
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Mobile Object Tracking with Siamese
Neural Network

Author:
Vasyl BORSUK

Supervisor:
Orest KUPYN

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Vasyl BORSUK, declare that this thesis titled, “Mobile Object Tracking with Siamese
Neural Network” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Mobile Object Tracking with Siamese Neural Network

by Vasyl BORSUK

Abstract

Visual object tracking is one of the most fundamental research topics in computer
vision that aims to obtain the target object’s location in a video sequence given the
object’s initial state in the first video frame. The recent advance of deep neural net-
works, specifically Siamese networks, has led to significant progress in visual object
tracking. Despite being accurate and achieving high results on academic bench-
marks, current state-of-the-art approaches are compute-intensive and have a large
memory footprint that cannot satisfy the strict performance requirements of real-
world applications. This work focuses on designing a novel lightweight framework
for resource-efficient and accurate visual object tracking. Additionally, we introduce
a new tracker efficiency benchmark and protocol where efficiency is defined in terms
of both energy consumption and execution speed on edge devices.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I would like to express gratitude to Orest Kupyn for supervising this research project
and providing valuable feedback. Many thanks to my colleague Roman Vei with
whom we worked on the related research and who has made an invaluable contribu-
tion to this work. I am incredibly grateful to Ampersand Foundation and Alexander
Kutovoy for granting the scholarship and supporting my studies. I want to thank
Ukrainian Catholic University and the Faculty of Applied Sciences for organizing
the Master’s Program in Data Science. All experiments were run using computa-
tional resources generously provided by PiñataFarms. My deepest gratitude goes
to my family for their constant motivation to finish the work. I express my sincere
thanks to my friends and comrades for helping me out during the last six years of
study and for being an inspiration. I am extremely grateful to the Armed Forces of
Ukraine for providing security to complete this work. Without all of you, this work
would never be finished.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Related Work 3
2.1 Visual Object Tracking. 3
2.2 Siamese trackers. 3
2.3 Anchor-Based Object Trackers . 5
2.4 Anchor-Free Object Trackers . 6
2.5 Online Template Update . 6

3 The Proposed Method 8
3.1 Feature Extraction Network . 8
3.2 Feature Fusion Block . 9
3.3 Classification and Bounding Box Regression Heads 10
3.4 Online Update Module . 10
3.5 Overall Loss Function . 12

4 Evaluation 13
4.1 Evaluation Metrics . 13
4.2 Benchmarks . 14
4.3 Tracker Efficiency Benchmark . 14

5 Training Data 16

6 Experiments 17
6.1 Implementation Details . 17

6.1.1 Training . 17
6.1.2 Preprocessing . 17
6.1.3 Testing . 18
6.1.4 Smartphone-based Implementation 18

6.2 Online Efficiency Benchmark . 18
6.3 Offline Efficiency Benchmark . 19
6.4 Comparison with the state-of-the-art . 20

6.4.1 VOT-ST2021 Benchmark . 20
6.4.2 GOT-10K Benchmark . 21
6.4.3 LaSOT Benchmark . 21
6.4.4 NFS Benchmark . 21

6.5 Qualitative Comparison . 21
6.6 Ablation Study . 21

v

7 Conclusions 23
7.1 Future Work . 23

Bibliography 24

vi

List of Figures

1.1 Snapshot of a simple visual object tracking [Bertinetto et al., 2016a]. . . 1

2.1 Fully-convolutional Siamese architecture [Koch et al., 2015] 4
2.2 Anchors at different scales and sizes. 5
2.3 Framework of Siam-RPN [Li et al., 2018]. 5
2.4 Ocean [Zhang et al., 2020a] anchor-free regression, regular-region clas-

sification and object-aware classification network estimation targets . . 6

3.1 The proposed network architecture. 8
3.2 The pixel-wise fusion block. 10
3.3 Dynamic Template update. 11

6.1 Online Efficiency Benchmark on iPhone 8: battery consumption, de-
vice thermal state, and inference speed degradation over time. 18

6.2 Offline Efficiency Benchmark: mean FPS on a range of mobile GPU
architectures. 19

6.3 Qualitative comparison of the proposed tracker with state-of-the-art
methods on challenging cases of variations in tracked object appear-
ance from LaSOT benchmark [Fan et al., 2021]. Green: Ground Truth,
Red: our tracker, Yellow: STARK Lightning, Blue: Ocean, Purple:
Stark-ST50. 22

vii

List of Tables

3.1 GigaFLOPs, per frame, of our tracker and OceanNet [Zhang et al.,
2020a] architectures; ↑ indicates the increased spatial resolutions of
the backbone. 9

6.1 Comparison with the state-of-the-art trackers on common benchmarks.
1⃝, 2⃝ and 3⃝ indicate the top-3 trackers 20

6.2 Ablation study on VOT-ST2021 [Kristan et al., 2016]. 21
6.3 Ablation for Focal and Cross Entropy losses on VOT-ST2021 [Kristan

et al., 2016]. 22

viii

List of Abbreviations

ANE Apple Neural Engine
AO Average Overlap
EAO Eexpected Average Overlap
FLOPS Floating-Point Operations Per Second
FPS Frames Per Second
GOT-10k Generic Object Tracking benchmark
LaSOT Large-scale Single Object Tracking benchmark
NFS Need For Speed benchmark
VOT Visual Object Tracking challenge

ix

List of Symbols

IT static template image
IS search image
Id dynamic template image
IN negative image
FT static template feature map
FS search feature map
Fd dynamic template feature map
FN negative feature map
eT static template embedding
eS search embedding
ed dynamic template embedding
eN negative embedding
w dual-template interpolation learnable parameter

x

Dedicated to the Armed Forces of Ukraine

1

Chapter 1

Introduction

Visual object tracking is one of fundamental research topics in computer vision. It
aims to estimate the state of an arbitrary target in a video sequence, given only its
location in the first frame. Visual object tracking has many applications such as
autonomous driving [Gao et al., 2020], surveillance [Xing, Ai, and Lao, 2010], aug-
mented reality [Zhang and Vela, 2015], and robotics [Robin and Lacroix, 2016]. How-
ever, building a general system for tracking an arbitrary object in the wild using only
information about the location of the object at the first frame is non-trivial and has
many edge cases [Wu, Lim, and Yang, 2013], such as occlusions, deformations, light-
ing changes, background cluttering, reappearance, etc. Figure 1.1 illustrates several
visual object tracking samples. The leftmost image is the first frame of a video and
red box annotates the object to track. The consecutive three images are 50th, 100th
and 200th video frames respectively where tracking results are visualized with a
yellow bounding box.

The recent adoption of deep neural networks, specifically Siamese networks [Koch
et al., 2015], has led to significant progress in visual object tracking [Bertinetto et al.,
2016a; Li et al., 2018; Xu et al., 2020; Li et al., 2019a; Zhu et al., 2018; Zhang and
Peng, 2019; Zhang et al., 2020a]. One of the main advantages of Siamese trackers
is the possibility of end-to-end offline learning. In contrast, methods incorporating
online learning [Danelljan et al., 2019; Bhat et al., 2019; Nam and Han, 2016] in-
crease computational complexity to an unacceptable extent for real-world scenarios
[Marvasti-Zadeh et al., 2021].

Current state-of-the-art approaches for visual object tracking achieve high results

FIGURE 1.1: Snapshot of a simple visual object tracking [Bertinetto
et al., 2016a].

Chapter 1. Introduction 2

on several benchmarks [Kristan et al., 2016; Kristan et al., 2020] at the cost of heavy
computational load. Top-tier visual trackers like SiamRPN++ [Li et al., 2019a] and
Ocean [Zhang et al., 2020a] exploit complex feature extraction and cross-correlation
modules, resulting in 54M parameters and 49 GFLOPs, and 26M parameters and 20
GFLOPs, respectively. Recently, STARK [Yan et al., 2021b] introduced a transformer-
based encoder-decoder architecture for visual tracking with 23.3M parameters and
10.5 GFLOPs.

The large memory footprint of modern visual object trackers cannot satisfy the
strict performance requirements of real-world applications. Employing a mobile-
friendly backbone into the Siamese tracker architecture does not lead to a signifi-
cant boost in the inference time, as most memory and time-consuming operations
are in the decoder or bounding box prediction modules. Therefore, designing a
lightweight visual object tracking algorithm, efficient across a wide range of hard-
ware, remains a challenging problem. Moreover, it is essential to incorporate tem-
poral information into the algorithm to make a tracker robust to pose, lighting, and
other object appearance changes. This usually assumes adding either dedicated
branches to the model [Yan et al., 2021b], or online learning modules [Bhat et al.,
2019]. Either approach results in extra FLOPs that negatively impact the run-time
performance.

