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Abstract

Model Predictive Control (MPC) has shown great success in different industrial
applications, as it allows to have constraints on both, state and inputs. This ensures
that processes will be run under tight performance specifications.

The main goal of this project is to develop an MPC controller which will deter-
mine the optimal operation of the battery, i.e. when and how the battery should
be charged or discharged, by controlling input current for the battery, to reduce the
amount of the money to pay for the required energy. For this task, the battery model
with aging effects, which is able to discharge and charge, will be also developed.

Also, an MPC controller for efficient charging of the battery is developed, which
allows calculating charging strategy, so without changing the charging time, the life-
time of the battery is prolonged.

Source code 1 is publicly available and can be used for future work in other stud-
ies.

1Github: github.com/Midren/MPC_for_battery_operation

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua
https://github.com/Midren/MPC_for_battery_operation
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Chapter 1

Introduction

1.1 Motivation

In order to reach global green-house emission reduction targets defined by the
Paris Agreement and to keep global average temperature increase to well below
2oC above pre-industrial levels, the future power energy systems will have to rely
heavily on energy supplied by renewable energy sources such as wind and solar.
Since renewable energy sources are inherently unpredictable and intermittent, it is
necessary to design a balancing mechanism that will balance electricity supply and
demand at all time. The most promising technology for balancing renewable energy
sources with consumer demand is installation of electric batteries [1] [2], which will
be charged when excessive or very affordable electric energy is available (typically
in the periods of small demand) and discharged in periods when energy is scarce or
expensive (typically in the periods of large demand). As battery has its limitation
due to maximum capacity and maximum rate, at which it can be discharged, con-
troller is required to know when battery should be charged or discharged. Moreover,
expected lifetime of the battery depends on operation conditions, i.e. the charging
strategy [3], so controller should not hasten the lifetime of the battery, but rather
prolong it.

Model Predictive Control (MPC) has shown a great success in different indus-
trial applications [4], and also was applied for power smoothing of wind generators
[1]. Additionally, MPC controller combines advantages of both: feedback and non
feedback control systems, and therefore is able to predict disturbances to the system,
as well as react to them if they happened unexpectedly. Moreover, constraints are
easily added, so controller won’t be even choosing input that can violate them, what
is crucial in a lot of cases. Therefore, chosen to be employed for the two control prob-
lems in this thesis. As MPC controller requires model for prediction and control, the
model of a typical Li-ion battery has to be developed and validated in this work as
well.

1.2 Goals

The main goal of this project is to develop a controller which will determine
optimal operation of the battery, i.e. when and how the battery should be charged
or discharged, by controlling input current for the battery, to reduce amount of the
money to pay for the required energy.

For this task, a battery model will be developed, which is capable of simulating
charging and discharging with different current input and constant temperature,
as there controller will not be able to optimize it. Furthermore, model should be
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capable of simulating ageing effects depending on the operation conditions of the
battery.

Based on the battery model, Model predictive control (MPC) will be used to de-
velop a controller which will be able to efficiently charge and discharge the battery,
so speed of charging and lifetime of the battery will be maximized. Further, this
controller to be extended enabling effectively reduce variability of load, i.e. daily
difference between maximum and minimum power taken from the power grid.

1.3 Thesis structure

The rest of the thesis is organized as follows:

Chapter 2. Battery modeling
Analyzes scientific literature for the battery modeling including the datasheets
of battery producers and proposes a model which can be used for model-based
optimizations requiring battery runtime information and ageing effects.

Chapter 3. Model Predictive Control for battery operation
Describes how an MPC can be used for battery operation and proposes the
developed implementations for two controllers:

• Controller for optimal charging of the battery

• Controller for reducing variability of load in that way minimizing the cost
of energy for the consumer

Chapter 4. Results and summary
Summarizes the achieved results and their comparison and shares our ideas
for future work.
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Chapter 2

Battery modeling

2.1 Background Information

As level of digitalization rises in our world and smart homes are becoming real-
ity, more items in our household have batteries. Also, amount of energy produced
by renewable energy sources, such as photovoltaic or wind systems, usually fluctu-
ates depending on the environment conditions, and battery storage are frequently
used to have reliable amount of energy in any time. [5] [1] Other important usage
of the batteries are electric vehicles, and hybrid electric vehicles. [6] All the batteries
are working using the same principle: negative electrons are produced in the an-
ode and transferred to the cathode, as they are created from different materials and
so with different standard potentials. Also, electrolyte provides a medium through
which charge-balancing ions can flow [7]. But depending on the materials used for
electrode and electrolyte, battery has different properties which are applicable in di-
verse number of situations. The most important characteristics of batteries that are
taken into consideration when modeling are:

• Nominal voltage - an output voltage of the battery. Even though with con-
stant load battery voltage stabilizes near a nominal voltage value, but it has
variations depending on the current state of charge of the battery.

• Nominal capacity - maximum amount of the energy stored in the battery. Due
to ageing, batteries tend to decrease their capacity.

• Power density - amount of the energy stored in the battery per weight.

• Power rating - amount of the energy that battery can deliver at one time.

Different materials are used for electrodes (NiCad, NiMH, Lead-acid), but Li-ion bat-
teries are the most common in consumer electronics. They are considered the state-
of-the-art, as have very high power density and light weight. On the other hand,
they are delicate and misusage can lead to explosion. It is unsafe to charge above
maximum safe voltage or discharge below minimum, or charge with more current
than battery can take. Usually, such information can be found in the datasheet. [8] So
such batteries are usually accompanied with protection circuits which are preserve
from such situations. [9]

During operation of a battery, a state of the battery is changing. This change can
be described using several characteristics:

• State of Charge (SoC) - amount of energy currently stored in battery relative to
usable capacity
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• State of Health (SoH) - indicates the state of battery between Beginning of Life
(BoL) and End of Life (EoL) in the scale from 0 to 1. Calculation of SoH de-
pends on the application, as three main indicators are capacity, internal resis-
tance and self-discharge. [10] For our problem capacity is the most important
and will be used for SoH calculation.

• Voltage - measured voltage on the ends of the battery

• C-rate - rate of charge/discharge measured in C that is Amphere-hour capacity
divided by 1 hour.

