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Abstract

The primary purpose of this paper is to investigate different approaches for 3D object
pose estimation, which uses neural networks, and for model-based tracking - an
innovative solution that builds upon a combination of known matching and pose
estimation algorithms and to propose the one which will be more suitable for our
problem. Object tracking is one of the critical problems for many applications on
AR/MR devices that use object pose estimation to create an immersive experience by
combining the physical world with virtually generated objects. The main limitation
of our application is that it must work in real-time and be efficient enough to run on
devices with weak computing power (e.g., RealWear HMT-1).
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Chapter 1

Introduction

In the modern world, technologies are evolving rapidly. While the last decade saw
a shift from bulkier personal computers to laptops and later on mobile phones, the
next logical step in our personal devices evolution seems to be connected with "Ex-
tended Reality." Extended Reality [21] or shortened XR refers to all real-and-virtual
environments generated by computer graphics and wearables. The "X" in XR is sim-
ply a variable that can stand for any letter from the list of technologies that XR can
offer. XR is the umbrella term that encompasses various forms of computer-altered
reality, including Augmented Reality (AR), Mixed Reality (MR), and Virtual Reality
(VR). So, we already know what XR means and that we have to deal here with three
different technologies. But what exactly the difference between them? There are two
key factors that help distinguish these concepts. The first is how a user interacts with
this technology and the second one is how immersive this technology is (or, in other
words, how much virtuality it brings to us).

FIGURE 1.1: Reality - Virtuality Spectrum [20]

From the image above, we can see that the closest to reality and most familiar is
Augmented Reality. Next is Mixed Reality and then finally Virtual Reality. Let us
take a closer look at the three of these separately.

Augmented reality does precisely what it sounds like: reality, enhanced with
digital components. The most commonly used AR applications these days rely on
smartphones to showcase the digitally augmented world: users can activate a smart-
phone’s camera, see the world around them on the screen, and rely on AR applica-
tion to enhance that view in any number of ways: Superimposing images, Adding



Chapter 1. Introduction 2

real-time directions, Inserting labels, Changing colors.
Mixed Reality (MR) is when natural and virtual worlds merge to produce new

environments and visualizations, where physical and digital objects co-exist and in-
teract in real-time. It is based on advancements in CV, ML, graphics, display technol-
ogy, and novel input systems. At first, it may seem that AR and MR are the same, but
the key difference is that in AR, you can not interact with virtual objects, which ap-
pear only as an overlay, but in Mixed reality, they persist in the user’s environment,
becoming a part of it and boosting overall immersion.

Virtual reality [22] (VR) refers to a fully computer-generated simulation in which
the user can interact within an artificial three-dimensional environment using wear-
able devices, such as special VR Headsets fitted with sensors. Unlike Augmented
Reality and Mixed Reality, VR does not interact with the natural world at all (unless
you hit your table with a controller while playing Beat Saber). This technology is
most suitable for games because it allows you to immerse yourself in the gameplay
entirely.

1.1 Problem

Nowadays, XR technologies develop very quickly. Many ordinary users and large
companies are starting to integrate AR/VR/MR technologies into their business.
This trend has been primarily seen in such domains as Manufacturing, Healthcare,
Automotive, Marketing, Oil & Gas. Many manufacturing companies (BMW, JA-
BIL, Airbus) already use AR/MR technologies in their manufacturing processes for
staff training and increased production speed. Moreover, many inspection compa-
nies (Lufthansa Technik, SGS SA, Bureau Veritas S.A) provide inspection and repair
of some machines or devices, and they also want to use AR/MR technologies to
increase employee productivity and improve the quality of work performed. The
problem they most often encounter and which is critical for them to solve is live
object detection and tracking on AR/MR devices. In many cases, it is necessary
to create different types of virtual training that help employees better understand
and perform their work, while also there are many use cases for it in the day-to-day
work with different complicated machinery. The ability to see and work with virtual
overlay aligned with this machinery helps prevent mistakes and provides additional
context in the form of virtual tooltips, instructions, or even remote assistance.

