
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Alter Ego App: Philosophical frameworks
for mental health therapy

Author:
Yevhenii ORENCHUK

Supervisor:
Serhii MISKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://www.orenchuk.dev
https://www.linkedin.com/in/serj-miskiv-205a18a6
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Yevhenii ORENCHUK, declare that this thesis titled, “Alter Ego App: Philosophical
frameworks for mental health therapy ” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Alter Ego App: Philosophical frameworks for mental health therapy

by Yevhenii ORENCHUK

Abstract

The purpose of this bachelor’s thesis is to collect all the knowledge I possess to make
a tool that people will want to use because it makes their lives happier.

Code implementation is in repository: github.com/orenchuk/alter-ego

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/orenchuk/alter-ego

iii

Acknowledgements
I want to thank all the UCU community for such great years and people. I want to
thank myself that didn’t give up. And thank all the Alter Ego team. . . .

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Solution . 1

2 Background 2
2.1 Instruments . 2

3 Database 3
3.1 Why Firebase? . 3
3.2 Realtime Database vs Cloud Firestore 3
3.3 Models Structure . 3

3.3.1 Documents and Collections . 3
3.3.2 Storing User’s inputs and progress 6

4 App Structure 7
4.1 General Structure . 7
4.2 User Flows . 7
4.3 App Screens . 9

4.3.1 Onboarding . 9
4.3.2 Authentication . 9
4.3.3 Pay Wall . 9
4.3.4 Mood Check . 9
4.3.5 Recommended . 9
4.3.6 Journeys . 9
4.3.7 Journey . 9
4.3.8 Practice . 10
4.3.9 Rate Practice . 10
4.3.10 Entries . 10
4.3.11 Profile . 10

4.4 App Architecture . 10

5 Future Improvements 11

6 Conclusions 12

Bibliography 13

v

List of Figures

3.1 Firestore Story Exercise’s Document . 4
3.2 Firestore Input Exercise’s Document . 4
3.3 Firestore Practice’s Document . 4
3.4 Firestore Journey’s Document . 5
3.5 Firestore Collection Example of Journeys 5
3.6 Firestore Collection Example of Profiles 6

4.1 Project Infrastructure with Firebase services 7
4.2 User Flows Structure . 8
4.3 MVVM . 10

vi

List of Tables

vii

List of Abbreviations

LAH List Abbreviations Here
CRUD Create Read Update Delete
UI User Interface
UX User Experience
SDK Software Development Kit
SQL Structured Query Language
NoSQL Non-Structured Query Language
MVVM Model-View-ViewModel

viii

Dedicated to my mom and grandma. . .

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, with that isolation, uncertainty, and lifestyle changes, people started
feeling more vulnerable. As a result, they started looking for ways of dealing with
that. And we are those people as well. We started looking for answers in Stoicism.
We were surprised how just a simple but right question can have an impact on us.
We’ve found a way that helps us, and now we want to share it with others.

1.2 Goals

Make at least a bit happier as many people as possible.

1.3 Solution

An application with metal frameworks from applied philosophy and psychiatry
with engaging practices and self-reflection tools.

2

Chapter 2

Background

2.1 Instruments

For the purposes of iOS development, I will use the latest Apple frameworks, it’s a
SwiftUI, precisely the SwiftUI 2, that is compatible with iOS 14 and above, Combine
and Firebase as a backend.

SwiftUI is a declarative way of implementing interfaces that uses a reactive bind-
ing principle to update its content.

Combine is a reactive framework for processing values over time.
Firebase is an SDK from Google that makes development faster.

3

Chapter 3

Database

3.1 Why Firebase?

Firebase is an SDK made by Google for mobile application development. Shortly
it is a bunch of pre-made cloud services for development that usually developers
have to build themselves. Such as backend, database, storage, authentication, push
notifications, analytics, configurations, and so on.

So, the answer is straightforward. It is much faster (in terms of time for develop-
ment), well scalable, and allows you to focus on the app experience itself. Currently,
the project does not have any specific needs that cannot be implemented with Fire-
base. But it doesn’t mean it will not have them in the future, so we should keep in
mind that fact and don’t rely on service-specific implementations and make a good
level of abstractions to hold it loosely coupled.

For the project’s purpose, I’ll use Authentication for signing in users, Cloud Fire-
store as a database, Cloud Storage for storing bigger files, like images, videos, and
audio files, Crashlytics for crash analytics, Cloud Messaging for remote push notifi-
cations.

3.2 Realtime Database vs Cloud Firestore

The answer to this question you can find in the official documentation.
Realtime Database is a SQL (relational) database and Cloud Firestore is a NoSQL

(non-relational). More about the difference you can check on this site.
But that’s the reasons why I chose Cloud Firestore over Realtime Database:

• It doesn’t load all the data from nested collections.

• The structure is more flexible because of its schemaless nature.

• More effortless scalability as it scales horizontally, which means more servers
instead of larger ones.

• Pricing is less because of billing for reads and writes, not the amount of data
transferred.