In this paper, we design a tracking algorithm with a high computational effi-
ciency on mobile devices while still surpassing or achieving comparable accuracy
to the state-of-the-art deep learning methods. Moreover, we compare the proposed
method with SOTA trackers in terms of energy efficiency and inference speed on
mobile devices.

3

Chapter 2

Related Work

2.1 Visual Object Tracking.

Conventional tracking benchmarks such as annual VOT challenges [Kristan et al.,
2016] and the Online Tracking Benchmark [Wu, Lim, and Yang, 2013] have histori-
cally been dominated by hand-crafted features-based solutions [Vojír, Noskova, and
Matas, 2013; Henriques et al., 2014; Bertinetto et al., 2016b]. These algorithms are
prone to failure and are usually not applicable to a real-world scenario due to poor
generalization capabilities. With the rise of deep learning, they lost popularity con-
stituting only 14% of VOT-ST2020 [Kristan et al., 2020] participant models. New
algorithms like SINT [Tao, Gavves, and Smeulders, 2016] and SiamFC [Bertinetto
et al., 2016a] replaced those hand-crafted trackers. They learned the matching func-
tion in a deep learning fashion and used it without any adapting to track the target
based upon the original observation from the first frame, the latter adopting a fully
convolutional architecture relative to the search image.

The recent prosperity of deep neural networks led to a significant progress in
visual object tracking. Lately, short-term visual object tracking task [Kristan et al.,
2020] was mostly addressed using either discriminatory correlation filters [Danelljan
et al., 2017; Bhat et al., 2019; Danelljan et al., 2019; Zheng et al., 2020; Xu et al., 2019;
Chen et al., 2020a] or Siamese neural networks [Zhang et al., 2020a; Li et al., 2018;
Li et al., 2019a; Zhu et al., 2018; Xu et al., 2020; Zhang and Peng, 2019; Held, Thrun,
and Savarese, 2016], as well as both combined [Ma et al., 2020; Zhang et al., 2020b;
Yan et al., 2021a]. One of the main advantages of Siamese trackers is the ability
for end-to-end offline learning and its efficiency. Modern Siamese networks show
high generalisation results and can be optimized for real-time inference on GPUs. In
contrast, trackers that use deep off-the-shelf features [Danelljan et al., 2017; Danelljan
et al., 2016; Danelljan et al., 2015] are prone to overfitting to the initial targets and
show limited performance due to inconsistencies in the objectives. Furthermore,
methods incorporating online learning [Danelljan et al., 2019; Bhat et al., 2019; Nam
and Han, 2016] increase computational complexity to an extent that is unacceptable
for real-world scenarios [Marvasti-Zadeh et al., 2021], but they show better target
classification and result in a more stable tracking.

2.2 Siamese trackers.

Trackers based upon Siamese correlation networks [Koch et al., 2015] perform track-
ing based on offline learning of a matching function. This function acts as a sim-
ilarity metric between the features of the template image and the cropped region
of the candidate search area. Siamese network consists of an encoder subnetwork

Chapter 2. Related Work 4

FIGURE 2.1: Fully-convolutional Siamese architecture [Koch et al.,
2015]

which encodes both search and template images and is followed by a feature com-
binations module, which is usually based on feature cross-correlation Figure 2.1.
Siamese trackers initially became popular due to their impressive trade-off between
accuracy and efficiency [Tao, Gavves, and Smeulders, 2016; Bertinetto et al., 2016a;
Wang et al., 2018; Li et al., 2018; Zhu et al., 2018].

SiamRPN [Li et al., 2018] proposed a classification- and regression- objectives
for the region proposal subnetwork [Ren et al., 2016] of the tracker model - the for-
mer for the foreground-background estimation and the latter for proposal refine-
ment based upon predefined anchor boxes. Its modifications [Zhu et al., 2018; Li
et al., 2019a; Fan and Ling, 2019], to name a few, formed a family of the methods
inspired by this anchor-based approach: DaSiamRPN [Zhu et al., 2018] introduced
a distractor-aware module, taking care of the negative pairs during training to im-
prove the discriminability of the model; SiamRPN++ [Li et al., 2019a] adopted a new
sampling strategy to guarantee translation invariance; C-RPN [Fan and Ling, 2019]
proposed the cascade-like training leading to more accurate target localization, also
making the classifiers of RPNs more discriminative in distinguishing the difficult
distractors.

One of the state-of-the-art methods, Ocean [Zhang et al., 2020a], incorporates
FCOS [Tian et al., 2019] anchor-free object detection paradigm for tracking, directly
regressing the distance from the point in the classification map to the corners of the
bounding box. In addition, they introduce a feature alignment module containing
2D spatial transformation that aligns the feature sampling locations with the regions
of candidate objects.

Recently, transformer has shown their great potential in vision tasks like image
classification [n.d.(b)], object detection [Carion et al., 2020], multiple object tracking
[Sun et al., 2021; Meinhardt et al., 2021], etc. Inspired by DETR [Carion et al., 2020]
object detection transformer, STARK [Yan et al., 2021b], introduces transformer-
based encoder and decoder in a Siamese fashion: flattened and concatenated search
and template feature maps serve as an input to the transformer network. STARK
also presents a dynamic template update module to encode both spatial and tempo-
ral information efficiently. The temporal component of this method allows network
to capture object appearance change.

Siamese trackers have impressive trade-off between accuracy and efficiency, al-
lowing Siamese tracker to run realtime on modern GPU devices. Yet, those trackers

Chapter 2. Related Work 5

FIGURE 2.2: Anchors at different scales and sizes.

FIGURE 2.3: Framework of Siam-RPN [Li et al., 2018].

still have a large memory footprint and require a lot of computations. As a result,
this type of visual object tracking algorithms is difficult to adapt for some real-world
problems of tracking on devices with limited computational resources, like mobile
phones. LightTrack [Yan et al., 2021c] made a huge step in designing a lightweight
network for tracking on mobile. They used NAS [Pham et al., 2018; Chen et al., 2019]
with FLOPS minimization optimization target to design efficient model architecture
for resource constrained devices. But FLOPS does not always reflect the actual la-
tency [Wu et al., 2019]

2.3 Anchor-Based Object Trackers

The anchor-based networks play an important role in the object detection task. An-
chors were first introduced by Faster-RCNN [Ren et al., 2016], where a set of anchors
at multiple scales and aspect ratios is created and served as a reference points (Fig-
ure 2.2). The detection algorithm leverages anchor boxes by assigning each object to
a single or multiple anchors using classification and localization model predictions.

A number of Siamese trackers have adopted this concept, starting with SiamRPN
[Li et al., 2018], followed by modifications such as SiamRPN++ [Li et al., 2019a], C-
RPN [Fan and Ling, 2019], and DaSiamRPN [Zhu et al., 2018]. The first two works,
introduce a region-proposal network [Ren et al., 2016] after the siamese network
and perform joint classification and regression for tracking, while the latter one in-
troduces a distractor-aware module to improve a disriminative power of the model.
In these methods, not only the hand-crafted anchors should be generated over the
image densely enough to ensure sufficiently high IoU, but also sizes and aspect ra-
tios of the anchor boxes are the additional hyperparameters that need to be carefully
tuned. This decrease the robustness and generalization of the RPN-based trackers.

Figure 2.3 shows the framework of Siam-RPN. First, siamese network extracts
features from the search and template images. It is followed by a Region Proposal

Chapter 2. Related Work 6

FIGURE 2.4: Ocean [Zhang et al., 2020a] anchor-free regression,
regular-region classification and object-aware classification network

estimation targets

Network which performs features cross-correlation and has two predictions branches:
one for classification and one for regression of bounding box offset and size. Each of
k final predictions correspond to one anchor box.

2.4 Anchor-Free Object Trackers

Meanwhile, inspired by point-based object detectors, such as ExtremeNet [Zhou,
Zhuo, and Krahenbuhl, 2019], CornerNet [Law and Deng, 2018], CenterNet [Duan
et al., 2019], CenterNet-OP [Zhou, Wang, and Krähenbühl, 2019], FCOS [Tian et al.,
2019], and FSAF [Zhu, He, and Savvides, 2019], anchor-free object tracking methods
started gaining more popularity.

Recent anchor-free trackers include Ocean [Zhang et al., 2020a], SiamCAR [Guo
et al., 2020], SiamBAN [Chen et al., 2020b], SiamFC++ [Xu et al., 2020], SiamCorners
[Yang et al., 2021], Zhang et al. [Zhang and Zhang, 2020], AFSN [Peng et al., 2020].
SiamFC++ [Xu et al., 2020] were the first to introduce this paradigm to the track-
ing task. They decompose the tracking task into classification (per-pixel objective-
ness) and regression (bounding boxes based on deep features in a per-pixel fashion).
[Yang et al., 2021] predicts corners of the bounding box via the introduced corner
pooling layer, which can predict multiple corners for a tracking target; [Zhang and
Zhang, 2020] builds upon FCOS [Tian et al., 2019] anchor-free pipeline and predicts
distances from the pixel to the sides of its bounding box; AFSN [Peng et al., 2020]
propose three branches, classifying fore- and background, predicting offset to elimi-
nate deviation, and predicting the size of an object with a scale parameter.