1.2 Goal

The main goal of this work is to analyze existing and develop a new system for
detecting objects provided their 3D models and then tracking them in time. Here
detection means estimating their pose (6DoF, Translation over X, Y and Z, Rotation
over X, Y, Z) in some reference world coordinate system at a given point in time. The
solution needs to be cross-platform to support both mobile devices and tablets (An-
droid, IOS), Mixed Reality headsets (Magic Leap, Microsoft HoloLens), Augmented
Reality Headsets (Realwear HMT-1). Some of those devices have limited computing
power, so the solution needs to be optimized for their needs.
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1.3 Constraints

There are several limitations imposed on our application. The first one is that the
application should be able to run in real-time to provide a smooth experience to
the user. The excellent result for this step is to track the object with a frame rate
of at least 15 frames per second. The application should be optimized to run not
only on powerful devices such as Magic Leap or Hololens but also on devices with
limited computing power such as RealWear HMT-1. The solution needs to be object-
invariant, which means that the whole system must work correctly for any type of
object, provided its 3D model is available. The new object adaptation process should
not take a long time or somehow change the system architecture.
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Chapter 2

Related Works and Background
Information

There are two main types of optical tracking methods [1]: marker-based tracking
and marker-less tracking. Marker-based tracking relies on different types of artificial
patterns present on the scene to establish a good object or camera tracking. Marker-
less tracking, in turn, uses naturally generated features from the scene. By directly
comparing these two approaches, the first one is easier to implement and, in general,
is faster and more robust. However, it is not always possible to use pre-prepared
markers, which is the main drawback of this type of approach. The second one is
more adaptive to the new environment but is more complicated in development and
computationally expensive.

FIGURE 2.1: Model-Based Tracking Types

When it comes to object tracking based on its 3D model, what is referred to as
model-based tracking, it can be classified into two categories: recursive tracking
and tracking by detection. In recursive tracking, we use data (either camera pose
or position of scene objects) from previously processed frames to estimate the new
values for the current frame. This approach is not computationally expensive and
requires less processing power. Tracking by detection does not rely on previously
computer information and so is more computationally expensive, but it can lead to
more accurate results.

Recursive tracking itself can be classified into three categories: edge-based, opti-
cal flow, and texture-based tracking. In edge-based tracking, a wireframe from the
3D model is used to match natural world objects’ edges. Optical flow tracking uses
relative information from the movement of the object’s projection in the image plane.
Texture-based tracking uses different features (e.g., SIFT, SURF, ORB, etc...) to find
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correspondences between consecutive frames and matching key points to estimate
the object (or camera) position.

In this work, we focus on marker-less recursive tracking, where both edge-based
and texture-based detection methods are used to find initial object pose before rely-
ing on texture-based camera tracking.

2.1 The Camera Model

A camera is an essential tool in computer vision. Using a camera, we can record vi-
sual information, which is then processed by computer vision algorithms. Different
models are used to represent the camera imaging process, but the most widely used
in computer vision, and the one we used in this work is the pinhole camera model.

FIGURE 2.2: Pinhole Camera Model

In this camera model, the image plane is the projection of the world to the cam-
era. The aperture of the camera is its center which is referred to as the pinhole O. The
focal length f is the distance between the pinhole and the image plane. The work
of this camera model is simple. Let us take, for example, world point p. It emits a
light ray through the aperture (pinhole) of our camera, which passing through it, is
reflected on the image plane Q. In this case, the output image will be rotated from
left to right and from top to bottom relative to the original image. This work will use
a slightly simplified version of this camera model, namely where the image will be
already correctly rotated and located in front of our camera at a focal length distance.