• Depth of discharge (DoD) - a fraction of the capacity which has been removed
from battery during one discharge cyclee. Most manufacture specify a max-
imum DoD for a optimal performance, otherwise SoH of the battery will de-
crease at higher rates. [5]

2.2 Related works

In literature, many different models that simulate the behavior of Li-ion batteries
are developed [11, 12, 13]. Electrochemical and analytical models usually represent
systems with partial differential equations, the solution to which requires a lot of
time and mathematical skills. Example of such are Shepherd and Generic battery
models [14]. They also assume that internal resistances are constant, and so are
incapable of modeling ageing effects. But it was shown, that ageing analytical model
can be developed for lithium-ion cells. [15] Such models pay more attention to global
system-level behavior, such as battery runtime or capacity. Also, such models are
capable of modeling the aging of the batteries. Equivalent circuit-based models are
the most common, as they can give current I and voltage V information, have more
accurate results, and more intuitive for engineers [12]. Most of the electrical models
of Li-ion batteries can be categorized into 3 groups: Thevenin-, impedance-, and
runtime-based models.

2.2.1 Impedance-based model

The impedance-based model, which is shown in Figure 2.1, is based on elec-
trochemical impedance spectroscopy to model an AC-equivalent impedance ZAC in
the frequency domain [16]. The fitting process of ZAC to impedance spectra is dif-
ficult and nonintuitive. One of the main characteristics of the batteries is the State
of Charge (SoC), which shows the fraction of energy that is currently stored in the
battery. The impedance-based model works only for a fixed SoC and temperature
setting [12], but for our problem, we need to be able to charge/discharge the battery
and see how it affects the model, so this model is not applicable.

2.2.2 Thevenin-based model

The simplest form of Thevenin-based model is shown in Figure 2.2a, which con-
sists of a voltage source UOC, a series resistor Rs and a resistor-capacitor (RC) circuit
(Rt,s, Ct,s). The voltage UOC is assumed to be constant during all the simulations,
which prevents capturing the run time information as well as DC response. So it
cannot simulate the model, which is charging or discharging. The series resistor
Rs is used for getting an instantaneous voltage drop, while the RC circuit is neces-
sary for modelling a transient behavior of the battery. Therefore, the simple form
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LS
ZACRs

−
+UOC

Ubat

FIGURE 2.1: Impedance-based model

Rt,sRs

−
+UOC

Ubat
Ct,s

(A) 1 RC circuit

Rt,lRt,sRs

−
+UOC

Ubat
Ct,lCt,s

(B) 2 RC circuit

FIGURE 2.2: Thevenin-based models

of Thevenin-based model can model only short-term transient dynamics of the bat-
tery. But in multiple studies more RC circuits (e.g, 2 RC circuits in Figure 2.2b) can
be added to improve accuracy and model long-term dynamics [12]. To take DC re-
sponse or battery runtime into account, additional components can be added to the
model, but not both if implementation is made in circuit simulators [11]. Also, it was
found that circuit components are dependant on SoC with nearly constant values for
20 % - 80 % and change exponentially within 0 % - 20 % of SoC.[12].

The most frequent way[11], [12] for SoC calculation is by the use of the Ampere-
Hour integral (Coulomb counting) method, which requires knowledge of inital SoC
level. This method is based on the charge value that has been transferred into or out
of the battery.

SoC = SoC0 −
1

Qus

∫
Ibat(t)dt (2.1)

where:

SoC0 − Initial SOC
Qus −Usable charge capacity
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Urate

RTransient

−
+ U(IBat) CTransient

−+

ULost(URate) USOC

Rsdis CCapacity

IBatt −
+ UOC(USOC)

−
IBatt

RSeries
+

FIGURE 2.3: Runtime-based model

Further in [11] the researches show the dependence on temperature by Arrhenius
relation 2.2 and high current values for long term transient resistance.

A = A0 · e−
Ea
RT (2.2)

where A is quantity of interest, A0 the pre-exponential term, Ea the activation energy,
R the gas constant and T the temperature in Kelvin. However, in this work impact
of using models at different temperatures is not important and can be neglected. To
take into account an exponential behaviour of voltage response with low SoC values,
exponential term can be used, as shown in 2.3 [12].

R(SoC) = R0 + k1 · expk2·SoC (2.3)

Another method of finding dependency between SoC and circuit components is fit-
ting high-order polynomial (i.e, of order 4-7), which gives more accurate results for
series resistor value dependency on SoC, but is very battery-specific [11]. Thus, all
dependencies of the Thevenin-based circuit parameters (Figure 2.2b) on SoC can be
summarized as:

Rs(SoC) = Rs0 + kRs,1 · SoC + kRs,2 · SoC2 + kRs,3 · SoC3 + kRs,4 · SoC4 (2.4)

Rt,s(SoC) = Rt,s0 +
4

∑
i=0

kRts,i · SoCi (2.5)

Ct,s(SoC) = Ct,s0 +
6

∑
i=0

kCts,i · SoCi (2.6)

Rt,l(SoC) = Rt,l0 + kRtl,1 · expkRtl,2 ·SoC
+kRtl,3 · SoC (2.7)

Ct,l(SoC) = Ct,l0 +
6

∑
i=0

kCtl,i · SoCi (2.8)

where:

kRs,i, kRts,i , kCts,i , kRtl,2 , kCtl,i−parameters dependent on battery type

Rs0 , Rt,s0 , Ct,s0 , Rt,l0 , Ct,l0−initial parameter values of resistance, capacitance,
which do not depend on SoC
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USOC

Rsdis CCapacity

IBatt

Rt,lRt,sRs

−
+ UOC(USOC)

Ubat
Ct,lCt,s

FIGURE 2.4: Combined electrical circuit-based model

2.2.3 Runtime-based model

Runtime-based models use a complex circuit network to simulate battery run-
time and DC voltage response under constant discharge. However, it cannot accu-
rately predict runtime or voltage response for varying load current [12]. An example
of such model is shown in Figure 2.3.

