
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Investigation of the truly two-dimensional
artificial life evolution

Author:
Oleksandr SYZONOV

Supervisor:
Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Oleksandr SYZONOV, declare that this thesis titled, “Investigation of the truly two-
dimensional artificial life evolution” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“The purpose of life is finding the largest burden that you can bear and bearing it. ”

Jordan Peterson

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Investigation of the truly two-dimensional artificial life evolution

by Oleksandr SYZONOV

Abstract

Artificial life is a field, where researchers try to create digital models of real, biolog-
ical, life in order to understand evolution, life, and processes in life by reverse en-
gineering those processes. Before this study, there were several successful attempts
to simulate artificial life: Tierra (one-dimensional simulation), Avida (pseudo-two-
dimensional circular space with ancestor), Amoeba (pseudo-two-dimensional space
without ancestor), and Fungera (truly two-dimensional with ancestor). This study
is focused on two main topics: investigating the behavior of Fungera and inventing
new instruction sets for Fungera in order to make this simulation more stable and
sustainable. In order to conduct an in-depth investigation, new metrics and analysis
methods were introduced. For a more sustainable system, three additional instruc-
tion sets were introduced, inspired by DNA repair mechanisms and template-based
control structures.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I am extremely grateful to Oleg Farenyuk for the best thesis I could choose to write,
for being patient enough, for validating and extending my ideas and for providing
directions to learn, write and think.

Also, my friends and family should be mentioned, for support, patience and fun
time.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Requirements for a good simulation . 2
1.3 Conclusion . 3
1.4 Requirements for a good simulation . 3

2 Related works 4
2.1 Tierra . 4
2.2 Avida . 6
2.3 Amoeba . 7
2.4 Fungera . 9

3 Extending Fungera instruction set 13
3.1 Instruction set with error correction – Fungera-2/Cellgera 13
3.2 Instruction set with direction-dependent jumps and calls – Fungera-3 . 14
3.3 Instruction set with direction-independent jumps and calls – Fungera-4 15
3.4 Ancestor organisms for instruction sets Fungera-2, 3, 4 15

3.4.1 Instruction set with error correction (Fungera-2) 15
3.4.2 Instruction set with direction-dependent jumps and calls (Fungera-

3) . 15
3.4.3 Instruction set with direction-independent jumps and calls . . . 16

4 Investigation of the Fungera behavior 20
4.1 Additional metrics for investigation . 20

4.1.1 Total organisms entropy and per-site entropy 20
4.1.2 Expected lifetime . 21
4.1.3 Replication/Non-replication . 21
4.1.4 Snapshots analysis . 21
4.1.5 Caching genome metrics . 23

4.2 Analysis pipeline . 23

5 Results 25
5.1 Base instruction set . 25
5.2 Instruction set with direction-dependent jumps and calls 25
5.3 Instruction set with direction-independent jumps and calls 25
5.4 Instruction set with error correction (Cellgera) 26

vi

6 Conclusions 32
6.1 Conclusions . 32
6.2 Future work . 32

vii

List of Figures

2.1 Examples of organisms, (Ray, 1993a) . 5
2.2 Self-Replicators/Non-Replicators in the Amoeba simulation (Pargel-

lis, 2001). 8
2.3 Example of Befunge program(Sieve of Eratorsphenes in Befunge) . . . 9
2.4 Initial Fungera ancestor, (Poliakov, 2020). 11
2.5 Algorithm of the initial Fungera ancestor, (Poliakov, 2020). 12

3.1 Block examples (blocks are outlined in red). 13
3.2 Error correction example. 14
3.3 Fungera-2/Cellgera ancestor . 17
3.4 Fungera-3 – directed jump ancestor . 18
3.5 Fungera-3 ancestor code parts marked by their functions. 18
3.6 Fungera-3 ancestor execution flow. 18
3.7 Fungera-4 – direction independent jump ancestor. 19
3.8 Fungera-4 ancestor code parts marked by their functions. 19
3.9 Fungera-4 ancestor execution flow. 19

4.1 Before smoothing . 22
4.2 After smoothing. 22
4.3 After summarizing (summary points marked red). 23

5.1 Entropy – Fungera-1 . 26
5.2 Number of replicating vs non-replicating organisms – Fungera-1 . . . 27
5.3 Replicators/nonreplicators – Fungera-3 27
5.4 Number of organisms – Fungera-3 . 28
5.5 Entropy – Fungera-3 . 28
5.6 Ancestor – Fungera-3, original and mutated. 29
5.7 Entropy – Fungera-4. 29
5.8 Number of organisms – Fungera-4. 30
5.9 Entropy – Fungera-2/Cellgera. 30
5.10 Number of organisms – Fungera-2/Cellgera. 31

viii

List of Abbreviations

CPU Central Processing Unit
DNA Deoxyribonucleic acid
NOP No Operation
RAM Random Access Memory

ix

Dedicated to: my father and grandfather for being good
examples, to my mother and another grandpa