Ocean [Zhang et al., 2020a] brings novelty in introducing different sampling
strategy to the classification branch, as opposed to using all the pixels as training
samples; it also presents object-aware features along with regular-region features
to adapt to scale change of the object. All these anchor-free trackers disengage
the tracking pipeline from hyperparameter-tuning and priors upon data aspect ra-
tio/scale distribution.

2.5 Online Template Update

Exploitation of both spatial and temporal information from a frame sequence is one
of core problems in visual object tracking. Existing trackers can be divided into spa-
tial and spatial-temporal classes. Most of trackers [Li et al., 2018; Zhang and Peng,

Chapter 2. Related Work 7

2019; Li et al., 2018; Zhang et al., 2020a] utilize only spatial relationship while ig-
noring global information from the whole video. It makes them prone to failure on
cases with occlusions, object deformation, lighting changes, etc. In contrast, spatio-
temporal trackers additionally exploit temporal information to improve trackers’
performance on such cases.

Spatio-temporal trackers can be devided into gradient-based and gradient-free
classes. MD-Net [Nam and Han, 2016] is one the first gradient-based trackers which
updates domain-specific layers of the neural network with gradient descent during
inference. Later works [Danelljan et al., 2019; Li et al., 2019b; Wang et al., 2020]
adopt more advanced optimization techniques or meta-learning update strategies.
However, performing backpropagation on most of edge devices is not efficient and
its inference time is too high for real-world applications. By contrast, gradient-free
methods [Yang and Chan, 2018; Zhang et al., 2019; Zhang et al., 2020a; Yan et al.,
2021b] exploit an extra branch in the network to update the template during infer-
ence. Although being effective, these methods still require a lot of extra computa-
tions to perform template update on each frame.

8

Chapter 3

The Proposed Method

We design our tracker in a single, unified model composed of a feature extraction
network, feature fusion blocks, and task-specific subnetworks for bounding box re-
gression and classification. Given a static template image, IT, a search image crop, IS,
and a dynamic template image, Id, the feature extraction network yields the feature
maps over these inputs. The template feature representation is then computed as a
linear interpolation between static and dynamic template image features. Next, it is
fused with the search image features in the pixel-wise fusion blocks. Finally, the re-
sulting tensors are passed to the classification subnetwork that predicts the feature
map of the object presence probabilities, and the regression subnetwork that esti-
mates the distances from each pixel within the target bounding box to the four sides
of the ground truth bounding box. Every stage is described in detail further on, and
the overview of the proposed network architecture is illustrated in Figure 3.1.

3.1 Feature Extraction Network

Efficient tracking pipeline requires a flexible, lightweight, and accurate feature ex-
traction network. Moreover, the outputs of such backbone network should have
high enough spatial resolution to have optimal feature capability of object local-
ization [Li et al., 2019a] while not increasing the computations for the consecutive
layers. Most of the current Siamese trackers [Zhang et al., 2020a; Li et al., 2019a] in-
crease the spatial resolution of the last feature map, which significantly degrades the
performance of successive layers. We suggest to keep the original spatial resolution
of the feature extraction network to significantly reduce the computational cost of
both backbone and prediction heads, as shown in table Table 3.1.

We use the first four stages of the neural network pretrained on the ImageNet
[Deng et al., 2009] as a feature extraction module. The proposed tracker will adopt

FIGURE 3.1: The proposed network architecture.

Chapter 3. The Proposed Method 9

Model architecture Backbone Prediction heads
GigaFLOPs GigaFLOPs

Our tracker 0.318 0.160
Our tracker ↑ 0.840 0.746
OceanNet 4.106 1.178
OceanNet ↑ (original) 14.137 11.843

TABLE 3.1: GigaFLOPs, per frame, of our tracker and OceanNet
[Zhang et al., 2020a] architectures; ↑ indicates the increased spatial

resolutions of the backbone.

FBNet [Wu et al., 2019] family of models as a backbone. Unlike previous works [Yan
et al., 2021c] that design backbone by optimizing FLOPs which do not reflect actual
inference time on mobile, FBNet is designed via differentiable neural architecture
search that directly optimizes model inference on mobile devices. The smallest FB-
Net achieves 73% top-1 accuracy on ImageNet and 2.9 ms latency (345 frames per
second) on a Samsung S8.

The output of the backbone network is a feature map of stride 16 for both tem-
plate and search images. To map the depth of the output feature map to a constant
smaller number of channels, we use an AdjustLayer which is a combination of Con-
volutional and Batch Normalization [Ioffe and Szegedy, 2015] layers.

We show in Table 3.1 and Section 6.6 that upscaling the spatial resolution has
a negligible effect on accuracy while increasing FLOPs significantly. Table 3.1 and
Figure 6.1 demonstrate that even a lightweight encoder does not improve the model
efficiency of modern trackers due to the complex correlation operations and predic-
tion heads. Thus, we further design a lightweight and accurate decoder part of the
network.

3.2 Feature Fusion Block

The cross-correlation module is the core operation to combine template and search
image features. Most existing Siamese trackers use either simple cross-correlation
operation [Bertinetto et al., 2016a; Xu et al., 2020; Li et al., 2018] or more lightweight
depth-wise cross-correlation [Li et al., 2019a]. They are further passed to consecutive
networks, such as the bounding box regressor. Recently, Alpha-Refine [Yan et al.,
2021a] avoided correlation window blurring effect by adopting the pixel-wise corre-
lation as it ensures that each correlation map encodes information of a local region
of the target. Extending this idea, we introduce a pixel-wise fusion block which en-
hances the similarity information obtained via pixel-wise correlation with position
and appearance information extracted from the search image (see Table 6.2).

We pass the search image feature map through one 3x3 Conv-BN-ReLU block,
and calculate the point-wise cross-correlation between these features and template
image features. Then, we concatenate the computed correlation feature map with
the search image features and pass the result through one 1x1 Conv-BN-ReLU block
to aggregate them. With this approach, learned features are more discriminative and
can efficiently encode object position and appearance by combining both visual and
similarity features. The overall architecture of a pixel-wise fusion block is visualized
in Figure 3.2.

Chapter 3. The Proposed Method 10

FIGURE 3.2: The pixel-wise fusion block.

Regular cross-correlation cannot be efficiently executed by most mobile neural
network inference engines such as CoreML [Core ML n.d.] due to unsupported con-
volutional operation with dynamic weights from the template features. Thus, we
reformulated the pixel-wise cross-correlation operation as a matrix multiplication
operation to get the best inference speed on mobile devices. Given input image fea-
tures ΦS and template image features ΦT flattened along the spatial dimensions to
shapes C × WH and C × wh respectively, we compute pixel-wise cross-correlation
features Φcorr as:

Φcorr = Φ⊤
T ΦS (3.1)

The resulting Φcorr will be a tensor of shape wh × WH that is further resized to a
regular size wh × W × H, where wh is the number of output channels.

3.3 Classification and Bounding Box Regression Heads

We use a similar setup to Ocean [Zhang et al., 2020a] for classification and bounding
box regression. The core idea of a bounding box regression head is to estimate the
distance from each pixel within the target object’s bounding box to the ground truth
bounding box sides [Zhang et al., 2020a; Tian et al., 2019]. Each pixel in the regres-
sion feature map is considered as the regression sample if its coordinates fall into the
groundtruth bounding box. Such bounding box regression takes into account all of
the pixels in the ground truth box during training, so it can accurately predict the
magnitude of target objects even when only a tiny portion of the scene is designated
as foreground. The bounding box regression network is a stack of two simple 3x3
Conv-BN-ReLU blocks. We use just two such blocks instead of four proposed in
Ocean [Zhang et al., 2020a] to reduce computational complexity.

The classification head employs the same structure as a bounding box regres-
sion head. The only difference is that we use one filter instead of four in the last
Convolutional block. This head predicts a score map, where each pixel represents a
confidence score of object appearance in the corresponding region of the search crop.

3.4 Online Update Module

We further equip the proposed algorithm with an online update module. The on-
line branch in the tracker has proven [Danelljan et al., 2019; Zhang et al., 2019] to

Chapter 3. The Proposed Method 11

FIGURE 3.3: Dynamic Template update.

increase trackers’ robustness to appearance change of the target object during track-
ing. Current gradient-free online modules [Zhang et al., 2020a; Yan et al., 2021b]
require a lot of additional computations to dynamically compute template features
update from the search image on each video frame. Therefore, we propose to design
a lightweight online update module.