From the image above, we can see that this camera model has several coordinate
systems:

1. World coordinate system Xw Yw Zw. This the coordinate system of the real
world.

2. Camera coordinate system Xc Yc Zc. The center of the system is the pinhole of
the camera.

3. Image plane coordinate system Cx Cy. The origin of the system is defined on
the center of the image plane.

4. Pixel coordinate system xi yi. Unlike the image plane coordinate system, its
center is at the top left corner of the image plane. This coordinate system is
most commonly used for image processing.
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FIGURE 2.3: Pinhole Camera Model

The conversion of 3D point in the world space to the 2D point on the image plane
is determined by this formula:

Pc = K× [R|t]× Pw (2.1)

Where K is a camera matrix with its intrinsic parameters. Focal length fx, fy,
principal point offset x0, y0 and shear s. In our case, fx = fy, because we use a pin-
hole camera model, however in practice, these values can differ for several reasons
[12]:

• Flaws in the digital camera sensor

• Image non-uniform scale in post-processing

• Camera’s lens distortion

• Anamorphic camera format, which shrinks widescreen scene into the stan-
dard.

• Errors in camera calibration

K =

 fx s x0
0 fy y0
0 0 1

 =

1 0 x0
0 1 y0
0 0 1


︸ ︷︷ ︸

2D Translation

×

 fx 0 0
0 fy 0
0 0 1


︸ ︷︷ ︸

2D Scaling

×

1 s/ fx 0
0 1 0
0 0 1


︸ ︷︷ ︸

2D Shear

(2.2)

R is a 3× 3 rotation matrix, and t is a 3D translation vector representing the rel-
ative rotation and translation between the world coordinate system and the camera
coordinate system. [R|t] are the so-called external parameters of the camera. So, the
key to fast and robust pose estimation and 3D tracking is correct solving of [R|t].
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2.2 Commercial Solutions

2.2.1 Vuforia

Vuforia is a company that PTC acquired in 2016. It develops a platform to create
cutting-edge augmented reality experiences for both handheld devices and digital
eyewear. Vuforia has its own product named "Vuforia Engine" an Augmented Re-
ality SDK that provides much functionality, but the most interesting for us is the
"Model Targets" functionality. It enables apps built with Vuforia Engine to recognize
and track particular objects in the real world based on the object’s shape. This so-
lution can work with different types of objects, from home appliances and toys to
vehicles and large-scale industrial equipment.

(a)

(b)

FIGURE 2.4: (a) Object detection process (b) Object tracking with
overlay

We can not tell for sure what algorithms does "Vuforia" use, but we can make cer-
tain assumptions based on their model generation process. There are several steps
in a model generation:

• Choosing the correct object orientation.

• Selecting the measuring units (e.g. millimeters, centimeters, meters).

• Object coloring.
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• Test for enough amount of vertices.

• Model surface type selection.

• Object motion type selection.

• View angle selection.

FIGURE 2.5: Model generation process

Knowledge of the correct object orientation and measuring units helps with point
conversion from the 3D model to the real-world object. The object coloring step and
the selection of the surface type tell us that the texture of the 3D model is necessary
for the detection or tracking part of their algorithm. So, they can use some feature
matching to get correspondences between 3D model points and points on the real-
world object. Regarding the object surface type, different features (e.g., SIFT, SURF)
could be used to make an algorithm work in the same way as with matte and metal
surfaces. Also, the 3D model should have a significant amount of vertices to generate
enough tracking features. The motion type can have two values, either a moving or
a static object. The selection of a static object can simplify the tracking process of the
object by using camera pose estimation algorithms (pose estimation accuracy can be
improved by using additional sensors such as a gyroscope and accelerometer). The
view angle selection step is used to generate a projection of a 3D model wireframe
onto the camera image plane, which is then used in the application to make initial
object pose detection. From this step, we can assume that the object detection process
in Vuforia is using some edge-based method.