3.3 Models Structure

3.3.1 Documents and Collections

"Cloud Firestore is a document-model database, which means that all of your data is
stored in objects called documents that consist of key-value pairs – and these values
can contain any number of things, from strings to floats to binary data to JSON-y

https://firebase.google.com
https://firebase.google.com/products/auth
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://firebase.google.com/products/storage
https://firebase.google.com/products/crashlytics
https://firebase.google.com/products/cloud-messaging
https://firebase.google.com/docs/firestore/rtdb-vs-firestore
https://www.mongodb.com/nosql-explained/nosql-vs-sql

Chapter 3. Database 4

looking objects the team likes to call maps. These documents, in turn, are grouped
into collections." - The Firebase Blog: Cloud Firestore vs the Realtime Database: Which one
do I use?

Below I’ll introduce some examples of models that are stored in the database.
Exercise can be of two types: story and input. Story is an introduction or an

explanation of a specific problem, which you may experience sometimes. Input is
a particular question that a user asks himself and an input field to write down an
answer, an actual self-reflection.

Exercise
Collections

 imageUR
 orde
 text

Properties

FIGURE 3.1: Firestore Story Exercise’s Document

Story exercise contains an image’s destination URL, order field stands for an or-
dinal number, and text. The order field is essential for sorting exercises, as they work
sequentially like Instagram stories, and the content has to follow a strict order.

Exercise
Collections

 inpu
 orde
 title

Properties

FIGURE 3.2: Firestore Input Exercise’s Document

Input exercise contains same order field, title, which usually is a question, and
input field. Important to understand that the input field is not the exact place where
the actual user’s reflection will be stored. It works somewhat like a placeholder’s
text that may help to begin answering.

Practice
Collections

 exercises

 duratio
 originato
 topic

Properties

FIGURE 3.3: Firestore Practice’s Document

Chapter 3. Database 5

Practice is a collection of exercises with the same topic. It contains a subcollection
of exercises, approximated duration of the sequence of exercises, and topic.

Journey
Collections

 practices

 author
 imageUR
 subtitl
 title

Properties

FIGURE 3.4: Firestore Journey’s Document

Journey is a collection of practices that refer to the correlated subjects, for exam-
ple: "Dealing with anxiety" or "Dichotomy of Control". In the figure above, you can
see the model of Firestore Journey’s Document entity. It contains a subcollection of
practices, authors’ property, which stores the list of philosophers, scientists (authors
of works that were reframed into mental exercises), URL to the image’s destination
in Cloud Storage, title, and subtitle.

Journeys

Journe
ysJourne

ysJourney

Practices

Jou
rne
ys

Jou
rne
ys

Practice

Exercises

Jo
ur
ne
ys

JourneysExercise

FIGURE 3.5: Firestore Collection Example of Journeys

This is an example of Journeys collection, which illustrates how documents and
collections work together.

The path to an exercise would look the following way:
"journeys/<journey-id>/practices/<practice-id>/exercises/<exercise-id>"

Chapter 3. Database 6

3.3.2 Storing User’s inputs and progress

We want to store user’s inputs, practice ratings, and mood points after specific fin-
ished practice. Also, we need to know what practices the user completed. For this
purpose, we need a separate table in the database, and the system is aware of the
user’s current progress from the derived data.

Profiles

Journe
ysJourne

ysProfile

Practices

Jou
rne
ys

Jou
rne
ys

Practice Progress

User Inputs

Jo
ur
ne
ys

JourneysUser Input

FIGURE 3.6: Firestore Collection Example of Profiles

The structure is designed this way to match with the practices table. Here go two
paths: first to the actual exercise and the second to the exercise input.

"journeys/<journey-id>/practices/<practice-id>/exercises/<exercise-id>"

"profiles/<profile-id>/practices/<practice-id>/inputs/<exercise-id>"

To know the progress, the system checks what practices exist in the user’s prac-
tices table.

7

Chapter 4

App Structure

4.1 General Structure

As the project is primarily content-driven, the Firebase is a "brain" of it, Mobile App,
referred to as Client, is an interface that the end-user will interact with. Furthermore,
we need a way to moderate the content. Basically, CRUD operations, that mean:
creating new content, having access to all of it, updating it, and deleting. Under the
content, I mean new practices, journeys, images, and overall structure. Admin Tool
deals with all of that stuff.

Client
(Mobile App)

Admin Tool

Firestore

Authentication

Cloude
Firestore

Cloude Storage

Crashlytics

Cloud
Messaging

FIGURE 4.1: Project Infrastructure with Firebase services

The illustration above is general and straightforward, but it shows the way of
communication between main instances. Admin Tool may have different interfaces,
like web service, macOS, iOS, or iPadOS application. Using Apple’s platforms for
this purpose has a substantial advantage, as they can be implemented as a submodel
for the Client app and share the same entities. However, it requires having a device
running that operating system. At the same time, web service can be opened on any
device, which makes it easier to delegate this duty to content managers that may not
have Apple’s device.

4.2 User Flows

User Flows are all different pathways a user can take when interacting with a prod-
uct. The diagram below illustrates all of them for the Client app, where most of
blocks units represent a single screen in the application. It is important to remember

Chapter 4. App Structure 8

that some blocks can be omitted as they depend on the user’s current state. It will
be described more deeply in the following sections.

