UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Research of developing demand-driven
services using the Reactive Streams
concept and RSocket

Author: Supervisor:
Vladyslav URSUL Oleh DOKUKA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

SRS | APPLIED
)5/ ¢ | SCIENCES
1215 | FAcuLTY.

Lviv 2021

ii

Declaration of Authorship

I, Vladyslav URSUL, declare that this thesis titled, “Research of developing demand-
driven services using the Reactive Streams concept and RSocket” and the work pre-
sented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where [have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY
Faculty of Applied Sciences
Bachelor of Science

Research of developing demand-driven services using the Reactive Streams
concept and RSocket

by Vladyslav URSUL

Abstract

The goal of this bachelor’s thesis is to investigate the potential of leasing capabilities
in the RSocket protocol while developing self-balancing, demand-driven microser-
vices for usage in distributed systems. ..

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements

I want to start by saying how grateful I am to my parents, who have been wonderful
and tolerant of all my weirdness for the last 22 years. In my academic pursuit, I
would want to express my gratitude to the numerous people who supported me,
helping me through my education - Mykola Biliaiev, Danylo Shankovskyy, Yuriy
Stasinchuk, Ivan Yurochko, and others. Also great thanks to my supervisor Oleh
Dokuka! And last but not least, I would want to thank the individuals who make
my studies in UCU a reality, which includes students such as Adrian Slywotzky,
Oles Dobosevych, Yaroslav Prytula, and many more. ...

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction

1.1 Context
1.2 Thesistask
1.3 Thesis Structure . .

2 Background and Related
2.1 Reactive Manifesto
2.2 Reactive Streams .
2.3 HTTP/2

2.3.1 Multiplexing
2.3.2 Server Push

Works

24 RSocket e e e
241 Frames e e
2.4.2 General characteristicsof Rsocket

Multiplexity oo
Communicationtypes
Backpressure o oo
243 Leasing e
3 Experiment

3.1 TaskOverview e e e e

32 Implementation
3.2.1 Architecture overview

Producer
Broker e
Worker e
322 SelectedTools e
Java e
Docker Kubernetes.
CLItool e
Jmeter

3.2.3 Tests Results
No Lease test
Leasing test

4 Conclusion

iv

ii

iii

11
11
11
11
11
12
12
12
12
12
13
14
14
14
15

17

Bibliography

18

Vi

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
34
3.5
3.6
3.7

Characteristics of Reactive Systems from Reactive Manifesto 3
Demonstration of responsibilities of Control and Data flows 5
HTTP/1 and HTTP/2 comparison 5
Request-Response and Server Push comparison 7
Frame structure example from RSocket Protocol official documentation 8
RSocket Lease Frame structure, 9
Solution Architecture Lo oo 11
Broker Dockerfile 12
Broker service kubernetes specification 12
Noleasetestsaverage 14
No lease test. Throughputgraph 14
Broker logs. Leaseevery2sec 15

Throughput graph. Leaseevery2sec 16

vii

List of Abbreviations

SLA
HTTP
SOA
CSS
TCP
FCS
MAC
CPU
SDK
PaaS

Service-Level Agreement
HyperText Transfer Protocol
Service-Oriented Architecture
Cascading Style Sheets
Transmission Control Protocol
Frame Check Sequence
Medium Access Control
Central Processing Unit
Software Development Kit
Platform as a Service

viii

Dedicated to the first humans on Matrs. . .

Chapter 1

Introduction

1.1 Context

Currently, sophisticated solutions are frequently comprised of a number of compo-
nents that are integrated into a single platform (microservice architecture or SOA).
This results in greater scalability and ease of maintaining underlying logic than
monolithic apps do. Despite the numerous disadvantages of this application ar-
chitecture, there are a few bottlenecks that users frequently experience. When dis-
cussing high-load distributed systems, it is critical to consider how our services will
interact and also how we will handle demand and reduce response time.

This brings us to the issue of load balancing, which is a critical issue in high-demand
distributed systems. There are a few ways that this is often handled in the real world,
and in the majority of situations, individuals are now resolving the issue through the
use of certain severe constraints. However, certain clients are incapable of buffering
enormous amounts of data, and severe limitations are sometimes ineffective for big
systems that are heavily laden with data that must be handled with non-blocking
back pressure (like video-streaming or real-time Al solutions). This is when the no-
tions of Reactive Streams come into play.