2.2.4 Combined electrical circuit-based model

Predicting Capability Thevenin-based Impedance-based Runtime-based
DC No No Yes

Transient Yes Limited Limited
Battery Runtime No No Yes

TABLE 2.1: Comparison of various circuit models [12]

The Table 2.1 summarizes the main differences between models that were pre-
sented above. To deal with the downsides of each model, a combination of the
Thevenin-based and runtime-based models can be used [12]. A new model, which
is shown in Figure 2.4, is capable of simulating battery runtime, DC response and
transient behaviour of the battery. It can be observed, that the left part with a capac-
itor CCapacity and variable current source IBatt models the capacity, SOC, and runtime
of the battery. The output of the circuit (left part) is used to connect SoC USOC to
open-circuit voltage UBat in a form of a variable voltage source UOC(USOC). Thus,
the right circuit is capable of showing transient behavior for different SoC. As USOC
is changing from 1 to 0 V during discharging and vice versa, it can be assumed to
be equal to the SoC. It was found that UOC has only dependency on SoC level which
is mainly nearly linear dependency, besides the SoC values are low (0-0.2) or high
(0.8-1) where it has exponential behavior. [12] We can express this dependency as:

UOC(SoC) = k0 + k1 · SoC + k2 · expk3·SoC ++ k4 · exp
k5

1−SoC (2.9)

where k0, k1, k2, k3, k4, k5 - the coefficients which are calculated by curve fitting during
parameter extraction

2.2.5 Models with aging effects

Another important aspect of a battery state is a state of health (SoH). In all previ-
ous models, the battery doesn’t track previous charge/discharge cycles and runtime
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conditions. Due to aging effects, usable capacity of a battery is decreasing, therefore,
a capacity fading ξ can be defined as:

ξ = Qnom −Quse (2.10)

where

Qnom − nominal capacity of the battery
Quse −maximum usable capacity that battery currently can store
ξ − capacity fading

The end of life condition depends on the application of a battery, but by conven-
tion is considered at 80 % of the nominal capacity. Capacity fading ξ is considered as
unique SoH indicator, as self-discharge is omitted as it cannot affected by optimiza-
tion, so SoH can be calculated, as:

SoH = 1− ξ

0.2 ·Qnom
(2.11)

Capacity fading can be divided into two losses: calendar and cycling. The first one
is mainly dependant on the battery’s total working time and temperature, which
affects electrode film growth [11]. While for the cycling loss the main factors are:

• Temperature

• Depth of Discharge

• Overcharge, when excess energy is delivered to recharge the battery

• C-rate

Two main approaches for models with capacity fading calculation are:

• Performance-based models, which are capable of simulating the change of
perfomance of the battery, where different parameters (e.g, voltage, current,
capacity) are monitored constantly, and when performance falls into some
threshold, EoL of the battery is reached [17].

• Weighted-throughput models, where the weighted throughput of chosen pa-
rameter (e.g, charge processed, number of cycles, or time of operation) is linked
to the EoL of the battery. The manufacturer usually gives information about
lifetime under certain conditions [17].

As the runtime conditions are not always constant, we can define a set of stress
factors variables, which are factors affecting cycling loss, which are mentioned above
2.2.5. In both models, the concept of the event is used. Event is time interval, during
which the stress factors are not changing.

One of examples of the weighted-throughput model is the Palmgren-Miner rule
model. The rule states that the life of a component under a sequence of variable
loads is reduced each time by a finite value. This fraction corresponds to the ratio
between the time spent under the given load condition and the number of cycles
that the component would last if load condition were constant during whole life of
the battery [17]. Thus, the EoL of the battery is reached, when sum of fraction for
each event is a unit:

E

∑
i=1

∆ti

t f
i (σi)

= 1 (2.12)
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where:

E − number of events
∆ti − time during an event i
σi − constant stress factor during an event i
t f
i − time to reach EoL with stress factor σi

Another approach is by the use of the damage accumulation model which is the
performance-based model. The amount of capacity fading of battery is modeled as
damage and we can express the rate at which damage develops as [11]:

dξ(t)
dt

= φ(ξ, σ) (2.13)

where φ is some function of capacity fading ξ and stress factor σ So capacity fading
can be calculated as:

ξ =
E

∑
i=1

∫ ti

ti−1

dξi(t)dt (2.14)

where:

ti − end time of the event i

Palmgren-Miner rule-based and damage accumulation models are equivalent if
damage rate can be factorised. A disadvantage of the first one is that whole history
of capacity fading rate should be known which is hard to accomplish in real cases.
Also, the damage accumulation model is easier for modifications [17].

In [13] and [11] it was shown that crack propagation and damage accumulation
models can be combined for modeling of capacity degradation. To differentiate high
SoC and DoD, SoCavg and SoCdev are introduced, as high SoCavg shows that battery
is operating on high SoC and high SoCdev shows that DoD is high and SoC during
one cycle varies a lot. We can calculate these parameters for the event i as:SoCavg,i =

1
t∆i

∫ ti
ti−1

SoC(t)dt

SoCdev,i = 2
√

3
√

1
t∆i

∫ ti
ti−1

(SoC(t)− SoCavg,i)2dt
(2.15)

Also, because battery cycles can vary in processed energy amount, effective through-
put cycles are used instead of charge-discharge cycles:

Ne f f =
∫ ti

ti−1

|Ibat(t)|
2 ·Qnom

dt (2.16)

where Ne f f - number of effective cycles
Thus, the capacity fading can be calculated for charge-discharge cycle i taking

into account depth of discharge in the following way:

ξi = Kco · Ne f f · e
SoCdev,i−1

Kex

Tre f
T + 0.2

t∆i

tli f e
(2.17)

where:

Kco, Kex − battery specific constants, which are fitted to battery life data
Tre f − reference temperature of 20oC in Kelvin
t∆i − duration of event i
tli f e − estimated calendar life at reference temperature
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An adjustment for the average state of charge is performed, because the degra-
dation rate proportional to the concentration of Lithium ions left in an active form.

ξi = (Kco · Ne f f · e
SoCdev,i−1

Kex

Tre f
T + 0.2

t∆i

tli f e
) · eKsoc

SoCavg,i−0.5
0.25 · (1− Li) (2.18)

where:
Ksoc − battery specific constant, which are fitted to battery life data
Li − damage accumulation term

On each event iteration step Li takes a previous damage into account and can be
expressed as:

Li =
E

∑
i=1

ξi (2.19)

Also, Li can be calculated iteratively, but knowing accumulated damage from previ-
ous cycle:

Li = Li−1 + ξi (2.20)

2.3 Proposed implementation of battery model

For the considered task in this thesis, model should be able to simulate battery
runtime with ageing. To achieve this, combined Thevenin-based and runtime-based
model is used with additional logic for capacity fading calculation. In Figure 2.5 gen-
eral architecture can be seen. A battery model was implemented using the Modelica
language with a use of OpenModelica environment. Modelica is an object-oriented
modeling language with a lot of dynamical models and its components in Modelica
Standard Library that are used in engineering. Even though Modelica is a high-
level language, where you can describe model in a form of algebraic and differen-
tial equations, or even connect components using graphical user interface, Modelica
translates its models into C code, allowing to simulate models with a high perfor-
mance. In addition to Modelica language advantages, OpenModelica provides free
open-source simulation and modeling environment with additional tooling (i.e. lin-
earization of models) and Python binding for OpenModelica compiler (omc) allow-
ing to run models and visualize output using Python.

