
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Improved keyboard layout for users with
movement disorders

Author:
Zenovii Popeniuk

Supervisor:
Mr. Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
https://www.linkedin.com/in/zenovii-popenyuk-a0b893172/
https://www.linkedin.com/in/oleg-farenyuk-9625951b/?originalSubdomain=ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Zenovii Popeniuk, declare that this thesis titled, “Improved keyboard layout for
users with movement disorders” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“We need to make every single thing accessible to every single person with a disability.”

Stevie Wonder

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Improved keyboard layout for users with movement disorders

by Zenovii Popeniuk

Abstract

In this paper, I will describe the implementation of an improved keyboard layout.
With it, the user will be able to set up the keyboard layout as user wants. I will de-
scribe used technologies, the architecture and the implementation of the program,
and alternative solutions. Also, I will cover AI autocorrection and AI autocomple-
tion topics.. . .

Code could be found here: Improved keyboard layout github

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
First of all I want to thank my supervisor Oleg Farenyuk and Galyna Butovych for
mentoring me and for all great knowledge I gathered over the years. . . .

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Problem . 1
1.4 Solution . 2
1.5 Goal . 2

2 Technologies 3
2.1 Qt . 3

2.1.1 Main Qt Modules . 3
2.2 PyQt5 . 3

2.2.1 Used PyQt5 technologies . 3
2.3 PyTorch . 4
2.4 Python Keyboard Library . 4

2.4.1 Used Python Keyboard technologies 4

3 Solution Overview 6
3.1 Configuration Example File . 6

3.1.1 Loading Application Hint . 7
Loading Application Hint Implementation 7

3.2 Keys Remap . 7
3.2.1 Configuration file . 7
3.2.2 Overview . 8
3.2.3 Implementation . 8
3.2.4 Hints . 8

3.3 Shorcuts Remap . 10
3.4 Shorthands . 11

4 AI Correction and Completion 12
4.0.1 Configuration file . 12
4.0.2 Overview . 12
4.0.3 Dataset . 12
4.0.4 Inputs . 12
4.0.5 Semi-character RNN Model . 13
4.0.6 Training . 13
4.0.7 Conclusions . 14

vi

4.0.8 Usage implementation . 14
AI Completion Hints . 14
AI Correction Hints . 15

5 Application architecture 17
5.1 Overview . 17
5.2 Patterns . 17
5.3 Improved Keyboard Layout Components 17

6 Alternative Solutions 19
6.1 Logitech Craft . 19
6.2 PowerToys . 19
6.3 KeyTweak . 20
6.4 Microsoft Keyboard Layout Creator . 20
6.5 AutoHotkey . 20

7 Testing 22
7.1 Testing usage of computer resources . 22
7.2 Testing usage of computer resources . 23

8 Conclusion 24

Bibliography 25

vii

List of Figures

3.1 Loading Application Indicator . 7
3.2 Key Remap Hint "a" active . 9
3.3 Key Remap Hint "h" active . 9
3.4 Key Remap Hint "f" active . 9

4.1 Semi-character RNN Model . 13
4.2 Semi-character RNN Model accuracy . 13
4.3 Semi-character RNN Model losses . 14
4.4 Button Remap Hint . 15

viii

List of Tables

4.1 AI Correction Hints . 16

7.1 Testing usage of computer resources . 23

ix

List of Abbreviations

ES Essential Tremor
GUIs Graphical User Interfaces
OS Operating System
PyQt5 Python Qt 5
PC Personal Computer
AI Artificial Intelligence
DL Deep Learning
seq2seq Sequence to Sequence
CNN Convolutional Neural Network
RNN Recurrent Neural Network
scRNN Semi-character Recurrent Neural Network

1

Chapter 1

Introduction

1.1 Context

Last year, I with Yevhenii Molodtsov, Mariya Hirna, Danylo - Ivan Kolinko and Nazariy
Bachynsky took part in Microsoft The Next AI Guardians. We took up this tour-
nament with the concept of the Smart Keyboard, which helps users customize the
keyboard as they need. Participating in this competition, we made a Proof of Con-
cept keyboard remap program. But then we focused on AI models for text correction
and completion and a business model for our program. Unfortunately, the program
contained many bugs; the AI model runs on the local server. We did not implement
many ideas.

