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“Windmill or no windmill, he said, life woukd go on as it had always gone on- that is, badly”
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Abstract

The only way for the world to move into the bright future is to move from non-
renewable resources into renewable ones. Creating and maintaining new economic
spheres always requires human care and supervision, the magnitude of which can be
lowered by using machine learning techniques. This work demonstrates the models
that are created to solve the task of anomaly detection in an unsupervised fashion.
This kind of methodology imposes a lot fewer restrictions on the data used while
providing a framework to find cracks on a wind turbine. Moreover, it is a good
building block for later research of unsupervised anomaly detection in the fields,
where getting data might cost a lot, and the cost of mistakes is high. The success of
the work can reduce the amount of time, money, and human resources for the big
companies that utilize green energy and invest in the future of our planet.
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Chapter 1

Introduction

1.1 Motivation

The invention of mechanisms for the use of renewable energy resources is a big step
and a significant achievement of the 20th century. The tremendous 21st-century chal-
lenge is moving entirely from non-renewable resources into renewable ones and de-
veloping and improving the renewable energy industry. Renewable energy sources
include solar radiation, wind, tides, waves, geothermal heat, etcetera. Generally,
those are periodic or constant streams of energy, which are reproduced in nature
and limited only by the stability of the Earth as a planet.
The benefits of using renewable resources are difficult to overestimate. These in-
clude a positive impact on the economy and reducing pollution. An excellent way
for the development of humankind, in general, is to build a system of production
and consumption that will make people independent of temporary and limited re-
sources. Green energy is a crucial way to achieve this purpose.
One of the most popular renewable sources is the energy of wind, which specializes
in the use of kinetic wind energy. Wind turbines convert the wind kinetic energy
into mechanical power, which can be used for numerous tasks or may be converted
into electricity by electric generators.
Operational experience demonstrated the advantages but also showed significant
shortcomings of existing wind energy systems. The problem is that energy transfor-
mations in wind power systems occur with the help of massive moving elements
(wind turbines); this causes their high need for periodic checkout and repairing
throughout their service life. The primary motivation for writing this work is an
attempt to solve the problem of expensive and time-consuming maintenance and
repair of wind turbines through machine learning.

1.2 Wind turbines

Many different kinds of wind turbines are extensively used to generate electric power
from the wind’s kinetic energy. First of all, turbines might be offshore and onshore.
They are a bit different in construction, but what is important to us is that it takes
a lot more money and trained professionals to take care of the offshore turbines. In
another way, turbines can be classified by the kind of blades that they use. Images
that it has been worked with were of HAWT-type turbines.
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FIGURE 1.1: Types of turbines

These kinds of turbines consist of three main parts: blades, rotor, and tower.
Because of severe wind, animals, water, and other reasons, blades and sometimes
rotor might get damaged. Fixing the fault might save much money for the turbine
owners compared to repairing the turbine when it gets damaged badly. Moreover,
in the case of offshore turbines, the cost of repair dramatically depends on the cost
of getting to the turbine. Hence, businesses are interested in decreasing the number
of times the turbine gets inspected.



3

Chapter 2

Related works

In this chapter, we describe the works that investigated anomaly detection, and at
the same time, we will look at the development of the GAN’s.

2.1 Anomaly detection

Anomaly detection is a central area of interest within the field of machine learning
and a classical problem in computer vision. Hence, anomaly detection and, more
specifically - unsupervised anomaly detection is a question of great interest, and
many studies were conducted about it.
Except for what has already been mentioned, there are such research directions in
the public eye:
• financial: [Ahmed, Mahmood, and Islam, 2016],
• network systems [Ahmed, Mahmood, and Hu, 2016],
• fraud detection - [Abdallah, Maarof, and Zainal, 2016],
• biomedical [Schlegl et al., 2017],
• security such as video surveillance [Kiran, Thomas, and Parakkal, 2018].

Methods of solving anomaly detection could be classified into five main cate-
gories [Basora, Olive, and Dubot, 2019]:
1. Reconstruction based methods;
2. Domain-based methods;
3. Statistical methods;
4. Ensemble-based methods;
5. Distance-based methods.
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FIGURE 2.1: Anomaly detection methods

Distance-based methods include nearest neighbours-based methods (kNN, LOF)
[Kriegel et al., 2009] and clustering-based (DBSCAN, HDBSCAN) [Budalakoti, Sri-
vastava, and Otey, 2009]. All methods of this category rely on some kind of distance
between points, thus treating every instance as a point, which might not be com-
pletely true, as it will not work that well with complex data, for example, images,
time series, etcetera.