2.3.1 Thevenin-based model as a part of the proposed model

Thevenin-based model with 2 RC circuits is used as the base to the battery model.
So it is able to show voltage-current information for a particular SoC and simulate
short-term and long-term dynamics of the battery. To show different behaviour of
the battery depending on SoC and charging/discharging cycle, equations from [11]
are employed, but simplified for a condition of a constant temperature T = 20◦C.

Dynamics inside Thevenin-based model

To apply model predictive control for optimal operation of the battery, we need
to know the state of the system. Therefore, the model is described using a system of
equations (2.21, 2.25, 2.24) that later can be used to find the state variables.

Using Kirchhoff’s voltage rule, the voltage across the battery Ubat (Figure 2.5) can
be calculated in the following way:

Ubat = UOC −Ut,s −Ut,l −Us (2.21)
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FIGURE 2.5: The model of battery implemented using Modelica

where:

Ubat − battery voltage
UOC − open-circuit voltage
Ut,s − voltage across the first RC circuit (Rt,s, Cth,s)
Ut,l − voltage across the second RC circuit (Rt,l , Cth,l)
Us − voltage across the Rs resistor

Using the Ohm’s rule the voltage across Rs resistor (Figure 2.5) depends on bat-
tery current and resistance Rs in the following way:

Us =
Ibat

Rs
(2.22)

where:

Ibat − battery current

Using Kirchhoff’s current law and Ohm’s rule, voltage across components in
RC circuit (Rt,s, Ct,s (Figure 2.5) depends on current across each component in the
following way: 

Ibat = i1(t) + i2(t)
Ut,s =

∫ i1(t)
Ct,s

dt

Ut,s = i2(t) · Rt,s

(2.23)

where:

i1 − current across the capacitor Ct,ks
i2 − current across the resistor Rt,s
Ct,s − capacitance of the capacitor Ct,s
Rt,s − resistance of the resistor Rt,s
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We can combine equations from system 2.23 to formulate the voltage change
across Ut,s:

U̇t,s =
i1(t)
Ct,s

=
Ibat − i2(t)

Ct,s
=

Ibat

Ct,s
− Ut,s

Rt,s · Ct,s
(2.24)

By analogy, we can find a similar formulation for the voltage Ut,l of the second
RC circuit (Rt,l , Cth,l) (Figure 2.5):

U̇t,l =
Ibat

Ct,l
− Ut,l

Rt,l · Ct,l
(2.25)

2.3.2 Runtime-based model as a part of the proposed model

The default Thevenin-based model is working only with constant SoC and volt-
age on open-circuit. To get a variation of SoC depending on the voltage of an open-
circuit, the Thevenin-based model was combined with runtime-based model. As a
result, in such an approach, Uoc will vary voltage depending on the current SoC (Fig-
ure 2.5). The function which shows dependency between SoC and Uoc is taken from
[11] where the dependency was precomputed for all values of the SoC according to
the characteristics of the real battery. Thus, the voltage source Uoc in the model uses
lookup table to change the voltage depending on the current level of SoC (Figure
2.5). To calculate the SoC of the battery, equation 2.1 for Coulomb counting method
was used. The main disadvantage of this method is requirement to know the initial
SoC, however, in our model, we always have this information.

2.3.3 Adding ageing parameter to the model

Due to ageing of the battery, such effects as capacity fading, self-discharge and
internal resistance take place, but for our problem the capacity fading is of the main
interest, as an affect of the total runtime of the battery. Therefore, for our application
a combination of damage accumulation and crack propagation models was used
based on [13], where equation for capacity fading is 2.18. As in real-life operation
cycling losses are much higher than calendar losses [11] and impact from the latter
cannot be decreased during optimization, therefore, the calendar losses are omit-
ted. Thus, 0.2 t∆i

tli f e
term in equation 2.18 which responsible for the calendar losses is

removed.
Even though the Arrhenius relation 2.2 was shown as the best way to predict

capacity fading dependence on the temperature [11] [13], but for our task, the impact
of using a model at different temperature is not considered and can be neglected.
However, in previous work [11] was shown, that Ea from Arrhenius relation 2.2 is
dependent on SoC to increase ageing speed during operation on high SoC. However,
by the use of SoCavg 2.18 we are able to use this dependency without Arrhenius
relation, as our model is neglecting temperature effects.

As a result, equation 2.18 that defines the capacity fading ξ can be rewritten as:

ξi = Kco · Ne f f · e
SoCdev,i−1

Kex · eKsoc
SoCavg,i−0.5

0.25 · (1− L) (2.26)

For model predictive control, the controller solves optimization problem at each
step, and need to have feedback how the change of current input affects battery
model, so SoH of the battery will be maximized. Even though damage accumulation
model operates over discharge-charge cycles, the damage accumulation model is



Chapter 2. Battery modeling 13

adapted to calculate capacity fading for current discharge-charge cycle iteratively at
each step of model simulation.

Thus, during a current cycle i the capacity fading ξi is recalculated at each iter-
ation using 2.26. The total capacity fading ξ is calculated as a sum of the capacity
fading during a current moment of time and a damage accumulation:

ξ = Li−1 + ξi (2.27)

where Li - previously accumulated damage 2.20
Because of the new approach for calculation of the total capacity fading ??, the

capacity fading can not only increase, but also decrease during a battery operation
cycle. However, when discharge or charge cycle is ended, changes to capacity fading
ξ are irreversible.

2.3.4 Parameters identification

For Thevenin-based models, it is required to find values of coefficients, which
was used to describe the model (2.9, 2.4, 2.5, 2.6, 2.7, 2.8). The main approach for
identifying those parameters is to analyse voltage during pulse charging and dis-
charging cycles. During pulse charging, battery is charge with constant current for
some amount of time and then stopped charging, so transient behavior of voltage
of response can be seen for particular value of SoC. Current can be constant during
all pulses [18] or alternating [19]. The advantage of the latter one is that less testing
should be done, but it is impossible to observe how charging with higher current
affects aging of the battery [11].

rest times (when battery is not charging nor discharging), charging and discharg-
ing.

