
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

The system for monitoring the status of
servers and notifying users of an excessive

use of system resources

Author:
Yevhenii MOLODTSOV

Supervisor:
Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
https://www.linkedin.com/in/moyevhenii/
https://www.linkedin.com/in/oleg-farenyuk-9625951b/
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Yevhenii MOLODTSOV, declare that this thesis titled, “The system for monitoring
the status of servers and notifying users of an excessive use of system resources”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Any sufficiently advanced technology is indistinguishable from magic.”

Arthur C. Clarke

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

The system for monitoring the status of servers and notifying users of an
excessive use of system resources

by Yevhenii MOLODTSOV

Abstract

Nowadays servers have become an important part of the IT infrastructure and the
need of monitoring their health is growing. The consequences of not tracking the
server resources could be different - from losing money to losing customers. Some-
times even people’s lives are dependent on the stability of the server’s infrastructure.
The first step of controlling the health of a server is to see and analyze its key met-
rics, such as CPU, RAM, and HDD utilization. My program provides an easy way of
monitoring the system resources and being alerted in case some of them are higher
than was expected.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I would like to express my sincere gratitude to Oleg Farenyuk for his assistance at
every stage of the research project.
And I am deeply grateful to Serghei Burca and Vasilii Burca for their insightful com-
ments and suggestions.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Problem 3

3 Existing solutions 5

4 My solution 7

5 How it works 8
5.0.1 User interface . 8
5.0.2 User interaction flow . 12

6 The architecture of my solution 14
6.1 Monolithic server architecture . 14
6.2 Django framework . 15
6.3 Django ORM and MySQL database . 17
6.4 REST . 19

6.4.1 Django Rest Framework . 19
6.4.2 Integration with frontend . 21

6.5 Celery and Celery beat . 21
6.6 Docker and Docker-Compose . 22

7 Summary 25

Bibliography 26

vi

List of Figures

2.1 Load Balancer Layer . 4

5.1 Django Admin Page . 8
5.2 Admin Server Instance . 8
5.3 Detailed Server Instance . 9
5.4 Detailed Threshold Instance . 9
5.5 Notifications . 9
5.6 Detailed Notification . 9
5.7 Swagger Schema . 10
5.8 Detailed Swagger Schema . 11
5.9 Detailed Url Object . 11
5.10 Chatbot Swagger Endpoint . 13
5.11 ChatBot Conversation . 13

6.1 MVC Pattern [MVC Architecture - Model, View, Controller] 16
6.2 Django MVT Pattern [George, 2020] . 16
6.3 Celery Architecture . 22
6.4 Docker Compose Architecture . 23

vii

List of Abbreviations

API Application Programming Interface
AWS Amazon Web Services
CI/CD Continuous Integration/Continuous Deployment
CPU Central Processing Unit
CRUD Create Read Update Delete
DDoS Distribute Denial-of-Service
DRF Django Rest Framework
DRY Dont́ Repeat Yourself principle
HTTP HyperText Transfer Protocol
IT Information Techologies
MVC Model View Controller pattern
MVP Minimum Viable Product
MVT Model View Template pattern
ORM Object Relational Mapping
PC Personal Computer
REST REpresentational State Transfer
SSL Secure Socket Layer
URL Uniform Resource Locator

viii

Dedicated to my parents who supported me in getting the
bachelor’s degree and my friends thanks to whom I did not go

crazy while writing this thesis. . .

1

Chapter 1

Introduction

A server is a computer that is meant to be a dedicated service provider [Windows
Server Administration Fundamentals 2011]. In general, every time the computer shares
data with another device, it could be considered as a server, while the device is
called a client. With the widespread use of the Internet servers became the heart
of the whole IT industry. Worldwide end-user spending on public cloud services is
forecast to grow 18.4% in 2021 to total $304.9 billion, up from $257.5 billion in 2020
[Gartner, 2017].

Nowadays the access to data has become the main reason for using PCs and
laptops. Most existing businesses try to provide their solutions and attract some
new customers through the web [Lesonsky, 2017]. Almost all companies want to
automate some processes and this wish leads them to use cloud platforms. There is
a wide range of spheres where the web could be used:

1. Social platforms

Nowadays a big part of communication is going online, especially during the
corona pandemic. All the media platforms like Facebook, Instagram, Twitter,
and others have lots of users and they need advanced cloud solutions to pro-
vide a full-time fast access to their services. All the video and audio meeting
platforms are also included in this list.

2. Sells sphere

The main point of most businesses is to sell something to potential clients.
Nowadays there are lots of selling platforms on the web. From Amazon to
Rozetka, to Aliexpress. All of those solutions need a huge and scalable cloud
platform to maintain all the clients and their data, as well as the products them-
selves. It is also important to bring a high level of security to such systems, so
the individual preferences of users or their payments data are not shared any-
where else.