1

Chapter 1

Introduction

1.1 Motivation

Understanding the evolutionary processes is very important to us as a humanity.
Evolution is a spontaneous process that creates extremely complex, but orderly and
antifragile systems. Firstly, we need to know what exactly caused nature to be the
way it is and how complex organism systems interact with each other, evolve, and go
forward. Why do some species go extinct and how does it influence other species?
Why do species look the way they look and could they be as fit as current, have
the same evolutionary roles, but look differently? Secondly, we have different gene
interactions, genetic plasticity, and epigenetics, which makes our DNA code, which
can be flexible enough to make us resilient and adaptable to a lot of environments
and external conditions that we can encounter. It’s also interesting to note that our
DNA can change without breaking, given our external circumstances, for example,
while producing antibodies. Thirdly, we need to understand evolution in order to
predict the future of our biosphere. This could give us a hint on a better understand-
ing of the species extinction and whether it’s normal that some species go extinct and
emergence in the process of speciation. Moreover even our struggle against viruses,
pathogenic bacteria, and even cancer cells.

The most accurate way of understanding evolution in the real world is to actually ob-
serve it. This way, we have access to all possible data with the best accuracy we can
get. The first problem with trying to understand evolution using observation is that
it could potentially take many millions of years for new species to evolve and ap-
pear. For example, it took about 5.7 million years for people to evolve from the most
recent common ancestor Hominini (dated 5 to 7 million years ago) of chimpanzees
and humans to Homo sapiens dated about 300 000 years ago (Callaway, 2017). Of
course, not every species evolved as slowly as humans, but the experiment time is
still at least in thousands of years. We don’t have thousands or millions of years to
run an experiment, because of obvious reasons. Secondly, in the case of observation
of evolution, we have only one experiment, but for a good understanding of some
phenomena, we need to observe it at least multiple times across multiple contexts
and situations, because many factors that contribute to this phenomenon are ran-
dom. Evolution can produce organisms that are equally fit for equal conditions and
ecosystem niches but are vastly different. Therefore, we need some comparative
study of evolution. Both problems are addressed to some extent by direct experi-
ments: twelve populations of Escherichia coli are studied for more than 30 years –
over 60000 generations, revealing ecological diversification and showing interesting
evolutionary dynamics (Good et al., 2017); large or even whole-genome sequencing
allowed to study evolution process comparing related species (Soria-Carrasco et al.,

Chapter 1. Introduction 2

2014, Tusso et al., 2020, Kapheim et al., 2015, Baker, Hanson-Smith, and Johnson,
2013), or populations of the same specie (Matute et al., 2010, Moyle and Nakazato,
2010); molecular biology experimental techniques advance provided insights of ex-
act evolution ways (Tan et al., 2009, Werner et al., 2010, Christodoulou et al., 2010,
Diss et al., 2017). But though those experiments being highly interesting and insight-
ful, they are costly, time-consuming, and have inherent limitations. Given all this, a
deep understanding of evolutionary processes would benefit from using additional
approaches – parallels with other fields (Lieberman et al., 2007, Pagel, Atkinson, and
Meade, 2007) and some kind of simulations (Adami, 1999).

Every simulation could not be 1-to-1, because of a variety of factors. Firstly, living
things are overly complicated. For example, in addition to translation and tran-
scription systems, we have a complicated DNA repair system, which consists of
many mechanisms: base excision repair, nucleotide excision repair, mismatch repair,
double-strand break repair, and many others (Chatterjee, 2017). These repair meth-
ods act on many levels using many different mechanisms, from simple duplication
mechanisms to complete removal of damaged DNA parts and DNA regeneration.
Secondly, we have many DNA damaging factors, ranging from simple replication
errors in DNA to bulky lesions that cause a lot of damage, like UV radiation, Ion-
izing radiation, etc. These kinds of lesions can cause cancer if damaged cells are
replicating (eg. stem cells) and aging if they are non-replicating (eg. brain cells) if
repair mechanisms are not working properly. And this is just the only example of
the complexity of the biological systems – they are extremely complicated on every
abstraction level – molecular, cellular, organismic, population and ecosystem levels,
and so on. Moreover, beyond those complexities, which are studied and understood
to some extent, we have other, most random influential factor, which is nature by it-
self: we have Earth temperature falling and rising, asteroids falling, and ecosystems
constantly changing because of many random factors that cannot be fully accounted
for. But these factors are among the main drivers for speciation (Wagner, Kosnik, and
Lidgard, 2006) – only the sympatric speciation is an exception (Wikipedia, 2021b).
Therefore, simulation cannot fully reflect the whole variety of factors and better not
event try – good simulation should capture important features of the system using
just a minimal set of tools. It is interesting that some part of the biological complex-
ity is unnecessary1 (Fernandez and Lynch, 2011). With these ideas in mind, we need
to formulate some criteria to choose factors that simulation should have.