Commonly [18] [19], Uoc is assumed to be only dependent on SoC while param-
eters for others circuit components (Rs, Rt,s, Ct,s, Rt,l , Ct,l) constant. However, in [11]
was shown dependence of SoC on resistance and capacitance. So, function of those
(2.6, 2.7, 2.8) were fitted by high-order polinomials

As, the model’s parameters identification requires a knowledge of the hardware
characteristics (e.g. battery specification from the producer) and the laboratory test-
ing of the real equipment that is time-consuming. In this work the parameters for
the circuit components are used from [11]. These parameters correspond to the A123
APR18650M1 battery dynamics (parameters can be seen in Appendix A) However,
some parameters as temperature dependence are neglected. The parameters for ca-
pacity fading are taken from [13]. Even though the parameters in [11] and [13] are
provided for different batteries (A123 ANR26650M1A and A123 ANR18650M1), it
can be seen in Fig. 2.6, that those two batteries have similar capacity fading cycles.
Data was extracted from corresponding datasheets [8] [20]. The battery operation
was tested in the same conditions, where batteries were charged and discharged
multiple times with 1C rate, and during each cycle battery was fully charged and
discharged, so DoD is 100 %.

2.4 Simulation results

To validate the resulted model of the Li-ion battery, the essential characteristics
of the battery were tested and validated against those presented in the scientific lit-
erature. First of all, the resulted parameters of the circuit components that depend
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FIGURE 2.6: Capacity fading for two types of batteries and the simu-
lated model (Figure 2.5)

on SoC, that are calculated by running discharge cycle with 100 % DoD, were vali-
dated against the corresponding characteristic in [11]. In Figure 2.8 and Figure 2.7
the obtained dependencies of the open circuit voltage Uoc, capacitances Ct,l , Ct,s, and
resistances Rs, Rt,l , Rt,s (Figure 2.5) are plotted for charging and discharging cycles
of the battery operation. The results in Figure 2.8 and Figure 2.7 show the similarity
of the parameters with respect to the reference characteristics in the literature [11].
Thus, the plotted characteristics are mostly the same for charging and for discharg-
ing cycle (with small difference) of the battery.
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FIGURE 2.7: Comparison of the open circuit voltage Uoc dependency
on SoC of the proposed model and the reference model [11]

Next, voltage response for charging and discharging was tested. As voltage re-
sponse of battery operation in [11] were taken during rapid test-procedure [19], re-
sulted model was also simulated with same profile (Figure 2.9) for comparison. The
main advantage of this test is that results from one charge and discharge cycle can
be analyzed to extract model parameters. So researchers in [11] has used to extract
parameters which are described in Section 2.3.4. During the test the obtained current
Ireq characteristic is presented in Figure 2.9, where positive current Ireq corresponds
to discharging and negative for charging. While the comparison of voltage response
Ubat of the simulated battery with respect to the reference [11] can be seen in Fig-
ure 2.10. The close agreement between simulation results and measurement data
indicates that the developed model allows to predict runtime and transient voltage
response accurately.
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Finally, to validate the model, it was used to simulate 1000 full cycles of charging
and discharging, so DoD was 100 %, with 1C rate for charging and discharging (so
one cycle continued for 1 hour) and with 1.3C rate for charging and 2.1C rate for
discharging (Figure 2.11). The resulted characteristics of the model were compared
to the characteristics in the datasheets [8] Thus, from the resulted plots of Figure 2.11
one can conclude that the simulated battery is capable of modelling capacity fading
depending on different battery usage cycles. However, simulated capacity fading
shows linear trend, while measurements from real model have a slight exponential
behavior at the beginning of life (BoL) . To improve the simulated behaviour, the
weight of the damage accumulation term L (2.26) could be increased to have more
rapid capacity fading in the BoL. In addition, the capacity fading that presented as
SoH of the battery with 1.3C/2.1C rates was tested by manufacturer for different
temperature (45C comparing to 25C for 1C/1C test) [8]. Despite omitted heat effects
in the proposed model, rates of capacity fading are similar.
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FIGURE 2.11: Capacity fading for different load
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Chapter 3

Model Predictive Control for
battery operation

3.1 Background information

Control systems are used in various aspects of our life and allow to achieve a de-
sired response of the system by controlling its output. There are two types of control
systems: open-loop and closed-loop, or with no feedback and with feedback. The
main difference is that the last one has not only the reference input, which should be
achieved, but also the output of the system going through the feedback loop into the
input of the system. This makes the controller more stable, as it can adapt future in-
put by reacting to the changes in the output and passing the change via the feedback
block to the input. Open-loop on other hand can just predict which input should be
given to the system and are less accurate and less stable [21].

One of the most important and widely used controllers is the PID controller. It
is the closed-loop controller which applies a correction to the plant output based
on proportional, integral, and derivative terms. It is common to use one or two
components of PID controller by setting control gain to zero. Using proportional
control alone for changing reference value will always result in some error, as it
requires error to compensate it by adapting input. To overcome this drawback of
the propotional control, the integral component is used to eliminate residual offset
by integrating the error over time [21]. A derivative component, on other side, tries
to predict a future trend of the error and sometimes is omitted to make the system
more robust for noisy data.

The battery can be considered a controlled object, as it commonly requires con-
trolling inputs during its operation. For example, tracking and control of battery
characteristics, such as SoC or voltage, is required to prevent misuse of Li-ion bat-
teries in protection circuits [9]. Another control application for the battery is to track
and tune voltage and current of the battery depending on the charging strategy. The
most common charging strategy is constant-current/constant-voltage, where bat-
tery is charged with constant voltage until the nominal voltage is achieved, after that
charging and supporting nominal voltage until the battery is fully charged. Typical
curves for current and voltage can be seen in Figure 3.1. As we know the desired
trajectories of current and voltage, the PI controller can be used to charging [22].

Model Predictive Control (MPC) made an enormous impact on industrial control
engineering and inspired many academics for further research. The main advan-
tages of MPC over an ordinary PID controller are:

• It can handle problems with multiple inputs and outputs

• It can easily put constraints on input, as well as on state variables of the con-
trolled object
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FIGURE 3.1: Constant-current/constant-voltage strategy[22]

• It combines advantages from both: open-loop and closed-loop controllers.

As it can be guessed from the name, MPC is model-based control in the sense,
that it uses an internal model of process to predict behavior of the object. The general
scheme of MPC optimization operation is presented in Figure 3.2. The controller at
each state predicts behavior for p time points ahead up to prediction horizon and
changes an input of the object aiming to minimize the difference between reference
trajectory and the predicted output. Most commonly, a least-squared optimization
problem is solved to find an input that would optimize a controlling aim - a cost
function. Also, it is widespread to use different prediction and control horizons, to
reduce computation complexity [4].