3. Entertainment sphere

There are some video streaming services like YouTube, Netflix, or Twitch. All
of them need highly optimized web solutions to deal with all the video stream-
ing as well as fast hardware and advanced load balancing solutions to handle
all their millions of clients.

4. Automating existing business solutions

There are lots of businesses that deal with physical operations. For example,
the editions and covers management system. There’s lots of management un-
derneath -= the arrivals of new editions, distributing those across the stores,
printing editions, and covers, taking into account that each publisher wants

Chapter 1. Introduction 2

some management system to be able to publish the covers and change them
in different editions of the same title, sometimes even dependent on the re-
gion. All these processes require some automated solution with a strong cloud
system to be able to maintain all the titles data. It’s also worth mentioning
that such a solution needs a flexible user management system because there
are lots of managers with different roles and responsibilities – from content
library managers and publishers to the admins of the whole system.

Of course, the list above is not full and it could be expanded furthermore. But
the main point here is that in our modern world lots of business, social, and en-
tertainment processes are presented on the web. For all of them, there is a need to
provide some customizable cloud solutions as well as highly performed balancers
to maintain all the clients and their traffic.

3

Chapter 2

Problem

When the company grows, the number of its clients as well as the amount of pro-
cessed data increases. Most companies today are client-oriented [Wirtz and Daiser,
2018]. Even if a company serves some business needs, most of the time it needs
the web resources to be able to sell its solutions. The efficiency and stability of sys-
tems are now a high priority for the web industry. There is such a notion as server
overloading and it can be caused by different reasons:

1. Malware or viruses

This one is about server security, but it can be the reason for slower behavior
as was expected.

2. DDoS attacks

Those are also mainly about the server setup and security and they are not
relevant to the issue my application solves, but those can significantly slow
the application.

3. Hardware

There are some components in the system that can make an influence on its
working speed. The most important of them are hard drive, memory and
CPU, and their speed. There are also some less significant ones like virtual
memory or bus speeds. If the hardware is cheap and slow it is harder to build
a responsive system.

4. System resources

Those are about what amount of memory, hard drive space, and CPUs the
system needs. If there are not enough of them the system may longer process
the requests or go down at all.

All of the reasons described are valuable and should be considered when building a
web application. But the last one could be improved from the software perspective.
There is a need to monitor system resources to know when it’s needed to start scaling
them. In general, there are different type of dealing with lack of resources:

1. Software optimizations

These are about optimizing database queries, making asynchronous opera-
tions when the CPU time is mostly spent on the input-output. This step should
be considered as the first one when dealing with overloading.

2. Hardware scaling

This is about increasing the number of hardware resources on the instance. It
is a pretty straightforward and dirty solution.

Chapter 2. Problem 4

3. Server Load Balancing [What Is Load Balancing? 2018]

This is the most relevant and elegant solution, but it requires related knowl-
edge to build the system properly. It could be software or hardware balancing
solutions and the last one is harder to implement and more expensive to main-
tain. The software implementation is a layer that is placed between the server
and the clients and it is responsible to traffic all the clients’ requests to the
server instances. This solution is flexible and easy to scale.
Also, some efficient balancers use dynamic load balancing algorithms to scale
the system dynamically. For example, when there is a web store and it comes
to holiday sales, the amount of traffic could be increased significantly. In such a
case there is no need to pay for a large number of resources during all the year
and here comes the dynamic load balancer. It will add the needed instances
when the traffic increases.

FIGURE 2.1: Load Balancer Layer

The last solution is elegant but it is also pretty expensive and there is no need to
build such a system for small businesses. Nevertheless, it is still important to moni-
tor the number of resources consumed to prevent the server from being overloaded.
Even if the business decides not to build the load balancer, it still needs to be aware
of resource usage to be able to add some instances or hardware manually.

5

Chapter 3

Existing solutions

As it was mentioned before, there is a need to monitor the server’s resources. There
are plenty of tools that can help developers and DevOps engineers to see the server’s
metrics. The most popular ones are usually provided by hosting platforms, such as
AWS or Google Cloud. Here are the examples with their benefits:

1. AWS platform [Amazon CloudWatch]

CloudWatch is the observability and monitor service that provides needed
data and some insights to monitor your applications, respond to system-wide
performance changes, optimize resource utilization, and get a unified view of
operational health. It collects monitoring and operational data in the form of
logs, metrics, and events, providing you with a unified view of AWS resources,
applications, and services that run on AWS and on-premises servers. It can be
used to detect anomalous behavior in your environments, set alarms, visual-
ize logs and metrics side by side, take automated actions, troubleshoot issues,
and discover insights to keep your applications running smoothly. Amazon
CloudWatch is a flexible tool with such advantages:

(a) Observability on a single platform across applications and infrastructure
When the application is large it becomes a mess to analyze all the met-
rics and logs it collects, because usually, it has lots of instances and en-
vironments. CloudWatch is a single place where all such information is
considered.