When speaking of ensemble methods, the first thing that comes to our minds -
random forest. Anomaly detection has a modification of it called - Isolation Forest
[Liu, Ting, and Zhou, 2008]. Shortly, it uses the distance between the root of the forest
to the sample location. This method is very computationally efficient and sometimes
might even challenge the NN’s.

Statistical methods mainly rely on estimates of the probability density function
and later assume that normal data will have a decent probability and abnormal will
have small probability chances. Gaussian Mixed Models [Pontoppidan and Larsen,
2003] work well to estimate the probability density function, though it has a pitfall
trying to estimate the function using all data, thus also trying to fit into anoma-
lies. So if data consists of many anomalies, the function might also be shifted to
include them. Independent component analysis is also used as a statistical method.
It assumes that data are mutually exclusive, non-normally distributed samples, and
samples are independent. The last subcategory of statistical methods is regression
models. They are highly used in time series analysis. The detection consists of two
steps - first, fitting the model into the data and then testing it on a test sequence to
find residuals between the model’s prediction and real value. Autoregressive Inte-
grated Moving Average and Vector Auto-Regressive are regression models.
Domain-based methods use the assumption that normal data is “normal” in the
sense that it is possible to create a boundary between normal and abnormal data
using linear or non-linear methods. Support Vector Machine [Schölkopf et al., 1999]
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is used the most frequently, but simple models like Logistic Regression might also
be used.
Furthermore, reconstruction-based approaches - their main idea is that squishing
data into lower-dimensional representation might help to differentiate between nor-
mal and abnormal samples. That is, some kind of information might be lost while
deconstructing abnormal data. It can be classified into two parts - subspace-based
methods and NN methods.
Subspace-based are based on PCA(principal component analysis) [Jolliffe and Cadima,
2016]. Those models benefit from being relatively small and easy to use, but PCA it-
self provides some pitfalls, like linearity and noise sensitivity, that could be changed
using PCA modifications - Kernel PCA, Robust PCA, etcetera. NN models are using
NN’s ability to squeeze data while providing non-linearity. Those methods include
AE, VAE, all kinds of GANs. Models that were used in this thesis are reconstruction-
based NN models.

2.2 Reconstruction based anomaly detection

Because the subspace-based approach has its limitations, reconstruction-based anomaly
detection is now the most researched area of machine learning. This approach would
not be feasible without the development of whole generative modeling that started
from AE [Ballard, 1987], went through VAE [Kingma and Welling, 2014] and later
on developed into GAN [Goodfellow et al., 2014]. During that evolution, there were
attempts to turn the generative model into an anomaly detection generative model.
Researchers tried their best to use simple AEs [Sakurada and Yairi, 2014] to use
the non-linear nature of NN’s and compare generated image X̂ and original im-
ages X. Another case of interesting AE usage - [Gong et al., 2019], here attempt was
made to create a memory that would modify encoded z vector, depending on pre-
viously learned features. Later on, VAE took its turn on anomaly detection task
[Lupo, 2019], and their modifications that introduced stochasticity [Pol et al., 2020]
and a mixture of VAE and convolutional autoencoders [Yu, Kavitha, and Kurita,
2020]. Nevertheless, the most promising results were received using GAN modifi-
cations. Many pieces of research were based on creating an anomaly score based on
the difference between an original image and a restored image.[Akçay, Atapour-
Abarghouei, and Breckon, 2019], [Zenati et al., 2018]. A current state-of-the-art
approach that only recently got beaten - EGBAD [Zenati et al., 2018] utilized the
BiGAN architecture, which allowed training GAN that makes decoder invert the
encoder, which made a great impact because of its mathematical basis [Donahue,
Krähenbühl, and Darrell, 2016]. Another great impact paper - AnoGAN [Schlegl et
al., 2017], introduces a multistep learning algorithm and a complex anomaly score.
Interesting attempts were made by Ravanbakhsh et al.[Ravanbakhsh et al., 2017]
who used two CGAN’s, the first one of which produced optical frames and the sec-
ond one regenerated images from optical frames.