1.2 Motivation

We have friends with cerebral palsy and essential tremors who suffer from typing.
Every day they spend much time entering the text correctly. So that we want to learn
how people with movement disorders deal with keyboard input, we need this to
better understand their pain we can remove and the most universal and convenient
way to do this. This research was done in the scope of the tournament.We conducted
more in-depth research with each and identified the following insights:

• “It can be challenging to reach the top row of keys.”

• “I make many misclicks. I hit keys near to the necessary key.”

• “It is hard to hit the key. However, if I hit, there are no problems with pressing and
holding.”

• “I learned to type on a screen keyboard using a mouse.”

1.3 Problem

Interaction with the computer is an essential part of modern life. Despite the widespread
use of touch screens and speech-to-text technologies, keyboards are the fundamental
input device for many users. However, there are users with movement disabilities
who find it difficult to type on the keyboard. According to previous research, more
than 280 million people globally suffer from Essential Tremor(Overview of essential
tremor). Unfortunately, I have not found how many of them are active PC users, but
since their illness does not affect their desire to use a computer, I estimate at least

Chapter 1. Introduction 2

14 million. The most challenging task for them is to hit the needed keys on the key-
board. For example, when the user wants to click the “T”, “G”, “R”, “Y”, “5” or “6”
key could be misclicked.

1.4 Solution

I suggest a method to reduce the number of keys with which users need to interact.
I provide full-fledged access to keyboard capabilities. The method is based on key-
board macros encoding required input sequences by the combinations convenient
for each specific user. The typical macrouses repeat presses of some key to input it or
any nearby key. The corresponding software package was developed implementing
intelligence keys remapping and on-screen hints to the users during typing. Also,
each user could create a new hotkey or remap existing ones. I also want to imple-
ment an auto-change of remapping following the active session of the program. This
auto-change would allow the user to create a more unified list of hotkeys. Also, we
developed AI-based auto-completion and auto-correction tailored for specific users
as part of the package.

1.5 Goal

The main goal of this work is to make a fully customizable application, which allows
user remapping for maximum flexibility. Since I work with data entry, the program
must have minimal divisions between remap processing. I also want to provide
users with ai correction and completion in real-time. The program should have the
ability to set up from UI and JSON file script. In addition, it should be an open-
source project written with python to maximize the ability each user adds needed
for his functionality.

3

Chapter 2

Technologies

2.1 Qt

Qt is a cross-platform widget toolkit for creating graphical user interfaces(GUIs).
The programmers could create a new application with it.

2.1.1 Main Qt Modules

• Qt Core
It contains tools for object communication, different qt object properties con-
stants, and trees of hierarchy.

• Qt GUI
It provides classes for 2D graphics, buttons, images, movies, text, events han-
dling and other. This classes could be used for setup widgets from Qt Widgets.

• Qt Widgets
Provides classes for creating application GUI: layouts, Labels, different but-
tons, checkboxes and others .

It is also important to mention a powerful tool - Qt designer, with which developers
can easily and quickly generate the GUI they need. For example, they could easily
create a new button and then bind its click event to C++ functions or default one like
an exit from the application. Similarly, many things can be implemented without
code, such as changing the color when a key is pressed. Programmers could see
what they have and what they would have in real-time.

2.2 PyQt5

PyQt5 is a wrapper over cross-platform C ++ Qt version 5. It provides alternative
application development for Qt. Also, it includes many library bindings of original
Qt. With it, I have written remap and AI hints for users.

2.2.1 Used PyQt5 technologies

I used the next functions of this library:

• QApplication
class that manages GUI and main application settings

Chapter 2. Technologies 4

• QMainWindow
class that manages main application window and its settings

• pyqtSignal, pyqtSlot, QObject
This could be used to implement communication between different objects and
threads.
pyqtSignal - defines new qt signal.
pyqtSlot - decorates a python method that could be connected to pyqtSignal.
QObject - base Qt object.