The general scheme of the Dynamic Template Update algorithm is shown in Fig-
ure 3.3. In addition to the main static template IT and search image IS, we randomly
sample a dynamic template image, Id, from a video sequence during model training
to capture the object under various appearances. We pass Id through the feature ex-
traction network, and the resulting feature map, Fd, is linearly interpolated with the
main template feature map FT via a learnable parameter w:

F′
T = (1 − w)FT + wFd (3.2)

We further pass F′
T and FS to the Similarity Module that computes cosine simi-

larity between the dual-template and search image embeddings. The search image
embedding eS is obtained via the Weighted Average Pooling (WAP) [Shin et al., 2019]
of FS by the classification confidence scores; the dual-template embedding eT is com-
puted as an Average Pooling [Lee, Gallagher, and Tu, 2016] of F′

T.
During inference, for every N frames we choose the search image with the high-

est cosine similarity with the dual-template representation, and update the dynamic
template with the predicted bounding box at this frame. In addition, for every train-
ing pair we sample a negative crop IN from a frame that does not contain the target
object. We pass it through the feature extraction network, and extract the negative
crop embedding eN similarly to the search image, via WAP. We then compute Triplet
Loss [Hoffer and Ailon, 2015] with the embeddings eT, eS, eN extracted from F′

T, FS
and FN , respectively. This training scheme does provide a signal for the dynamic
template scoring while also biasing the model to prefer more general representa-
tions.

Unlike STARK [Yan et al., 2021b], which incorporates additional temporal infor-
mation by introducing a separate score prediction head to determine whether to update
the dynamic template, we present a parameter-free similarity module as a template
update rule, optimized with the rest of the network. Moreover, STARK concatenates
the dynamic and static template features, increasing the size of a tensor passed to the
encoder-decoder transformer resulting in more computations. Our dual-template
representation interpolates between the static and dynamic template features with a

Chapter 3. The Proposed Method 12

single learnable parameter, not increasing the template tensor size.
In Chapter 6, we demonstrate the efficiency of our method on a large variety

of academic benchmarks and challenging cases. The dual-template representation
module allows the model to efficiently encode the temporal information as well
as the object appearance and scale change. The increase of model parameters and
FLOPs is small and even negligible, making it almost a cost-free temporal module.

3.5 Overall Loss Function

Training a Siamese tracking model requires a multi-component objective function to
simultaneously optimize classification and regression tasks. As shown in previous
approaches [Zhang et al., 2020a; Yan et al., 2021b], IoU loss [Rezatofighi et al., 2019]
and classification loss are used to efficiently train the regression and classification
networks jointly. The regression loss term is computed as:

Lreg = 1 − ∑
i

IoU(treg, preg), (3.3)

where treg denotes the target bounding box, preg denotes the predicted bounding
box, and i indexes the training samples.

For classification loss term, we use Focal Loss [Lin et al., 2017]:

Lc = −(1 − pc)
γlog(pc), (3.4)

where pc is the classification score map computed by the classification prediction
head.

In addition, we supplement those training objectives with triplet loss, which en-
ables performing the online branch of the network. The triplet loss term is computed
from template (eT), search (eS), and negative crop (eN) feature maps:

Lt = max {d(eT, eS)− d(eT, eN) + margin, 0))} , (3.5)

where margin encourages that dissimilar pairs will be distant from any similar
pairs by at least a certain margin. We set margin to default value of 1. The distance
measurement in this loss term is

d(xi, yi) = ∥xi − yi∥2 . (3.6)

The overall loss function is a linear combination of the three components:

L = λ1 ∗ Lt + λ2 ∗ Lreg + λ3 ∗ Lc. (3.7)

where λ1, λ2 and λ3 denote the weights for each loss component and are equal to 2,
1 and 1, respectively.

13

Chapter 4

Evaluation

4.1 Evaluation Metrics

We use the following metrics to evaluate the tracker:

• Accuracy is defined as the average overlap between the target predictions and
the ground truth calculated from the frames before the tracker fails on that
subsequence. Given a subsequence starting from an anchor a of sequence s,
the accuracy As,a is defined as

As,a =
1

NF
s,a

∑
i=1:NF

s,a

Ωs,a(i)

where NF
s,a is the number of frames before the tracker failed and Ωs,a(i) is the

overlap between the predicted and ground truth bounding boxes at i-th frame.

• Robustness measures the extent of the sub-sequence before the tracking failure
and is defined as

Rs,a = NF
s,a/Ns,a

where Ns,a is the total number of frames in the subsequence.

• Expected Average Overlap (EAO) combines Accuracy and Robustness into a
single performance score. The expected average overlap curve between pre-
dicted and ground truth bounding boxes is calculated and averaged over an
interval of typical short-term sequence lengths into the EAO measure. The
value of the EAO curve Φ̂i at sequence length i is defined as

Φ̂i =
1

|S(i)| ∑
s,a∈S(i)

Φs,a(i)

where Φs,a(i) is the average overlap calculated between the first and i-th frame
starting at anchor a of sequence s. The EAO measure it than calculated by
averaging the EAO curve from Nlo to Nhi

EAO =
1

Nhi − Nlo
∑

i=Nlo :Nhi

Φ̂i

• Average Overlap (AO) denotes the average of overlaps between all ground
truth and estimated bounding boxes. It is computed similarly to the Accuracy
but it has a downside that all frames after the first failure receive a zero over-
lap and are still taken into account, which increases bias and variance of the
estimator.

Chapter 4. Evaluation 14

• Success is measured as the Intersection over Union of the pixels within the
ground truth bounding box BBgt and the predicted ones BBtr

S =

∣∣BBtr ∩ BBgt
∣∣

|BBtr ∪ BBgt|

• Precision is calculated as the distance in pixels between the centers Cgt and Ctr

of the ground truth bounding box and the tracking result, respectively, accord-
ing to a certain threshold. The precision P is defined as

P =
∥∥Ctr − Cgt∥∥

2

Since the precision metric is sensitive to the resolution of input images, its more
common to use the normalized precision Pnorm

Pnorm =
∥∥W

(
Ctr − Cgt)∥∥

2 , where W = diag
(

BBgt
x , BBgt

y

)
The aforementioned Success and Precision metrics are often referred to as Suc-

cess Score and Precision Score, respectively. The Success Rate measures the percent-
age of successfully tracked frames where the overlaps exceed a threshold (e.g. 0.5).

4.2 Benchmarks

We evaluate performance of the proposed tracker on several popular academic bench-
marks:

• VOT-ST2021 [Kristan et al., 2016] consists of 60 short video sequences with
challenging scenarios: similar objects, partial occlusions, scale and appearance
change to address short-term, causal, model-free trackers. The model perfor-
mance is evaluated using Accuracy, Robustness and EAO.

• GOT-10K [Huang, Zhao, and Huang, 2021] is a benchmark covering a wide
range of different objects, their deformations, and occlusions. We evaluate our
solution using the official GOT-10K submission page with AO and Robustness
metrics.

• LaSOT [Fan et al., 2021] contains 280 video segments for long-range tracking
evaluation. Each sequence is longer than 80 seconds in average making in
the largest densely annotated long-term tracking benchmark. We report the
Precision Score and Robustness.

• NFS [Kiani Galoogahi et al., 2017] dataset is a long-range benchmark, which
has 100 videos (380K frames) captured with now commonly available higher
frame rate (240 FPS) cameras from real world scenarios. We’ll use the Precision
Score and Robustness metrics to evaluate the tracker.

4.3 Tracker Efficiency Benchmark

Mobile devices have a limited amount of both computing power and energy avail-
able to execute a program. Most current benchmarks measure only runtime speed
without taking into account the energy efficiency of the algorithm, which is equally

Chapter 4. Evaluation 15

important in a real-world scenario. Thus, we introduce the benchmark to estimate
the effect of tracking algorithms on mobile device battery and thermal state and its
impact on the processing speed over time. It measures the energy efficiency of track-
ers with online and offline evaluation protocols - the former to estimate the energy
consumption for the real-time input stream processing and the latter to measure the
processing speed of a constant amount of inputs.

The online evaluation collects energy consumption data by simulating a real-
time (30 FPS) camera input to the neural network for 30 minutes. The tracker can-
not process more frames than the specified FPS even if its inference speed is faster,
and it skips inputs that cannot be processed on-time due to the slower processing
speed. We collect battery level, the device’s thermal state, and neural network in-
ference speed throughout the whole experiment. The thermal state is defined by
Apple in the official Thermal state iOS API [iOS thermal state n.d.]. The high ther-
mal state refers to a serious and critical thermal device state for which the system’s
performance is significantly reduced to cool it down. The performance loss due to
heat causes trackers to slow down, making it a critical performance metric when de-
ployed to mobile devices. Our benchmark takes care of these issues providing fair
comparison.