ProfileEntriesJourneysRecommended

TabView

User Input

Authentication

Onboarding

Pay Wall

Journey

Practice

Rate Practice

Mood Check

Notifications

Purchase

Leave Review

Contact Us

Help

Terms of Use

Privacy Policy

Log Out

FIGURE 4.2: User Flows Structure

Making such a diagram is a part of the UX process. Many developers would
like to skip this step and start developing right away. However, it can help prevent
different issues like recurrent flow cycles by creating a new instance for the screen
that has already been created and persists in the memory, which will cause memory
leaks and may mislead users when they want to return back by screens stack.

TabView is a container from iOS SDK that holds all the screens in memory and
allows easy switching.

Chapter 4. App Structure 9

4.3 App Screens

4.3.1 Onboarding

Onboarding, in general, serves as a way to demonstrate the application’s main func-
tionality and features. But you can also include some kind of questioner if the app
can customize its content for user’s preferences. As the app has a screen with rec-
ommended practices, those questions adjust the recommendation algorithm. Those
screens also are displayed only once for the first time user opens the app. Then it
stores the user’s responses and defines the onboarding process as completed, so it’ll
not be shown anymore.

4.3.2 Authentication

Authentication is required for allowing access to purchased content, storing user-
specific data such as inputs, progress, and preferences. Apple recommends delaying
sign-in as long as possible. It’s a good practice to show your app before the users
give their data. For this reason, Firebase Authentication has an Anonymous sign-in
feature that generates a unique id for a user and allows them to access the data in the
database. So you can delay the actual sign-in till when it’s indispensable. Firebase
also has the functionality to check the user’s state. The system will rely on that flag
to know if it should display the authentication screen or let them in.

4.3.3 Pay Wall

Pay Wall is a screen, which blocks users from paid content if they didn’t purchase.
And presents a way to pay for it. It displays several plan options to choose from and
uses Apple’s In App Purchase mechanism to process the payment.

4.3.4 Mood Check

Mood Check is a way to know what the user feels at the moment. We want to check
if he or she makes some progress, so we’re designing the screen to collect those data
on regular practice.

4.3.5 Recommended

For the beginning Recommended screen remains the same for all the users. Later
we’ll process users’ responses from the onboarding stage to feed them into a regres-
sion model to display more relevant journeys and practices to their preferences. For
now, it’s just a separate table into the database that stores the references to the spec-
ified practices.

4.3.6 Journeys

Journeys is an entry to the main flow of the app. This is a list of all available journeys.

4.3.7 Journey

Journey represents a collection of practices with correlated subjects as well as an
introduction to the topic.

https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/authentication/

Chapter 4. App Structure 10

4.3.8 Practice

Practice is the core of the app. It’s where a user has a presentation of the topic, makes
self-reflection, and enriches his self-awareness.

4.3.9 Rate Practice

Rate Practice is where we collect some feedback about recently finished practice and
add documents to the table with progress in the database.

4.3.10 Entries

Entries is a place where a user can come back anytime to reflex on his previous
thoughts. It’s basically a list of all answers from the practices.

4.3.11 Profile

Profile screen stands for settings and some additional information about regulations
we need to follow.

4.4 App Architecture

SwiftUI + Combine is a perfect combo for Model-View-ViewModel architecture

View ViewModel Model

FIGURE 4.3: MVVM

SwiftUI has a built-in MVVM nature, as it was designed to have a single source
of truth and react to its changes. With its Bindings system, unlike UIKit’s UIView-
Controller, you don’t need a Controller anymore, you just bind a view state directly
to the model. Any changes will immediately trigger the rendering mechanism to
make relevant changes to the view.

11

Chapter 5

Future Improvements

First of all, we need to release the first version as soon as possible to see users’ feed-
back. Then the stage of improving user experience. And after that, we’re going to
add an audio experience, where you can listen to subject-related stories and record
your answers. There is also an idea to train a neural network model on philosophers’
works to make a chat with them.

12

Chapter 6

Conclusions

In this work, we discussed the technical solution for making people healthier and
happier. What parts the solution consists of, how it works in-depth.How to work
with Firebase. Discussed the differences between databases. And the overall expe-
rience I gained doing this project.

13

Bibliography

Kerpelman, Todd. The Firebase Blog: Cloud Firestore vs the Realtime Database: Which one
do I use? URL: https://firebase.googleblog.com/2017/10/cloud-firestore-
for-rtdb-developers.html. (Online, accessed: 16.05.2021).

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals
	Solution

	Background
	Instruments

	Database
	Why Firebase?
	Realtime Database vs Cloud Firestore
	Models Structure
	Documents and Collections
	Storing User's inputs and progress

	App Structure
	General Structure
	User Flows
	App Screens
	Onboarding
	Authentication
	Pay Wall
	Mood Check
	Recommended
	Journeys
	Journey
	Practice
	Rate Practice
	Entries
	Profile

	App Architecture

	Future Improvements
	Conclusions
	Bibliography

