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Abstract

In the feature matching problem, local keypoint representations are often not suf-
ficiently distinctive to disambiguate repetitive textures. State-of-the-art matching
pipelines encode global information and embed context into keypoint descriptors
to resolve this issue. In this thesis, we evaluate the failure modes of the state-of-
the-art method for image matching. We identify the problem that including global
context to keypoint representations can sometimes eliminate their distinctiveness.
We propose to enhance the learning of the state-of-the-art pipeline by adding a met-
ric learning component to its objective function. By learning more distinctive global
context-aware keypoint descriptors, we recover the filtered matches without the loss
in matching precision.
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Chapter 1

Introduction

Image matching is a fundamental problem in the whole computer vision and
multiple-view geometry fields which tries to overlay two or more images of one
scene or object. Many emerging technologies like augmented reality, self-driving
cars, robotics, or 3D reconstruction of objects rely deeply on the process of match-
ing. These technologies are used ubiquitously in medicine, agriculture, education,
entertainment, and many more.

Detecting correspondences between images is a primary step towards solving a
large number of problems in computer vision. Among them are scene reconstruc-
tion, visual localization, camera parameters estimation, visual navigation, odometry,
pose estimation, image retrieval. Usually, algorithms that try to solve these problems
should operate with a large amount of imaging data acquired under different condi-
tions. This assumption poses a strict requirement for the image matching component
to be both efficient and robust.

The complexity of a particular image matching problem strongly depends on the
assumptions posed on the problem and the domain where it is used. In this thesis,
we focus our attention on the problem of finding point (pixel) correspondences in
two images in real-world outdoor environments. This case is the most basic yet very
important. Also, we assume significant viewpoint, illumination, and scale changes
across the images, which allows for a wide range of potential applications. Fur-
ther, throughout this work, we will refer to this particular problem simply as image
matching if the opposite is not explicitly stated.

Finding correspondences between any two pixels in the image pair will be very
computationally intensive and redundant for many downstream algorithms. The
most widely adopted pipeline for image matching operates on the sparse set of
points from both images and tries to match them based on the local appearance
around them. This method allows for efficient image matching, but poses the new
problems of detecting a repeatable set of keypoints in both images and creating in-
variant representations for them, called local descriptors.

Keypoints matching is a challenging task when working with the images of ar-
tificial outdoor environments because of the presence of a significant number of re-
peated textures. Human-made objects, such as buildings, are usually full of sym-
metrical patterns, which are very hard to match based only on local descriptors.
The typical approach to dealing with matches of keypoints that belong to repeated
textures is to filter them as they cannot be considered confident. Throwing away
important information hurts the overall performance of the matching algorithms,
especially for such downstream tasks as Structure-from-Motion and Multiple View
Stereo. Recovering more correct matches would be very important for constructing
denser 3D models of the scenes, which would be beneficial for further analysis.

In recent years deep learning has found enormous success in the computer vision
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area. Neural network-based algorithms showed state-of-the-art performance on im-
age classification, object detection, semantic segmentation, and many other related
tasks. Image machining also benefited a lot. Using Convolutional Neural Networks
(CNN) allowed researchers to create better keypoint detectors and descriptors in
repeatability and invariance to different transformations. Nevertheless, the match-
ing process itself was still mainly done by different variations of nearest-neighbors
search among the local descriptors with post-processing filtering techniques.

A recent state-of-the-art approach called SuperGlue [29] tackles keypoints match-
ing in an entirely new way by formulating it as an end-to-end prediction task solved
by a neural network. Also, it proposes a novel idea to establish matching based
not only on local visual information but also on contextual information from other
keypoints and their location relative to each other.

In this work, we explore the capabilities of recent state-of-the-art keypoint match-
ing methods in terms of matching images of outdoor environments rich in repeated
textures. We make the investigation of cases where they fail, especially when match-
ing repeated patterns. In particular, we investigate the performance of the Super-
Glue matching technique and identify the problems with its global keypoint repre-
sentations. We proposed adding a metric learning component to the training objec-
tive, which can potentially solve them. By implementing the SuperGlue pipeline, we
were able to compare the performance of the original algorithm with the proposed
approach.

In Chapter 2, we provide a general overview of the standard keypoint-based im-
age matching pipeline. Chapter 3 reviews some of the recent deep-learning-based
techniques, which are of special relevance to our work. In particular, we review the
SuperGlue method, which proposes to match keypoints based on global context-
aware descriptors. In Chapter 4, we describe the problem of matching images with
a large number of repetitions. In Chapter 5, we perform a more careful analysis of
the strengths and weaknesses of using global keypoints representations provided by
SuperGlue, especially when repeated textures are present in the images. By identi-
fying potential problems, we propose a metric-learning-based solution to them. In
Chapter 6, we describe the experiments performed on SuperGlue enhanced by the
metric learning objective function. Finally, in Chapter 7, we make the conclusion
about the performance of our approach and identify the directions for future work.