2.2.2 Wikitude

Wikitude is another company that has its own platform for the creation of aug-
mented reality experiences. They provide Wikitude Augmented Reality SDK that
has a similar feature as Vuforia has. Its name is "3D Model Object Targets". Un-
like Vuforia, this solution can not directly work with 3D models. To do this, you
need to send the desired 3D model to the developers of this solution, and they will
manually generate the so-called point cloud map, which you can then use in your
application. However, this solution can automatically generate a point cloud map
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from 2D images of the 3D object. So, for this step, some implementation of struc-
ture from motion algorithm is used. Then this point cloud map is used for object
tracking.

(a)

(b)

FIGURE 2.6: (a) Wikitude edge-based detection (b) Object tracking
step with 3D model overlay

For the initial detection step, the process is similar to Vuforia’s one. The object’s
wireframe is generated from some point of view, and then the edge-based method is
used to estimate the initial object position.

2.2.3 ViSP

ViSP (Visual Servoing Platform) is an open-source, cross-platform library developed
by a team of researchers from Inria university that allows to develop applications
using visual tracking methods. The library is divided into several modules, and one
of them is the "Trackers" module, which has the implementation of model-based
tracking for 3D objects. The algorithm is divided into two steps. The first one is the
detection of some features. The features can be of two types:

• Local features of the image (e.g., SIFT, SURF)

• Moving edges along the normal to the projection of the 3D model

The second step is tracking of previously detected features. The edge-based tracking
method (similar to the RAPiD algorithm) or KLT keypoints tracker is used based on
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features. The last step of the approach is the estimation of object pose by matching
the tracked features with the projection of the 3D model.

(a) (b)

FIGURE 2.7: (a) Example of object tracking using ViSP (b) 3D Model
example used for tracking

2.2.4 Conclusion

So from the analysis of commercial solutions, we can conclude that the vast major-
ity of companies solve the problem of object pose estimation by using classic com-
puter vision algorithms. This decision can be explained by the fact that the classic
approaches are more robust, require less computational power than the neural net-
works, and are easily generalized. However, in order to be able to confirm this
statement, in the next section, we will analyze the existing classical approaches and
neural networks.

2.3 Classic Computer Vision

2.3.1 RAPiD

RAPiD [3] (Real-time Attitude and Position Determination) is an object tracker (if
you include it in our classification, it will take the place of a recursive edge-based
tracker), which Harris and Stennett proposed. The main advantage of this approach
is that it can run in real-time, which is crucial for our application. This algorithm
can estimate the relative pose of the object by analyzing the displacement of image
edges between two consecutive frames. The main idea is not to compare the raw
edges of the object but to use points that lie on them. This technique is "points
sampling". Firstly, all edges should are extracted from the 3D model, then a series of
points (also called control points) is sampled on each edge. Since this is a recursive
tracking algorithm, we need to utilize the estimated pose from the previous frame
to estimate the object position in the new frame. Assume that we have an estimated
pose for the previous frame that can be expressed by two variables: the rotation
matrix R and translation vector t. Then the control point Pw (which is in the world
coordinate system) for the previous frame will have camera coordinate such as

Pc = RPw + t (2.3)
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and its projection point p on the image plane could be obtained from previous equa-
tion 2.1. Now for current frame after a relative rotation ∆R and translation ∆t our
point Pc could be represented as P‘

c = ∆R · RP + t + ∆t. ∆R could be approxi-
mated as ∆R ≈ I + Ω, where Ω is a skew-symmetric matrix that includes three
parameters. So, P‘

c and p‘ could be represented as a function with six parameters
δp = (Ωx, Ωy, Ωz, ∆tx, ∆ty, ∆tz). However, it is difficult to locate p‘ directly. That’s
why RAPiD searches for strong gradients in orthogonal direction ~n. The distance l
is written as

l = ~nT(m‘−m). (2.4)

For each control point Pi, we have

li = ~niWiδp (2.5)

where Wi is a 2× 6 matrix involving R, P, and t. When enough control points are
provided, δp can be calculated as the least-squares solution of equations:

δp = argmin
δp

∑
i
(~niWiδp− li)2 (2.6)

Therefor, ∆R and ∆t can be obtained respectively as{
∆R ≈ I + Ω
∆t = (∆tx, ∆ty, ∆tz)

(2.7)

Finally, the pose for the current frame is estimated as [∆R ·R|t∆t]. This new pose will
be used to predict the pose for the next frame and, in this way, the camera/object
pose will be updated for each frame continuously.