The offline protocol measures the inference speed of trackers by simulating a
constant number of inputs for the processing, similar to processing a media file from
a disk. All frames are processed one by one without any inference time restrictions
and processing is interrupted if device reaches high temperatures to avoid overheat-
ing. Additionally, we perform a model warmup before the experiment, as the first
model executions are usually slower. We set the number of warmup iterations and
inputs for the processing to 20 and 100, respectively.

In this work, we evaluate trackers on iPhone 7 (A10 Fusion and PowerVR Se-
ries7XT GPU), iPhone 8 (A11 Bionic with 3-core GPU), iPhone 11 (A11 Bionic with
4-core GPU), and Google Pixel 4 (Snapdragon 855 and Adreno 640 GPU). All devices
are fully charged before the experiment, no background tasks are running, and the
display is set to the lowest brightness to reduce the energy consumption of hardware
that is not involved in computations.

16

Chapter 5

Training Data

This work uses multiple publicly available video object tracking datasets to train the
proposed tracker.

The YouTube-BoundingBoxes [Real et al., 2017] is a large-scale dataset of videos
with densely-sampled high-quality single-object bounding box annotations. The
dataset consists of approximately 380,000 video segments of 15-20s extracted from
240 000 different publicly available YouTube videos, automatically selected to fea-
ture objects in natural settings without editing or post-processing, with a recording
quality often akin to that of a hand-held cell phone camera. All these video segments
were human-annotated with high precision classifications and bounding boxes at 1
frame per second, in total containing over 5.6M bounding boxes.

The LaSOT [Fan et al., 2021] is a high-quality benchmark consisting of 1,400 se-
quences with more than 3.5M frames in total. Each video is annotated manually and
accurately at 30 frames per second with a bounding box making it one of the largest
densely annotated benchmarks for long-term tracking. Each sequence contains 2,500
frames on average and the dataset represents 70 different object categories.

The GOT-10k [Huang, Zhao, and Huang, 2021] is built upon the backbone of
WordNet structure [Fellbaum, 1998] and it populates the majority of over 560 classes
of moving objects and 87 motion patterns. It contains more than 10,000 of short video
sequences with more than 1.5M manually labeled bounding boxes, annotated at 30
frames per second, enabling unified training and stable evaluation of deep trackers.

The ImageNet-VID [Deng et al., 2009] is a benchmark created for video object
detection task. It contains 30 object categories which is a subset of the 200 basic-level
categories of the object detection task. Each video is densely annotated at 30 frames
per second with a set of bounding boxes. Overall, benchmark consists of near 2M
annotations and over 4,000 video sequences.

In addition, similar to other tracking models [Bertinetto et al., 2016a], [Zhu et al.,
2018], [Zhang et al., 2020a], we use a part of the COCO [Lin et al., 2014] dataset for
object detection with 80 different object categories to diversify the training dataset
for visual object tracking. In our setup, we set IS = IT to let the network efficiently
predict the object’s location in a larger context.

For each training epoch, we randomly sample 20,000 images from LaSOT [Fan et
al., 2021], 120,000 from COCO [Lin et al., 2014], 400,000 from YoutubeBB [Real et al.,
2017], 320,000 from GOT-10k [Huang, Zhao, and Huang, 2021] and 310,000 images
from the ImageNet dataset [Deng et al., 2009], so, overall, 1,170,000 images are used
in each epoch. The validation set is constructed from the GOT-10k public test set,
VOT-2018, and NFS.

17

Chapter 6

Experiments

6.1 Implementation Details

6.1.1 Training

We implemented all of models using PyTorch [Paszke et al., 2019]. The backbone
network is initialized using the pretrained weights on ImageNet. All the models are
trained using 2 RTX A6000 GPUs, with a total batch size of 256. We use ADAM
[Kingma and Ba, 2014] optimizer with a learning rate = 2 ∗ 10−4 and a plateau learn-
ing rate reducer with a reduce factor = 0.5 every 10 epochs when the target metric
(mean IoU) stops increasing. Each epoch contains 106 image pairs. The training
takes 3 days to converge.

From each video sequence in a dataset, we randomly sample a template frame IT
and search frame IS such that the distance between them is d = 70 frames. Starting
from the 15th epoch, we increase d by 2 every epoch. It allows the network to learn
the correlation between objects on easier samples initially and gradually increase
complexity as the training proceeds. A dynamic template image is sampled from
the video sequence between the static template frame and search image frame. For
the negative crop, where possible, we sample it from the same frame as the dynamic
template but without overlap with this template crop; otherwise, we sample the
negative crop from another video sequence. The value for d was found empirically.
It is consistent with the note in TrackingNet [Muller et al., 2018] that any tracker is
reliable within 1 second. Our observations are that the appearance of objects does
not change dramatically over 2 seconds (60 frames), and we set d = 70 as a trade-off
between the inference speed and the amount of additionally incorporated temporal
information.

6.1.2 Preprocessing

We extract template image crops with an additional offset of 20% around the bound-
ing box. Then, we apply a light shift (up to 8px) and random scale change (up to
5% on both sides) augmentations, pad image to the square size with the mean RGB
value of the crop, and resize it to the size of 128x128 pixels. We apply the same aug-
mentations with a more severe shift (up to 48px) and scale (between 65% and 135%
from the original image size) for the search and negative images. Next, the search
image is resized to 256x256 pixels with the same padding strategy as in the template
image.

Finally, we apply random photometric augmentations for both search and tem-
plate images to increase model generalization and robustness under different light-
ing and color conditions [Buslaev et al., 2020].

Chapter 6. Experiments 18

FIGURE 6.1: Online Efficiency Benchmark on iPhone 8: battery con-
sumption, device thermal state, and inference speed degradation over

time.

6.1.3 Testing

During inference, tracking follows the same protocols as in [Bertinetto et al., 2016a],
[Li et al., 2018]. The static template features of the target object are computed once
at the first frame. The dynamic template features are updated every 70 frames and
interpolated with the static template features. These features are combined with the
search image features in the correlation modules, regression, and classification heads
to produce the final output.

6.1.4 Smartphone-based Implementation

The models are trained offline using PyTorch[Paszke et al., 2019] and then ported an
optimal model snapshot to mobile devices for inference. All models are executed in
float16 mode for faster execution comparing to float32 computations. The precision
loss of float16 computations is negligible, we observe that the results differ only by
±0.5% depending on the experiment, so all metrics presented in comparisons with
SOTA are the same when inferenced on mobile. We use Core ML [Core ML n.d.]
framework to run trackers on iPhone devices. Core ML is a machine learning API
from Apple that optimizes on-device neural network inference by leveraging the
CPU, GPU and Neural Engine. For Android devices, we employ TensorFlow Lite
[Abadi et al., 2015] which is an open source deep learning framework for on-device
inference from Google supporting execution on CPU, GPU and DSP.

6.2 Online Efficiency Benchmark

Figure 6.1 summarizes the online benchmark results on iPhone 8. The upper part of
the plot demonstrates the degradation of inference speed over time. We observe that
our tracker and STARK-Lightning [Yan et al., 2021d] backbone do not change infer-
ence speed over time, while LightTrack [Yan et al., 2021c] and OceanNet [Zhang et
al., 2020a] start to process inputs slower. Also, transformer network STARK-S50 de-
grades significantly and becomes 20% slower after 30 minutes of runtime. The lower
part of the figure demonstrates energy efficiency of our tracker compared to other
trackers and its negligible impact on device thermal state. STARK-S50 and Ocean
overheat device after 10 minutes of execution, LightTrack slightly elevates temper-
ature after 24 minutes, STARK-Lightning overheats device after 27 minutes, while

Chapter 6. Experiments 19

FIGURE 6.2: Offline Efficiency Benchmark: mean FPS on a range of
mobile GPU architectures.

our tracker keeps device in a low temperature. Moreover, Ocean with a lightweight
backbone FBNet [Wu et al., 2019] is still consuming lots of energy and produces heat
due to complex and inefficient decoder.

Additionally, we observe that STARK-Lightning reaches high thermal state with-
out performance drop. Modern devices have a special hardware, called Neural Pro-
cessing Unit (NPU), designed specifically for neural network inference. The Ap-
ple Neural Engine (ANE) is a type of NPU that accelerates neural network opera-
tions such as convolutions and matrix multiplies. STARK-Lightning is a transformer
based on simple matrix multiplications that are efficiently computed by ANE and
thus do not slow down over time.