As for now, generative models seem to show significant results in the anomaly
detection area because of their high score and unsupervised nature of learning.
While still suffering from generative model problems - they might be hard to train
because of numerical instability, and the metric by which the abnormality of the
image must be conducted is unobvious and must be carefully designed by each in-
dividual researcher.
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Chapter 3

Background information

3.1 NN

Further models can not be introduced without an understanding of what the neural
network is. This concept can be viewed from different perspectives, and many intu-
itions could be applied to it, from neurons of our brain to a huge nonlinear function.
To put it simply, NNs are a set of connected units used to find hidden dependencies
and insights into the data. That is, it "learn" something from the data, depending on
the task given.
This chapter explains the NN on the example of multilayer perceptron or, as it is
called now - FCNN, a model that kickstarted the whole machine learning industry
back in the 1960s. The perceptron consists of building blocks that are called lay-
ers, which in turn consist of neurons. This idea was inspired by the work of human
brains, though in practice, it is a lot different from it. Each neuron has connections to
a previous and the following layer, using which the weights are "transported." Also,
nowadays, neurons have activation functions built-in for the sake of non-linearity.
Without them, the NN would turn into a simple matrix multiplication. The signals
start at the input stage; then it traverses forward up to the last layer. To later train
the perceptron, the derivative of each weight is taken using the chain rule, and the
weights are updated using those gradients.
In modern days machine learning researchers invented more kinds of layers. These
are Convolutional layers, Recurrent layers, Batch Normalization layers, Dropout
layers, and lots and lots more. This chapter will briefly explain only the layers used
in the models that the author put his hands on.
1. Convolutional layers - 1, 2, 3, or even more dimensional layers are used to pro-
cess high dimensional data, such as images, videos, etcetera. They were applied in
a filtered manner, after filtering might come to activation as in FCNN.
2. Transpose convolution - reversed operation of convolution, used for upsampling
from vector to an original image. 3. Batch normalization - during the training phase,
values of activations might be very different in magnitude, which makes it harder
for the model to learn. Batch normalization helps to fix this problem by learning the
mean and standard deviation of the given data and normalizing it using them.

3.2 Anomaly detection

Anomaly detection is a machine learning task in which the main goal is set to iden-
tify data points that are in some way different from other data points. Meanwhile, it
is one of the most classic and applied computer vision tasks, which is exciting and
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still opened. Its main distinction from other computer vision tasks - high-class dis-
balance. This means that we usually have many samples of normal class and a lot
fewer samples of abnormal class.

To provide some concrete examples, let us use images of "University Baggage
Anomaly Dataset," which is currently private because of security reasons, but it still
works well as a demonstration. Taken from [Samet Akcay, 2018]

FIGURE 3.1: Images of "University Baggage Anomaly Dataset"

As it can be seen, normality, in this case, means the absence of a weapon or any
other dangerous item in the suitcase.

3.3 Generative models

Another concept that one might grasp to understand the following models is a gen-
erative model and its difference from a discriminative model.
Discriminative models learn P(Y|X), namely given some parameters of the proba-
bility of X belonging to class Y, where X - is our data and Y - classes. On the other
hand, generative models learn P(X, Y), that is the joint probability of X and Y. That
is why having a joint probability, we can generate an instance of X while knowing
what the likelihood of them being Y is. It should also be stated that generally, it is
harder to create a generative model than to create a discriminative model.

In this thesis, it has been used a special kind of generative model - GAN. How-
ever, to explain it, it is better to start with its logical ancestor - AE and VAE to make
the main idea easier to grasp.

3.4 AE

AE - is an Encoder-Decoder type of model. It consists of two parts - first, that turns
the initial high dimensional image into a squeezed vector representing the most dis-
tinctive features of a given data.
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FIGURE 3.2: Autoencoder‘s architecture

Its first purpose is to create a model that can learn a lower-dimensional repre-
sentation of the data, that is, to create a dimensionality reduction pipeline that uses
nonlinear features.
The central intuition behind choosing this kind of model is that they can easily be
trained to restore an image from a vector using the L2 metric to compare x and
d(e(x)). However, that way, the model can set all the weights to some kind of iden-
tity matrix. A more challenging task arises later when we understand that the model
should be able to generalize in some way, that is, to learn how to restore concrete im-
ages that it was trained on, but restore even the one that it has not yet seen.
For that sake, a couple of methodologies are used:
1. Carefully choosing our network layers and neurons to prevent them from overfit-
ting.
2. Construct out loss function, such that it penalizes the activation of neurons. That
way, we encourage the network to use as few neurons as possible. It can be done
either by adding L1 of all activation or KL-divergence between each neuron and
Bernoulli RV that models "perfect" neuron activation to a loss function.
3. Adding noise to an input image, our model cannot directly "remember" the im-
ages because the output image is different from an input image.

