and python-like style. The training
was done using two servers with 2 2080ti on the board, and the training time for
each experiment was around one week. Pre-trained ImageNet models were used
for the feature extraction part. The model training was launched with the following
parameters(Table 5.1):

During the experiment phase of the research was interesting to investigate the
impact of different amounts of data on the models performance. First of all, we
tested on the actual dataset. After that, we launched the experiment on 75% of real
data and 25% synthetic to understand the impact of synthetic data on the model.
After the mentioned set of experiments were done, we started the experiments with
an equal amount of real and generated data. The first pack of experiments was done
for all classes(Table 5.2). We could see that models with 25% of synthetic data have
comparable results in the case of the SqueezeNet model and even better for Mo-
bileNetV2. After that, we decided to analyze the results deeper. One of the main
difficulties was the next, model could not effectively detect the small objects, espe-
cially at the night time of the day. We decided to launch experiments without traffic

Chapter 5. Experiments 22

Parameter name Value
Learning-rate 10−2

Momentum 0.9
Weight decay 5 ∗ 10−4

Gamma 0.1
Scheduler cosine
Milestones for MultiStepLR 80,100
Tmax value for Cosine Annealing Scheduler 200
Batch size 48
Number of epoch 200
Optimizer SGD

TABLE 5.1: Training parameters

Data Ratio
mAP@50

SqueezeNet MobileNetV1 MobileNetV2
100% of real data 18.33 35.43 23.8
75% of real data + 25% of synthetic 17.85 27.27 25.61
50% of real data + 50% of synthetic 15.51 26.49 24.6

TABLE 5.2: Launched experiments 1

lights and traffic signs(Table 5.3). As in previous experiments, we could see a sim-
ilar picture. The last pack of experiments was launched only for classes like car,
bus, person, and truck(Table 5.4). We could see that experiments with 25% of data
look pretty promising. Often it is preferable to generate the last 25% of data, as it is
cheaper and less time-consuming.

After that, we wanted to figure out the effect of synthetic data on the model, so
we launched the experiments with 75% of the actual data(Table 5.5). We could see
that for MobileNetV1, both models show comparable results, while the SqueezeNet
and MobileNetV2 were improved by training with synthetic data. The Table 5.6
displays the performance of the model in the EU region.

Data Ratio
mAP@50

SqueezeNet MobileNetV1 MobileNetV2
100% of real data 28.9 34.4 34.25

75% of real data + 25% of synthetic 26.13 32.2 33.74
50% of real data + 50% of synthetic 26.04 25.21 26.93

TABLE 5.3: Launched experiments 2

Chapter 5. Experiments 23

Data Ratio
mAP@50

SqueezeNet MobileNetV1 MobileNetV2
100% of real data 38.25 62.63 45.70
75% of real data + 25% of synthetic 34.38 54.90 50.33
50% of real data + 50% of synthetic 33.79 44.78 46.80

TABLE 5.4: Launched experiments 3

Data Ratio
mAP@50

SqueezeNet MobileNetV1 MobileNetV2
75% of real data + 25% of synthetic 34.38 54.90 50.33
75% of real data 30.62 55.09 46.23

TABLE 5.5: Launched experiments 4

Data Ratio
mAP@50

SqueezeNet MobileNetV1 MobileNetV2
100% of real data 31.67 59.02 39.84
75% of real data + 25% of synthetic 30.87 51.67 44.92
50% of real data + 50% of synthetic 24.07 41.93 39.60

TABLE 5.6: Evaluation on data from another region

24

Chapter 6

Conclusions

6.0.1 Result Summary

The evaluated experiments show that generated synthetic data could be a reasonable
solution for object detection tasks in the automotive vehicle domain. While provid-
ing additional data will be a long and expensive process, the combination of natural
and synthetic data can give a desirable result. The best training strategy is regular
training with natural and artificial data. From launched experiments, we could state
that 25% of the end dataset could be replaced with synthetic data without a dra-
matic decrease in the model performance. On another side, the model trained with
additional generated data on average outperforms the model without artificial data.

6.0.2 Future work

This work researched the impact of synthetic data on training object detection al-
gorithms in the automotive domain. As mentioned earlier, this work focus on the
implications of first-level synthetic data. As a future improvement, the subsequent
work could investigate synthetic data’s effect with more advanced generation sce-
narios, which will direct the complex cases in the real world. Additionally, the im-
pact of domain randomization could also be included in the evolution of this work.

25

Bibliography

Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao (2020). “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: ArXiv abs/2004.10934.

Bongini, Francesco et al. (2021). “Partially Fake it Till you Make It: Mixing Real
and Fake Thermal Images for Improved Object Detection”. In: ACM Multimedia.
ACM, pp. 5482–5490.