1.2 Requirements for a good simulation

In order for something to be alive, we need to clearly define what life is. One of the
simplest definitions of life is as follows (McKay, 2004): “The simplest, but not the only,
proof of life is to find something that is alive. There are only two properties that can determine
if an object is alive: metabolism and motion. . . . All living things require some level of
metabolism to remain viable against entropy.”. Therefore, something is considered to
be alive if it holds (at least partially) homeostasis, replicates, and somehow interacts
with the environment.

We also need our system to be not only “alive”, but also constantly evolving. There-
fore, we need to define features that are inherent to evolution (Forbes, 2010): “Evo-
lution is defined as the change in the inherited traits of a population of organisms through
successive generations. When living organisms reproduce, they pass on to their progeny a

1Using some vaguely defined notion of adaptive changes which are needed.

Chapter 1. Introduction 3

collection of traits. . . . When particular genetic sequences change in a population (e.g., via
mutation) and these changes are inherited across successive generations, this is the stuff of
evolution.”

From this definition, we can extract several defining features of evolution: heritabil-
ity, mutation, and natural selection, which drive evolutionary forces.

Therefore, a minimal list of requirements for a good simulation looks like this: it
should have some mechanisms that do selection and organisms that live and repro-
duce with heritable traits, but are still mutable.

1.3 Conclusion

Understanding evolution is crucial for us because this way we can understand how
complex systems evolve and future trends in the number of species. Observing evo-
lution in nature is not enough, even though it’s the most accurate way of researching
evolution because it’s too slow and hardly comparative. Therefore, we need some
simulation of the real-life processes. They are very complex, so we cannot simu-
late them 1-to-1, because it’s impossible to do this accurately and because it’s very
computation-heavy. So, we need a simplified simulation that has all traits of life and
evolution: reproduction, mutations, natural selection, homeostasis, and action.

1.4 Requirements for a good simulation

4

Chapter 2

Related works

In this work, we focus on simulations capable of creating De novo features as con-
trasted to the evolution of systems with predefined phenotypic traits.

2.1 Tierra

The first successful simulation was created by Tom Ray and described in the paper
“An Approach to Synthesis of life” (Ray, 1993a).

Every living organism utilizes energy in order to survive, reproduce and hold home-
ostasis. In the case of the Tierra simulation, the energy was simulated as a CPU
time, memory was used as space. Instead of the DNA accompanied by transcrip-
tion and translation system, Tierra organisms execute specially created machine in-
structions to replicate themselves directly, in a way similar to the hypothetical RNA
self-replicators (Wikipedia, 2021a). RAM block is called a “soup” in parallel with the
primordial soup idea (Wikipedia, 2021), which is populated by the machine (assem-
bly) instructions.

The ancestor has 3 main parts: self-examination, replication loop, and copy opera-
tions. In order to find its size, it firstly finds its beginning coordinate, marked by a
special pattern, and puts it to the AX register, then it finds the ancestor end and puts
it to the BX register. After that, it finds organism size by subtracting the beginning
and the end. Then, it allocates memory for a child and copies all of his commands
by iterating through itself in a replication loop.

Then, we have a self-replicating assembly code that can quickly populate the soup.
But in order for evolution to occur, there need to exist some mechanisms to mutate
genomes.

In Tierra, there are several ways of mutation (Ray, 1993a, Ray, 1991):

1. Some bits are randomly chosen from the soup and flipped

2. While copying bits, they are flipped with some probabilities

3. During command execution some commands have erroneous execution.

This way, similarly to real evolution, everything can go wrong, mutate and change:
external factors can cause mutations, replication errors sometimes occur and even
gene expression is sometimes flawed.

Chapter 2. Related works 5

To mimic competition for the resources, every organism is put into an execution
queue, which determines the order in which commands will be executed. Each crea-
ture has some amount of CPU time, depending on its genome size. There is a pa-
rameter of slicer power. If it’s 1, the CPU time is distributed with equal probability, if
it’s less than 1, small creatures get more time. Also, new organisms are placed at the
end of this queue, so child organisms get CPU time only after the parent organisms.

Because all the creatures are constantly reproducing, at some point in time they fill
the finite memory entirely, stagnating further evolution process. In order to solve
this problem, the reaper is introduced. The reaper is a priority queue. When an
organism is created, it’s placed at the end of this queue. When a time comes to kill,
the killer always chooses a creature at the top of it for killing. During the execution of
the instructions, when errors occur, each execution error moves the organism higher
in the queue in order to ensure the extinction of flawed creatures. This way flawed
organisms are dying, but also older organisms die faster than young ones because
new ones are placed at the end of this queue.