3.5 VAE

The main disadvantage of AE, which later led to the creation of VAE, is the inability
to create new data. We might be tempted to think that sampling some point from
the distribution of the z vector might create something new. However, in practice, it
rarely works because of model architecture, initial data distribution, etcetera, which
makes it almost impossible to predict whether this method will actually work. So
what is the difference between VAE and AE - VAEs were built to ensure that models
do not overfit, and its latent space has properties that would later enable the new
data generation process. That is, instead of learning representation z = e(x), it learns
p(z|x) - the conditional distribution of latent space. The AE can be viewed as a de-
terministic version of VAE.
The training pipelines turns into a bit more sophisticated algorithm:
1. The input image is encoded as a distribution over the latent space
2. A point z is a sample from that distribution
3. This point goes through a decoder, and loss is calculated
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4. Backpropagation with calculated loss occurs

Distributions are usually chosen to be gaussian to make them easier to work
with. Except for the stochasticity update compared to AE, VAE also introduces a
new kind of regularization. To prevent overfitting and behavior like AE, we pe-
nalize mean and standard deviations by adding KL divergence of it and standard
normal distribution to the loss function. The last detail that should be added, be-
cause sampling is not differentiable, models tend to predict the mean and standard
deviation of distributions in practice.

3.6 GAN

GAN is the last logical ancestor of AE that would be noted here. It takes a generation
task to the next level by introducing two-stage learning and a game theory like loss
function.
GAN consist of two models - Generator and Discriminator. Intuitively they can
be treated as two players trying to fool each other; they even have the same loss
function that one tries to minimize while the other tries to maximize.
The generator model consists of a decoder that takes a random vector and produces
an entity, mostly an image. Later on, a Discriminator that consists of an encoder
compares this value to an actual image that fits into it. All pipelines can be visualized
like this:

FIGURE 3.3: The general architecture of the Generative Adversarial
Network

3.7 Problem formulation

More formally, our problem might set like that, given the dataset D, which contains
numerous normal data X, and a smaller amount of abnormal data X̂, create such
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a model f, that has parameters θ, that would minimize the given loss function to
further distinguish between X and X̂. Because we used generative modeling, our
model f should learn the proper distribution of normal samples, therefore, produc-
ing some kind of abnormality score A(x), that after applying the threshold T will
show whether an image x is normal or abnormal.
While adding a bit more Encoder-Decoder notation, it is necessary to mention that
part of f that is responsible for mapping from Rn to Rz, or from x to z, will be named
fe(x), and the function that maps z to x̂ will be named fd(z).
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Chapter 4

Proposed approach

In this thesis, several methods are tried to solve unsupervised anomaly detection,
which will be described below shortly. Most of them are going to be based on GAN
architecture.

4.1 Ganomaly

Ganomaly is an approach to an anomaly detection problem introduced by Samet
Akcay et al [Samet Akcay, 2018]. It is a novel approach found in almost all anomaly
detection surveys because of several new features that it introduced. As all GANs,
Ganomaly consists of Generator and Discriminator. An illustration is taken from the
paper:

FIGURE 4.1: Ganomaly architecture

Generator(G) consists of AAE is responsible for encoding input image x into
latent vector z, later decoding it into x̂, and again encoding x̂ into ẑ for later usage.
It consists of three subnetworks, two encoders, one decoder and can be seen on the
upper part of the image.
Discriminator(D) consists of a simple encoder that discriminates x from x̂ and that
way training generator. Conceptually it is the same as in simple GAN. Their both
building blocks are - 2D convolution layers that LReLU follows in the case of the
encoder and ReLU in the case of the decoder. LReLU is used to prevent gradient
vanishing. Later Batch normalization layer is used.

The motivation of using many such subnetworks becomes apparent when we
take a closed look at the loss functions that are used:



Chapter 4. Proposed approach 12

1. Adversarial loss - new research [Schlegl et al., 2017], [Zenati et al., 2018] shows
that modifying generator training from using just binary D output to using D’s inter-
nal representation helps with numerical stability while training the whole network.
That is why instead of binary cross-entropy being used on the last sigmoid layer, it
is used on the final convolutional layer’s value when fake and true data are used as
input. More strictly, it is written so:

Ladv = Ex∼px‖ f (x)−Ex∼px f (G(x))‖2.