Therefore, it is worthwhile to investigate the possibilities of building demand-driven
self-balancing services using Reactive Streams, particularly RSocket, a binary proto-
col that implements Reactive Streams semantics in inter-service communication and
also gives possibilities for developing self-balancing services via leasing, which has
not been investigated previously.

1.2 Thesis task

The purpose of this thesis is to investigate the leasing capabilities of RSocket and to
develop a demand-driven service that will be used to assess the stability and perfor-
mance of RSocket under load with and without the Lease method implemented.

Additionally, my objective was to get more knowledge about current trends for
building a communication in distributed systems and gather real experience of work-
ing with RSocket while developing self-balancing distributed systems.

1.3 Thesis Structure

1. In the first chapter I will describe my thesis context and main tasks

Chapter 1. Introduction 2

2. In second chapter I will follow-up with covering the background of my thesis,
by describing main concepts of Reactive Streams and RSocket as well as some
historical introduction and reasoning for HTTP/2 and the need of leasing

3. In the third chapter I will cover my experiment and practical gaining during
my work on this thesis

4. In the end I will make a conclusions and summarize results.

Chapter 2

Background and Related Works

2.1 Reactive Manifesto

The Reactive Manifesto was released in 2013 with the following reasoning: “Appli-
cation requirements have changed dramatically in recent years. Both from a runtime
environment perspective, with multicore and cloud computing architectures nowa-
days being the norm, as well as from a user requirements perspective, with tighter
SLAs in terms of lower latency, higher throughput, availability and close to linear
scalability. This all demands writing applications in a fundamentally different way
than what most programmers are used to.” by the creator Jonas Boner in article Why
do we need a reactive manifesto.

Currently there is already a second version it, that was published in 2014 and it
currently has more than 30 thousands of signes on it.

In general The Reactive Manifesto describing main principles of the reactive pro-
gramming 2.1. There are four of main them with two additional ones as you can see
at2.1

Maintainable Extensible

FIGURE 2.1: Characteristics of Reactive Systems from Reactive Mani-
festo

\l/ i

MEANS

So to summarize, if we want to build a reactive system it should match with thee
criteria above, that means:

1. Have an ability to react on different load. (be elastic)

Chapter 2. Background and Related Works 4

2. Have a proper error handling and have an ability to make disaster recovery in
a fast way. Also, failure in one component shouldn’t impact other ones. (be
resilient)

3. All components should be isolated and should have a proper non-blocking
message-driven communication.

4. Minimized response time that also should be consistent predictable. (be re-
sponsive)

2.2 Reactive Streams

The specification for Reactive Streams is modeled around the Reactive Manifesto.
The notion of Reactive Streams was primarily established to manage the exchange
of stream data across an asynchronous boundary—for example, delivering items
to another thread or thread-pool—while guaranteeing that the receiving side is not
compelled to buffer arbitrary quantities of data (Reactive Streams). This is critical
because, while we invest time and effort in designing services with asynchronous
processing, we frequently operate with a restricted pool of workers or middlewares,
which frequently becomes a bottleneck. Thus having an uncontrolled producer leads
to a failure since it can overwhelm a slow Consumer with a messages.

For instance, if our Consumer’ capacity is insufficient to handle the quantity of com-
putational demands transmitted from other levels, we need queue our requests to
avoid missing data, which requires greater concurrency at the worker level. How-
ever, asynchrony is required to maximize the utilization of available both computer
and network resources.

To solve that problem, Reactive Streams specification introduces a mechanism called
Backpressure which allows a Consumer to proactively notify a Producer about its
demand. This mechanism allows a consumer to enable resilience since a Producer
will never send more data than it was demanded (predictable load). At the same
time, Producer can scale down its resources when there is no demand to produce
messages and scale up when there is a demand (enables elasticity)

There is 3 main programming interfaces introduced to identify the Reactive Streams
protocol in any programming language. First two are Publisher and Subscriber -
representation of Producer and Consumer where to received data a Consumer has
to allocate a Subscriber and pass it to the Publisher’s subscribe method The third
interfaces is a Subscription - a contract given by Publisher to a connected Subscriber.
To enable Backpressure, Subscription offers a request method through which a Sub-
scriber can asynchronously expose its demand (see Reactive Streams)

To simplify that interface could be splitted into a two flows: Control and Data layer
(see example in 2.2 . Control layers make sure, that all communication parties are
following communication rules and setting all required variable as well as taking
care and notifying everyone about it’s own capacity.