3

Chapter 2

Image matching problem

2.1 Image matching pipeline

The most widely adopted pipeline for image matching was first formalized in the
survey paper on image registration [39]. It consists of four consecutive steps: feature
detection, feature description, feature matching, transformation estimation. Here,
we will provide a brief overview of existing and most widely used methods for each
of the steps.

2.1.1 Features detection and description

A good feature is invariant to transformations, repeatable, and efficient both to com-
pute and store. Usually, features are detected at locations robustly found under geo-
metric transformations, viewpoint, or illumination changes. Such features are edges,
corners, blobs, or keypoints. The latter is of specific interest since they are simple to
define and store. Keypoints are generally described based on the local area around
them. Following the same line of reasoning, as with detection, descriptors are built
such that they are invariant to a wide range of transformations, as well distinctive
enough to perform matching.

FIGURE 2.1: Example of keypoints detected by SuperPoint [6].
Produced set of keypoints is repeatable under large viewpoint and

illumination changes.

More formally, given two images A and B, one tries to detect a set of keypoint
locations p and corresponding local descriptors d on each of them. We will refer to
individual keypoint location and local description on the images A and B as pA

i , dA
i

and pB
j , dB

j , respectively, where i = 1 . . . M and j = 1 . . . N.
In the past few decades, many handcrafted methods for keypoints detection and

description were invented. Some of them perform only detection task: Harris corner
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detector [14], FAST [27], MSER [22]; some can only make description: BRIEF [3],
while others can do both: ORB [28], SIFT [21], SURF [1].

Feature detection and description steps benefited a lot from applying deep learn-
ing approaches. Features produced by such methods as SuperPoint [6], D2-Net [8],
HardNet [23] set new state-of-the-art results in various image matching benchmarks.

(A) NN matcher with mutual
nearest neighbors check

(B) NN matcher with Lowe’s ratio test

FIGURE 2.2: Image matching performed by Nearest Neighbors matcher. Keypoints
are detected and described with SIFT. We used RANSAC to robustly estimate the
homography transformation between two images. Matches that are inliers and
outliers according to the transformation are shown in green and red respectively.

Lowe’s ratio test tends to filter both many inliers and outliers.

2.1.2 Features matching

Traditionally descriptors are matched based on the Nearest Neighbors (NN) search.
The matches produced this way are further filtered using such techniques as mutual
nearest neighbors check or nearest neighbors consensus [34]. Lowe’s ratio test [20]
is one of the filtering approaches of particular interest to us. It discards a match as
non-confident if the distance to the second NN is not substantially bigger than the
distance to the first NN. The match is discarded if:∥∥∥dA

i − dB
j1

∥∥∥
2
> c ·

∥∥∥dA
i − dB

j2

∥∥∥
2

, (2.1)

where j1 and j2 are indices of the first and the second nearest neighbors in image B
of dA

i and c ∈ (0, 1) is predefined constant.
Recent Neural Networks-based approaches to matching, in general, followed the

NN paradigm. [38, 26, 2] proposed deep learning-based filtering techniques but still
relied on the NN search.



Chapter 2. Image matching problem 5

2.1.3 Transformation estimation

Tentative correspondences established in the previous step are used to estimate some
geometric transformation between the structures on two images. Usually, one needs
a small number of correct point correspondences to estimate this transformation.
For example, one needs only 4 points matches to estimate the homography matrix
in a non-degenerate case. On the other hand, there are often much more tentative
matches, a large fraction of which may be incorrect. Robust estimation techniques
such as RANSAC [10] were designed to operate under such assumptions. RANSAC
and its many variations show excellent performance when estimating transforma-
tion models in scenarios with many outlier correspondences.

2.2 Metric Learning in image matching

Metric learning approaches have enormous success in lots of Computer Vision prob-
lems. It helped to boost the performance of many classification systems by learning
better image representations. Training a model in a metric learning fashion allows it
to generalize well even to the instances of classes unseen before and produce mean-
ingful representations vectors for them. Such problems as face verification and face
identification benefited a lot because usually, one cannot access instances of all pos-
sible classes during training.

Metric learning has become a popular way to learning local descriptors using
deep neural networks. Such methods as SuperPoint, D2-Net, or HardNet learn to
describe local regions around keypoints centers such that the output descriptors are
invariant to geometric transformations and illumination changes while being dis-
criminative enough to match. This is usually achieved by variants of triplet margin
loss [4].
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Chapter 3

Related Works

In this chapter, we will review state-of-the-art approaches to keypoints detection, de-
scription, and matching, which are of particular relevance to us. The work presented
in this thesis is based mostly on the SuperGlue matching algorithm. Therefore here,
we will also provide an extensive overview of its components, as well as identify its
weaknesses.

3.1 Keypoints detection and description

3.1.1 SuperPoint

SuperPoint [6] aims to create an end-to-end learnable framework for keypoints de-
tection and description. Detection and description are done with a single CNN
model that shares a backbone and has separate heads for predicting keypoints and
describing them.