• QHBoxLayout, QVBoxLayout
Class to construct horizontal or vertical box layout objects.

• QMovie
class for playing movies

2.3 PyTorch

Pytorch is a free, cross-platform and open-source machine learning library. Most of
the deep learning models are running on it. This library allows users to run models
on CPU and GPU. With GPU, it speedup model training and running very much.
We use this library for running our own correction words model. We check if GPU
is available, and then if yes, then we run the model on it. If not, then we run model
on CPU.

2.4 Python Keyboard Library

Python keyboard library is a cross-platform library that allows users to control the
keyboard fully. I created few approaches that allow me to remap keys, show hints
for remapped keys, hook keys, simulate key events, write information to buffer, and
create new shorthands. Under the hood, this library uses the Win32 API library
through the ctypes module. It is using the windows kernel function to create proper
events and a proper hook for these events.

2.4.1 Used Python Keyboard technologies

I used the next functions of this library:

• keyboard.hook_key(key, callback, suppress=False)
This function hook key to Callback. If suppress is True, then another program
would receive this key when it would be pressed.

• keyboard.write(text, delay=0, restore_state_after=True, exact=None)
Simulates text input to OS.

Chapter 2. Technologies 5

• keyboard.send(hotkey, do_press=True, do_release=True)
Simulates hotkey send. If do_press False, then send would not generate press
event. If do_release is False, then send would not generates release event.

• keyboard.wait(hotkey=None, suppress=False, trigger_on_release=False)
It waits until hotkey would be pressed. If suppress is True, then another pro-
gram would receive this key when it would be pressed. If trigger_on_release
is True, it will wait until hotkey would be realized.

• keyboard.add_hotkey(hotkey, callback, args=(), suppress=False, timeout=1, trig-
ger_on_release=False)
Callback would be invoked when hotkey would be pressed. If suppress is
True, then another program would receive this key when it would be pressed.
If trigger_on_release is True, it will wait until hotkey would be realized.

• keyboard.add_abbreviation(source_text, replacement_text, match_suffix=False,
timeout=2)
add new abbreviation. When the user input source text and press space, then
source text would be changed by replacement text

• keyboard.unhook_all
Unhook all new events.

6

Chapter 3

Solution Overview

I have implemented an application for remapping keys. This application reads the
JSON file and configures the remap relative to the settings.

3.1 Configuration Example File

I created configuration.json architecture to allow the user to create his unique key-
board setup:

0 {
1 "layouts": [
2 {
3 "name": "Layout 1",
4 "shortcuts": {
5 // This is described in the Button Remap section.
6 },
7 "shorthands": {
8 // This is described in the Shorthands section.
9 },

10 "key_remap_configuration": {
11 "key_remap_list": {
12 // This is described in the Shortcuts Remap section
13 },
14 "max_time_delay_for_multiple_press": 1,
15 "key_remap_time_delay_for_long_press": 1,
16 "hints": true
17 },
18 "ai": {
19 "correction": true,
20 "completion": true
21 }
22 },
23 {
24 "name": "Layout 2",
25 "activate_program": "chrome.exe"
26 }
27]
28 }

Chapter 3. Solution Overview 7

Users could create few layouts for the keyboard to make it more flexible for different
programs. For example, there is another layout for chrome; and there is another
layout for Visual Studio Code. This solves the problem when the two programs
have different shortcuts for one command. Switching between these layouts could
be done using shortcuts or by assigning a program to activate the layout.

3.1.1 Loading Application Hint

Since the improved keyboard layout takes time to launch, I have added a loading
hint so that the user understands whether the application is running or not.

FIGURE 3.1: Loading Application Indicator

Loading Application Hint Implementation

For this implementation, I created QLabel and QMovie to display loading.gif. After
that, we started gif animation. For QLabel, I set the property that this label is always
on top and the window is frameless so that users only see the gif without application
window.