Chapter 2. Background and Related Works 5

Control

flow
Consumer Producer
Data <
flow Sends a requested
amount
FIGURE 2.2: Demonstration of responsibilities of Control and Data
flows
2.3 HTTP/2

Following Tim Berners-Lee’ idea, the initial version of HTTP was launched in 1991
as version 0.9. It has been iteratively enhanced over the years, reaching version 1.0
in 1996 and 1.1 in 1997.

Over its first 14 years, HTTP has undergone just a few significant enhancements.
HTTP/2 - The protocol’s second major version was published in 2015. The cause
for this was the emergence of new trends and requirements in people’s information
consumption experiences. Internet resources grew increasingly resource-intensive
and performance-intensive. (Evolution of HT'TP)

The following critical methods were introduced in HTTP/2: server push, compres-
sion, multiplexing, and request priority. These features contribute to the reduction
of latency associated with the processing of browser requests.

2.3.1 Multiplexing

In HTTP/1.x we have an ability only to make a single request at once from the same
connection, that was rapidly improved HTTP/2 by adding an ability to send multi-
ple of them and receive response back in any order.

Consider the following scenario of a person accessing a website to better understand
the implications of multiplexing:

On an HTTP/1.1 connection, you can download only one of those at a time. Thus,
the HTML file is downloaded and then the CSS file is requested. Once that is re-
turned, the JavaScript file is requested. When that is returned, the first image file is
requested... and so forth.

HTTP 1.1

Client Request #1 |—3»{ Server Response #1 [—»| Client Request #2 |—3» Server Response #2 —J» Client Request #3 |—» Server Response #3

HITP-20 Client Request #1 [—J»| Server Response #1

Client Request #2 [—)»{ Server Response #2

Client Request #3 Server Response #3

FIGURE 2.3: HTTP/1 and HTTP/2 comparison

Chapter 2. Background and Related Works 6

HTTP/1.11s a synchronous protocol, which means that once you send a request, you
are stuck waiting for a response. This means that the browser spends the majority
of its time idle, having sent a request, waiting for a response, then sending another
request, waiting for another response again and again (see 2.3 as an example flow).
Of course, complex sites with a lot of JavaScript require the Browser to perform a lot
of processing, but that processing is dependent on the JavaScript being downloaded,
so the delays inherent in HTTP /1.1 do cause issues in the beginning.

So, one of the primary issues on the web today is the network latency associated
with the transmission of requests between the browser and the server. It may only
be a few tens or hundreds of milliseconds, but they add up and are frequently the
slowest part of web browsing - especially as websites become more complex and
majority of users now are using mobile devices.

To bypass this limitation, browsers frequently establish several connections to the
web server. This enables a browser to send many requests concurrently, which is sig-
nificantly more efficient, but at the expense of the complexity associated with setting
up and managing many connections (which impacts both browser and server). HTTP/2
enables you to submit many requests over a single connection, eliminating the re-
quirement to start several connections as described above. This obviously improves
performance by not delaying the transmission of requests while waiting for a free
connection. All of requests go in almost) concurrently across the network to the
server. The server answers to each one, and they then begin their way back. Indeed,
it is considerably more powerful than that, since the web server may reply to them in
any order it wishes, returning files in any order, or even breaking each file requested
into parts and recombining them. This has the extra benefit of preventing a single
large request from blocking all future requests. The web browser is then charged
with reassembling all of the fragments. In the best-case scenario (assumes there are
no bandwidth constraints - see below), if all requests are sent in parallel and are in-
stantly responded to by the server, this implies you only have to make one round
trip to download all resources.