(b) The easiest way to collect metrics
Cloudwatch integrates with more than 70 services provided by AWS,
such as Amazon EC2, DynamoDB, S3 Storage, and others. It also could
be used in hybrid cloud architecture Agent or API to monitor resources.

(c) Get operational visibility and insight
Amazon provides a great granulated view of all the system resources, as
well as up to 15 months to store the collected data. All the charts and
models are highly customizable.

2. Google platform [Cloud Monitoring]

Cloud monitoring can collect data from Google Cloud, AWS instances, and
other platforms. Using the integration with BindPlane service it is possible
to collect data from over 150 common application components and different
cloud systems. The Cloud monitoring has the following features:

(a) SLO monitoring
Automatically infer or custom define service-level objectives (SLOs) for
applications and get alerted when SLO violations occur.

Chapter 3. Existing solutions 6

(b) Group and cluster support
Define relationships based on resource names, tags, security groups, re-
gions, accounts, and other criteria. Use those relationships to create tar-
geted dashboards and topology-aware alerting policies.

(c) Alerting
Configure alerting policies to notify you when events occur or a particular
system or custom metrics violate rules that you define. Use multiple con-
ditions to define complex alerting rules. Receive notifications via email,
SMS, Slack, PagerDuty, and more.

The important part of system monitoring is presenting the data and notifying the
end-user when something is going wrong and some thresholds are reached. And
both solutions are doing well with it. They both are also highly customizable and
support integrations with third parties.

7

Chapter 4

My solution

The main purpose of the whole program is to bring the users control over the server
instances they have. It is possible to add as many instances as they wish and all of
them will be checked according to the needed threshold percentage.

It collects the data about some basic metrics like CPU, RAM, HDD, Network
usage, etc. The users can enable or disable them as they wish. The program will run
the background task to check the thresholds and notify a user if some of them are
reached. Of course, there are multiple ways of notifying the user: front-end alert,
logs on the server instance, chat-bots - all of them are supported and can be set up.

I created a program that is easy to configure and use. It also scales well and
allows the end-users to have as flexible a setup as they wish. It is worth mentioning
that for now, it is only the back-end application with the Admin page to basic data
management and REST API to integrate the front-end or other services.

So, what are the advantages of my program comparing to the existing solutions
described above?

1. Simplicity and cost on the start

The described services are good and provide a great monitoring solution, but
they’re too heavy for small instances. The complexity of configuring AWS
CloudWatch or Google Cloud Monitoring is high and it requires hiring people
that know how to do this. This will cost additional investments. My program
is more lightweight and easy to start using out of the box.

2. The absence of necessity of using some Cloud Provider

These tools are great when it comes to integration with their Cloud Providing
systems and they become a huge mess when trying to integrate them with your
custom servers instances that are served directly by you. My program allows
the users to connect any instance that has ssh (or just basic) authentication.

8

Chapter 5

How it works

5.0.1 User interface

The main strategy was to create the user interface (the flow of user interaction) as
friendly as possible. However, the Django Admin takes all the responsibility for user
interaction.
The main Admin page allows users to see what type of resources they have:

FIGURE 5.1: Django Admin Page

It is also possible to see all the users of the system if you are the admin, as well
as manage the groups and users’ permissions.

With this admin it is possible to add some of the server instances you have:

FIGURE 5.2: Admin Server Instance

Chapter 5. How it works 9

And then see all their thresholds as well as setting up the needed level of thresholds
(for being notified after they’re reached)

FIGURE 5.3: Detailed
Server Instance

FIGURE 5.4: Detailed
Threshold Instance

After reaching the thresholds server creates the notification object in the database.

FIGURE 5.5: Notifica-
tions

FIGURE 5.6: Detailed
Notification

Later those notification objects are used to send the alerts to the frontend, emails.
There is also a possibility to connect both Facebook and Telegram chatbots to this
system to receive some alerts.

Chapter 5. How it works 10

It could be seen from my screenshots that the main interface is the Admin Panel. But
as I mentioned before, there is a REST API interface to integrate the frontend:

FIGURE 5.7: Swagger Schema

Chapter 5. How it works 11

The API interface supports all the CRUD operations, so the frontend can build its
own CMS based on this backend solution. All the API endpoints are documented
and there is a possibility to see all the needed parameters and possible responses for
each URL as well as try them in “live mode” to see how the data is returned:

FIGURE 5.8: Detailed Swagger Schema

It is also possible to setup some URLs to check their HTTP statuses as well as SSL
certificates expiration dates:

FIGURE 5.9: Detailed Url Object

Chapter 5. How it works 12

5.0.2 User interaction flow

The user interaction flow is pretty simple and has the following steps:

1. Creation of initial server

User needs to enter the following data:

• Ip address

• Port (default for ssh is 22)

• Username

• Password or ssh key

That’s it! After submitting this data (via saving on the Admin page or sending
the POST request) the server enrollment process will start. The server enroll-
ment process is a bash script and it has the following steps:

(a) Authenticate the application on the server instance

(b) Create the application user (virtadmin)

(c) Create the home directory for this user, so all the monitoring-related data
is separated from the instance data

(d) Put the ssh key on the server-side, so the application can have direct ac-
cess

(e) Create a python virtual environment depending on which system is run-
ning on the instance, so later it is possible to run the python monitoring
script in a separate environment and not installing some needed depen-
dencies globally

(f) Running the script for the first time

(g) Checking all the setup and writing the corresponding logs if something
went wrong

No matter if the server enrollment fails or not it is possible to retrieve the logs
with all the output during the installation.