FIGURE 2.1: Examples of organisms, (Ray, 1993a)

When this simulation was run, the soup became quickly populated with creatures.
Then, the reaper mechanism kicked in. Organisms became very short-lived. Many
of them were killed quickly. But then, new more resilient genotypes appeared. With
this, the diversity of the whole population also increased. Through some time, the
evolutionary processes created some interesting kinds of organisms that were very
different from the original self-reproducing ancestor (Ray, 1993a, Ray, 1993b):

1. Parasites

Because of mutation in one command, that was needed to denote the end of the
organism during the self-examination, the organism calculates its size wrongly.
This leads to the execution of the code of other organisms.

Chapter 2. Related works 6

2. Hyper-parasites

Hyper-parasites are organisms that exploit parasites for reproduction. When
the instruction pointer of the parasite passes through hyperparasite code, it
sets registers with organism location and size with hyperparasite’s location
and size so that parasite copies another organism’s instructions. After copy it
jumps and not returns, thereby rendering the parasite unable to copy itself.

3. And many others (creatures immune to parasites, social hyper-parasites, hyper-
hyper parasites, and so on).

Those behaviors were not coded into initial organisms but occurred spontaneously
due to the mutations. It is also interesting that after some time, normal ancestor or-
ganisms evolved to become immune to the parasites and parasites evolved to bypass
protection mechanisms. So, the “arms race” continued.

2.2 Avida

Avida is a simulation, partially inspired by the Tierra, but with other goals in mind
and many significant differences.

Firstly, instead of a one-dimensional environment, it has a pseudo-two-dimensional
with torus topology (Adami and Brown, 1994): “In Avida, the physical position of a
string is determined by its coordinates in a N × M grid with the topology of a torus.”.

Secondly, its instruction set has some similarities to the x86 instruction set in com-
parison with the Tierra (Adami, 1999, Adami and al., 2015). For example, it contains:
no-operation (nop-a, nop-b, nop-c, and nop-x, which is the only pure nop), control
instruction (if-not-0, in-n-equ), jumps (jump forward or backward to the comple-
mentary pattern), subroutine calls, mathematical instructions (bit shifts, addition,
subtraction, not-and, and not-or), allocation and division of a child, writes, reads,
I/O (read from the input buffer and write to output buffer), stack switching, code
injection, and many others. Also, organism genomes are circular. This way, they
start from the beginning when reached the end.

Just like in the Tierra, we have an environment seeded with a self-replicating ances-
tor. Its replication process has these steps:

1. Allocate new child memory.

2. Execute self-copying loop to write into the child.

3. Then, when copying is fully done, call the division command.

The place, where to put the offspring is determined by the simulation. Each cell can
be filled with one creature at a time. Each parent can produce offspring only into an
adjacent cell. If adjacent cells are filled with other organisms, one of them is replaced
with the newborn during child division. There are several mechanisms for choosing,
which cell to replace with the new organism: choosing the empty cell, choosing one
completely randomly, choosing to “kill” the oldest individual in the neighborhood,
and choosing the least fit organism in the neighborhood.

Fitness is determined by the merit mechanism. In Tierra, there’s no fitness measure
and every organism that executes its code with no error is equally fit, but in Avida
metric called merit was introduced. Merit is determined by what the program ac-
tually does. For example, at the first stage, all programs that do at least some I/O,

Chapter 2. Related works 7

are rewarded with greater merit. At the second stage, all programs that do correct
I/O are rewarded. And then, programs that take one number from the input buffer
and output them into the output buffer are rewarded. Merit is purely based on phe-
notype (program behavior), rather than on genotype (exact command sequences).
Fitness is calculated as follows:

f itness =
merit

gestation_time

Gestation time is a time needed in order to reproduce. Additionally, fitness can also
influence time slice allocation order.

With fitness-based selection mechanisms, simulation can breed organisms by orga-
nizing the selection of programs that can do what is demanded by external (to the
simulated world) problems.

Given that all interactions are purely local (the organism can interact only with the
adjacent cells), the simulation can be run asynchronously, because information prop-
agation is very limited.

Lastly, the Avida CPU model is a bit more complicated. When a genome has its
CPU time, the initial CPU state is set. Genomes are loaded into 1D memory, where
each memory cell is filled with some instruction and has several flags that indicate
whether this cell was executed before, mutated or edited. The CPU has three regis-
ters: AX, BX, and CX that store some 32-bit value, which is some random bit combi-
nation unless set to some other value. A CPU also has input-output buffers that can
be read from and written to using get and put instructions. CPU also has 2 stacks
where data can be stored and switched between using switch_stack instruction.

Authors found that using local propagation mechanisms makes extinction events
less severe and deadly and new information had more time to be used in new geno-
types and produce more diverse populations (Adami and Brown, 1994).