2.3.2 Server Push

HTTP/2 introduces a new form of communication in which a server can push replies
to a client (Section 8.2 of Hypertext Transfer Protocol Version 2 (HTTP/2)). Server push
enables a server to transmit data to a client speculatively based on what the server
predicts the client will require, balancing network utilization against the possibility
for latency gain

Throughout history, the typical pattern for inter-service communnication was request-
response pattern. To get the data, the requester submits a request to a remote server,
which responds with the requested data. 2.4

Chapter 2. Background and Related Works 7

‘ Client ‘ ‘ Server ‘

request to the server #1
O >
Ll
response from the server #1 ?
<
request to the server #2
‘CR
L
O«

response from the server #2

Request - Response i)

Server Push request to the server #1

response from the server #1

response from the server #2

FIGURE 2.4: Request-Response and Server Push comparison

This technique has the potential to be inconvenient, as it requires users to wait for
the client to locate and obtain critical elements after retrieving basic date. It can be
referred to the old practise of sending hard beats to the servers, just receive notifica-
tion, etc as well as retrieving single HTML page and only after request for all other
resources in the case of a website. This usually is increasing latency and system load
time.

By utilizing server push, we may resolve this issue. Server push enables the re-
sponder to "push” requester assets to the client in advance of the user initiating a
request. When implementing this functionality, we must exercise caution to ensure
that we are only transmitting information that the user will needs for the page they
requested.

That is quite straightforward to visualize, and it’s minimizing the networking time.

2.4 RSocket

RSocket - it’s a protocol that implements the Reactive Streams semantics. It is a
point-to-point binary communication protocol intended for use in distributed ap-
plications. Basically, all comunication in RSocket is build-up from binary Frames,
which follow similar paradigm, that HTTP/2 are. But to make RSocket work it uti-
lizes a lower-level transport protocol, and RSocket frames are transported over this
protocol. There are a few protocols currently supported, but by specifications of
RSocket - transport protocols should meet the following requirements (see RSocket
Protocol official documentation for more details):

Chapter 2. Background and Related Works 8

c] 1 2 z
81234567890123456789012345678901
i T T S T T T T S e

@] Stream ID |
o A e e —————— +
|Frame Type |I|M]| Flags Depends on Frame Type

FIGURE 2.5: Frame structure example from RSocket Protocol official
documentation
¢ Unicast Reliable Delivery.

¢ Connection-Oriented and preservation of frame ordering. Frame A sent before
Frame B MUST arrive in source order. i.e. if Frame A is sent by the same source
as Frame B, then Frame A will always arrive before Frame B. No assumptions
about ordering across sources is assumed.

¢ FCS is assumed to be in use either at the transport protocol or at each MAC
layer hop. But no protection against malicious corruption is assumed.

And currently it supports the following framing protocols:
e TCP
¢ WebSocket
e Aeron

e HTTP / 2 Stream

2.4.1 Frames

When using a transport protocol providing framing, the RSocket frame is simply
encapsulated into the transport protocol messages directly. RSocket frames begin
with a RSocket Frame Header. The general layout of the Header is given below in
2.5.

Each frame is structurally distinct, as seen in the sample image. There are now 12
Frame types, however this number might expand to 63 if there is a demand.

2.4.2 General characteristics of Rsocket
Multiplexity

While few logical streams are required they all could be incorporated into one single
connection.

Communication types

Both parties of communication could request data, there for it makes RSocket to be a
bi-directional protocol with the support of "Servers Push" and channeling. Actually,
RSocket supports 4 kinds of communication which are:

1. Request-Response - for standard request-response
2. Request-Stream - for a single one-way data stream

3. Chanel - for transmission of streams of data in both directions

Chapter 2. Background and Related Works 9

4. Fire-and-forget - for pushing data with no response

Backpressure

RSocket embraces Reactive Streams specification and implements it as a network
protocol. Therefore it enables all the benefits of asynchronous messaging over the
network mentioned before.

However, while Reactive Streams backpressure is confined to a single logical stream,
RSocket offers another mechanism called leasing to provide resilience over numer-
ous independent requests and connections.

2.4.3 Leasing

By allowing/disabling incoming data requests, leasing enables a service to maintain
its stability. There are several leasing methods that may be employed in various
situations in order to get the optimal match between a specific service and a leasing
method.

RSocket implements Leasing by introducing the LEASE frame (see RSocket Lease
Frame) As far as Rsocket is bi-directional LEASE frame (see structure in 2.6) could be
used on both sides requester and responder.

@ 1 2 3
812345678901 23456789012345678901
e T e e e Tt T S e

| Stream ID = © |

R e e R e +
|Frame Type |@|M| Flags |

e e B T T +
@] Time-To-Live |
R e T il +
|@] Number of Requests

R e T il +

Metadata

FIGURE 2.6: RSocket Lease Frame structure

The proccess, that describes how does Leasing works is greatly described in RSocket
Connection Establishment section in the official RSocket docs and is follows:

1. Based on the existence of the L flag in the SETUP frame, the client-side Re-
quester can indicate the server-side Responder whether it will respect LEASEs
or not.