3.2 Keys Remap

3.2.1 Configuration file

0 "key_remap_configuration": {
1 "key_remap_list": {
2 "a": [
3 "a",
4 "h",
5 "f",
6 "g"
7],
8 "z": [
9 "z",

10 "r",
11 "e",
12 "f"
13]
14 },
15 "max_time_delay_for_multiple_press": 1,
16 "key_remap_time_delay_for_long_press": 1,
17 "hints": true
18 }

Chapter 3. Solution Overview 8

3.2.2 Overview

With key remap, the user could remap any button to any other button so that there
would be few keys on one. Let us suppose that the user remapped "a", "h", "f" and
"g" too alike in the configuration file, then when "a" would-be pressed, on the screen
would be a hint with remapped button if hints are enabled. If "a" would be pressed
two times, "a" would be changed on "h", if three times, then "f" and so on(See proper
hint image). This method is first. The second is to press key "a" and wait until it
would be changed to need character. The hint would be the same.

max_time_delay_for_multiple_press - is the maximum time delay between key presses
on the same button to change the active button to next.

key_remap_time_delay_for_long_press - is the minimum time delay between key
clamping to change button to next.

Hints - if true, then it shows hints. If no, then hint would not be shown.

3.2.3 Implementation

1 button = KeyButton(key, keymap["key_remap_list"][key],
2 max_time_delay_for_multiple_press,
3 key_remap_time_delay_for_long_press)
4 keyboard.hook_key(key, button.hook_press, True)

With keyboard.hook_key I hooked remapped keys with KeyButton. KeyButton is
a class that is responsible for the logic of the key remapping. When the key is
pressed, the event would be generated and sent to button.hook_press. Then Key-
Button would check if there is a need to activate the next character. If yes, then the
next character would be activated. For activate, button KeyButton sends backspace
and new character as a keyboard event. The hint would show a new current. Imple-
mentation:

1 keyboard.send(’backspace ’)
2 keyboard.send(self.keys[self.current_key])
3 self.hint.activate_button(self.current_key)
4

5 class KeyHint:
6 ...
7 def activate_button(self, index):
8 self.buttons[self.current_button].setStyleSheet(

self.nonActiveButton)
9 self.current_button = index

10 self.buttons[self.current_button].setStyleSheet(
self.activeButton)

11 self.current_key = (self.current_key + 1) % len(
self.keys)

3.2.4 Hints

Chapter 3. Solution Overview 9

FIGURE 3.2: Key Remap Hint "a" active

FIGURE 3.3: Key Remap Hint "h" active

FIGURE 3.4: Key Remap Hint "f" active

Chapter 3. Solution Overview 10

3.3 Shorcuts Remap

0 "shortcuts": {
1 "ctrl+insert": {
2 "mode": "shortcut",
3 "value": "ctrl+c"
4 },
5 "shift+insert": {
6 "mode": "shortcut",
7 "value": "alt+c"
8 },
9 "alt+w": {

10 "mode": "shorthand",
11 "value": "Hello world"
12 },
13 "ctrl+2": {
14 "mode": "activate_layout",
15 "value": "Layout 2"
16 },
17 "ctrl+1": {
18 "mode": "run_program",
19 "value": "chrome.exe"
20 },
21 "ctrl+5": {
22 "mode": "insert_suggestion_word",
23 "value": ""
24 },
25 "ctrl+i": {
26 "mode": "insert_suggestion_sentence",
27 "value": ""
28 },
29 "ctrl+4": {
30 "mode": "clear_ai_sentence",
31 "value": ""
32 },
33 "ctrl+3": {
34 "mode": "clear_ai_word",
35 "value": ""
36 }
37 }

To implement it I used proper lambda function and keyboard.hook_key. But for
different modes there are different commands:

• shortcut mode
Simple shortcuts remap

• shorthand mode
Simple insert custom user string

Chapter 3. Solution Overview 11

• run_program mode
Run program with name equel value

• activate_layout mode
Activate another keyboard layout

• insert_suggestion_word mode
Insert suggestion ai complete word

• insert_suggestion_sentence mode
Insert suggestion ai corrector sentence

• clear_suggestion_word mode
Clear suggestion word to prevent false completion

• clear_suggestion_sentence mode
Clear suggestion ai complete sentence to prevent false correction