6.3 Offline Efficiency Benchmark

We summarize the results of offline benchmark in Figure 6.2. We observe that our
tracker achieves 1.6 times higher FPS than LightTrack [Yan et al., 2021c] on iPhone
7 (A10 Fusion and PowerVR Series7XT GPU), iPhone 8 (A11 Bionic with 3-core
GPU) and Google Pixel 4 (Snapdragon 855 and Adreno 640 GPU). Furthermore, our
tracker is more than 4 times faster than LightTrack on iPhone 11 (A11 Bionic with 4-
core GPU). our tracker achieves more than 10 times faster inference than OceanNet
[Zhang et al., 2020a] and STARK [Yan et al., 2021b] on all aforementioned mobile de-
vices. Such low inference time makes our tracker a very cost-efficient candidate for
use in resource-constrained applications. We observe that LightTrack cannot achieve
real-time (more than 30 FPS) inference speed on Apple iPhone 7. In contrast, our
tracker secures real-time inference time on all mobile devices in scope. The real-time
speed of the proposed tracker allows it to be efficiently integrated into applications
that run on edge devices with limited computational resources.

Chapter 6. Experiments 20

SiamFC++ SiamRPN++ SiamRPN++ ATOM KYS Ocean STARK STARK LightTrack Our
(GoogleNet) (MobileNet-V2) (ResNet-50) (offline) (S50) (lightning)

[Xu et al., 2020] [Li et al., 2019a] [Li et al., 2019a] [Danelljan et al., 2019] [Bhat et al., 2020] [Zhang et al., 2020a] [Yan et al., 2021b] [Yan et al., 2021d] [Yan et al., 2021c]
EAO ↑ 0.227 0.235 0.239 0.258 0.274 2⃝ 0.290 1⃝ 0.270 3⃝ 0.226 0.240 0.270 3⃝

Accuracy ↑ 0.418 0.432 0.438 0.457 0.453 0.479 1⃝ 0.464 3⃝ 0.433 0.417 0.471 2⃝
Robustness ↑ 0.667 0.656 0.668 0.691 0.736 1⃝ 0.732 2⃝ 0.719 3⃝ 0.627 0.684 0.708

iPhone 11 FPS ↑ 7.11 6.86 3.49 - - 7.72 11.2 87.41 2⃝ 49.13 3⃝ 205.12 1⃝
Parameters (M) ↓ 12.71 11.15 53.95 - - 25.87 23.34 2.28 3⃝ 1.97 2⃝ 1.37 1⃝

Memory (MB) ↓ 24.77 21.63 103.74 - - 102.81 109.63 6.28 3⃝ 4.11 2⃝ 3.00 1⃝
Peak memory (MB) ↓ 34.17 31.39 192.81 - - 119.51 295.97 30.69 3⃝ 9.21 1⃝ 10.10 2⃝

(A) VOT-ST2021 [Kristan et al., 2016]
SiamRPN++ ATOM KYS Ocean STARK LightTrack Our
(ResNet-50) (offline) (S50)

[Li et al., 2019a] [Danelljan et al., 2019] [Bhat et al., 2020] [Zhang et al., 2020a] [Yan et al., 2021b] [Yan et al., 2021c]
Average Overlap ↑ 0.518 0.556 0.636 2⃝ 0.592 0.672 1⃝ 0.611 0.619 3⃝

Success Rate ↑ 0.618 0.634 0.751 2⃝ 0.695 0.761 1⃝ 0.710 0.722 3⃝

(B) GOT-10K [Huang, Zhao, and Huang, 2021]
SiamRPN++ ATOM KYS Ocean STARK STARK LightTrack Our
(ResNet-50) (offline) (S50) (lightning)

[Li et al., 2019a] [Danelljan et al., 2019] [Bhat et al., 2020] [Zhang et al., 2020a] [Yan et al., 2021b] [Yan et al., 2021d] [Yan et al., 2021c]
Success Score ↑ 0.503 0.491 0.541 3⃝ 0.505 0.668 1⃝ 0.586 2⃝ 0.523 0.535

Precision Score ↑ 0.496 0.483 0.539 0.517 0.701 1⃝ 0.579 2⃝ 0.515 0.545 3⃝
Success Rate ↑ 0.593 0.566 0.640 0.594 0.778 1⃝ 0.690 2⃝ 0.596 0.641 3⃝

(C) LaSOT [Fan et al., 2021]
SiamRPN++ ATOM KYS Ocean STARK STARK LightTrack Our
(ResNet-50) (offline) (S50) (lightning)

[Li et al., 2019a] [Danelljan et al., 2019] [Bhat et al., 2020] [Zhang et al., 2020a] [Yan et al., 2021b] [Yan et al., 2021d] [Yan et al., 2021c]
Success Score ↑ 0.596 0.592 0.634 2⃝ 0.573 0.681 1⃝ 0.628 3⃝ 0.591 0.614

Precision Score ↑ 0.720 0.711 0.766 3⃝ 0.706 0.825 1⃝ 0.754 0.730 0.768 2⃝
Success Rate ↑ 0.748 0.737 0.795 3⃝ 0.728 0.860 1⃝ 0.796 3⃝ 0.743 0.788

(D) NFS [Kiani Galoogahi et al., 2017]

TABLE 6.1: Comparison with the state-of-the-art trackers on common
benchmarks. 1⃝, 2⃝ and 3⃝ indicate the top-3 trackers

6.4 Comparison with the state-of-the-art

We compare the proposed tracker to existing state-of-the-art Siamese [Zhang et al.,
2020a; Yan et al., 2021c; Xu et al., 2020; Li et al., 2019a] and DCF [Danelljan et al.,
2019; Bhat et al., 2019; Bhat et al., 2020] trackers in terms of model accuracy, robust-
ness and speed. We evaluate performance on two short-term tracking benchmarks:
VOT-ST2021[Kristan et al., 2016], GOT-10k[Huang, Zhao, and Huang, 2021] and two
long-term tracking benchmarks: LaSOT[Fan et al., 2021], NFS[Kiani Galoogahi et al.,
2017].

6.4.1 VOT-ST2021 Benchmark

Table 6.1a reports results on VOT-ST2021. The proposed tracker shows near state-
of-the-art performance, outperforming LightTrack [Yan et al., 2021c] and STARK-
Lightning [Yan et al., 2021d] by 3% and 4.4% EAO, respectively, while having higher
FPS. Also, it is only 2% behind Ocean, yet having more than 18 times fewer pa-
rameters than Ocean tracker and being 26 times faster at model inference time on
iPhone 11. Our tracker demonstrates the same EAO as transformer network STARK-
S50 [Yan et al., 2021b] having much fewer parameters and being more efficient on
mobile.

Table 6.1a additionally reports model weights memory consumption and peak
memory consumption during the forward pass in megabytes. LightTrack and STARK-
Lightning model sizes are 4.11MB and 6.28MB, respectively, while our method con-
sumes only 3MB. During the forward pass, the peak memory usage of our tracker is
10.1MB, LightTrack consumes slightly less (9.21MB) by using fewer filters in bound-
ing box regression convolutional layers, and STARK-Lightning has 30.69MB peak
memory usage due to memory-consuming self-attention blocks.

Chapter 6. Experiments 21

6.4.2 GOT-10K Benchmark

Our tracker achieves better results than LightTrack [Yan et al., 2021c] and Ocean
[Zhang et al., 2020a], while using 1.4 and 19 times fewer parameters, respectively.
Additionally, our method outperforms ATOM [Danelljan et al., 2019], but it is behind
STARK-S50 [Yan et al., 2021b] and KYS [Bhat et al., 2020].

6.4.3 LaSOT Benchmark

As presented in Table 6.1c, the Precision Score of our tracker is 3% and 2.8% supe-
rior than LightTrack [Yan et al., 2021c] and Ocean [Zhang et al., 2020a], respectively.
STARK-S50 is a transformer based tracker and performs better on long term tracking
tasks like in LaSOT benchmark, resulting in higher scores than the proposed method,
but as reported in Table 6.1a STARK-S50 is much slower and has more parameters.

6.4.4 NFS Benchmark

Table 6.1d presents that our tracker achieves better Success Score (61.4%), being 2.3%
and 4.1% higher than LightTrack [Yan et al., 2021c] and Ocean [Zhang et al., 2020a],
respectively. The proposed tracker lags behind larger networks like STARK-S50 and
KYS similarly to aforementioned benchmarks.

6.5 Qualitative Comparison

The comparison of our tracker with the state-of-the-art methods is presented in Fig-
ure 6.3. We display the tracking results of every 200 frames (0 - 1000) on the chal-
lenging cases from LaSOT benchmark where the object appearance and scale change
throughout the video. The figure demonstrates that our method is more stable than
Ocean [Zhang et al., 2020a] and STARK-Lightning [Yan et al., 2021d], while demon-
strating slightly worse bounding box predictions than the transformer based tracker
STARK-S50 [Yan et al., 2021b], which is more stable in a long-term tracking and more
robust to the change of visual appearance.

6.6 Ablation Study

Component EAO↑ Robustness↑ iPhone 11 FPS↑
1 baseline 0.236 0.672 122.19
2 + lower spatial resolution 0.234 0.668 208.41
3 + pixel-wise fusion block 0.264 0.683 207.72
4 + dynamic template update 0.270 0.708 205.12

TABLE 6.2: Ablation study on VOT-ST2021 [Kristan et al., 2016].