2. If the client-side Requester has not set the L flag in the SETUP frame, it may
send requests immediately without waiting for the server to LEASE it.

3. Before sending requests, the client-side Requester that has set the L flag in the
SETUP frame MUST wait for the server-side Responder to provide a LEASE
frame.

4. Accepting the contents of the SETUP frame requires the server to deliver a
LEASE frame if the SETUP frame set the L flag. If the L flag is not set in the
SETUP frame, the server-side Requester may send requests immediately upon
accepting it.

Chapter 2. Background and Related Works 10

5. If the server does not accept the SETUP frame’s contents, the server MUST
return an ERROR[INVALID SETUP | UNSUPPORTED SETUP] and then cancel
the connection.

6. The server-side Requester replicates the client-side Requester’s LEASE requests.
If the client-side Requester includes the L flag in the SETUP frame, the server-
side Requester MUST wait for the client-side Responder to deliver a LEASE
frame before sending a request. Following a SETUP frame with the L flag set,
the client-side Responder MUST send a LEASE frame.

7. If a client receives a response to a request, a LEASE frame, or sees a REQUEST
type, it thinks the SETUP is approved.

8. If a client receives an ERROR, it believes the SETUP was refused.

9. A Requester MUST NOT transmit any Request frames until the connection has
been established.

10. A Responder MUST NOT broadcast any PAYLOAD frames until the connec-
tion is established.

As can be seen, we may set up Leases in such a manner that the service receives the
precise quantity of data that it can consume by implementing an algorithm (for ex-
ample Netflix Concurrency Limits) that can forecast load of the service in dependence
to the further requests.

Worth to mention, that the main difference between client side Request Rate or Con-
currency control and Leasing is that all the decision are made on the Responder side
which exactly knows about its current capacity and proactively lease it to a remote
client. With such algorithm, a client does not have to work in predict-try-fail strategy
and can safely rely on given capacity to make requests.

There are actually several leasing strategies that utilize various elements to give
Leases with certain constraints in addition to TTL:

1. Max Frames Count
2. Max Requests Count
3. Max Concurrency Limit

Each of these strategies may be optimal for a given service set, but this needs be de-
termined in each situation. So, as we can see adding Leasing to our communication
will give service an ability to self-balance load and become demand driven.

Chapter 3

Experiment

3.1 Task Overview

The goal of current thesis is to research Leasing possibilities of RSocket and create a
demand-driven service to compare it’s stability & performance under load-test with
and without Lease strategy applied. Therefore it was decided to run load-test on
two different setups of an identical service sets with and without Lease enabled.

3.2 Implementation

3.2.1 Architecture overview

For the experiment I've decided to take popular architecture design consist from
three layers of services: Producers, Brokers and Workers (3.2). I have two strate-
gies communications between services, as described above: First - and with Lease

11

enabled, second - without Lease and Rate Limits. Bellow I will describe the role of

each service and functionality of them.

> Worker
Producer 1
Broker > Worker
Producer n-1
Producer n
> Worker
FIGURE 3.1: Solution Architecture
Producer

Producers main task is to produce request’s to the Broker with some tasks for the
workers. Basically that’s a simple client that is throwing requests every random

amount of time (In the experiment I've set it from 0 to 100ms).

Chapter 3. Experiment 12

Broker

Broker is a middleware between Producers and Workers with the main task to divide
work gathered from Producers to workers. I've also implemented RoundRobin load
balancing algorithm here to split requests among Workers, by gathering IP’s of all
Worker instances and iterating them, while processing requests.

Worker

In that case broker will take some input from Brokers and will imitate CPU work
of random duration from 0 to 1000ms, it will also produce logs that will give me an
ability to track all tasks.

3.2.2 Selected Tools
Java

There’is a few languages that currently have an SDK, which has RSocket protocol
support. So at first I've tried to implement required services in Golang, but I've
realized, that RSocket library wasn’t implemented there in a required way (Leasing
wasn’t working there), so I've selected Java to move forward with, since it has the
most advance RSocket library.