3.4 Shorthands

0 {
1 "shorthands": {
2 "@@": "zenovij.popenyuk@gmail.com",
3 "_phone_": "phone example"
4 }
5 }

This is the easiest part, as it is essentially just using add_abbreviations from the key-
board library. If the user inputs some shorthand and then presses the space button,
then a whole phrase would be inserted. Implementation:

0 keyboard.add_abbreviation(abbreviation, abbreviations[
abbreviation])

12

Chapter 4

AI Correction and Completion

4.0.1 Configuration file

0 {
1 "ai": {
2 "correction": true,
3 "completion": true
4 }
5 }

4.0.2 Overview

Danylo - Ivan Kolinko developed few deep learning(DL) models for text correction
problem:

• semi-character RNN classification

• semi-character RNN regression

• character CNN

• seq2seq approach

We tested these models and found that semi-character RNN with words classifica-
tion is the best for us, as it has the best accuracy and does not use many computer
resources during keyboard input. So that we would describe only this model, but
Github: Comparing spell correction approaches contains more information about other
models.

4.0.3 Dataset

Our problem is relatively narrow, so it became clear that it is necessary to create the
dataset containing random errors and user misclicks. For this purpose, Danylo - Ivan
Kolinko used books from Project Gutenberg as the base dataset for generating a target
dataset with KeyboardAugmenter, which simulates user misclicks.

4.0.4 Inputs

Our model accepts vectors that consist of three sub-vectors embeddings: two vectors
with one-hot embeddings of the first and last characters in the word. The last sub-
vector is the count of each character in the middle.

Chapter 4. AI Correction and Completion 13

4.0.5 Semi-character RNN Model

The scRNN was initially introduced in the Robsut Wrod Reocginiton via Semi-Character
Recurrent Neural Network. The authors of the original paper chosen two stacked
LSTMs with a fully connected layer on top. Softmax and CrossEntropy is used as
a loss function since the problem formulated as classification word to word. Danylo
- Ivan Kolinko created a different method, which is to use as a target, not the word
itself but its embedding in the k dimensional space.

FIGURE 4.1: Semi-character RNN Model

4.0.6 Training

Semi-character RNN was trained with a target dataset where 40 percents of the
words were contaminated. Some characters had either been removed in these sen-
tences, some new characters have been added or interchanged.

FIGURE 4.2: Semi-character RNN Model accuracy

Chapter 4. AI Correction and Completion 14

FIGURE 4.3: Semi-character RNN Model losses

4.0.7 Conclusions

We decided that the scRNN classification performs the best and shows an accuracy
of 92.7. We used it as the primary model that corrects user input data.

4.0.8 Usage implementation

AI Completion Hints

If the user includes ai completion, the application starts to listen to each user char-
acter input. He adds new letters and tries to predict the current word.

0 def start_listen(self):
1 for letter in get_default_keyboard_layout ():
2 keyboard.hook_key(letter, self.on_press, False)
3

4 keyboard.hook_key(’backspace ’, self.on_backspace, False
)

5 keyboard.hook_key(’space ’, self.on_space, False)
6

7 for character in get_stop_characters ():
8 keyboard.hook_key(character, self.

on_stop_character_press, False)

When the user clicks, character AI Supporter sends this character to the scRNN and
gets the predicted word from the model.

0 def add_letter_and_predict(self, letter):
1 self.last_word += letter
2 return self.predict(self.last_word)

When the user clicks, character AI Supporter sends this character to the scRNN and
gets the predicted word from the model.

0 def add_letter_and_predict(self, letter):

Chapter 4. AI Correction and Completion 15

1 self.last_word += letter
2 return self.predict(self.last_word)

If the user presses a specific shortcut, then the predicted world would be inserted.
b is backspace.

0 keyboard.write(’\b’ * (len(self.word)+1) + self.suggestion
+ " ")

FIGURE 4.4: Button Remap Hint

AI Correction Hints

The same mechanism is used for ai corrector, but AI Supporter just saves inputted
characters by the user during user input. And then, when the user presses a specific
shortcut, ut sends a sentence to model and get corrected. Then it blocks all input
and waits until the user would choose to need words. The user could change with
’up’ and ’down buttons. After that, when user would press ’esc’ the chosen worlds
would be inserted.