FIGURE 3.1: SuperPoint model architecture. Separate heads produce the detection
and description of keypoints in a single forward pass of a model. Image taken from

[6].

The detector head is trained in a self-supervised manner requiring no human-
labeled data. Firstly, it is pretrained on synthetically generated shapes with prede-
fined keypoints locations (angles, joints, etc.). Then, the model is further trained on
a large set of unlabeled images. The model provides supervision for itself by using
a process called Homographic Adaptation, where ground-truth keypoints are gen-
erated by making detections on different warped versions of the same image and
combining them together. The model learns to predict keypoints locations by using
cross-entropy loss which is used for pixel-wise classification.
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The descriptor head is trained by using separate loss functions. By applying
random homographies, one can establish ground-truth correspondences between
points in an image and its warped version. The objective function tries to minimize
the distance between descriptors of such two keypoints. The distance to descriptors
of all others keypoints is maximized. Thus, the model aims to learn descriptors that
are invariant to generic homographic transformations and distinctive enough to be
robustly matched.

3.1.2 HardNet

HardNet [23], on the other hand, only performs a description task based on the local
patches around keypoints. Simple and lightweight CNN architecture allows for fast
and efficient keypoints descriptions.

FIGURE 3.2: Lightweight architecture of HardNet, adopted from L2Net [33] model.
Importantly, descriptors for keypoints are produced based only on the local neigh-

borhood. Image taken from [23].

Descriptors are learned by using triplet margin loss with hard-negative mining
[15]. The whole process is inspired by Lowe’s ratio test. HardNet objective tries to
minimize the descriptor’s distance to its ground truth match while simultaneously
maximizing the distance to the second nearest neighbor.

3.2 Keypoints matching using SuperGlue

The SuperGlue approach to image matching fits into the standard image matching
pipeline while replacing classical Nearest Neighbor-based methods. As its input it
expects a set of keypoints on both images pA and pB along with their local descrip-
tors dA and dB. Keypoints and their descriptors can be provided by any existing
method or combination of them. In this work, we use only SuperPoint keypoints as
they provide the best accuracy when matching.

SuperGlue consists of two main components: Attentional Graph Neural Net-
work (AGNN) and Optimal Matching Layer. The former is responsible for con-
text aggregation and provides global context-aware descriptors enhanced with po-
sitional information of keypoint. The latter component allows formulating descrip-
tors matching as a prediction task. Using a differentiable Sinkhorn algorithm [5], the
model can propagate gradients directly from its prediction to AGNN, allowing to
train it and make inferences in an end-to-end manner.
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FIGURE 3.3: SuperGlue matching pipeline. Attentional Graph Neural Network
produces context-aware descriptors by applying attentional aggregation. Then,
matching assignment matrix is constructed by differentiable Sinkhorn algorithm.

Image taken from [29].

3.2.1 Attention Mechanisms

Attention mechanisms were firstly utilized in Natural Language Processing field for
sequence-to-sequence tasks but soon gained more popularity in vision problems.
In particular, dot-product attention was firstly introduced in the Transformers ar-
chitecture [36]. However, nowadays, it is commonly used to replace convolution
operations in image processing architectures [24, 12].

Dot-product attention can be seen as an operation that maps a query vector and
set of key-value pairs to the output. In practice, there are multiple queries that are
stacked into one matrix Q. Key and value pairs can also be represented as matrices
K and V. Then

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (3.1)

where dk is the dimensionality of queries and keys.
In Natural Language Processing, dot-product attention allows building context

embeddings [7] of words out of independent word-level embeddings. The same
ideas can be applied to keypoints descriptors. By applying attention operations to
individual local descriptors, we can build global context-aware features. Also, by
incorporating positional information about keypoints location, the model can reason
about their relative location and co-occurrences. These techniques show a promising
way to resolve ambiguous matches predicted based only on the local information.

3.2.2 Attentional Graph Neural Network

SuperGlue uses a complete undirected graph G = {V , Eall} over all the keypoints in
both images, where V = pA ∪ pB. The edges are split into two separate sets Eall =
Esel f ∪ Ecross. Edges from Esel f connect keypoints that lie in a single image, while
edges from Ecross connects keypoints across images. AGNN propagates information
only from keypoints that are connected by one type of edges at a single layer. At
odd layers, information is propagated using self-edges, while at even layers from
cross-edges.

AGNN propagates information from one node to the other by using message
passing [11]. If we denote the representation of each keypoint in an image A after

layer l as (l)xA
i and the message passed from keypoints connected by vertices E =

{Esel f , Ecross} as mE→i, then the update is given by:

(l+1)
xA

i =
(l)

xA
i + MLP([

(l)
xA

i ‖mE→i]) (3.2)
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The same computations are performed for keypoints in the image B.
The message mE→i is computed by using dot-product attention, where the query

is an intermediate representation of keypoint i, and keys and values are computed
based on intermediate representations of message sources.