2.3.2 RAPiD Improved

RAPiD [3] is a very powerful algorithm that can work in real-time, but it has one
main drawback, it is not robust. The first problem with this approach is that strong
gradients searched near control points could be generated by wrong edges due to
cluttered environments, partial occlusions, or adjacent ambiguous edges. RAPiD
cannot filter out those false-positive edges because it simply picks the nearest one,
and this can cause the problem of getting the wrong 3d to 2D correspondences. An-
other problem with the RAPiD approach is that it assumes that the relative pose
rotation ∆R between two consecutive frames is small. That means that the tracking
process can fail if the camera or object is moving very fast.

So, the first improvement proposed to this algorithm was replacing the rotation
linearization stage with a minimization approach of the distance between the ex-
tracted features and the projections of the 3D model.

[R|t] = argmin
[R|t]

∑
i

dist(Proj(Mi, [R|t]), mi‘) (2.8)

Here Mi represents feature points of our 3D model, Proj(Mi, [R|t]) denotes the
projection of Mi under the pose [R|t]. mi are the computer features. This equation
can be solved using Levenberg-Marquardt nonlinear optimization algorithm.

Another improvement that Simon and Berger proposed is tracking stabilization.
They introduced robust estimators to reduce the impact of outlier edges during the
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optimization. Particularly, M-estimators, which are maximum likelihood-type esti-
mators and special cases of extremum estimators, have been widely used and could
be simply written as

p(r) =

{
|r| |r| < rmax

rmax |r| ≥ rmax
(2.9)

Another two M-estimators were proposed by Tukey and Huber

pHuber(r) =


c2

6
[1− (1− (

r
c
)2)3] |r| ≤ c

c2

6
|r| > c

(2.10)

pTukey(r) =


r2

2
|r| ≤ c

c(|r| − c
2
) |r| > c

(2.11)

The next improvement was proposed by Vacchetti et al. It was a modification
to the Tukey estimator. Now it can consider multiple hypotheses when searching
for strong gradients near the projection control points. With this improvement, not
only one strong edge gradient is taken, but several of them within predefined dis-
tance are considered. The selection of the correct one happens implicitly during the
minimization process.

p ∗Tukey (r1, . . . , rn) = min
i

pTukey(ri) (2.12)

So the equation 2.8 can be modified as follow

[R|t] = argmin
[R|t]

∑
i,j

p ∗Tukey (dist(Proj(Mi, [R|t]), mij‘)). (2.13)

Here j is the index of the hypothesis.

2.3.3 Explicit Edges Tracking

Explicit edges tracking is another classic approach, but it uses higher-level edge fea-
tures. Those can be straight lines, contours, and corners. This approach aims to
establish correspondences between the extracted features and similar features from
the 3D model. This solution is more robust because we have fewer outliers, but the
computational effort of the algorithm will increase. Koller
et al. proposed to use Mahalanobis distance between the line segments to establish
the correct correspondences. The line segment can be represented as

X = (cx, cy, Θ, l) (2.14)

Here cx and cy represent the center of the line, Θ is its rotation and l is the dis-
tance. Let’s take for example line segment of our model Xm and the extracted line
from the projection Xp. The Mahalanobis distance between them can be defined as

d = (Xm − Xp)
T(Am + Ap)

−1(Xm − Xp) (2.15)

Am and Ap are the covariance matrices of Xm and Xp respectively. The pose
estimation equation can be solved using the same Levenberg-Marquardt algorithm.
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[R|t] = argmin
[R|t]