0 // add new character to sentence
1 if self.is_correction:
2 self.sentence += self.current_character

0 def insert_suggestion_sentence(self):
1 // correct self.sentence
2 words = re.findall(r’\w+’, self.sentence)
3 words_with_punct = re.findall(r"[\w’]+|[.,!?;]", self.

sentence)
4

5 // correct words with model
6 corrected_sentence = self.corrector.correct(words)
7 corrected_words = corrected_sentence.split(’ ’)
8

9 ...
10 // show user hints
11 chosen = setup_hint(self.correction_hint, to_show_hint)

0 // show hints and get right corrected words
1 def setup_hint(keyboard_hints, hints):
2 // show hints
3 keyboard_hints.set_hints(hints)

Chapter 4. AI Correction and Completion 16

TABLE 4.1: AI Correction Hints

4 keyboard_hints.window_show ()
5 // observe needed buttons
6 key_down = keyboard.hook_key ("down", keyboard_hints.

activate_next_button, suppress=True)
7 key_up = keyboard.hook_key ("up", keyboard_hints.

activate_prev_button, suppress=True)
8 key_enter = keyboard.hook_key ("enter", keyboard_hints.

set_active, suppress=True)
9

10 // wait for escape key
11 keyboard.wait("esc", suppress=True)
12 keyboard_hints.window_hide ()
13 keyboard_hints.choosenButtons.clear()
14

15 // unhook unneeded keys
16 keyboard.unhook(key_down)
17 keyboard.unhook(key_up)
18 keyboard.unhook(key_enter)
19

20 // return right corrected words
21 return keyboard_hints.get_active_index ()

0 keyboard.write(’\b’ * (len(self.sentence)+1) + new_sentence
+ " ")

17

Chapter 5

Application architecture

5.1 Overview

As previously described, there are two applications, one - improved keyboard layout
manager, and the other just improved keyboard layout.

5.2 Patterns

Two patterns were used for this project: model view controller and observer. Model
view controller as it is standard for Qt and observer in order to subscribe to various
events.

5.3 Improved Keyboard Layout Components

CorrectionHint - class that represents correction hint windows that are shown to the
user correctly. In init, it initializes all needed objects and settings. Also, it contains
functions for a style change, activation of the previous or next button, and activation
current button.

KeyboardController - class that handles json configuration file and setup all needed
objects and others. It have few functions:

• set_layout - set layout by index

• set_layout_by_name - set layout by name

• __clear_keyboard_configuration - clear current configuration

• __install_keyboard_configuration - install new keyboard configuration

KeyboardHintController - a file that contains a function that calls to show correction
hint to the user.

KeyboardLayoutUtilsFunctions - Utils functions for keyboard layout.

KeyButton - class for multiple key remap.

KeyHint - class for showing hint for key remap.

PredictionHint - class that shows hint for auto-completion model.

RemapController - a file that contains functions that set up remapped buttons.

ShortcutsController - file that contains functions that setup shortcuts buttons.

Chapter 5. Application architecture 18

Styles - class for applicaiton style.

dataloader - class for loading data for AI.

AICorrectorModel - class for model implementation.

AISupporter - the class that hooks all needed keys, saves user input text, then sends
it to scRNN and shows user proposed solution.

19

Chapter 6

Alternative Solutions

6.1 Logitech Craft

It is a premium wireless membrane keyboard. It adapts to what users are making. It
allows the user to remap shortcuts and make him create a new one.

Pros:

• No delay as it is a hardware device

• It has its own application for setting up different special commands

• It haves many different remap modes for running new application, close ap-
plication, pause, start movie, and others

• It has its own hardware slider that helps designers

Cons:

• It cost 200 $

• No key remap

• No full shortcuts remap

• No different keyboard layouts

6.2 PowerToys

It is a Microsoft open-source program that allows users many new things, such as
keys remap, autocomplete, and new window layout(not new keyboard layout.)