2. Name the server

During the first stage of server enrollment, the Server object in the database is
created. The user needs to name it because the default name is the same for
each server and it would be hard to distinguish them later.

3. Customize thresholds

During the creation of the server, the default thresholds are created. The de-
fault value for them is 80 percent. If the users want, they can customize those
values according to their needs.

Chapter 5. How it works 13

This flow could be slightly changed when writing a separate front-end app. But the
flow that was described is the most common use of service.
After the server setup user can also link the chatbot to the system:

FIGURE 5.10: Chatbot Swagger Endpoint

Passing the user id and the needed platform (for now only telegram and messenger
are supported) the user will get the unique link. Following the link, the user will go
to the chat with the bot. This conversation is automatically linked to the user in the
system, so later it is possible to receive alerts in this conversation:

FIGURE 5.11: ChatBot Conversation

14

Chapter 6

The architecture of my solution

6.1 Monolithic server architecture

There are two main approaches in building the architecture of web software: mono-
lithic and micro-services. Most new companies and startups firstly chose to build
their systems with a monolithic architecture [Rud, 2019]. It’s understandable be-
cause the process of creating a monolith that is responsible for covering all business
needs is much easier:

1. Less complex application structure

All the common services that are used in the web application are easier to
maintain. For example, logging, gathering analytics, caching, or perform mon-
itoring – all those features are handled pretty straightforward in the case of
monolith because all the sources are located in one place and there is no need
to synchronize them across different micro-services.

2. Fewer system resources on the application’s infrastructure in the early stages

Monolithic architecture implies fewer server instances. Of course, with a scale
of clients number, a few instances will be needed, so the load balancer can
maintain them properly.

3. Faster MVP and proof of concept

In new companies and especially in startups always exists the need of creat-
ing the MVP as fast as possible. In this way, a company can start gathering
investments and attract an audience.

4. Less money is spent

If summarize all the benefits described above, then the main one comes into
the game – money. Due to the less complexity of developing and maintaining
less money are spent to develop such application.

However, micro-services are considered to be a trend, and most of the well-
known organizations like Uber, Netflix, Amazon, eBay, and others have shifted to
this approach. It has lots of advantages if compared with monolith:

1. Scalability

When the project grows, the team also growth and it becomes a mess to work
within a large group of people on one source. The much better way is when
the work is divided across multiple micro-services, so people can code sep-
arately. Also, the scalability touches the software part. It is simpler to scale
needed components in the micro-service architecture rather than scaling the
whole monolith.

Chapter 6. The architecture of my solution 15

2. Reliability

The micro-services are independent and communicate through APIs. If this
communication is built properly, then a bug in one micro-service has fewer
chances to influence the behavior of others if compare with the monolith.

3. Better understanding

This one is the most subjective because the level of understanding depends on
the developer’s experience. But in most cases, when a new developer comes to
a large project, it is faster to get the micro-service architecture. Moreover, dur-
ing the on-boarding, newcomers can work on tasks that are not knowledge re-
lated to the whole project but corresponds only to the particular micro-service.

4. Possibility to choose technologies for each micro-service

There could be the case when some parts of code are written in different lan-
guages. Moreover, even using one programming language, the framework
could be chosen according to the need. For example, the core of the appli-
cation could be written on Django, some lightweight micro-services on Flask,
and some APIs layers on FastAPI due to the support of asynchronous code.

Taking into account all the described above I have chosen the monolithic way of
creating my application. It would be much easier for me to maintain it and to build
the MVP during a few months.

6.2 Django framework

There are various Python Web frameworks. They are split up into two groups: full-
stack and not full-stack ones. The last ones are mostly lightweight and fast. The most
popular example of such frameworks is Flask while the FastAPI is the most modern
one. It allows developers to build fast and asynchronous APIs. Such frameworks are
used when the web application does not have complex business logic. Also, FastAPI
is the best choice when the developer builds a service that is a layer between end-
user and other services, due to the support of asynchronous operations. It allows
handling more requests simultaneously because most of the time the CPU is blocked
by Input-Output operations.

On other hand, full-stack frameworks mostly have the highest levels of abstrac-
tion. It allows developers to follow the DRY principle. They also come with native
support of databases, templates, caching, etc, so they reduce the amount of time and
effort to start the application.