On the other hand, because of the Avida memory protection, substantially novel
organism, such as parasites are impossible in the Avida.

2.3 Amoeba

Another important artificial life simulation is Amoeba (Pargellis, 2001).

Basically, it does not use human-created ancestors, so all organisms are required to
be born from “soup”. This is one of the main differences between Amoeba, Avida,
and Tierra. To enable such behavior, after each global reaping cycle, a generator
of random sequences introduces about 50 random sequences that are basically 5-30
randomly chosen instructions and codon labels.

Then cells try to reproduce and compete for the resources. Each cell is allowed to
execute about 30 operations at a time by the time slicer. Very rarely a cell is a self-
replicating one – the probability of this is very low: P = N−l , where N = 32 is a total
number of instructions in the instruction set and l is a length of the sequence.

In Amoeba, there’s a reaper mechanism that combines features of reapers from the
Tierra and the Avida. There exist both local and global reapers. Global reaper reaps
about 25% of all organisms when there is no virtual CPUs left. Local reaper kicks in

Chapter 2. Related works 8

when a parent organism replicates and there is no adjacent place for a child. Then,
it randomly kills an adjacent organism in order to free a cell. Also, reaper does not
favor any phenotype and the only goal is to reproduce.

Even though random organisms are introduced every generation, there are mutation
mechanisms in this simulation too. Its use is limited, compared to other simulations,
because it occurs only on copy to a child. With some probability, a child organism
will have at least one mutation. There are 3 types of mutations: command deletion,
command insertion, and command substitution for a randomly chosen one.

Another difference is that Amoeba has a different addressing system: each command
has a randomly chosen label from about 64 possible ones. This assignment is stored
in an assignment matrix. These codons can be used for conditional jumps or loading
address registers.

As a result (Greenbaum and Pargellis, 2016) in the simulation which started from the
prebiotic soup, initially, some pre-replicators are born. They are inefficient and usu-
ally reproduce slowly, sometimes copying only partially. Because successful and
robust replicators write only to adjacent cells, colonies of organisms are formed.
Sometimes, though – very rarely (Pargellis, 2001, parasites, called “viruses” by the
authors, are emerging too.

On the other side, Amoeba mostly fails to support diverse ecosystems – most of the
time the only one species dominates.

FIGURE 2.2: Self-Replicators/Non-Replicators in the Amoeba simu-
lation (Pargellis, 2001).

Chapter 2. Related works 9

2.4 Fungera

The main idea of the Fungera simulation (Poliakov, 2020) is to attempt to improve
the complexity of the artificial life evolution by providing a truly two-dimensional
environment. In all of the mentioned above works organisms were one-dimensional
even if the memory had two dimensions. It limits the complexity of the possible arti-
ficial metabolism patterns and organism interactions. The Tierra is one-dimensional,
the Avida and the Amoeba can be named pseudo-two-dimensional. There were lim-
ited experiments on two-dimensional artificial organisms evolution which showed
that they are too fragile and always go extinct (De Dinechin, 1997). But this conclu-
sion looks like excessive generalization (Poliakov, 2020, p. 25).

The initial Fungera instruction set is based on a programming language named Be-
funge. Befunge is a two-dimensional stack-based language, rather low-level and
similar to an assembly language. Two-dimensional means that it can execute code
from not only down (with jumps) but also in the up, left, or right direction and
can change direction during the execution. It can be classified as an esoteric lan-
guage (Wikipedia, 2021. Befunge has only basic math operations: addition, sub-
traction, and multiplication; stack manipulation operations: pushing, popping, and
swapping stack values; direction modifiers; memory modification instructions. It’s
also worth mentioning that Befunge programs can be self-modifying, therefore it is
rather suitable to use Befunge for mutating self-replicating organisms.

example of program written in Befunge can be seen on the Fig. 2.3.

2>:3g" "-!v\ g30 <
|!‘"O":+1_:.:03p>03g+:"O"‘|
@ ^ p3\" ":<
2 234567890123456789012345678901234567890123456789012345678901234567890123456789

FIGURE 2.3: Example of Befunge program(Sieve of Eratorsphenes in
Befunge)

In Tierra, Avida, and Amoeba instruction sets of the virtual CPUs are rather similar
to the classical real-world CPUs. But in order to properly implement two-dimensional
memory and organisms, some modifications to the virtual CPU architecture were
necessary: stack items, general-purpose registers (RA, RB, RC, RD), and instruction
pointer are two-dimensional and have two components, corresponding to x and y
components.

The initial instruction set of the Fungera is presented in Table 2.1.

Befunge instructions were extended with some useful commands for the artificial
organisms. One of them was template matching instruction. An example of its usage
can look like this:

>\&d:..