∑
i
(Xi

p − Xi
m([R|t]))T Ai

d(Xi
p − Xi

m([R|t])) (2.16)

2.3.4 Texture Based Tracking

Another popular method for 3D model pose estimation is texture-based tracking.
This approach requires keyframes, which will be used as a reference image and a 3D
model. The keyframes should contain a realistic appearance of our object because
they are used to generate features from our 3D model. Practically it is impossible to
get the same images for the object due to variability in illumination, scale orienta-
tion, and viewpoint. That is why this method is using SURF key points, which are
invariant to scale and rotation. Across multiple keyframes, the SURF features are cal-
culated. After this, the 3D location of each feature is calculated by back-projecting
each 2D point to the 3D model. During the inference, the features from the input
frame are compared with those previously calculated from the 3D model. Then we
need to find correspondences between the features and match them. To eliminate
possible outliers, the RANSAC is used during the matching phase.

2.4 Neural Networks

2.4.1 PoseCNN + DeppIM

FIGURE 2.8: DeepIM iterative matching

This approach [16] [17] consists of two parts and is the modification of the plain
PoseCNN network. The first step of initial pose estimation is done using the PoseCNN
neural network. In order to decrease processing time, a Deep Iterative Matching was
proposed to replace PoseCNN on the pose refinement step. DeepIM is trained to
predict relative rotation and translation of the object, getting the initial position and
3D model as input. Firstly, the 3D model is rendered to the image with respect to
the initial pose. Then network uses the input image from the camera and previously
rendered image to refine the input pose. The newly estimated pose is then used in
the following steps to render a new image and estimate the object’s pose.
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FIGURE 2.9: DeepIM Architecture

DeepIM operates on zoomed-in patches (480x640) from the original image. For
relative pose prediction, DeepIM is using the FlowNetSimple backbone. The cor-
responding mask between the input frame and the rendered image is taken as an
input to the convolution layers, which produce a feature map. Then the feature map
is forwarded through several fully connected layers to predict the translation and
rotation.

2.4.2 EfficientPose

FIGURE 2.10: EfficientPose Architecture

EfficientPose [15] solution is a neural network approach based on EfficientNet
neural network. Its architecture consists of EfficientNet Backbone, the bidirectional
feature pyramid network (BiFPN), and prediction subnetworks. Each subnetwork is
divided into four networks which of each is used to predict some parameters of the
object. They are the class of the object, its bounding box, rotation, and translation.
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2.4.3 HybridPose

FIGURE 2.11: HybridPose Architecture

The HybridPose [14] network consists of two parts, intermediate representation
prediction networks, and a pose regression module. The network takes as an input
RGB image from the camera, and after processing by prediction networks, it outputs
predicted keypoints, edge vectors, and symmetry correspondences. The next step is
pose estimation with the help of pose regression module. It also consists of two
parts, pose initialization sub-module and pose refinement sub-module. First, the
pose initialization sub-module solves system of linear equations with previously
predicted key points and gives an estimated pose to the refinement sub-module. For
outliers elimination from the initial pose, the refinement step uses the Gauss-Newton
optimization algorithm to obtain the final refined pose.
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Chapter 3

Implementation

3.1 Approach

For our implementation, we decided to choose the combination of classic approaches.
The whole solution consists of three main parts:

1. Model Generation

2. Initial Detection

3. Tracking

We needed to choose some software to work with 3D models for a model genera-
tion step because writing our own would take much time. The choice fell on Blender,
developed by Blender Foundation. We chose it because it is an open-source project,
and it allows you to integrate your Python scripts into its workflow. So, all code for
a model generation phase was written in Python.