Pros:

• It allows the user to create a new windows layout (Fancy Zones)

• It has single key remap

• It has single key shortcuts remap

• It has a color picker

• It has nice GUI

Cons:

• No multi-key remap

Chapter 6. Alternative Solutions 20

• No multi-key shortcut remap

• No user hints in real-time

• No different keyboard layouts

• It is a preview version, so that there many bugs

6.3 KeyTweak

Pros:

• It has single key remap

• It has three different offers method

Cons:

• Has bad GUI

• No multi-key remap

• No multi-key shortcut remap

• No user hints in real-time

• No different keyboard layouts

• It is a preview version, so that there many bugs

6.4 Microsoft Keyboard Layout Creator

Pros:

• It allows the user to create a few keyboard layouts for different languages and
keyboards type.

• It has single key remap

• It allows the user to create a new registry for characters input

• It has simple GUI

Cons:

• No multi-key remap

• No multi-key shortcut remap

• No user hints in real-time

• No different keyboard layouts

6.5 AutoHotkey

Pros:

• It allows the user to remap keys with different approaches

• It allows to create custom executable scripts

Chapter 6. Alternative Solutions 21

• It allows to create new key binds, runs executable

• It has simple GUI

Cons:

• Need much time to understand the app

• It is not user friendly

• No user hints in real-time

• No different keyboard layouts

22

Chapter 7

Testing

7.1 Testing usage of computer resources

In order to determine if I solved the problems of peoples with ET, I did user testing.
The key insights I got:

• Users with ET were confused with advanced settings. They were afraid to do
something wrong.

• Users get used to remapping pretty fast.

• Key remap hits is awesome

• It took some time to learn shortcuts for extended functionality (shorthands,
AI). However, as far as they learn them, as users mentioned, that functionality
makes many things easier.

• It seems the functionality is quite easy to understand and use. However, the
first times of using a program are painful for most users.

• I need to add more hints and maybe some kind of tutorial on what all settings
mean and how to use them.

• One large help on the shortcut is missing so that absolutely all settings for the
current layout are shown.

• Improved keyboard layout manager contains a lot of bugs that I need to fix.
Also, advanced settings should be added here.

Chapter 7. Testing 23

7.2 Testing usage of computer resources

It is also important to test how many computer resources the program uses. Testing
resourcing using was easy, but to check the delay of input text with the improved
keyboard layout, I created a separate algorithm, which ten times ran the test and
wrote the data to separate folders of each test. This data was pictures. My algorithm
launched the application, start video recording, and then pressed the button. When
the algorithm receives an event that button is pressed, it divides the video into few
screenshots, each 25 ms.

Computer Acer Nitro 5 AN515-44-R9YH Asus Vivobook x556uq
CPU AMD Ryzen 7 4800H Intel i5 7200U

Memory 16 Gb dual slot 16 Gb dual slot
Memory speed 3200 MHz 2133 MHz

GPU Nvidia GTX 1650Ti NVIDIA GeForce 940MX
CPU Usage without AI and hints 2.1% - 6.4% 5.9% - 8.7%
GPU Usage without AI and hints 0/4 Gb 0/2 Gb

CPU usage with AI and hints 3.8% - 5.8% 7.7% - 9.3%
GPU usage with AI and hints 1.1/4 Gb 1.3/2 Gb

Key remap delay without hints < 25 ms < 50 ms
Key remap delay with hints < 25 ms < 50 ms

Shorcuts remap delay without hints < 50 ms < 50 ms
Shorcuts remap delay with hints < 75 ms < 100 ms

Ai correction delay < 125 ms < 350 ms
Ai completion delay < 300 ms < 500 ms

TABLE 7.1: Testing usage of computer resources

24

Chapter 8

Conclusion

I implemented a program that allows users with disabilities to customize keyboards.
Users can enter everything with just a few keys. As comparisons with alternatives
have shown, my app has many features that no competitors have. The main features
of the application:

• It allows multi-key remap

• It has multi-key shortcut remap

• It has user hints in real-time

• It has different keyboard layouts

• It has simple hints for remapped keys and ai

• It has ai correction and completion

Testing with users showed that assumptions were correct. Also, this approach did
not use many computer resources.