This command seeks the complementary pattern to ”:..” which would be ”.::” and
puts in into the register RD. Here ”:” and ”.” are NOP-codes intended to be used as a
pattern. Code ”:” is considered complementary to ”.” and vice versa. This command
can be used in the organism code for detecting its size as a part of replication.

Chapter 2. Related works 10

Code Sym Ops Description Type
[0, 0] . 0 Template constructor Template
[0, 1] : 0 Template constructor Template
[1, 0] a 0 Register modifier Register
[1, 1] b 0 Register modifier Register
[1, 2] c 0 Register modifier Register
[1, 3] d 0 Register modifier Register
[2, 0] ^ 0 Direction modifier (up) Direction
[2, 1] v 0 Direction modifier (down) Direction
[2, 2] > 0 Direction modifier (right) Direction
[2, 3] < 0 Direction modifier (left) Direction
[3, 0] x 0 Operation modifier Operation
[3, 1] y 0 Operation modifier Operation
[4, 0] & 2+ Find template, put its address in register Matching
[5, 0] ? 4 If not zero Conditional
[6, 0] 0 1 Put [0, 0] vector into the register Arithmetic
[6, 1] 1 1 Put [1, 1] vector into the register Arithmetic
[6, 2] - 2 Decrements value in register Arithmetic
[6, 3] + 2 Increment value in register Arithmetic
[6, 4] ~ 3 Subtract registers and store result in register Arithmetic
[6, 5] * 3 Add registers and store result in register Arithmetic
[7, 0] W 2 Write instruction from register to address Replication
[7, 1] L 2 Load instruction from address to register Replication
[7, 2] @ 2 Allocate child memory of size Replication
[7, 3] $ 0 Split child organism Replication
[8, 0] S 1 Push value from register into the stack Stack
[8, 1] P 1 Pop value of register into the stack Stack

TABLE 2.1: Initial Fungera instruction set, (Poliakov, 2020, p. 12)

Other important two important but unusual for the ordinary instruction sets are:
”allocate child” (”@”) and ”split child” (”$”). They are used for reproduction. In-
struction ”allocate child” takes child size from the specified register and then finds a
chunk of memory of this size in a direction of execution and puts its coordinates into
another specified register. At a moment of time, an organism can write only into one
allocated child and when it has finished, it calls the ”split child” command, which
creates a new child organism that has its own CPU with its own instruction pointer,
registers, and stack.

Like all of the simulations described above, Fungera has reaper mechanisms. Like
in Tierra, there is a reaper queue. Each organism on producing error moves up that
queue and newborn organisms are appended to the end of it. Each time memory is
filled for about 90%, the reaper kills 50% of the creatures on top of the queue. Also,
organisms are killed when their number of errors is bigger than some threshold and
when they are not reproducing for some period of time.

Mutation mechanisms for Fungera are fairly simple. It has a parameter, say n, that
determines that each nth iterations some cell will be chosen and instruction in this
cell will be randomly replaced with some other instruction from the instruction set.
This way, mutations can occur both in some unallocated memory cells and in live
organisms.

Chapter 2. Related works 11

Ancestor in Fungera is similar in principle to the Tierra one but is much more com-
plex in terms of the actual implementation. Firstly, by seeking patterns in its own
code and putting their coordinates into registers, it determines its size. When it
has found its own size, it determines the direction for child allocation by using the
stack to “remember” the previous direction of allocation. Then, it allocates a child
of the same size the organism is. After that it starts a double replication loop – for
each column and row, using increments and decrements, which copies by loading
instruction code from a specified memory cell into one of the registers and then writ-
ing this command into a specified child cell. At last new organism is created by the
”split child” instruction.

As a result of running this simulation, it was determined that because of mutations,
some aberrant organisms occur that are small and non-functional. They were called
microvesicles. They occurred because of the reaper setup, which wasn’t killing them
fast enough. Then, microvesicles even produced some other aberrant microvesicles.

Code of the initial Fungera ancestor and it’s layout are presented in Figures 2.4
and 2.5.

v$<...vdc@<>..@cd>Sb.v.
>....v>Sbv^^b?bP<......
..b......>...........v.
va0aS<>....>..?d^>?avv.
>1d::.^a-a-a-ax-..a&<..
.v.<cS.dSaSbdWbaL<vc?<<
..^..a+aPc0d0<>..^>..v.
.>v.>..+yd?yc^^.>...v&.
v<..^ay+cy-.aPdP..cP<b.
@..^.bdWbaL....<^cx?<..
c.>.+xa+xd-xc.......^:.
d^<.vd0.....cab~b+bc+<.
>v.vb-b0bP<^b?b-..<.<..
d..S>PbSb?b^>-b?bv^.^..
c.^b.............<.....
@>...................:^
^..<...................

FIGURE 2.4: Initial Fungera ancestor, (Poliakov, 2020).