The most popular Python full-stack framework is Django. Lots of huge compa-
nies use Django for their needs: Spotify, Instagram, YouTube, BitBucket, Dropbox,
Pinterest, Mozilla, and others. There are many advantages of using this framework
for both large and small applications. But my project is a relatively small one, so
here are the main benefits of using Django in this case:

1. The speed of starting a new application

As it was mentioned before, Django comes with lots of useful functionality out
of the box. It has its ORM system, authentication and authorization support,
flexible user management, admin panel, and frameworks like DRF to build
REST APIs without writing low-level logic, but concentrating on the business
part of the solution.

Chapter 6. The architecture of my solution 16

2. MVC (MVT) pattern [George, 2020]

Patterns are important and widely used in software architecture to build effi-
cient solutions and avoid common mistakes. Model-View-Controller is one of
the most famous approaches to building user interfaces. In this pattern, a user
uses a Controller to interact with a Model (data) layer and then sees the results
of interaction in a View layer.

FIGURE 6.1: MVC Pattern [MVC Architecture - Model, View, Controller]

The Django MVC approach is slightly different because the Controller part is
mainly handled by the framework by following rules described in the URL
config. MVT stands for the Model-View-Template pattern, where the Model
layer is the same as in MVC, the Template is the representation layer (View in
MVC) and View is the business logic of the application, which is called by the
Django Controller, i.e. the logic underneath URL config.

FIGURE 6.2: Django MVT Pattern [George, 2020]

3. Admin interface

The Django admin interface is a useful panel to work directly with the database.
It supports different extensions as well as user customizations. Of course,

Chapter 6. The architecture of my solution 17

Django admin is the tool for developers and not the final clients, because
it’s not user-friendly. Also, it is possible to perform any operations on the
database, so the user can destroy some tables or the entire database at all.

Of course, some of the user rights could be limited, but the best solution in the
existing product should be to write a separate front-end admin page to manage
all the application data. In this way, you as a developer have more control over
what operations the user can perform.

Although allowing users to do something on the Django admin is not the best
approach and it could be even dangerous, some startups and new projects use
it because it is simple, fast, and cheap. As I mentioned before, the Django
admin is relatively easy to customize. Using inheritance from the framework’s
default admin form classes it is possible to override some front-end behavior
and even change the existing default layout.

6.3 Django ORM and MySQL database

In Web applications, the user often interacts with data. All the data could be located
somewhere in other services and be accessed through APIs – in this case, the appli-
cation is just a layer between the user and other service providers. But more often
a web application has its database to store users, their data, and other data needed
for the service. The main responsibility of a website is to give its users some handy
interface to access their data. Django framework is suitable to write such database-
driven projects. It follows the MVC pattern design, where M-Model is a data layer,
handled by the Django ORM system [Holovaty and Moss, 2008].

The initial setup of the database is done from the settings.py using predefined
constants. The best practice is to have those variables stored in the env file and load
them into the Django app using environment variables. That is how it is done in
my project. Using such an approach it is easy to separate database credentials, user
secrets, and other settings in different environments (obviously, they should differ
in test, staging, or production).

The central notion of Django ORM is a Model. The model is equivalent to Table
in SQL. A quick example [Django Models]:

from django . db import models
c l a s s Person (models . Model) :

f i r s t_name = models . CharField (max_length =30)
last_name = models . CharField (max_length =30)

The corresponding database query is:

CREATE TABLE myapp_person (
" id " s e r i a l NOT NULL PRIMARY KEY,
" f i rs t_name " varchar (3 0) NOT NULL,
" last_name " varchar (3 0) NOT NULL

) ;

In my application, there are different tables in each sub-application. As I men-
tioned before, Django does lots of magic underneath and for this, it requires a prede-
fined project structure. In my application, there are different subprojects, and each
of them has its file where the models are defined. It could be seen from the diagram
that there are plenty of tables:

Chapter 6. The architecture of my solution 18

1. User
This table is inherited from the AbstractUser. This way I can customize the
Django representation user as I wish. In this case, I could avoid this complex-
ity because I don’t need some custom fields in the User model. But according
to Django best practices, it’s a nice approach to inherit from the AbstractUser
at the very beginning of a project and run first migrations with it. This way
later, during the development, if any changes or additions to this model are
needed – they are easy to implement. If the developer chooses not to imple-
ment this approach, he would probably run into issues, because changing the
database schema, customizing the system models with a help of inheritance
after the initial migrations had been run always leads to some troubles with
cross dependencies, integrity errors, etc.

2. InitialSeverProfile
This model represents the initial data that the user needs to enter. According
to the InitialServerProfile, the application will connect to the remote instance,
set up the environment, add users and create the Server model. After this, the
Initial one could be deleted (later on this process will be automated).

3. Server
This one is the core part of the system. It stores all the data related to the server
instance. All the server’s metrics are also stored here. It is linked to two other
tables: Thresholds And URLs.

4. Threshold
This one represents the thresholds for all the server’s metrics. All of them are
written in percentages.

5. URL
This one is used to save the URLs that correspond to this website to check their
SSL certificates users and check the HTTP status codes.