The original representation of each keypoint (0)xA
i is composed of visual descrip-

tor along with positional information embedded in a higher-dimensional space with
Multi-Layer Perceptron:

(0)
xA

i = dA
i + MLP(pA

i ) (3.3)

The representation after the last layer L is linearly projected to obtain the final global
context-aware descriptor for each keypoint:

fA
i = W · (L)

xA
i + b (3.4)

Descriptors fA
i and fB

i are kept unnormalized. The norm reflects the matching confi-
dence for each keypoint.

3.2.3 Optimal Matching Layer

Optimal Matching Layer computes an assignment matrix P, representing the match-
ing probabilities for each possible correspondence. Each keypoints in one image can
be matched to only one keypoint in the other image or will have no match at all
because of viewpoint change and occlusion. To account for keypoints that cannot
be matched, SuperGlue adds an auxiliary dustbin keypoint on each image that will
match any unmatchable keypoints in other images. Given that there are M keypoints
on the image A and N keypoints on the image B, P is (M + 1)× (N + 1) matrix such
that

P1N+1 = a, PT1M+1 = b (3.5)

a = [1T
M N], b = [1T

N M] (3.6)

Given the matching scores S between any two keypoints, the task is to maximize
∑i,j Si,jPi,j. The score for any two keypoints is given as dot product between their
context-aware descriptors.

Si,j =< fA
i , fB

j >, for ∀i = 1 . . . M, j = 1 . . . N (3.7)

Matching score between any keypoint and dustbin, as well as between two dustbin
is a learnable parameter.

The partial assignment matrix is computed using a differentiable Sinkhorn algo-
rithm.

3.2.4 Objective function

Original SuperGlue implementation optimizes simple negative log-likelihood loss
in a completely supervised fashion. Given a set of ground truth correspondence
M = {(i, j)} and two sets of unmatchable keypoints from both images I and J the
loss is computed as:

L = − ∑
(i,j)∈M

logPi,j −∑
i∈I

logPi,N+1 − ∑
j∈J

logPM+1,j (3.8)
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In practice, the loss is averaged, such that true correspondences and unmatchable
keypoints have an equal contribution.

L = − 1
|M| ∑

(i,j)∈M
logPi,j −

1
2|I| ∑i∈I

logPi,N+1 −
1

2|J | ∑
j∈J

logPM+1,j (3.9)
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Chapter 4

Problem Formulation

In this work, we focus our attention on the problem of matching two images of one
scene or object in the outdoor environment. This problem is especially hard because
of the large number of repeated structures in man-made environments. Repetition
on the image can be defined as a region that repeats itself according to some rule (e.g.
translation, rotation, reflection, etc.). The presence of repeated patterns in the image
matching pipeline will cause the detection of keypoints with roughly the same de-
scriptors. An example image of a scene with a large number of translation repeated
textures is given below.

FIGURE 4.1: Example of repeated features detected by DBSCAN [9] using keypoint
descriptors from SuperPoint. Clusters of repetitions are represented in different

colors.

Methods that perform matching based only on the local descriptors and Nearest
Neighbor search are doomed to fail to disambiguate repetitions since the local rep-
resentation for each keypoint is roughly the same. The easiest way to deal with this
problem is to filter out repeated pattern matches. Lowe’s ratio test will do precisely
this. Since the first and second nearest neighbors will have very similar descrip-
tors, the distance to both of them will be similar too. Thus a lot of repeated pattern
matches will be filtered, resulting in a loss of useful information.
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In this thesis, we try to improve existing matching algorithms by paying more
attention to repeated patterns in the images. As a backbone for our solution, we use
the SuperGlue method, which shows state-of-the-art performance on image match-
ing tasks. The SuperGlue algorithm has no explicit mechanism for dealing with
repeated patterns. Nevertheless, there are two components inside of SuperGlue that
can implicitly help matching repetitions:

• positional information encoded in local descriptors

• context-aware keypoints descriptors.

Building global contextual descriptors and incorporating relative positional in-
formation about keypoints can help resolve ambiguous matches, even when local
descriptors are precisely the same.

In chapter 5 we will provide an error analysis of SuperGlue in terms of repeated
patterns to identify how well it deals with the problem of repetitions. We noticed
that SuperGlue shows high precision when matching, meaning that matches pre-
dicted by this algorithm are mostly accurate. Nevertheless, SuperGlue still seems to
miss a lot of matches present in the image pair.

The problem with unmatched keypoints can be seen on the repeated features
matches, a significant amount of which is filtered by SuperGlue. In this work, we
try to answer the question, whether those correct matches can be recovered. By
using metric learning approaches, we try to explicitly make SuperGlue learn more
distinctive descriptors, particularly for repeated patterns, such that their matching
will be easier.

Summarizing, the contributions of this work are the following:

1. Error analysis of existing SuperGlue method on the problem of matching re-
peated patterns.

2. Implementation of SuperGlue training procedures.

3. Improvement to SuperGlue method by using metric learning.

4. Comparison of SuperGlue enhanced with the metric learning objective to the
original method.
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Chapter 5

Method

In order to analyze the performance of SuperGlue and add metric learning compo-
nents to it, we first had to implement the original solution. Unfortunately, the au-
thors did not provide the code for dataset preparation and training. Only inference
code and pretrained model weights were available.