Brekke, Åsmund, Fredrik Vatsendvik, and Frank Lindseth (2019). Multimodal 3D Ob-
ject Detection from Simulated Pretraining. arXiv: 1905.07754 [cs.CV].

Buslaev, Alexander et al. (2020). “Albumentations: Fast and Flexible Image Augmen-
tations”. In: Information 11.2. ISSN: 2078-2489. DOI: 10.3390/info11020125. URL:
https://www.mdpi.com/2078-2489/11/2/125.

Cabon, Yohann, Naila Murray, and Martin Humenberger (2020). Virtual KITTI 2.
arXiv: 2001.10773 [cs.CV].

Caesar, Holger et al. (2019). “nuScenes: A multimodal dataset for autonomous driv-
ing”. In: arXiv preprint arXiv:1903.11027.

Choi, Jungwook et al. (2019). “Accurate and Efficient 2-bit Quantized Neural Net-
works”. In: Proceedings of Machine Learning and Systems. Ed. by A. Talwalkar, V.
Smith, and M. Zaharia. Vol. 1, pp. 348–359. URL: https://proceedings.mlsys.
org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee, pp. 248–255.

Dosovitskiy, Alexey et al. (2017). “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16.

Duan, Kaiwen et al. (2019). “CenterNet: Keypoint Triplets for Object Detection”. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6568–6577.

Farabet, Clement et al. (Aug. 2013). “Learning Hierarchical Features for Scene Label-
ing”. In: IEEE transactions on pattern analysis and machine intelligence 35, pp. 1915–
1929. DOI: 10.1109/TPAMI.2012.231.

Feng, Di et al. (Feb. 2019). Deep Multi-modal Object Detection and Semantic Segmenta-
tion for Autonomous Driving: Datasets, Methods, and Challenges.

Fritsch, Jannik, Tobias Kuehnl, and Andreas Geiger (2013). “A New Performance
Measure and Evaluation Benchmark for Road Detection Algorithms”. In: Inter-
national Conference on Intelligent Transportation Systems (ITSC).

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position”. In: Pattern
Recognit. 15.6, pp. 455–469. DOI: 10.1016/0031-3203(82)90024-3. URL: https:
//doi.org/10.1016/0031-3203(82)90024-3.

Gaidon, Adrien et al. (2016). “Virtual worlds as proxy for multi-object tracking anal-
ysis”. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion, pp. 4340–4349.

Gao, Weihua, Jiakai Tang, and Taotao Wang (2021). “An object detection research
method based on CARLA simulation”. In: Journal of Physics: Conference Series
1948.

https://arxiv.org/abs/1905.07754
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://arxiv.org/abs/2001.10773
https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://doi.org/10.1109/TPAMI.2012.231
https://doi.org/10.1016/0031-3203(82)90024-3
https://doi.org/10.1016/0031-3203(82)90024-3
https://doi.org/10.1016/0031-3203(82)90024-3

Bibliography 26

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge (2015). A Neural Algorithm
of Artistic Style. DOI: 10.48550/ARXIV.1508.06576. URL: https://arxiv.org/
abs/1508.06576.

Geiger, Andreas, Philip Lenz, and Raquel Urtasun (2012). “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Hartwig, Sebastian and Timo Ropinski (2019). “Training Object Detectors on Syn-
thetic Images Containing Reflecting Materials”. In: ArXiv abs/1904.00824.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385. arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385.

Hinterstoisser, Stefan et al. (2019). An Annotation Saved is an Annotation Earned: Using
Fully Synthetic Training for Object Instance Detection. arXiv: 1902.09967 [cs.CV].

Howard, Andrew et al. (2019). Searching for MobileNetV3. arXiv: 1905.02244 [cs.CV].
Howard, Andrew G. et al. (2017). MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications. arXiv: 1704.04861 [cs.CV].
Hubara, Itay et al. (2016). Quantized Neural Networks: Training Neural Networks with

Low Precision Weights and Activations. arXiv: 1609.07061 [cs.NE].
Iandola, Forrest N. et al. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer pa-

rameters and <0.5MB model size. arXiv: 1602.07360 [cs.CV].
Ioffe, Sergey and Christian Szegedy (2015). Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. arXiv: 1502.03167 [cs.LG].
Jin, Qing, Linjie Yang, and Zhenyu Liao (2020). AdaBits: Neural Network Quantization

with Adaptive Bit-Widths. arXiv: 1912.09666 [cs.CV].
Kortylewski, Adam et al. (2018). Training Deep Face Recognition Systems with Synthetic

Data. arXiv: 1802.05891 [cs.CV].
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classi-

fication with Deep Convolutional Neural Networks”. In: Advances in Neural In-
formation Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.
URL: https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf.

LeCun, Yann et al. (1999). “Object Recognition with Gradient-Based Learning”. In:
Shape, Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 319–345. ISBN: 978-3-540-46805-9. DOI: 10.1007/3-540-46805-
6_19. URL: https://doi.org/10.1007/3-540-46805-6_19.