...

FIGURE 3.2: Model predictive control operation scheme [23]

To formulate an MPC problem, we need to specify the cost function J(x, u, y),
which to be minimized to find an optimal control, where x, u, y, z vectors to define
state, controlled inputs, measured outputs, controlled outputs respectively. But a
common practice is to have y and z the same.
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If model is linear controlled object’s model can be described as state-space model:{
xk+1 = Axk + Buk

yk+1 = Cxk
(3.1)

where A, B, C - are state, input, output matrices respectively.
However, if model is not linear it can be described as:

xk+1 = f (xk, uk)

yk+1 = g(xk, uk)

zk+1 = h(xk, uk)

(3.2)

where f , g, h - nonlinear functions

3.2 Related works

The lower price of energy during the periods of low demand, encourage con-
sumers to accumulate the stored energy in the batteries to use it later. Therefore, the
consumer who accumulated an energy during the low demand tries to release elec-
tricity stored in the battery to cover required consumption or even sell to the grid to
gain money for that.

Several successful attempts to reduce the variability of the load of the network
by the use of batteries earning some cost for that has been presented in [1], [2], [24].
This helped the power system operators to perform peak shaving supporting energy
demand and in this way preserving a balance of the power grid.

Minimization problems were formulated to reduce load variance in [1], [24], but
SoH of the battery was not taken into account, which resulted in charging nearly
to full capacity during low load and vice versa. On the other hand, in [2] the cost
was used as the objective function to show how profitable is to use a battery storage
for peak shaving task. As the wrong usage of the battery, where capacity fading
has high rates, increases costs, SoH was taken into consideration. SoH consisted of
the calendar and cyclic aging, however the impact from DoD was neglected. As in
[11] is shown, DoD can have a great impact on the capacity fading, therefore further
investigation is required. Moreover, it was shown that peak shaving using battery
storage is profitable and can be used for providing energy to large industrial loads.

MPC (shown in [1]) is able reduce variability of energy production output for
wind generators. Furthermore, stable generic controller was developed. Usage for
such controllers is crucial for generators based on renewable resources as their out-
put is highly fluctuating. Adding additional variable for optimization (SoH), makes
the minimization problem competing between maximizing SoH and minimizing
peaks’ height. One of the approaches to deal with it is by use of equivalence fac-
tor [6], which will penalize very large SoH changes or very small peak shaving.

To reduce the variability of load, the battery will be charged and discharged in
the particular moments, when the price is the most pleasant, so we can define effi-
cient battery charging as a subproblem, which will be solved during runtime. MPC
was already applied to optimal charging [3], and can be extended to use different
energy prices depending on the network load. The main idea is by the use of slack
variables for reference trajectory of SoC and SoH, which can be precalculated or
chosen by the user, and then solve least-squares quadratic problem of tracking those
variables.
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3.3 Implementation

The model which is able to predict the future behavior of controlled object is
crucial for MPC. Generally, there are two types of models that can be used: first-
principle nonlinear model and linear model obtained by system identification tech-
niques [4]. The first one is built upon equations that describe underlying physical,
chemical, and thermodynamic processes in the controlled object, and is not always
feasible. The second one is built using statistical methods and is more like a black
box. In this work the battery model with ageing which was developed in Chapter 2
is used.

Modelica is an equation-based modeling language that is convenient for engi-
neers, but it doesn’t have support for optimization problems by default. Despite the
fact, that Optimica, a toolbox that provides an extension to Modelica model allow-
ing to include optimization models, tries to fix this problem, there are no third-party
libraries providing MPC framework, and optimization problems should be imple-
mented from scratch. Python, on the other hand, provided multiple third-party so-
lutions, that can simplify development [25], [26]. Thus, the decision to combine
optimization tools in Python with the Python interface to access the battery model
written in Modelica is the most efficient and applied in this work.

3.3.1 Jmodelica.org

Jmodelica is an open-souce platform, which is based on Modelica models to-
gether with optimization models. It also provides a Python package that allows
interaction with models. However, since latest releases of Jmodelica stopped being
open-source, this library supports only Python2, despite the End of Life announce-
ment for it. In addition, JModelica.org stopped being open-source in 2019. An alter-
native open-source solution is MPCPy library [27], but it mainly focuses on problems
for buildings system and has problems with extensibility for custom cost function. It
works by translating Python code in JModelica, however adding new functionality
in the library is not simple.

3.3.2 Functional mock-up interface

A functional mock-up interface (FMI) is a free standard, which can be used to
integrate different third-party dynamic models and exchange them between differ-
ent software tools. It is done by translating the developed model into functional
mock-up unit (FMU), which can be used in different environments. In FMU all in-
formation, required to simulate the model, is stored (such as variables, equations,
inputs). For example, such software products as Simulink, OpenModelica, Dymola,
and JModelica.org are capable to export (or import) FMU. Moreover, the PyFMI li-
brary [28] was developed to allow interaction with FMU from Python.

3.3.3 Own implementation

Even though Python-based solution for MPC using FMU was developed pre-
viously [29], it is not available online. Thus, the MPC algorithm is implemented
from scratch. SciPy library was used for optimization per step. During optimization
model state should resets multiple times. As OpenModelica implementation does
not support canGetAndSetFMUstate flag for exported FMU, which requires set spe-
cific state to the model, model is rerunned with the same inputs from the start.
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3.4 MPC for efficient charging of the battery

The main objective of the controller is by preserving the required time for the
charging, prolong the life time of the battery.

3.4.1 MPC problem formulation for battery charging

Based on the battery model, that was described in previous Chapter 2 next state,
input and output vectors are used:

x = [Qcur, Ut,l , Ut,s, SoCavg, SoCdev, Ne f f , L]

u = [Ibat]

y = [SoC, SoH]

where Qcur is the current charge stored in the battery. Other variables are presented
in Chapter 2.