Firstly, we will describe the process of dataset preparation, present details of es-
tablishing ground-truth correspondences, and reason about evaluation metrics used
further in the thesis.

5.1 Establishing ground truth correspondences

We used the MegaDepth [19] dataset for training and evaluation experiments. In the
original SuperGlue implementation, it was used only for the training process. The
dataset is split into images of separate scenes from different viewpoints. For each
image, camera intrinsic and extrinsic parameters relative to the world coordinates
are provided. Also, dense depth maps for the images are available, even though
depth information can be present only for part of the image. This information is
computed by the COLMAP [30, 31] software which can perform accurate Structure-
from-Motion and Multiple View stereo from the sequence of images of a single scene.

FIGURE 5.1: Example of the image (left) and corresponding depth map (right) from
MegaDepth dataset. Brighter values in the depth map represent larger depth val-

ues. Missing depth information is shown in black.

To establish the ground truth point-to-point correspondences under the pinhole
camera model assumption, one needs calibration parameters of both cameras, cam-
era motion from one view to another, as well as depth information. Relative rotation
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and translation between both view A and B can be found from rotation and transla-
tion of individual cameras in the world coordinates as following:

RAB = RBRT
A

TAB = −RBRT
ATA + TB

(5.1)

Given two sets of keypoints pA and pB on images A and B, respectively, we first
reproject keypoints coordinates from the image A to the image B. Taking a point p
with depth z on the image A we transform it with the next equations:

PA = z · K−1
A [p(x) p(y) 1]T

PB = RABPA + TAB

p̂ = KBPB

(5.2)

Next, we symmetrically repeat the same process with keypoints in the image B. If
reprojection of pA

i is the nearest neighbor of pB
j and vice versa, and symmetric trans-

fer distance [32] between them is less than the predefined small threshold chosen as
3 px, we say that these two keypoints establish a match.

Also, some keypoints may not have any match because of viewpoint change,
occlusion, or just inaccuracies of the detector. If the distance from the keypoint’s
reprojection to its nearest neighbor is bigger than 5 px, we call this keypoint un-
matchable. Keypoint, for which we don’t possess depth information, or the distance
of keypoint’s reprojection to its nearest neighbor lies in a range from 3 px to 5 px,
is considered not confident, so we can’t say whether it has a match or not. Such
keypoints are not included in SuperGlue loss computations.

To summarize, the process described above allows us to obtain a set of confident
ground-truth correspondencesM, two sets of unmatchable keypoints I and J and
set of ambiguous keypoints.

5.2 Selecting evaluation metrics

As can be seen from the previous section, establishing ground truth point-to-point
correspondences requires accurate depth information. In our case, we have noisy
depth maps with many missing locations. The resulting set of ground truth corre-
spondences consists of many ambiguous matches, making no problem when train-
ing the model since we can ignore those matches when computing the loss. On the
other hand, ignoring those matches at evaluation time can dramatically influence
the metrics and result in a very inaccurate estimate of model performance.

A common strategy when evaluating the image matching method is to measure
its performance on the downstream task. In our case, we will choose the task of
relative pose estimation since we possess accurate ground truth poses information
for any image pair. Following the SuperGlue paper, we will use the AUC of the pose
error at (5◦, 10◦, 20◦) thresholds. We predict relative pose information by estimating
the Essential matrix using RANSAC [10]. The pose error is computed by accounting
for angular error in rotation and translation and taking the maximum of two.

To analyze the performance of SuperGlue at the level of individual keypoints
matches, we will use precision (P) and matching score (MS) metrics.
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Precision MS AUC@5◦ AUC@10◦ AUC@20◦

96.05 26.68 43.63 58.93 71.55

TABLE 5.1: Performance of the pretrained SuperGlue model on the
validation split of the MegaDepth dataset.

Precision MS AUC@5◦ AUC@10◦ AUC@20◦

94.62 24.01 36.91 51.19 63.96

TABLE 5.2: Performance of the pretrained SuperGlue model on the
test split of the MegaDepth dataset.

Precision (P) = True Positives
Predicted Matches

Matching Score (MS) = True Positives
Total Keypoints

The match is considered true positive if the corresponding epipolar error in a cal-
ibrated ray space is smaller than the predefined threshold 5e−4. This constant is
chosen the same as in the original paper for the consistency purposes. The recall of
matching cannot be estimated since we do not have an accurate set of ground-truth
correspondences. Nevertheless, MS can be used to estimate the method’s perfor-
mance in terms of false negative predictions.

5.3 SuperGlue error analysis

In this section, we identify existing problems with SuperGlue. The following analy-
sis will be done using a pretrained SuperGlue model with the weights provided by
the authors. Keypoints are detected and described using the SuperPoint model. The
images are taken from the validation split of the MegaDepth dataset [19]. All images
are resized to the size of 960× 720 pixels and converted to grayscale.