To verify the efficiency of the proposed method, we evaluate the effects of its
different components on the VOT-ST2021 [Kristan et al., 2016] benchmark, as pre-
sented in Table 6.2. The baseline model (#1) consists of the FBNet backbone with an
increased spatial resolution of the final stage, followed by a plain pixel-wise cross-
correlation operation and bounding box prediction network. The performance of
the baseline is 0.236 EAO and 0.672 Robustness. In #2, we set the spatial resolution
of the last stage to its original value and observe a negligible degradation of EAO
while significantly increasing FPS on mobile. Adding our pixel-wise fusion blocks

Chapter 6. Experiments 22

FIGURE 6.3: Qualitative comparison of the proposed tracker with
state-of-the-art methods on challenging cases of variations in tracked
object appearance from LaSOT benchmark [Fan et al., 2021]. Green:
Ground Truth, Red: our tracker, Yellow: STARK Lightning, Blue:

Ocean, Purple: Stark-ST50.

(#3) brings a 3% EAO improvement. This indicates that combining search image fea-
tures and correlation feature maps enhances feature representability and improves
tracking accuracy. Furthermore, the proposed dynamic template update module (#4)
also brings an improvement of 0.6% in terms of EAO and 2.5% Robustness, showing
the effectiveness of this module. The pixel-wise fusion block and dynamic template
update brought a significant accuracy improvements while keeping almost the same
inference speed. Note that the EAO metrics is calculated w.r.t. bounding box tracking.

We additionally compare Focal Loss [Lin et al., 2017] with regular Cross-Entropy
as a classification loss term. Table 6.3 demonstrates that our method equipped with
Focal Loss (#1) performs better in terms of EAO and Robustness than the same
model with the Cross-Entropy loss (#2). Focal Loss addresses the issue of foreground-
background class imbalance in the classification score map.

Component EAO↑ Robustness↑
1 our method 0.270 0.708
2 Cross Entropy loss 0.267 0.704

TABLE 6.3: Ablation for Focal and Cross Entropy losses on VOT-
ST2021 [Kristan et al., 2016].

23

Chapter 7

Conclusions

This paper approaches the problem of efficient visual object tracking on mobile de-
vices. We analyzed the related work in the field and outlined the drawbacks of
existing state-of-the-art algorithms that limit the use of tracking on mobile devices.
Previous works have not paid attention to the efficiency of their solution but con-
centrated on accuracy instead, resulting in complex neural network architectures.
This work proposes a novel ideas and efficiency evaluation protocol to tackle these
problems and designs a new tracking algorithm that meets the strict requirements
for inference on mobile devices while showing close to state-of-the-art results on
popular academic benchmarks (see Section 6.2 and Section 6.4).

7.1 Future Work

As we have shown in Section 6.4, the proposed method outperforms many SOTA
algorithms in terms of both accuracy and inference speed on short-term tracking
benchmarks. More sophisticated algorithms like STARK [Yan et al., 2021b] are more
robust to visual appearance change and occlusions during the long-term tracking
due to more complex feature correlation blocks and more computationally expen-
sive online update modules. STARK utilizes a transformer network to capture long-
distance pixel relation and works well in capturing temporal information. We sug-
gest further investing in designing a lightweight template update module by com-
bining the proposed lightweight network with a more advanced temporal module.

24

Bibliography

(N.d.[b]). In: ().
Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. URL: https://www.tensorflow.
org/.

Bertinetto, Luca et al. (2016a). “Fully-convolutional siamese networks for object track-
ing”. In: European conference on computer vision. Springer, pp. 850–865.

Bertinetto, Luca et al. (2016b). “Staple: Complementary learners for real-time track-
ing”. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1401–1409.

Bhat, Goutam et al. (2019). “Learning discriminative model prediction for track-
ing”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6182–6191.

— (2020). “Know Your Surroundings: Exploiting Scene Information for Object Track-
ing”. In: CoRR abs/2003.11014. arXiv: 2003.11014. URL: https://arxiv.org/
abs/2003.11014.

Buslaev, Alexander et al. (2020). “Albumentations: Fast and Flexible Image Augmen-
tations”. In: Information 11.2. ISSN: 2078-2489. DOI: 10.3390/info11020125. URL:
https://www.mdpi.com/2078-2489/11/2/125.

Carion, Nicolas et al. (2020). End-to-End Object Detection with Transformers. arXiv:
2005.12872 [cs.CV].

Chen, Yiwei et al. (2020a). “AFOD: Adaptive Focused Discriminative Segmentation
Tracker”. In: Computer Vision – ECCV 2020 Workshops. Ed. by Adrien Bartoli and
Andrea Fusiello. Cham: Springer International Publishing, pp. 666–682. ISBN:
978-3-030-68238-5.

Chen, Yukang et al. (2019). “Detnas: Backbone search for object detection”. In: Ad-
vances in Neural Information Processing Systems 32, pp. 6642–6652.

Chen, Zedu et al. (2020b). “Siamese box adaptive network for visual tracking”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6668–6677.

Core ML (n.d.). https://developer.apple.com/documentation/coreml.
Danelljan, Martin et al. (2015). “Convolutional features for correlation filter based

visual tracking”. In: Proceedings of the IEEE international conference on computer
vision workshops, pp. 58–66.

Danelljan, Martin et al. (2016). “Beyond correlation filters: Learning continuous con-
volution operators for visual tracking”. In: European conference on computer vision.
Springer, pp. 472–488.

Danelljan, Martin et al. (2017). “Eco: Efficient convolution operators for tracking”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 6638–6646.

Danelljan, Martin et al. (2019). “Atom: Accurate tracking by overlap maximization”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 4660–4669.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/2003.11014
https://arxiv.org/abs/2003.11014
https://arxiv.org/abs/2003.11014
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://arxiv.org/abs/2005.12872
https://developer.apple.com/documentation/coreml

Bibliography 25

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee, pp. 248–255.

Duan, Kaiwen et al. (2019). “Centernet: Keypoint triplets for object detection”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–
6578.

Fan, Heng and Haibin Ling (2019). “Siamese cascaded region proposal networks for
real-time visual tracking”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7952–7961.

Fan, Heng et al. (2021). “LaSOT: A High-quality Large-scale Single Object Tracking
Benchmark”. In: Int. J. Comput. Vis. 129.2, pp. 439–461. DOI: 10.1007/s11263-
020-01387-y. URL: https://doi.org/10.1007/s11263-020-01387-y.

Fellbaum, Christiane (1998). WordNet: An Electronic Lexical Database. Bradford Books.
Gao, Ming et al. (2020). “Manifold Siamese Network: A Novel Visual Tracking Con-

vNet for Autonomous Vehicles”. In: IEEE Transactions on Intelligent Transportation
Systems 21.4, pp. 1612–1623. DOI: 10.1109/TITS.2019.2930337.

Guo, Dongyan et al. (2020). “SiamCAR: Siamese fully convolutional classification
and regression for visual tracking”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6269–6277.

Held, David, Sebastian Thrun, and Silvio Savarese (2016). “Learning to track at 100
fps with deep regression networks”. In: European conference on computer vision.
Springer, pp. 749–765.

Henriques, João F et al. (2014). “High-speed tracking with kernelized correlation fil-
ters”. In: IEEE transactions on pattern analysis and machine intelligence 37.3, pp. 583–
596.

Hoffer, Elad and Nir Ailon (2015). “Deep Metric Learning Using Triplet Network”.
In: Similarity-Based Pattern Recognition. Ed. by Aasa Feragen, Marcello Pelillo, and
Marco Loog. Cham: Springer International Publishing, pp. 84–92. ISBN: 978-3-
319-24261-3.

Huang, Lianghua, Xin Zhao, and Kaiqi Huang (2021). “GOT-10k: A Large High-
Diversity Benchmark for Generic Object Tracking in the Wild”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 43.5, pp. 1562–1577. DOI: 10.
1109/TPAMI.2019.2957464.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR, pp. 448–456.

iOS thermal state (n.d.). https://developer.apple.com/documentation/foundation/
processinfo/thermalstate.

Kiani Galoogahi, Hamed et al. (2017). “Need for speed: A benchmark for higher
frame rate object tracking”. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1125–1134.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Koch, Gregory et al. (2015). “Siamese neural networks for one-shot image recogni-
tion”. In.

Kristan, Matej et al. (2016). “A Novel Performance Evaluation Methodology for Single-
Target Trackers”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
38.11, pp. 2137–2155. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2016.2516982.

Kristan, Matej et al. (2020). “The eighth visual object tracking VOT2020 challenge
results”. In: European Conference on Computer Vision. Springer, pp. 547–601.