This study had a really interesting idea, but a lot of space for different improvements.
Simulation behavior was only studied with one parameter set for reaper, mutations,
and much other stuff. There was only one ancestor tried and only one command set.
Also, the simulation could be made using a much faster implementation in other
languages than Python.

Chapter 2. Related works 12

FIGURE 2.5: Algorithm of the initial Fungera ancestor, (Poliakov,
2020).

13

Chapter 3

Extending Fungera instruction set

To counteract 2D organisms fragility several instruction sets were developed in this
work addressing possible fragility by using two approaches – error correction (in-
spired by DNA reparation and embryonic development equifinality) and more ac-
tive usage of pattern-based addressing.

3.1 Instruction set with error correction – Fungera-2/Cellgera

Given that the initial ancestor organism was pretty fragile, partially because of the
rigidity and fragility of the instruction set, it was decided to make the ancestor or-
ganism more resilient to the environment. The main cause of the malfunction of
commands was a mutation. Almost any change of instructions can break the organ-
ism.

In the DNA, mutations, errors, and fractions occur all the time. But in the real world
DNA has many repair mechanisms. For example, DNA has two complementary
strands, so if one of them is broken or mutated, it uses a complementary one. Also,
genetic code has some redundancy. So, the following principle of making redundant
information for error correction was implemented.

Each command has its own ”block”, that consists of the main instruction repeated 4
times in the corners and error-repair entry commands.

FIGURE 3.1: Block examples (blocks are outlined in red).

This way, the total area of the same organism increases 9 times, because each com-
mand is now in an error-correction block. When we enter a block, the voting mecha-
nism kicks in, and among 5 commands the most numerous is chosen and then each
corner and center of this block is set to the most numerous command.

Chapter 3. Extending Fungera instruction set 14

FIGURE 3.2: Error correction example.

This way, to change executed commands, there needs to change the majority of the
commands to some other command. Therefore, each cell is much more mutation-
resilient than a standalone cell.

After the execution of one cell, the instruction pointer jumps to the next cell, and
error correction kicks in. Therefore, the number of allocated memory cells triples
along each axis. Also, the copying mechanism was changed, because now we op-
erate in terms of blocks, and blocks are copied by copying their center 5 times and
inserting entry E(error correction) instructions by the sides.

Any ancestor from the basic Fungera can be compiled into a new instruction set
because each cell is trivially constructed from the base instruction.

When creating an organism, the instruction pointer is placed not in the upper left
corner, but in the center of the upper left block to avoid wrongful execution.

3.2 Instruction set with direction-dependent jumps and calls
– Fungera-3

Another instruction set that was implemented is an instruction set with a direction-
dependent jump and call commands – more Tierra-like.

The jump instruction works as follows. We have ”J” instruction, after which we
have some patterns. The pattern consists from the sequence of the ”:” and ”.” NOP
instructions which is finished by any not-”.” and non-”:” instruction. When exe-
cuted, ”J” instruction seeks a complementary pattern (for ”:” complementary is ”.”
and vice versa) in the direction of the instruction pointer. When the CPU finds it,
it unconditionally jumps to the beginning of this pattern, bypassing everything in
between.

Example of such jump:

> J :. abababababbababba .:

Direction-dependent call works in a similar fashion: CPU finds a complementary
pattern and jumps to the beginning of it, but before the jumping previous position is
saved to the stack. The opposite command, ”R”, ”return”, takes value from the top
of the stack and jumps to it.

Example of code with directed call:

> C :. >C:.v.v.<... .: PaSa-ya-ya-ya R

Chapter 3. Extending Fungera instruction set 15

3.3 Instruction set with direction-independent jumps and calls
– Fungera-4

This instruction set is fairly similar to the previous one but the exact mechanism of
finding patterns is different.

Firstly, in this set patterns are fixed-length and can consist of any instructions. For
example, in this case, the pattern is ”C:.”

> C C:.

Secondly, we search for the pattern not only in the instruction pointer direction but
also in every other direction within some pre-configured radius. Then, when pat-
terns are found, we choose ones that are inside the organism first and find the closest
one. In case there are no patterns inside the calling organism (mainly as a result of
some mutation), we choose the closest pattern outside the organism.

3.4 Ancestor organisms for instruction sets Fungera-2, 3, 4

3.4.1 Instruction set with error correction (Fungera-2)

The only differences between this instruction set and the base instruction set are
block structure and organism size. Therefore, a simple compiler from Fungera to
this instruction set was implemented. The compiled Fungera ancestor is shown in
Figure 3.3.

3.4.2 Instruction set with direction-dependent jumps and calls (Fungera-
3)

Source code of the Fungera-3 ancestor is presented in Figure 3.4.