As shown in the Tables 5.1 and 5.2, SuperGlue achieves very high precision
scores, meaning that most of the predicted matches are correct. Nevertheless, MS
has much room for improvement. Low MS combined with high precision is a direct
indicator of many false negatives predictions, meaning that correct ground-truth
correspondences are present in the image, but SuperGlue discards them.

When making a prediction, SuperGlue leaves the keypoint unmatched if none of
the matching probabilities for a given keypoint passes confidence threshold c = 0.2.
Setting up this confidence threshold has a filtering effect, similar to other filtering
techniques used by classical matching methods.

We discover that unmatched keypoints have their matching scores more uniform
then those that are matched by SuperGlue. For each keypoint i in the image A, we
took its matching scores Si,j with all the keypoints j = 1 . . . N, N = 1024 in the
image B and converted them to the distribution using softmax function. Analysing
the mean of entropies of this distributions for each keypoint in the validation subset
shows that keypoints that are unmatched have 10 times larger entropy: 0.0094 for
matched keypoints compared to 0.096 for unmatched. Distributing the matching
probability among many potential matches results in the effect that this keypoint
cannot pass the confidence threshold.
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We link the problem described above directly to the problem of repeated textures.
Suppose that keypoint pA

i matches pB
j , while pB

j belongs to the repetition. Then
there are several keypoints in image B, which have similar descriptors, and their
matching scores with pA

i would be almost the same. This will result in matching
probability distributing across repetition. Therefore the maximum probability in
the distribution will become smaller than the threshold, and pA

i will be treated as
unmatched.

5.3.1 Context-aware descriptors of repeated patterns

Here, we will analyze the effect of SuperGlue on the descriptors of repeated patterns.
The first problem in question is to identify repeated patterns. We do this by cluster-
ing descriptors of detected keypoints with the DBSCAN [9] clustering algorithm.
The idea is that keypoints detected on the repeated textures will form high-density
regions in the descriptors space. These regions will be detected by DBSCAN and
packed into clusters, while others descriptors that do not belong to repeated pat-
terns will be marked as outliers.

Attentional mechanisms with positional encoding provided by Graph Neural
Network should output for each keypoint descriptor, which will be distinctive even
when keypoint belongs to a repeated pattern. In practice, this is not the case. We
noticed that for at least 30% of repetitions the descriptors fA

i , fB
j after AGNN have

the same or even smaller pairwise distances than local descriptors dA
i , dB

j .

FIGURE 5.2: Visualisation of self-attention for points that belong to a single re-
peated texture at the first layer in AGNN. For each keypoint in repetition only top
10 attention weights are shown as lines between query and key. Keypoints from
the same repetition attend to very similar set of keys independent of their position.
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This effect can be explained by the symmetry of computations inside of AGNN.
Because we operate on the complete graph, all keypoints from the repeated patterns
attend to the same set of message sources, thus receive similar messages. Continuing
this process several times has an even more smoothing effect, making keypoint less
distinctive. Positional encoding added to the local descriptors should have resolved
this issues, but, empirically, we can see this is not the case.

5.4 Metric learning of context-aware descriptors

To alleviate the problem of identical descriptors output by AGNN, we add a metric
learning component to the SuperGlue’s objective function. Inspired by HardNet [23]
approach to learning local descriptors, we apply metric learning loss functions with
hard negative mining to learn more distinctive context-aware descriptors, which will
be easier to match in the end. The main difference compared to HardNet is that
our approach operates on the global descriptors. Therefore we can learn substan-
tially different context-aware descriptors even in the case when local descriptors are
identical. HardNet, in turn, works only with local patches and thus will describe
identical local patches with identical local descriptors. To our knowledge, this is the
first work that tries to enhance SuperGlue’s context-aware descriptors by adding the
metric learning component to the objective function.

5.4.1 Triplet loss for positive matches

The HardNet approach is motivated by a classical Lowe’s ratio test [20]. It uses
triplet margin loss with hard negative mining technique to learn the embeddings of
local patches around keypoints. Given a ground truth match between keypoints i
in the image A and keypoint j in the image B, the triplet is formed in the following
way: dA

i - anchor, dB
j - positive sample, and dB

ki
- negative, where ki is the index of

the nearest neighbor of keypoint i in the descriptors space, of all keypoints that do
not match i. The triplet loss is then given as:

Ltriplet = max(
∥∥∥dA

i − dB
j

∥∥∥
2
−

∥∥∥dA
i − dB

ki

∥∥∥
2
+ m, 0) (5.3)

Compared to the Lowe’s ratio test, HardNet uses positive additive margin m
instead of multiplicative constant c as in 2.1. The authors claim that it adds stability
to training. We follow their line of reasoning and also use additive margin.