Law, Hei and Jia Deng (2018). “Cornernet: Detecting objects as paired keypoints”.
In: Proceedings of the European conference on computer vision (ECCV), pp. 734–750.

https://doi.org/10.1007/s11263-020-01387-y
https://doi.org/10.1007/s11263-020-01387-y
https://doi.org/10.1007/s11263-020-01387-y
https://doi.org/10.1109/TITS.2019.2930337
https://doi.org/10.1109/TPAMI.2019.2957464
https://doi.org/10.1109/TPAMI.2019.2957464
https://developer.apple.com/documentation/foundation/processinfo/thermalstate
https://developer.apple.com/documentation/foundation/processinfo/thermalstate
https://doi.org/10.1109/TPAMI.2016.2516982

Bibliography 26

Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu (2016). “Generalizing Pooling
Functions in Convolutional Neural Networks: Mixed, Gated, and Tree”. In: Pro-
ceedings of the 19th International Conference on Artificial Intelligence and Statistics,
pp. 464–472.

Li, Bo et al. (2018). “High Performance Visual Tracking With Siamese Region Pro-
posal Network”. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Li, Bo et al. (2019a). “Siamrpn++: Evolution of siamese visual tracking with very
deep networks”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4282–4291.

Li, Peixia et al. (2019b). GradNet: Gradient-Guided Network for Visual Object Tracking.
arXiv: 1909.06800 [cs.CV].

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common Objects in Context”. In:
ECCV.

Lin, Tsung-Yi et al. (2017). “Focal Loss for Dense Object Detection”. In: 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 2999–3007. URL: http://
openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_
ICCV_2017_paper.pdf.

Ma, Ziang et al. (2020). “RPT: Learning point set representation for Siamese visual
tracking”. In: European Conference on Computer Vision. Springer, pp. 653–665.

Marvasti-Zadeh, Seyed Mojtaba et al. (2021). “Deep learning for visual tracking: A
comprehensive survey”. In: IEEE Transactions on Intelligent Transportation Systems.

Meinhardt, Tim et al. (2021). TrackFormer: Multi-Object Tracking with Transformers.
arXiv: 2101.02702 [cs.CV].

Muller, Matthias et al. (2018). “Trackingnet: A large-scale dataset and benchmark for
object tracking in the wild”. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 300–317.

Nam, Hyeonseob and Bohyung Han (2016). “Learning multi-domain convolutional
neural networks for visual tracking”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 4293–4302.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach et al. Curran Associates, Inc., pp. 8024–8035. URL: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

Peng, Shengyun et al. (2020). “Accurate anchor free tracking”. In: arXiv preprint
arXiv:2006.07560.

Pham, Hieu et al. (2018). “Efficient neural architecture search via parameters shar-
ing”. In: International Conference on Machine Learning. PMLR, pp. 4095–4104.

Real, Esteban et al. (2017). YouTube-BoundingBoxes: A Large High-Precision Human-
Annotated Data Set for Object Detection in Video. arXiv: 1702.00824 [cs.CV].

Ren, Shaoqing et al. (2016). Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. arXiv: 1506.01497 [cs.CV].

Rezatofighi, Hamid et al. (2019). “Generalized Intersection over Union”. In.
Robin, Cyril and Simon Lacroix (2016). “Multi-robot target detection and tracking:

taxonomy and survey”. In: Autonomous Robots 40.4, pp. 729–760.
Shin, Hochul et al. (2019). “Sequential image-based attention network for inferring

force estimation without haptic sensor”. In: IEEE Access 7, pp. 150237–150246.
Sun, Peize et al. (2021). TransTrack: Multiple Object Tracking with Transformer. arXiv:

2012.15460 [cs.CV].

https://arxiv.org/abs/1909.06800
http://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf
https://arxiv.org/abs/2101.02702
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1702.00824
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/2012.15460

Bibliography 27

Tao, Ran, Efstratios Gavves, and Arnold WM Smeulders (2016). “Siamese instance
search for tracking”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1420–1429.

Tian, Zhi et al. (2019). “Fcos: Fully convolutional one-stage object detection”. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 9627–9636.

Vojír, Tomás, J. Noskova, and Jiri Matas (2013). “Robust Scale-Adaptive Mean-Shift
for Tracking”. In: SCIA.

Wang, Guangting et al. (2020). Tracking by Instance Detection: A Meta-Learning Ap-
proach. arXiv: 2004.00830 [cs.CV].

Wang, Qiang et al. (2018). “Learning attentions: residual attentional siamese network
for high performance online visual tracking”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4854–4863.

Wu, Bichen et al. (2019). “FBNet: Hardware-Aware Efficient ConvNet Design via
Differentiable Neural Architecture Search”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang (2013). “Online Object Tracking: A
Benchmark”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Xing, Junliang, Haizhou Ai, and Shihong Lao (2010). “Multiple human tracking
based on multi-view upper-body detection and discriminative learning”. In: 2010
20th International Conference on Pattern Recognition. IEEE, pp. 1698–1701.

Xu, Tianyang et al. (2019). “Learning adaptive discriminative correlation filters via
temporal consistency preserving spatial feature selection for robust visual object
tracking”. In: IEEE Transactions on Image Processing 28.11, pp. 5596–5609.

Xu, Yinda et al. (2020). “SiamFC++: Towards robust and accurate visual tracking
with target estimation guidelines”. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. Vol. 34. 07, pp. 12549–12556.

Yan, Bin et al. (2021a). “Alpha-refine: Boosting tracking performance by precise bound-
ing box estimation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5289–5298.

Yan, Bin et al. (2021b). “Learning spatio-temporal transformer for visual tracking”.
In: arXiv preprint arXiv:2103.17154.

Yan, Bin et al. (2021c). “LightTrack: Finding Lightweight Neural Networks for Object
Tracking via One-Shot Architecture Search”. In: CVPR 2021.

Yan, Bin et al. (2021d). Stark Lightning. https://github.com/researchmm/Stark.
Yang, Kai et al. (2021). “SiamCorners: Siamese Corner Networks for Visual Track-

ing”. In: IEEE Transactions on Multimedia.
Yang, Tianyu and Antoni B. Chan (2018). Learning Dynamic Memory Networks for Ob-

ject Tracking. arXiv: 1803.07268 [cs.CV].
Zhang, Guangcong and Patricio A Vela (2015). “Good features to track for visual

slam”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1373–1382.

Zhang, Lichao et al. (2019). Learning the Model Update for Siamese Trackers. arXiv:
1908.00855 [cs.CV].

Zhang, Zhipeng and Houwen Peng (2019). “Deeper and wider siamese networks for
real-time visual tracking”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4591–4600.

Zhang, Zhipeng et al. (2020a). “Ocean: Object-aware anchor-free tracking”. In: Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXI 16. Springer, pp. 771–787.

https://arxiv.org/abs/2004.00830
https://github.com/researchmm/Stark
https://arxiv.org/abs/1803.07268
https://arxiv.org/abs/1908.00855

Bibliography 28

Zhang, Zhipeng et al. (2020b). “Towards Accurate Pixel-wise Object Tracking by At-
tention Retrieval”. In: arXiv preprint arXiv:2008.02745.

Zhang, Zhongzhou and Lei Zhang (2020). “Hard Negative Samples Emphasis Tracker
without Anchors”. In: Proceedings of the 28th ACM International Conference on Mul-
timedia, pp. 4299–4308.

Zheng, Linyu et al. (2020). “Learning feature embeddings for discriminant model
based tracking”. In: Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XV 16. Springer, pp. 759–775.

Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl (2019). “Objects as points”.
In: arXiv preprint arXiv:1904.07850.

Zhou, Xingyi, Jiacheng Zhuo, and Philipp Krahenbuhl (2019). “Bottom-up object de-
tection by grouping extreme and center points”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 850–859.

Zhu, Chenchen, Yihui He, and Marios Savvides (2019). “Feature selective anchor-
free module for single-shot object detection”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 840–849.

Zhu, Zheng et al. (2018). “Distractor-aware siamese networks for visual object track-
ing”. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–
117.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related Work
	Visual Object Tracking.
	Siamese trackers.
	Anchor-Based Object Trackers
	Anchor-Free Object Trackers
	Online Template Update

	The Proposed Method
	Feature Extraction Network
	Feature Fusion Block
	Classification and Bounding Box Regression Heads
	Online Update Module
	Overall Loss Function

	Evaluation
	Evaluation Metrics
	Benchmarks
	Tracker Efficiency Benchmark

	Training Data
	Experiments
	Implementation Details
	Training
	Preprocessing
	Testing
	Smartphone-based Implementation

	Online Efficiency Benchmark
	Offline Efficiency Benchmark
	Comparison with the state-of-the-art
	VOT-ST2021 Benchmark
	GOT-10K Benchmark
	LaSOT Benchmark
	NFS Benchmark

	Qualitative Comparison
	Ablation Study

	Conclusions
	Future Work

	Bibliography