FIGURE 3.2: Broker Dockerfile

Docker Kubernetes

For the deployment tool I've selected Kubernetes not only for it’s ability to handle
deployments and scaling, but also for its popularity in the real products. And also
I've chosen Docker as an orchestration tool.

In general Kubernetes is all-inclusive PaaS (Platform as a Service) system. It operates
at the container level rather than at the hardware level. (What is Kubernetes?)

I have setup a local Kubernetes cluster by using minikube with it's dashboard, that
gives me an ability to easily debug and monitor my services container resources,
while running load tests. You can see an example setup of Deployment and Service
resource for Broker mircoservice in 3.2.2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Chapter 3. Experiment

13

FIGURE 3.3: Broker service kubernetes specification

apiVersion: apps/v1
kind: Deployment
metadata:
name: broker-deployment
labels:
app: broker
spec:
replicas: 1
selector:
matchlLabels:
app: broker
template:
metadata:
labels:
app: broker
spec:
containers:
- name: broker
image: broker-test:latest
ports:
- containerPort: 8060
imagePullPolicy: IfNotPresent
priorityClassName: high-priority

apiVersion: vl
kind: Service
metadata:
name: broker-service
labels:
name: broker-service
spec:
type: NodePort
selector:
app: broker
ports:
- protocol: TCP
port: 8080
targetPort: 8060

CLI tool

To optimize my work, during running an experiment I've also created an Bash script,
which allows me to build containers and start all services with a one command

Chapter 3. Experiment 14

Jmeter

I've used Producer service, while developing services and initial tests, but for an
experiment I've required more configurable tool to gather results, so for running
load tests, I've used Jmeter with RSocket plugin, that provides an ability to run Fire
and Forget requests to the Broker service. That replaced Produced in the figure 3.2.

For tests I've set up a 150 threads, that produced single request every random pe-
riod maxim of 20ms with an ramp-up period of 300 seconds, that means that Jmeter
added new thread every 2 seconds

3.2.3 Tests Results
No Lease test

Here you can see a result from a load test with RSocket communication and no lease
strategy applied. We see here that our throughput is growing as much as network
capacities are (see 3.5), but the capacities of the pool of available workers are not
enough to handle such load (see Processed samples in 3.4) delay, when result is going
to be returned. That is also will lead to potential increase of memory consumption
and running out of memory for larger worker services.

Mo of Samples 25309
Throughput / minute 5699.12
Proccessed samples 1203

FIGURE 3.4: No lease tests average

Graphs to Display (] Data (] Average (] Median (J Deviation () Throughput
/MM"’M‘MW‘ T
/W‘/ﬁ/
,\/'///
7
o
/
/
’/l‘
No of Samples 2613 Latest Sample 141 Average 76
Deviation 43 Throughput 5,356.338/minute Median 75

oms |t

FIGURE 3.5: No lease test. Throughput graph

In the image 3.5, we notice that the number of messages sent by a requester rises even
though the receiving party’s capabilities remain same. Under actual conditions, this

Chapter 3. Experiment 15

will produce failures and increased delay, since the responder will hold all data in
memory and will be unable to process it in a timely manner.

Leasing test

Here is the results of testing our system with Lease enabled, which is using Limit
Based Leasing Strategy supported with Netflix Concurrency Limits library (see Net-
flix Concurrency Limits) for predicting Leases. At 3.6 you could see the logs from the
Broker service, where it’s showing up how does Leasing works in reality. Since our
workers are performing a random amount of work for each of requests, which take
from 0 to 1sec of CPU time, you could see that we have a different leases to issued.
We also could see an empty leases, when our workers doesn’t have a capacity to
handle new requests in the nearest lease TTL time (2sec in our case).

| sended 3 : 172.
| sended to 3 : 172,
| sended to 3 172.
2 | sended to 3 172.
| sended to 3 172.
| sended to 172.
| sended to 3 : 172.
Next check happens 1
126 | sended to #0© 3 : 172.
127 | sended to #1 KERS: 172.
INext check happens
| sended to 3 : 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 : 172.
| sended to 3 : 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 172.
| sended to 3 : 172.
| sended to | 3 : 172.
INext check happens in 2886ms
Next check happens in 2000ms
sended to 172.
sended to . 172.
sended to . 172.
sended to 3 172.
sended to A 172.
sended to A 172.
sended to i 172.
sended to . ;172
sended to . ;172
sended to . ;172
sended to . 172.
sended to A 172.
sended to A 172.
sended to A 172.
sended to 172.
sended to . ;172
sended to | 3 : 172.

sended to #2 | WORKERS: 172.17.8. .17.8.6
sended to #0 | WORKERS: 172.17.6. .17.08.6

FIGURE 3.6: Broker logs. Lease every 2sec

All above leads to the self-balancing of the Broker Worker services and leads to the
nearby the same throughput over the time, with no matter how many clients are
currently connected (see 3.7).