6. Session. The system model that is used by Django to manage user sessions.

7. Unknown session
This one is used to store all the unknown systems. The corresponding script
on the server-side creates the instance of this model if the system is not yet
supported by our application.

8. Groups and Permissions. Those are used by the Django framework to better
manage users and authorization flow.

9. BotUserLink
This model is used to link current users in the system to the external chatbot
user. Could be used with Messenger, Telegram, and other platforms.

10. LogEntry
This one is responsible for storing the history of changes for all the objects in
the system.

Chapter 6. The architecture of my solution 19

6.4 REST

REST states for the representational state transfer which is an architectural approach
that describes how the systems can communicate through the web. The communica-
tion is done using textual representations of data objects in a stateless manner. This
means that every request is contextually independent from another.

There are lots of benefits in stateless architecture, but the most important one
is that such an approach is suitable to develop applications with a high load. The
server doesn’t need to store some client’s session related information and cares about
clearing it if the session is broken for some reason. Although it may require to in-
clude some additional data in each request.

The access to the data is done through a URL, so each resource that can be ac-
cessed from the client has its own URL. When the client retrieves the resource, the
corresponding data is returned. It is not wrapped in some XML (like SOAP protocol
does), but just the JSON object with needed fields is returned. It’s relevant to men-
tion that all the access to the data is done through the HTTP protocol. And client can
manipulate data with the following HTTP methods:

• GET

• PUT

• POST

• DELETE

So, in this way REST fully supports CRUD, which is a notion that represents
operations that are necessary to implement in each persistent storage application.
CRUD stands for the following type of operations:

• CREATE

This one allows a client to create a new resource on the server’s data storage.
In all SQL based databases this one is equivalent to INSERT.

• READ

This one allows the client to read or to search the data by querying it or apply-
ing different filters.

• UPDATE

This one allows the client to update some existing objects in the server’s data
storage.

• DELETE

Obviously, the last one is responsible for deleting objects. So, the REST archi-
tecture is simple to implement and use. Meanwhile, it provides easy access to
all the resources on the server.

6.4.1 Django Rest Framework

Django Rest Framework is widely used to provide the REST functionality using
Django. It allows to quickly build the REST interface without code repeating, so
following DRY principle. DRF is linked with Django itself, so it has built-in support
for Django ORM. There are some main notions [Django Rest Framework]:

Chapter 6. The architecture of my solution 20

1. Serialization

With help of so-called serializers, it is possible to validate the data that comes
to or from our application. The serializer object receives the JSON (Python
dictionary) object and runs the validation on provided fields. The main ad-
vantage of DRF serializers is that they support Model serialization. So, the
data is automatically validated according to the rules that are described in the
model.

2. Views

Views are classes that implement the business logic of an application. But in
some cases, especially when building some REST interface, the logic is pretty
straightforward. The system just needs to give access to all the resources it
has. And as I mentioned before, DRF supports the DRY principle, so there is
no need to invent some resource views every time you create a REST interface.

There are tons of built-in View classes from which the developer can inherit.
They also support linking with a Model instance, so they can give access to the
data in the database directly. Using inheritance the developer can control the
behavior of views at the desired level of abstraction. The simplest implemen-
tation of CRUD:

c l a s s S n i p p e t L i s t (g e n e r i c s . ListCreateAPIView ,
g e n e r i c s . RetrieveUpdateDestroyAPIView) :

queryset = Snippet . o b j e c t s . a l l ()
s e r i a l i z e r _ c l a s s = S n i p p e t S e r i a l i z e r

This will automatically create all the needed endpoints to support CRUD op-
erations.

Of course, when the developers need to customize some operations, they are
allowed to do so by inheriting from other classes or redefining the existing
implementations of provided default methods.

3. Authentication and authorization

DRF also supports different ways to authenticate and authorize the user. There
are many flows of auth, the most direct one is to specify the permission classes
on the view level:

p e r m i s s i o n _ c l a s s e s = [permissions . IsAuthenticatedOrReadOnly]

If there is a need to customize those, a developer can create custom object-
level permissions. They’re widely used in systems, where it comes to the user
management. In my application, that’s not the case, but sometimes there is
a need to have admins, content managers, writers, super admins, and others.
They all have different permissions and that could be managed by creating the
custom object-level permissions and then checking them in views.

4. Routers

This part of DRF simplifies the routing of web applications. As it was men-
tioned before, the REST architecture is about giving access to the resources it
has and each resource has its URL. It could be imagined what a mess it could
be to define all the needed URLs for the large system and what would be the
consequences of changing some of them.

Chapter 6. The architecture of my solution 21

Routers simplify all the processes by creating automatically all the URLs for
the view. The example of defining a router and registering views:

router = DefaultRouter ()
router . r e g i s t e r (r ’ servers ’ , views . ServerView)
router . r e g i s t e r (r ’ users ’ , views . UserView)

By registering the view with some prefix (servers and users in this case), all the
needed URLs for supporting CRUD will be created (of course, if view supports
all those operations).