The other important question is a choice of distance measure. HardNet uses for
its descriptors L2-norm, which is not applicable in our case because the descriptors
fA, fB are not normalized. Instead, we use cosine distance, which is actually not a
proper distance metric but is successfully used in metric learning. Cosine distance
is normalized such that it lies in the range [0, 1].

dcos(x, y) =
1− cos(θ)

2
, where θ is angle between x and y. (5.4)

Following HardNet, we use hard negative mining approach to create training
triplets. Also, we define the triplet loss symmetrically for keypoints in both images,
meaning that from one ground truth (i, j) match we make two triplets: (fA

i , fB
j , fB

ki
)

and (fB
j , fA

i , fA
lj

), where ki and lj are the indices of the nearest neighbors of keypoints
i and j out of all keypoints that do not match i and j respectively. The symmetrical
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triplet loss can be written as:

lpos(i, j) = max(dcos(fA
i − fB

j )− dcos(fA
i − fB

ki
) + m, 0) +

+ max(dcos(fB
j − fA

i )− dcos(fB
j − fA

lj
) + m, 0) (5.5)

The total loss is computed as average over all ground truth matches (i, j) ∈ M:

Lpos =
1
|M| ∑

(i,j)∈M
lpos(i, j) (5.6)

5.4.2 Pairwise ranking loss for unmatched keypoint

We also add a pairwise ranking loss component to learn better descriptors for un-
matchable keypoints. The aim is to separate them from all the descriptors in another
image by a margin of m. Analogously to the previous section, we apply hard nega-
tive mining for selecting descriptor pairs. For any unmatchable keypoint i in image
A the loss is given as following:

lA
neg(i) = max(−dcos(fA

i − fB
ki
) + m, 0), (5.7)

where ki is nearest neighbor of i from image B. The loss for unmatchable keypoints
in image B is defined the same way:

lB
neg(j) = max(−dcos(fB

j − fA
lj
) + m, 0) (5.8)

The total loss is averaged over the two sets of unmatchable keypoints I and J :

Lneg =
1
|I| ∑i∈I

lA
neg(i) +

1
|J | ∑

j∈J
lB
neg(j) (5.9)

The margin m can be chosen as a different value for lpos(i, j), lA
neg(i), lB

neg(j), but
in practice we selected a single value for all loss components.

The final objective for training the SuperGlue enhanced with the metric learning
is a weighted sum of the original cross-entropy loss defined in equation 3.9 and the
loss functions defined above in equations 5.6 and 5.9:

Ltotal = L + w(Lpow + Lneg) (5.10)

The weight w is chosen as a hyperparameter.
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Chapter 6

Experiments

6.1 Implementation details

The work presented in this thesis is implemented using Python 3.7 [35] program-
ming language, which is the most popular language for data science and deep learn-
ing in particular. Our implementation is based on the official SuperGlue inference
model implementation, which was written in PyTorch [25] framework for deep learn-
ing. We also utilized OpenCV [17] library for estimation of essential matrix using
its RANSAC implementation. Other libraries like NumPy [13], Matplotlib [16] and
Seaborn [37] were used to provide fancy visualizations. In our experiments, we tried
to follow the original implementation as much as possible in order to be able to mea-
sure the impact of added metric learning component. Nevertheless, some changes
had to be made due to the limitation of available computing and storage resources.
Also, it is important to note that we implemented training procedures for SuperGlue
from scratch based only on the original paper. Thus, some discrepancies between
our and original implementation might exist due to the lack of training details.

6.2 Dataset

We used MegaDepth [19] dataset for error analysis, training, validation, and testing.
We split the dataset into 153 training, 18 validation, and 18 test scenes. The training
scenes are the same as used in the original implementation. The training split con-
sists of 101,998 images with available depth information. Validation and test subsets
have 2081 and 2528 images, respectively.

Not all possible image pairs were created using the available images. Following
[8], we selected only images with overlap score [0.1, 0.7] to create pairs. After apply-
ing this filtering step, we get 7,458,696/21,942/20,740 image pairs for train/val/test
splits, respectively.

Ground-truth matches were generated on the fly, as the model is training. A
detailed explanation of the generation process was provided in section 5.1. For key-
points detection and description, we used the SuperPoint model with pretrained
weights. It is possible to propagate gradients to the SuperPoint description head,
yet we kept it frozen for the purpose of fair comparison with the original implemen-
tation.

6.3 Training details

All the experiments were conducted on a single NVIDIA RTX 2080TI GPU. The input
images were both resize to the size of 960× 720 pixels. We used a batch size of 4
along with gradient accumulation techniques for four steps. This trick emulates the
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batch size of 16 as used in the original implementation. We have chosen the Adam
[18] optimizer with a step scheduler for learning rate.

The SuperPoint model was used with the following parameters: 1024 maximum
keypoints detected in each image and non-maximum suppression filtering with 3 px
radius. Also, the final matching layer of SuperGlue performed 20 iterations of the
Sinkhorn algorithm.