We decided to choose an edge-based approach with a wireframe overlay to ad-
here to the already familiar user experience made in commercial solutions in the
initial detection step. For the tracking phase, a texture-based method was chosen,
but with a camera tracking improvement. Since this solution must be cross-platform
and run on devices such as Magic Leap, Hololens, mobile phones, etc., we decided to
use Unity Game Engine. It allows not only to create cross-platform applications but
is the industry standard for XR development. In Unity C# is the primary language
of the development, so the basis of the application and the wrapper computer vision
algorithms were written in C#. Also, we used the ARCore library for Android-based
devices to get access to video stream from the camera and use the camera track-
ing function to improve our tracking step. The main logic was written in C++ to
preserve the application’s speed and make the development of computer vision al-
gorithms easier and simpler.

3.2 Model Generation

To generate a model for our solution, we need to choose some 3D object. The object
is imported into Blender, where the python script renders the model from differ-
ent angles, saving the camera position, rotation, and intrinsic parameters on each
frame. Also, from a predefined angle of view, the object wireframe is generated
using Canny Edge Detector, which then will be used in the phase of initial detection.
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FIGURE 3.1: 3D model wireframe example

For the tracking phase we generate keypoint information from our 3D model. For
each pair of images, we detect ORB features and match them. Outliers are removed
using RANSAC algorithm. After the matches filtration, for each image, we project
a ray from the camera origin (position from which the corresponding image was
rendered) through the image plane (position of keypoint) to find the intersection of
lines. Those intersection points will be the 3D positions of our keypoints from the
model. The keypoints with their 3D positions and descriptors are saved into file,
which then will be used in tracking phase.

(a) (b)

FIGURE 3.2: (a) Sample object on Blender scene (b) Extracted key-
points 3D positions

3.3 Initial Detection

For the initial object pose estimation, we used a similar approach, which is de-
scribed in the paper "Occlusion, Clutter, and Illumination Invariant Object Recog-
nition" by Carsten Steger [3]. Firstly, we need to calculate direction vectors for
both input image and previously saved template image from the model genera-
tion step (with predefined rotation and translation). Direction vectors are calcu-
lated using Sobel operator over X and Y axis. For example, template image con-
sists of set of points pi = (xi, yi)

T, the direction vectors for this template will be
di = (ti, ui)

T, where i = 1, . . . , n. For the input image direction will have represen-
tation of ex,y = (vx,y, wx,y)T for each image point (x, y). Then we need to calculate
similarity measure between template and input image direction vectors. The similar-
ity measure which is robust to occlusion, clutter and illumination changes is defined
as follow
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1
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∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1
n

n

∑
i=1

t‘ivx+x‘i ,y+y‘i + u‘iwx+x‘i ,y+y‘i√
t‘2i + u‘2i ·

√
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∣∣∣∣∣∣∣ (3.1)

This similarity measure is also invariant to arbitrary illumination changes be-
cause all vectors are scaled to a length of 1. What makes this measure robust against
occlusion and clutter is the fact that if a feature is missing, either in the model or in
the image, the noise will lead to random direction vectors, which, on average, will
contribute nothing to the sum. The final step is comparing the calculated measure
with a threshold; if the value exceeds it, that means that we successfully detected
our object with already known translation and rotation.

3.4 Tracking

The last step of our approach is tracking. Here we decided to combine two methods,
texture-based tracking, and camera tracking. As we are using devices with a gyro-
scope and accelerometer, we integrated a camera tracking function from the ARCore
library. After the initial pose detection, we use the object’s 3D position to set up the
camera tracking. Object pose is updated by subtracting the difference between the
initial rotation and translation and the predicted from the camera tracker. To refine
our position, we added a texture-based tracking method. We decided not to use it
for each frame because it is computationally expensive. So, after N frames from the
initial detection, we applied feature matching between previously calculated fea-
tures (from the model generation step) and generated from the input frame. After
the matching process and outliers filtration, we compute the homography matrix,
which helps us refine our object’s position. The final step is to estimate the updated
camera pose by solving the PnP problem with 3D positions of the features from the
generated model and their 2D projections on the image plane.
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Chapter 4