6.4.2 Integration with frontend

As it was mentioned before, Django Admin is a powerful tool to manage the database,
but it is too risky to allow users to interact with it. So, my application supports the
integration with the front-end. By providing a REST interface to all the resources I
am enabling the possibility to integrate almost all the modern web frameworks with
my app. Using Angular, React, or Vue.js it is possible to build a full server manage-
ment system. Moreover, the end-user can choose among different web templates the
one they need, not to bother the system with useless charts and diagrams.

6.5 Celery and Celery beat

There are some long-running tasks like server enrollment that may take several min-
utes to be completed. It is not a good idea to force users to wait until this task is
completed. But in the synchronous approach, it is the problem, because the process
that processes the request needs to wait until the task is completed and the user
has to wait, while the whole system from the user perspective gets stuck [Celery -
Distributed Task Queue].

Here comes Celery – a simple, flexible, and reliable distributed system to process
vast amounts of messages, while providing operations with the tools required to
maintain such a system. It’s a task queue with a focus on real-time processing, while
also supporting task scheduling (will come to that later).

It has the following benefits [Celery - Distributed Task Queue]:

1. Simplicity

Celery is a really simple tool to configure and use. The basic setup looks so:

os . environ . s e t d e f a u l t ("DJANGO_SETTINGS_MODULE" ,
"mon. s e t t i n g s ")

app = Celery ("mon")
app . conf ig_ f rom_ob jec t (" django . conf : s e t t i n g s " ,

namespace ="CELERY ")
app . autodiscover_ tasks (lambda : s e t t i n g s . INSTALLED_APPS)

And some environment variables in the settings (CELERY_BROKER_URL and
CELERY_RESULT_BACKEND) with CELERY prefix, so it can find them.

2. Availability

Celery is a highly available service because it supports automatic retrying
when there are some connectivity issues or failures, as well as supporting repli-
cation.

Chapter 6. The architecture of my solution 22

3. Speed

It is relatively fast, providing a possibility to run millions of tasks in a minute
on a single process.

4. Flexibility

Almost every part of Celery can be extended or used on its own, Custom pool
implementations, serializers, compression schemes, logging, schedulers, con-
sumers, producers, broker transports, and much more.

In my system Celery is used for the server enrollment task (not to bother users
waiting until the completion) and checking the updating the server’s resources met-
rics. The first task just runs asynchronously when the initial server has been created.
But the second one needs to be triggered every minute (or the time the user speci-
fies).

For scheduling celery tasks Celery Beat tool can be used. It is supported by Cel-
ery out of the box and it is amazingly flexible. It supports crontab way of setting up
the scheduling:

app . conf . beat_schedule = {
’add−every −monday−morning ’ : {

’ task ’ : ’ t a s k s . add ’ ,
’ schedule ’ : crontab (hour =7 , minute =30 , day_of_week =1) ,
’ args ’ : (1 6 , 1 6) ,

} ,
}

This task will be executed every Monday morning at 7:30 a.m. Moreover, it sup-
ports solar scheduling.

The Celery and Celery Beat architecture is simple and looks so [Mariano, 2019]:

FIGURE 6.3: Celery Architecture

6.6 Docker and Docker-Compose

When dealing with the development process it is important to have similar environ-
ments on the server and locally, so all the tests and the system behavior, in general,

Chapter 6. The architecture of my solution 23

are similar. When the application grows it could become a mess to create the envi-
ronments manually for each instance.

Docker is a tool for managing the environments of the application. It provides
the ability to build a so-called container and running the application isolated within
it. The containers are lightweight and should have all the libraries and dependencies
to run the application. This way it doesn’t depend on what host system it is running.

Docker has a client-server architectural approach, so the client talks to the Docker
daemon. They could run on one system or the client could be connected to the
remote daemon. [Docker Engine]

FIGURE 6.4: Docker Compose Architecture

There are some main parts in it:

1. The docker daemon listens for all the commands from the client and manages
the docker objects (such as containers, images, etc.)

2. The docker client is the service that accepts all the end-user commands (i.e.
docker run, docker build, etc.) and sends them to the docker daemon.

3. Docker objects

There are some of them – like containers, images, networks, volumes, and plu-
gins:

• Image is a core part and it is basically a read-only instruction about how
the system should be built. Often, the images are created based on others
(for example the Ubuntu or CentOS images can be used) and then some
customization is made.

• Containers are just runnable instances of images. They could be created,
run, deleted, stopped, or moved using the Docker client (either Docker
API or CLI).

4. Docker registry is the place where all the images could be stored and managed.

The docker image of this application is based on the python:3.7-alpine which is
very lightweight. All the needed packages are installed later with the “apk add”
command.