Reference tracking problem was previously used for charging [30]. The main
idea is that from given reference signal yr some state-input (xr, ur) is generated, and
controller tries to reach those values for model. So for the horizon length of N, cost
function at step k is:

J =
N−1

∑
i=0

(
‖x(i)− xr(k + i)‖2

Q + ‖u(i)− ur(k + i)‖2
R

)
+ ‖x(N)− xr(k + N)‖2

P (3.3)

where x(i) is the state predicted by our model, and we are setting initial value x(0)
to xk – the state of the system at the step k, ‖·‖2

A - is squared weighted 2-norm, i.e
‖x‖2

A = xT Ax .
Also, P, Q, R are weighted matrices, that serve to archieve desired dynamic be-

havior by balancing tracking error against the control effort required to achieve it.
The last term of the equation 3.3 is the terminal constraint, which allow to ensure
stability of the battery, so each controller at each optimization step considers what
happens beyond the prediction horizon [4].

However, if change rates of battery outputs satisfy the conditions:

0 ≤ (
δSoCr

δt
)min ≤ (

δSoCr

δt
) ≤ (

δSoCr

δt
)max (3.4)

0 ≤ (
δSoHr

δt
)min ≤ (

δSoHr

δt
) ≤ (

δSoHr

δt
)max (3.5)

and therefore reference signals have reachability (state of the battery which have
such outputs is reachable), cost function can be rewritten as an output tracking prob-
lem [3]. Moreover, because of the limitation on SoCr and as SoC is just the integral of
input, input weight matrix R can be assigned to 0, and it will not impact the stability
of the system. So cost function 3.3 can be rewritten as:

J =
N−1

∑
i=0

(
‖y(i)− yr(k + i)‖2

Q

)
+ ‖y(N)− yr(k + N)‖2

P (3.6)

Output weight matrix Q allows us to control pursuing two distinctive objectives:
maximizing SoC for faster charging and maximizing SoH to reduce damage to the

battery. So, we can define matrix Q as
[

1 0
0 w

]
, where w is a penalizing factor for
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SoH degradation and should be chosen tuned during testing, or obtained by use of
optimization algorithms. If the model is linear, and can be expressed by A, B, C
matrices like in 3.1, matrix P can be calculated using the discrete Lyapunov equation
[3]:

(A + BK)TP(A + BK)− P = −(Q + KTRK) (3.7)

where K is stabilizing control gain such that (A+BK) is Schur. For this approach,
model was linearized during each optimization step, but the time required for lin-
earization is too big and accuracy dropped greatly (see Figure 3.3). Therefore, for
the nonlinear case, it was decided to have no constraints for the system to ensure
stability, and cost function has is defined as:

J =
N−1

∑
i=0

(
‖y(i)− yr(k + i)‖2

Q

)
(3.8)

So the only one constraint for the MPC is the input constraint, such that current Ireq
should be inside bound [−10C; 10C] where C - C-rate.

3.4.2 Simulation Results

In [3] researchers proposed running optimization with w = 0 to get reference
signal SoCr, and choose SoHr considerin application. So to get SoHr, the optimiza-
tion was run with the limit on Ireq ∈ [−2C; 2C]. Thus, during the optimization, the
MPC controller will be balancing between faster charging and minimization battery
damage.

During simulations, three different scenarios were possible depending on the
value of w. The first one is if w is too small, controller is just ignoring changes in SoH
and tries to charge as fast as possible. The second one is when w is too big, and the
simplest solution is not to charge the battery at all, as a change of SoC level has a high
cost for changes in SoH. The last one is actually where changes in SoC and SoH are
competing and depending on w faster charging of lower damage can be achieved.
From the last scenario, suboptimal w equal to 3000 was taken, as optimization of full
charge usually takes from 15 to 30 minutes.

MPC with linearization, where at each optimization step battery model was lin-
earized and optimization was performed using a linear model, was implemented.
However, linearization takes a lot of computational time, therefore, the optimization
with linearization worked twice slower than MPC with nonlinear model. In addi-
tion, small changes in SoH were often not visible in the linear model. Thus, we can
see on 3.3 that the charging of the battery was performed with a high C-rate in the
start, where capacity fading per step was small, leading to the drastic drop of SoH.

In contrary, we can see on 3.3, that the MPC controller without linearization 3.8
is capable of efficient battery charging, even with the same charging time as with a
constant 2.5C rate to perform an optimal charging to have less damage to the battery.

3.5 MPC to reduce variability of load

The main objective of the controller is to minimize total amount of money re-
quired to spend on the energy. This objective is justified by the fact that consuming
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the portion of load during peak demand is typically much more expensive than con-
suming energy during minimum load demand. For this task it is assumed that the
electricity price per GWh is given by the following equation:

Cost[USD/GWh] = 5 + 0.5 ∗ Pload[GW] + 0.05 ∗ P2
load[GW] (3.9)

where Pload is the current load on the network. The load profile of an exemplary
country (Sweden) is available during 13 years (2005 - 2017) with hourly resolution
expressed in gigawatts [GW], and therefore will be used as Pload. One week from
December 2017 will be used, and the load profile can be seen on the Figure 3.4.
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FIGURE 3.4: The load profile of Swedish grid in December 2017

The battery model from Chapter 2 was used for prediction of the battery out-
puts, such as SoC, SoH and Ubat. But as the battery parameters were used for A123
APR18650M1, which has capacity only 1.1 Ah [20], it will be assumed, that multi-
ple of batteries are used together synchronously, so output from the battery will be
scaled:

1. Total capacity of the batteries is 800GWh

2. Maximum charging/discharging power of batteries is 200GW

3.5.1 MPC problem formulation for reducing variability of load

Similarly to controller for efficient charging presented in 3.4, MPC controller for
reducing variability of load is also formulated, as output tracking problem, but for
amount of money for required amount of the energy. Therefore, controller has a
reference the amount of money Mr which should be paid for the each optimization
step. Thus, cost function J for step k :

J =
Hc

∑
i=0

∥∥∥∥Cost
(∫ tk+i+1

tk+i

(Pload − Pbat,i)∆t
)
−Mr(k + i)

∥∥∥∥2

(3.10)

where
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Hc − controlling horizon
k − a number of step during MPC optimization
Mr − reference amount of money is USD
Qus − sum of usable capacities of all batteries
Pload − power of the load network
Pbat,i − power of the battery
∆t − time inverval of optimization step

However, as it can be seen on Figure 3.4, that periods of low and high demands
has big gap between each other in a few hours. Previously researchers in [31] were
using 10 minutes as length of an optimization step for MPC. Therefore, this approach
would be needed to have controlling horizon Hc equal to 36, to be able to take into
account next 6 hours. As optimization for such long period will take a lot of compu-
tational power and time, it was decided to have not equal prediction and controlling
horizons. For steps greater than prediction horizon Hp, it is impossible to know
power of the battery, as current with 0 A is given as input to the model for non
controllable region. Therefore, for the interval [Hc; Hp], parameter ki is introduced
to specify how much energy we expect to use from the battery in the time interval
[Hc; Hp]. The energy of the battery can be used in constant amounts for each itera-
tion, for even distribution of energy per step, or depending on the amount of load
per step.