25

Bibliography

Danylo - Ivan Kolinko. URL: https://ua.linkedin.com/in/danylo-ivan-kolinko-
208b58201?trk=public_profile_browsemap_profile-result-card_result-
card_full-click.

Improved keyboard layout github. URL: https://github.com/popenyuk/Improved-
keyboard-layout.

Kolinko, Danylo. Github: Comparing spell correction approaches. URL: https://github.
com/Kolinko-Danylo/DL-approaches-for-spell-correction.

Mariya Hirna. URL: https://www.linkedin.com/in/mariya-hirna-10a555153.
Nazariy Bachynsky. URL: https://www.linkedin.com/in/bachynskyn/.
Project Gutenberg. URL: https://www.gutenberg.org/.
PyQt5. URL: https://pypi.org/project/PyQt5/.
Python keyboard library. URL: https://pypi.org/project/keyboard/.
Pytorch. URL: https://en.wikipedia.org/wiki/PyTorch.
Qt. URL: https://www.qt.io/.
Sakaguchi, Keisuke et al. Robsut Wrod Reocginiton via Semi-Character Recurrent Neural

Network. URL: https://arxiv.org/pdf/1608.02214v2.pdf. 2017.
Yevhenii Molodtsov. URL: https://ua.linkedin.com/in/moyevhenii.
Zesiewicz, Theresa A et al. Overview of essential tremor. URL: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%
20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=
The % 20incidence % 20of % 20ET % 20rises , disease % 20can % 20also % 20affect %
20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%
20affected%20by%20ET.. (07 September 2010).

https://ua.linkedin.com/in/danylo-ivan-kolinko-208b58201?trk=public_profile_browsemap_profile-result-card_result-card_full-click
https://ua.linkedin.com/in/danylo-ivan-kolinko-208b58201?trk=public_profile_browsemap_profile-result-card_result-card_full-click
https://ua.linkedin.com/in/danylo-ivan-kolinko-208b58201?trk=public_profile_browsemap_profile-result-card_result-card_full-click
https://github.com/popenyuk/Improved-keyboard-layout
https://github.com/popenyuk/Improved-keyboard-layout
https://github.com/Kolinko-Danylo/DL-approaches-for-spell-correction
https://github.com/Kolinko-Danylo/DL-approaches-for-spell-correction
https://www.linkedin.com/in/mariya-hirna-10a555153
https://www.linkedin.com/in/bachynskyn/
https://www.gutenberg.org/
https://pypi.org/project/PyQt5/
https://pypi.org/project/keyboard/
https://en.wikipedia.org/wiki/PyTorch
https://www.qt.io/
https://arxiv.org/pdf/1608.02214v2.pdf
https://ua.linkedin.com/in/moyevhenii
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938289/#:~:text=The%20age%2D%20and%20gender%2Dadjusted,incidence%20of%2023.7%20per%20100%2C000.&text=The%20incidence%20of%20ET%20rises,disease%20can%20also%20affect%20children.&text=Approximately%204%25%20of%20adults%2040,older%20are%20affected%20by%20ET.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Motivation
	Problem
	Solution
	Goal

	Technologies
	Qt
	Main Qt Modules

	PyQt5
	Used PyQt5 technologies

	PyTorch
	Python Keyboard Library
	Used Python Keyboard technologies

	Solution Overview
	Configuration Example File
	Loading Application Hint
	Loading Application Hint Implementation

	Keys Remap
	Configuration file
	Overview
	Implementation
	Hints

	Shorcuts Remap
	Shorthands

	AI Correction and Completion
	Configuration file
	Overview
	Dataset
	Inputs
	Semi-character RNN Model
	Training
	Conclusions
	Usage implementation
	AI Completion Hints
	AI Correction Hints

	Application architecture
	Overview
	Patterns
	Improved Keyboard Layout Components

	Alternative Solutions
	Logitech Craft
	PowerToys
	KeyTweak
	Microsoft Keyboard Layout Creator
	AutoHotkey

	Testing
	Testing usage of computer resources
	Testing usage of computer resources

	Conclusion
	Bibliography