Chapter 3. Experiment 16

FIGURE 3.7: Throughput graph. Lease every 2sec

17

Chapter 4

Conclusion

In my thesis I have find out what is Reactive Streams and why is that paradigm can
be useful in building self-balancing distributed systems. I've settled up a default
producer-broker-worker service set and prepared them to be deployed on kuber-
netes cluster in the cloud, that could be extended to some real product. I've studied
the capabilities of those services when Leasing is enabled and when it is not. Addi-
tionally, I've done load testing to see how much stress my system could manage and
whether or not it would be able to self-balance. And in result of the tests we see, that
the servise could really be a demand-driven if we are using RSocket as a transport
protocol!

The research and measurements focus exclusively on the comparison of RSocket use
when the leasing protocol is activated vs when it is disabled. While this demon-
strates that the protocol works, it remains an open question regarding the protocol’s
efficiency in comparison to the conventional client-side rate-limiting mechanism.

As far as I know, Leasing capabilities of RSocket has never been researched before
and we have also had a call with a few engineers from Netflix, and I'm hoping my
thesis will be the first step in developing new research, and that the results will lead
to the adoption of RSocket in Netflix’s production.

18

Bibliography

Bonér, Jonas. Why do we need a reactive manifesto. URL: https://www.lightbend.com/
blog/why-do-we-need-a-reactive-manifesto.

contributors, HTTP /2. Hypertext Transfer Protocol Version 2 (HITP/2). URL: https :
//httpug.org/specs/rfc7540 . html.

contributors, Rsocket. RSocket Connection Establishment. URL: https://rsocket.io/
about/protocol#connection-establishment.

— RSocket Lease Frame. URL: https://github.com/rsocket/rsocket/blob/enchancement/
leasing-extension/Protocol .md#frame-lease.

— RSocket Protocol. URL: https://rsocket.io/about/protocol.

Foundation, Cloud Native Computing. What is Kubernetes? URL: https://kubernetes.
io/docs/concepts/overview/what-is-kubernetes/.

Foundation, Reactive. Reactive Streams. URL: http://wuw.reactive-streams.org/.

Inc., Netflix. Netflix Concurrency Limits. URL: https : //netflixtechblog.medium.
com/performance-under-load-3e6fa9a60581t.

Jonas Bonér Dave Farley, Roland Kuhn and Martin Thompson. Reactive Manifesto.
URL: https://www.reactivemanifesto.org/.

Mozilla and individual contributors. Evolution of HI'TP. URL: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Basics_of _HTTP/Evolution_of _HTTP.

https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto
https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto
https://httpwg.org/specs/rfc7540.html
https://httpwg.org/specs/rfc7540.html
https://rsocket.io/about/protocol#connection-establishment
https://rsocket.io/about/protocol#connection-establishment
https://github.com/rsocket/rsocket/blob/enchancement/leasing-extension/Protocol.md#frame-lease
https://github.com/rsocket/rsocket/blob/enchancement/leasing-extension/Protocol.md#frame-lease
https://rsocket.io/about/protocol
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://www.reactive-streams.org/
https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581t
https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581t
https://www.reactivemanifesto.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Thesis task
	Thesis Structure

	Background and Related Works
	Reactive Manifesto
	Reactive Streams
	HTTP/2
	Multiplexing
	Server Push

	RSocket
	Frames
	General characteristics of Rsocket
	Multiplexity
	Communication types
	Backpressure

	Leasing

	Experiment
	Task Overview
	Implementation
	Architecture overview
	Producer
	Broker
	Worker

	Selected Tools
	Java
	Docker Kubernetes
	CLI tool
	Jmeter

	Tests Results
	No Lease test
	Leasing test

	Conclusion
	Bibliography