Evaluation

4.1 Metrics

The ADD metric was used to calculate metrics of Neural Networks approaches for
the object pose estimation task. ADD stands for an Average Distance of Model
Points. It is an average distance between all corresponding points in our model and
the prediction. Having the ground truth rotation R and translation T and the esti-
mated rotation R̂ and translation T̂, we can compute the average distance between
each point x of our ground truth Model M and corresponding to them points from
our prediction:

ADD = avg
x∈M

∥∥∥(Rx + T)− (R̂x + T̂)
∥∥∥ (4.1)

The above equation is a good score function for not occluded objects. However,
what to do if we have some occlusions? Then we need to use a little bit modified
version of our score function. We need to calculate the average distance between our
prediction and its nearest neighbor in 3D space, which may not necessarily be the
corresponding vertex.

ADD = avg
x1∈M

min
x2∈M

∥∥∥(Rx1 + T)− (R̂x2 + T̂)
∥∥∥ (4.2)

An estimated pose is considered correct if the average ADD is less than 10% of
the object diameter.

To evaluate the classic computer vision approach that we implemented, we de-
cided to take a different approach in metrics evaluation. We compare two metrics,
the first one the distance between the ground truth position T of the object and the
predicted one T̂, and the second one is the difference between the rotation angle of
the object R and the prediction R̂. Then we take the mean value of all the observa-
tions N (one observation per frame).

∆T =
1
N

N

∑
n=0

Ti − T̂i (4.3)

∆R =
1
N

N

∑
n=0

Ri − R̂i (4.4)

∆T is measured using the measuring units of the 3D model (e.g., Millimeters,
Centimeters, etc.). ∆R is calculated in degrees, where R and R̂ are rotations in three
axes X, Y, and Z.
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4.2 Datasets

For the neural network testing, the LineMOD dataset was used. The dataset includes
3D models and training and test RGBD images with ground truth rotation and trans-
lation values. Also, intrinsic camera parameters are included in the dataset.

(a)

(b)

FIGURE 4.1: (a) 3D Model example from LineMOD Dataset (b) Sam-
ple image from the LineMOD Dataset
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For the evaluation of our implementation, the current dataset cannot be used.
It is because our approach uses the edge-based detection of the initial pose. That
means that we cannot identify the model on the whole image, but the user needs to
overlay the projected wireframe with the actual object contours. So, for the testing,
we created the virtual environment using the Unity game engine.

(a)

FIGURE 4.2: Unity interface with the created sample scene

Unity provides the ability to select and configure different types of render pipelines,
so we created a sample scene using the High Defenition Render Pipeline, which al-
lows you to get a realistic-looking image. Several test objects were placed on the
scene, and simple camera movement control was added to simulate the movements
of mobile phone device.

(a)

(b)

FIGURE 4.3: (a) Testing scene example (b) The process of the initial
detection
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With the help of the Unity Game Engine, we can not only get a realistic picture
that helps us simulate the real-world best, but also get the exact positions and rota-
tions of both the 3D model on the scene and the camera itself for each frame. This
information helps us to measure the accuracy of our implementation precisely.

4.3 Results

For the Neural Network part the results are shown in the table below.

Neural Networks Results
Approach Mean ADD
EfficientPose 97.35
HybridPose 91.3
PoseCNN + DeepIM 88.6
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Chapter 5

Summary

Therefore, concluding this work, I can confidently say that both classic approaches
and neural networks work very well to solve the task of pose estimation. However,
it all depends on what we will use this solution for. The main drawback of neural
networks is that they require a lot of GPU memory to run in real-time, and they
cannot be easily generalized. They can work perfectly in robotics, where there is an
ability to have more computing power. Regarding our task of using pose estimation
for XR, classic approaches suit better here. They require less computational power,
are easy to implement, and while running in real-time, even on mobile phones, they
have less jitter and provide a more stable image.
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