2. Contextual loss - idea that was adopted from AE. Generated images must be
similar to input images; that is why some kind of loss that compares them must be
added. Empirically it was shown that L1 works better than L2 [Isola et al., 2017];
that is, it produces less blurry results. Mathematically:

Lcon = Ex∼px‖x− G(x)‖1.

3. Encoder loss, one of the new features that Ganomaly brought to the public, is
the idea that anomaly images are restored worse than normal ones. This is what is
used in encoder loss. This loss compares z and ẑ using the L2 metric. If a picture has
an anomaly generator will not be able to restore it perfectly, thus making Encoder
loss bigger.

Lenc = Ex∼px‖GE(x)− E(G(x))‖2.

In train time, all of these losses are weighted and summed:

L = wadvLadv + wconLcon + wencLenc

Empirically the most efficient values of coefficients are:
1. wadv = 1
2. wcon = 50
3. wenc = 1

During training, the network is fed with only normal images to grasp the nor-
mality of the data. Because later on, we need to use the model to differentiate normal
images from abnormal ones. Ganomaly was created to have an output that could be
used as an abnormality score.
It is Lenc. Nevertheless, because the loss is unbounded bottom and top, we have to
additionally normalize it to make sense of the values that it provides. It is done by
subtracting minimum and dividing by range, that is:

s‘i =
si −min(S)

max(S)−min(S)

4.2 Skip-Ganomaly

Skip-Ganomaly is a modification of Ganomaly that came out a year later. It reworked
Ganomalie’s architecture by making it more straightforward but capable of learning
more because of RES-NET like skip connections. A good image of the architecture:
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FIGURE 4.2: Architecture Skip-Ganomaly

The generator this time is more straightforward - it only has AAE in it. However,
now every layer in the encoder has a connection to a corresponding layer in the
decoder. That is the result of the n-th layer of the encoder gets concatenated to the
output of the n-th layer of the decoder. Those skip connections allow gradients
to flow more accessible through the model, which in turn allows building bigger
models and making it easier for the model to learn.
Losses also got modified, now there are three losses:

1. Adverbial loss - now it is classical min-max binary cross-entropy loss. The
generator gets updated depending on the output of the discriminator.

Ladv = Ex∼px [logD(x)] + Ex∼px [log(1− Dx̂)].

2. Contextual loss - the same as in Ganomaly. Were built to enforce generator to
create realistic images.

Lcon = Ex∼px |x− x̂|1.

3. Latent loss is an adverbial loss in Ganomaly. Utilizes the last Convolutional
layer of the decoder.

Llat = Ex∼px | f (x)− f (x̂)|2.

The removal of one of the encoders seems to show that it was actually redundant.
The training procedure is the same as in Ganomaly, but testing changes a little due
to the encoders’ absence. Now it becomes:

A(ẋ) = λR(ẋ) + (1− λ)L(ẋ)

Where, R(ẋ) - contextual loss and L(ẋ) - latent loss. Once again, the score must
be normalized:

Â(ẋ) =
A(ẋ)−min(A)

max(A)−min(A)
.
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Chapter 5

Experiment setup

5.1 Datasets description

In order to thoroughly test the abilities of our models, three datasets are used, rang-
ing from the simplest MNIST [LeCun, 1999] to a bit harder CIFAR [Krizhevsky, Hin-
ton, et al., 2009] and the real-world dataset.

5.1.1 MNIST

The MNIST database was constructed from NIST’s Special Database 3 and Special
Database 1, containing binary images of handwritten digits [LeCun, 1999]. The train-
ing part consists of 60,000 images and the test part of 10,000. Both sets are from
approximately 250 writers, who are disjoint on train and test parts. Images are of
size 28 by 28, and they are grayscale. This dataset is used for the classification task.
Current state-of-the-art methods of solving these classification tasks can be found
in [LeCun, 1999]. In the conducted experiment, one of the classes of MNIST was
treated as abnormal, while others as normal. That is how, in total, ten sets of data
were received, each containing a single digit as an anomaly.

5.1.2 CIFAR10

The CIFAR10 consists of 60,000 RGB images that are split into train and test parts.
The training part consists of 50,000 pictures and testing of 10,000 pictures. CIFAR10
contains images of 10 different classes, namely: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. There are 6,000 images for each class, and
classes are mutually exclusive. Here our usage of CIFAR comes to again picking one
class as abnormal and others as normal.