Liu, Wei et al. (2016). “SSD: Single Shot MultiBox Detector.” In: ECCV (1). Ed. by Bas-
tian Leibe et al. Vol. 9905. Lecture Notes in Computer Science. Springer, pp. 21–
37. ISBN: 978-3-319-46447-3. URL: http://dblp.uni-trier.de/db/conf/eccv/
eccv2016-1.html#LiuAESRFB16.

Munoz, Daniel, J. Bagnell, and Martial Hebert (July 2010). “Stacked Hierarchical La-
beling”. In: vol. 6316, pp. 57–70. ISBN: 978-3-642-15566-6. DOI: 10.1007/978-3-
642-15567-3_5.

Nowruzi, Farzan Erlik et al. (2019). “How much real data do we actually need: An-
alyzing object detection performance using synthetic and real data”. In: ArXiv
abs/1907.07061.

Öhman, Wilhelm (2019). “Data augmentation using military simulators in deep learn-
ing object detection applications”. In.

Papert, Seymour (1966). “The Summer Vision Project”. In.
Redmon, Joseph et al. (2015). You Only Look Once: Unified, Real-Time Object Detection.

cite arxiv:1506.02640. URL: http://arxiv.org/abs/1506.02640.

https://doi.org/10.48550/ARXIV.1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1902.09967
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1912.09666
https://arxiv.org/abs/1802.05891
https://proceedings.neurips.cc/paper/2012/ file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/ file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
https://doi.org/10.1007/978-3-642-15567-3_5
https://doi.org/10.1007/978-3-642-15567-3_5
http://arxiv.org/abs/1506.02640

Bibliography 27

Ren, Shaoqing et al. (2015). “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 39, pp. 1137–1149.

Richter, Stephan, Zeeshan Hayder, and Vladlen Koltun (Oct. 2017a). “Playing for
Benchmarks”. In: pp. 2232–2241. DOI: 10.1109/ICCV.2017.243.

Richter, Stephan R., Zeeshan Hayder, and Vladlen Koltun (2017b). Playing for Bench-
marks. arXiv: 1709.07322 [cs.CV].

Sandler, Mark et al. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks.
arXiv: 1801.04381 [cs.CV].

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: International Conference on Learning
Representations.

Szegedy, Christian et al. (2015). “Going Deeper with Convolutions”. In: Computer
Vision and Pattern Recognition (CVPR). URL: http://arxiv.org/abs/1409.4842.

Tremblay, Jonathan et al. (2018). Deep Object Pose Estimation for Semantic Robotic Grasp-
ing of Household Objects. arXiv: 1809.10790 [cs.RO].

Wrenninge, Magnus and Jonas Unger (Oct. 2018b). Synscapes: A Photorealistic Syn-
thetic Dataset for Street Scene Parsing.

— (2018a). “Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing”.
In: ArXiv abs/1810.08705.

Xie, C. et al. (2020). “Adversarial Examples Improve Image Recognition”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alami-
tos, CA, USA: IEEE Computer Society, pp. 816–825. DOI: 10.1109/CVPR42600.
2020.00090. URL: https://doi.ieeecomputersociety.org/10.1109/CVPR42600.
2020.00090.

Yu, Fisher et al. (2020). BDD100K: A Diverse Driving Dataset for Heterogeneous Multi-
task Learning. arXiv: 1805.04687 [cs.CV].

Zoph, Barret et al. (Nov. 2020). “Learning Data Augmentation Strategies for Object
Detection”. In: pp. 566–583. ISBN: 978-3-030-58582-2. DOI: 10.1007/978-3-030-
58583-9_34.

https://doi.org/10.1109/ICCV.2017.243
https://arxiv.org/abs/1709.07322
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1809.10790
https://doi.org/10.1109/CVPR42600.2020.00090
https://doi.org/10.1109/CVPR42600.2020.00090
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00090
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00090
https://arxiv.org/abs/1805.04687
https://doi.org/10.1007/978-3-030-58583-9_34
https://doi.org/10.1007/978-3-030-58583-9_34

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related work
	VGG
	MobilenetV1
	Depthwise Separable Convolution
	Width multiplier
	Resolution multiplier

	MobileNetV2
	Inverted residual blocks
	Linear bottleneck
	ReLU6

	SqueezeNet
	Fire module
	SqueezeNet modification

	SSD
	Grid cells

	YOLO
	Algorithms summary

	Datasets
	Berkeley Deep Drive
	Kitti-CityScapes
	NuScenes
	Synscapes
	Playing for Benchmark

	Evaluation
	IoU
	Precision and Recall
	AP
	mAP

	Experiments
	Training details

	Conclusions
	Result Summary
	Future work

	Bibliography