Next, we will describe the conducted experiments. For a fair comparison, we
trained the SuperGlue model from scratch with and without metric learning com-
ponent in the objective to compare how it affects the training process. Also, we took
pretrained weights from the original implementation and trained the model further
with metric learning components in the objective function. We used the same met-
rics and dataset split as in the Section 5.2.

6.3.1 Finetuning SuperGlue

The first set of experiments we conducted aimed to improve the model provided by
the authors of SuperGlue. We decided to finetune the model with the metric learning
component in the objective function. For this purpose, we selected a small starting
learning rate 1e−6 with exponential decay of 0.9995. Next, we experimented with
the margin parameter in triplet and pairwise ranking losses m. Early experiments
showed that selecting m larger than 0.2 makes the model diverge fast and worsens
the results.

For a fair comparison, we also finetuned the model without the metric learning
component. We outperform the original model in Matching Score even with w = 0.
This could be related to the specifics of ground-truth generation for training data, as
well as potential differences in balancing positive and negative cases in the objective
function. Training with the metric learning component improves matching scores
even further, suggesting that metric learning is indeed beneficial for recovering more
matches. More details about experiment settings and final results are presented in
the Table 6.1 and 6.2.

m w Precision MS AUC@5◦ AUC@10◦ AUC@20◦

- 0 96.00 30.86 42.83 57.88 70.41
0.05 7e3 95.90 32.00 42.80 57.98 70.61
0.1 3e3 95.20 29.88 41.20 56.07 68.64
0.15 0.5e3 95.82 31.73 42.99 58.06 70.50

TABLE 6.1: Performance of the finetuned SuperGlue model on the
validation split of MegaDepth dataset.

m w Precision MS AUC@5◦ AUC@10◦ AUC@20◦

- 0 94.62 28.24 35.93 50.09 63.00
0.05 7e3 94.49 29.05 35.51 49.53 62.48
0.1 3e3 94.39 27.21 33.99 47.87 60.84
0.15 0.5e3 94.63 29.11 35.28 49.43 62.51

TABLE 6.2: Performance of the finetuned SuperGlue model on the
test split of MegaDepth dataset.
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6.3.2 Training SuperGlue from scratch

The next experiments compare SuperGlue trained from scratch with and without
metric learning component in the objective function. In the original implementa-
tion, SuperGlue was trained for 1 million iterations. When we use a batch size of
4 and 4 steps for gradient accumulation in our setting, it would require 4 million
steps. With the available hardware, it would take around 20 days to complete the
training. Considering the time constraints, we trained the model only for 1 million
steps. Even though we did not beat the score of original implementation in such
little number of iterations, we showed that adding metric learning component con-
sistently outperforms the model without it in terms of matching score. Precision and
other pose estimation metrics remain on the same level. We assume, that there might
be the improvement in them as well when the number of iterations is increased. This
remains to be tested in the future work.

m w Precision MS AUC@5◦ AUC@10◦ AUC@20◦

- 0 94.13 29.13 39.55 54.30 67.03
0.15 10 94.47 29.77 39.35 54.13 66.84
0.2 10 93.28 31.01 40.20 54.92 67.39

TABLE 6.3: Performance of the SuperGlue model trained from scratch
on the validation split of MegaDepth dataset.

m w Precision MS AUC@5◦ AUC@10◦ AUC@20◦

- 0 92.63 27.44 33.25 47.06 60.00
0.15 10 93.15 27.86 33.78 47.58 60.44
0.2 10 91.98 29.03 33.8 47.56 60.51

TABLE 6.4: Performance of the SuperGlue model trained from scratch
on the test split of MegaDepth dataset.
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FIGURE 6.1: Examples of the matches predicted by SuperGlue, which was fine-
tuned with metric learning component in the objective. Correct matches are shown

in green, while incorrect in red.
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FIGURE 6.2: Examples of the correct matches recovered by SuperGlue, which was
finetuned with metric learning component in the objective. In the images are shown

only those matches which were missed by the original implementation.



24

Chapter 7

Conclusions and Future work

7.1 Conclusions

In this work, we tackled the problem of matching images of the outdoor environ-
ments, which are rich in repeated textures. We analyzed the SuperGlue, the state-of-
the-art approach to image matching, and its performance under the given assump-
tions.

We identified the problems with the existing method for building global context-
aware descriptors for keypoints and proposed to modify the objective function of
SuperGlue to solve those problems. By adding triplet and pairwise ranking com-
ponents to the loss functions, we improved the performance of the state-of-the-art
method in terms of Matching Score without the loss in the precision of matching.

7.2 Future work

We consider two directions for future work. Firstly, we plan to perform a more
thorough evaluation of the improved model on other downstream tasks. Also, we
plan measure the effect of proposed improvements on the Structure-from-Motion
pipeline.

The other direction involves further improving the state-of-the-art pipeline for
image matching. Utilizing global context-aware descriptors is a promising way to
finding better image correspondences. We believe that by building more sophisti-
cated network architectures present in the literature and further improving learning
objectives, we can obtain even more distinctive keypoints representations.
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