Since the goal is that the batteries should be charged efficiently, for this problem
we can use the same approach as in Section 3.4, by providing reference signal SoHr
and penalizing factor w for SoH degradation.

Thus, cost function J can be rewrittten as:

J =
Hc

∑
i=0

∥∥∥∥Cost
(∫ tk+i+1

tk+i

(Pload − Pbat,i)∆t
)
−Mr(k + i)

∥∥∥∥2

+

w ·
Hc

∑
i=0
‖SoH − SoHr‖2 +

Hp

∑
i=Hc

∥∥∥∥Cost
(∫ tk+i+1

tk+i

(Pload∆t)− ki · SoCi ·Qus

)
−Mr(k + i)

∥∥∥∥2

(3.11)

MPC was constrained on the input, as batteries has the maximum charging rate.
Additionaly, MPC was constrained, so SoC should be in the bounds [0.2, 0.8] to re-
duce damage to the model.

3.5.2 Simulation results

The real measurements of the consumed power in Swedish grid in 6 December
of 2017 was taken for tests. To get a reference signal Mr for controller input, the
load profile should be analyzed. The percentiles of 10 and 60 % of load were taken
to localize periods of low and high demand that can be observed in 3.5. Reference
signal Mr was calculated from considering the load profile with assumption that
amount of power from network should be always less then 65 % percentile and
greater then 10 % percentile.

On the Figures 3.6 and 3.8 resulted power consumption from the network and the
battery can be seen. Blue area corresponds to the energy that was bought from the
network. Red area with power more then 0 corresponds to the time intervals when
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power from batteries were taken, while negative power means that the battery was
charging.

On 3.6 we can see suboptimal solution. Despite the fact that battery was charged
in the period of low demand, and charged during high, most of the energy were
taken not in the highest peak. The reason for it is that reference signal required the
controller to decrease power consumption from network for too large period of time,
and batteries were not capable of providing so much energy. To overcome this issue,
different approaches can be done:

• Add weight term wp to

∑
Hp
i=Hc

∥∥∥Cost
(∫ tk+i+1

tk+i
(Pload∆t)− ki · SoCi ·Qus

)
−Mr(k + i)

∥∥∥2
in 3.11, so differ-

ence between reference and predicted price in the interval [Hc; Hp] will have
more impact

• Provide more feasible reference signal into the controller.

Optimization run for reducing variability of 24 hours required nearly 10 hours of
computations, so tuning parameter requires a lot of time, so it more feasible reference
signal was taken. So upper bound for amount of load taken from network was
increased from 65 % percentile to 75%, and result of such change on optimization
can be seen in Figure 3.8.

Also, we can see on 3.6 that near 3 am, there was a slight variation, where bat-
tery after charging consistent charging, discharged with a small current. By further
examination of the battery state, it was discovered that SoC constraint was violated,
so the battery has SoC >= 0.8, and therefore started discharging.

Overall, the controller is capable of reducing variability of load (see Figure 3.8).
Even though such controller can be used for real-time operations, there is a big
amount of required computations, therefore the computational improvement can
be reached when the model of the battery is simplified.
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Chapter 4

Results and summary

4.1 Results

The results of this work show a lot of perspective of usage of Model Predictive
Control for battery operation. The battery model with ageing effects was developed,
and later used in several MPC controllers. The first MPC controller was able to
perform efficient charging of the battery, and the second one reducing variability of
load by performing peak shaving.

Thus, the research contributions:

• The battery model with ageing effects implemented in Modelica, which can
be used in any FMI-compliant software, and validated against the references
in the scientific literature including the datasheets that are provided by the
battery manufacturer

• The Python framework for MPC using FMU models is developed.

• MPC controller for efficient charging of the battery considering state of bat-
tery health with maximizing the speed of charge or discharge of the battery is
developed and validated

• MPC controller for reducing variability of load aiming for minimum expenses
for battery operation in terms of price of electricity is developed and validated
using the real data of the load in Swedish grid

4.2 Future work

Based on the presented results in this work, the following improvements can be
made:

• Use other than SciPy library for solving optimization problem, to speed up
optimization process

• Add support of FMU canGetAndSetFMUstate for MPC Python framework
flag to be able reset model without running from scratch, if model was ex-
ported using Dymola environment

• Add estimation of the state of the model for MPC Python framework, the bat-
tery model used in MPC is not identical to real battery. So if developed con-
trollers will be used in real time systems, state of the real battery should be
estimated to reduce errors.

• Add forecasting of the load, so the controller for reducing variability of load
can be run on unseen data
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Appendix A

Battery model parameters

TABLE A.1: Battery model parameters

Parameter Charging Discharging
Rs
Rs0 8.98e-2, 8.210e-2
kRs,1 -7.216e-2 -4.1006e-2
kRs,2 2.273e-1 1.609e-1
kRs,3 -2.892e-1 -2.518e-1
kRs,4 1.298e-1 1.369e-1
Rt,s
Rt,s0 1.827e-2 1.4e-2
kRt,s1 1.080e-2 7.13e-11
kRt,s2 11.03 -21.11
kRt,s3 -6.463e-3 03
Rt,l
Rt,l0 4.722e-2 3.1e-2
kRt,l1 2.95e-1 8.913e-15
kRt,l2 20.00 -32.23
kRt,l3 -2.420e-2 4.473e-3
Ct,s
kCt,s0 389.7 6.849e2
kCt,s1 1408 2.340e3
kCt,s2 -1007 -1.013e4
kCt,s3 169.7 1.723e4
kCt,s4 0 -1.026e4
kCt,s5 0 0
kCt,s6 0 0
Ct,l
kCt,l0 2.232e3 7.144e3
kCt,l1 -3.102e4 2.283e4
kCt,l2 5.998e5 -8.124e4
kCt,l3 -2.958e6 -4.009e3
kCt,l4 6.271e6 2.042e5
kCt,l5 -6.007e6 -1.541e5
kCt,l6 2.130e6 0

TABLE A.2: circuit
components

Kco 3.66e-5
Kex 0.717
Ksoc 0.916

TABLE A.3: damage
accumulation model
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