5.1.3 Wind turbines dataset

The dataset on which the models were tested belongs to a company that works with
wind turbines damages. It consists of images of wind turbine blades and sometimes
rotors. Example of images:
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FIGURE 5.1: Example of wind turbines dataset

All images were taken either by drone, by the camera on the ground, or by the
camera attached to blades. Different companies supplied photos, so they might look
different because they were shot on different cameras and in different places.

Abnormalities that should be found consist of different categories. Nevertheless,
one of the problems of the wind turbines industry is that it does not have a unique
categorizing standard. Every business develops its standard that highly depends on
the types of wind turbines they use, their locations, etcetera. This research will try to
stick to one of those standards. Abnormalities could be categorized by severity, time
of occurrence, and location on the blade. Severity is the most critical metric because
it shows whether a supplier needs to take care of the turbine, repair it sometimes,
or even immediately stop the turbine. Each abnormality that is found is assigned
a score(usually from 1 to 5, or from 1 to 10) that means how severe the damage
is. The lower score, the less severe the damage is. Lower scores might represent
paint damage or some kind of dirt that stuck to the turbine. Respectively high score
means serious damage that might lead to turbine failure. It is important to find those
damages, because some of them require an urgent treat.

Initially, the dataset consists of images shown above, but it is hard to train a
model with a background taking a lot of picture space. So either a trained, super-
vised model that finds blades on images or pixelwise mappings that were provided
either by the client or made by annotators, used to later color the background into
black color. Example of black images:
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FIGURE 5.2: Wind turbines with removed background

After that images that are of size roughly 8000 by 6000 are cropped into 256 by
256 bits. They later the one that has defects on them are marked as abnormal and
others are marked as normal.

5.2 Results

5.2.1 Mnist results

The metric that was measured for current and following - Area under curve(AUC).
The picture below demonstrates the score for each model tested. One might notice
that some of the classes have a lot lower AUC scores than others, it happens be-
cause of the nature of the data that is, some digits are harder to differentiate than
others. All the models needed only a few epochs to train(1-3) due to their size and
generalizing ability.
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FIGURE 5.3: AUC of Mnist

It is also interesting to look at the distribution of normal and abnormal classes.
It can be visually seen that means of the two distributions vary and instances of
abnormal class have higher abnormality scores than normal.

FIGURE 5.4: Abnormality scores distribution

5.2.2 CIFAR results

The score was again chosen to be an AUC. This time models perform worse than in
Mnist because of CIFAR data complexity. Also, CIFAR unlike MNIST has all three
channels - red, green and blue. Again like in the MNIST case, CIFAR has classes that
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are harder to classify because of their complexity. All of the models were trained for
a few epochs(1-3) with a low learning rate of 1e-4.

FIGURE 5.5: AUC of CIFAR

The distribution of classes now looks a bit different. The average AUC score
on CIFAR is worse than on MNIST so we might conclude that models learned to
differentiate classes worse. This is the consequence of a more smoothed distribution.

FIGURE 5.6: Abnormality scores distribution
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5.2.3 Wind turbines results

Both models were trained on 4k training dataset and tested on 750 no defects images
and 500 defects images.
The distribution of scores on Ganomaly looks so:

FIGURE 5.7: Ganomaly abnormal score distribution

And Skip-Ganomaly:

FIGURE 5.8: Skip-Ganomaly abnormal score distribution
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Though the distribution on the Ganomaly looks better, it shows worse results:
• Ganomaly - 0.57
• Skip-Ganomaly - 0.62



21

Chapter 6

Conclusion and future works

In this paper, the unsupervised methods of solving anomaly detection tasks were
presented. All of them were based on GAN architecture.
Unsupervised learning is a promising approach to that task and despite yet a gap be-
tween its performance and supervised learning performance. This kind of learning
is going to be later researched because there are tasks for which supervised learning
is impossible.
We managed to train GAN on different datasets, despite numerical instability by
using different kinds of the loss function. From the author’s experience, GAN’s
are going to move from the game theory like loss function to ones that are task or
architecture-specific. Because classical GAN [Goodfellow et al., 2014] and its modi-
fication that uses the game theory lie loss function are a lot harder to train than the
one that is presented in this paper. The author‘s implementation of the models used
and described in this paper is available here.

The future work will include trying different, probably bigger models and in-
vestigating more into unsupervised learning anomaly detection, especially of gen-
erative type. Also, in practice, the statement that decoder decodes abnormal data
worse than normal does not always hold true, so the job of implementing Encoder-
Decoder, which would have a "memory," has already started.

https://github.com/arelav99/ganz
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