Docker is cool but there is usually a need to have several containers within one
application. This is also the case here. Then the Docker-Compose tool can be used. It

Chapter 6. The architecture of my solution 24

is basically a YAML-based configuration tool that allows the developer to maintain
multiple docker containers with just one configuration file. [Docker Compose] In my
application, there are several containers: database (based on mysql:5.7 image), core
(the application container, based on the python:3.7-alpine), celery, and celery-beat
(also based on the python:3.7-alpine), and redis (based on redis:5-alpine).

The best part of it is that Compose works in all environments: production, stag-
ing, development, testing, as well as CI/CD workflows.

25

Chapter 7

Summary

In conclusion, it could be said that my application is a great combination of tech-
nologies that aim to improve the experience of maintaining servers by giving an
easy solution for monitoring their resources.

The main idea of a project was to provide a back-end application that would give
a user a flexible set of functions with the potential of different front-end frameworks
integration, scaling possibilities, and out-of-the-box use. It was fulfilled with the
help of the Django framework as the core part of the solution, Celery queue as the
asynchronous supporter, and Docker + Docker-Compose as the service for setting
up the environment.

There is a potential for improvements and it consists of the following steps:

• Add the unit testing with full coverage. It will allow maintaining the applica-
tion easier when the codebase will grow.

• Choose a cloud provider and host the solution. This one is easy to implement
because of the Docker-Compose tool which is responsible for setting up both
local and server environments.

• Create a basic front-end. It is possible to create a default front-end using
Django templates. It will replace the Django admin interface giving more con-
trol under the user’s operations.

Nevertheless, the solution turned out to be working, and despite possible im-
provements, it already able to improve the experience of monitoring server resources.

26

Bibliography

Amazon CloudWatch. URL: https://aws.amazon.com/cloudwatch/.
Celery - Distributed Task Queue. URL: https://docs.celeryproject.org/en/stable/.
Cloud Monitoring. URL: https://cloud.google.com/monitoring/.
Django Models. URL: https://docs.djangoproject.com/en/3.2/topics/db/

models/.
Django Rest Framework. URL: https://www.django-rest-framework.org/.
Docker Compose. URL: https://docs.docker.com/compose/.
Docker Engine. URL: https://docs.docker.com/engine/.
Gartner (2017). Gartner Forecasts Worldwide Public Cloud End-User Spending to Grow

18% in 2021. URL: https://www.gartner.com/en/newsroom/press-releases/
2020 - 11 - 17 - gartner - forecasts - worldwide - public - cloud - end - user -
spending-to-grow-18-percent-in-2021.

George, Nigel (2020). Mastering Django.
Holovaty, Adrian and Jacob K. Moss (2008). The Definitive Guide to Django:Web Devel-

opment Done Right.
Lesonsky, Rieva (2017). 10 Ways to Get New Customers. URL: https://www.sba.gov/

blog/10-ways-get-new-customers.
Mariano, Antonio Di (2019). How to run periodic tasks in Celery. URL: https://antoniodimariano.

medium.com/how-to-run-periodic-tasks-in-celery-28e1abf8b458/.
MVC Architecture - Model, View, Controller. URL: https://webshake.ru/oop-v-php-

prodvinutyj-kurs/arhitektura-prilozheniya-i-pattern-mvc/.
Rud, Anna (2019). Why and How Netflix, Amazon, and Uber Migrated to Microservices:

Learn from Their Experience. URL: https://www.hys-enterprise.com/blog/why-
and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-
from-their-experience/.

What Is Load Balancing? (2018). URL: https://www.nginx.com/resources/glossary/
load-balancing/.

Windows Server Administration Fundamentals (2011). John Wiley and Sons, Inc.
Wirtz, Bernd W. and Peter Daiser (2018). “Business Model Development: A Customer-

Oriented Perspective”. In: Journal of Business Models 6.3, pp. 24–44.

https://aws.amazon.com/cloudwatch/
https://docs.celeryproject.org/en/stable/
https://cloud.google.com/monitoring/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://www.django-rest-framework.org/
https://docs.docker.com/compose/
https://docs.docker.com/engine/
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.sba.gov/blog/10-ways-get-new-customers
https://www.sba.gov/blog/10-ways-get-new-customers
https://antoniodimariano.medium.com/how-to-run-periodic-tasks-in-celery-28e1abf8b458/
https://antoniodimariano.medium.com/how-to-run-periodic-tasks-in-celery-28e1abf8b458/
https://webshake.ru/oop-v-php-prodvinutyj-kurs/arhitektura-prilozheniya-i-pattern-mvc/
https://webshake.ru/oop-v-php-prodvinutyj-kurs/arhitektura-prilozheniya-i-pattern-mvc/
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/resources/glossary/load-balancing/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem
	Existing solutions
	My solution
	How it works
	User interface
	User interaction flow

	The architecture of my solution
	Monolithic server architecture
	Django framework
	Django ORM and MySQL database
	REST
	Django Rest Framework
	Integration with frontend

	Celery and Celery beat
	Docker and Docker-Compose

	Summary
	Bibliography