Its algorithm is simple:

1. In the first line, we make a call to get coordinates of the organism origin (top
left corner coordinates) into the stack.

2. We pop them from the stack into register AX and decrement it 3 times.

3. After that, we have coordinates of the beginning of the organism in the register
RA.

4. Then, we go to the opposite side of the organism and get coordinates of the
end (right bottom corner) into RB.

5. Then, we subtract them and put the result – the size of the ancestor, into the
RC.

6. After that, we allocate child of size from RC and put its beginning into the RD.

7. Then, we enter the reproduction loop for size and copy instructions by loading
them into RD using coordinates from the RB register and writing them to the
coordinates in the RA register.

8. When the reproduction loop is over and the ancestor is fully copied, we exe-
cute split child instruction and start all over.

Chapter 3. Extending Fungera instruction set 16

This flow of the execution is visualized on the Figure 3.5, parts executing different
stages of the algorithm are colored on the Figure 3.6.

3.4.3 Instruction set with direction-independent jumps and calls

Ancestor for this instruction set is similar to the previous one:

1. Firstly, we call to the right bottom corner.

2. Then, we call from there and pop the left top corner and right bottom corner
into registers.

3. After that, we find organism size by subtracting them.

4. Then, we repeat steps 6-8 from the previous ancestor.

Source code of the Fungera-4 ancestor is presented on the Figure 3.7, it’s flow of
execution – on the Figure 3.9 and blocks are marked on the Figure 3.8.

Chapter 3. Extending Fungera instruction set 17

vEvE<E<.E..E..E.vEvdEdcEc@E@<E<>E>.E..E.@E@cEcdEd>E>SESbEb.E.vEv.E.
EvEE$EE<EE.EE.EE.EEvEEdEEcEE@EE<EE>EE.EE.EE@EEcEEdEE>EESEEbEE.EEvEE.E
vEvE<E<.E..E..E.vEvdEdcEc@E@<E<>E>.E..E.@E@cEcdEd>E>SESbEb.E.vEv.E.
>E>.E..E..E..E.vEv>E>SESbEbvEv^E^^E^bEb?E?bEbPEP<E<.E..E..E..E..E..E.
E>EE.EE.EE.EE.EEvEE>EESEEbEEvEE^EE^EEbEE?EEbEEPEE<EE.EE.EE.EE.EE.EE.E
>E>.E..E..E..E.vEv>E>SESbEbvEv^E^^E^bEb?E?bEbPEP<E<.E..E..E..E..E..E.
.E..E.bEb.E..E..E..E..E..E.>E>.E..E..E..E..E..E..E..E..E..E..E.vEv.E.
E.EE.EEbEE.EE.EE.EE.EE.EE.EE>EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EEvEE.E
.E..E.bEb.E..E..E..E..E..E.>E>.E..E..E..E..E..E..E..E..E..E..E.vEv.E.
vEvaEa0E0aEaSES<E<>E>.E..E..E..E.>E>.E..E.?E?dEd^E^>E>?E?aEavEvvEv.E.
EvEEaEE0EEaEESEE<EE>EE.EE.EE.EE.EE>EE.EE.EE?EEdEE^EE>EE?EEaEEvEEvEE.E
vEvaEa0E0aEaSES<E<>E>.E..E..E..E.>E>.E..E.?E?dEd^E^>E>?E?aEavEvvEv.E.
>E>1E1dEd:E::E:.E.^E^aEa-E-aEa-E-aEa-E-aEaxEx-E-.E..E.aEa&E&<E<.E..E.
E>EE1EEdEE:EE:EE.EE^EEaEE-EEaEE-EEaEE-EEaEExEE-EE.EE.EEaEE&EE<EE.EE.E
>E>1E1dEd:E::E:.E.^E^aEa-E-aEa-E-aEa-E-aEaxEx-E-.E..E.aEa&E&<E<.E..E.
.E.vEv.E.<E<cEcSES.E.dEdSESaEaSESbEbdEdWEWbEbaEaLEL<E<vEvcEc?E?<E<<E<
E.EEvEE.EE<EEcEESEE.EEdEESEEaEESEEbEEdEEWEEbEEaEELEE<EEvEEcEE?EE<EE<E
.E.vEv.E.<E<cEcSES.E.dEdSESaEaSESbEbdEdWEWbEbaEaLEL<E<vEvcEc?E?<E<<E<
.E..E.^E^.E..E.aEa+E+aEaPEPcEc0E0dEd0E0<E<>E>.E..E.^E^>E>.E..E.vEv.E.
E.EE.EE^EE.EE.EEaEE+EEaEEPEEcEE0EEdEE0EE<EE>EE.EE.EE^EE>EE.EE.EEvEE.E
.E..E.^E^.E..E.aEa+E+aEaPEPcEc0E0dEd0E0<E<>E>.E..E.^E^>E>.E..E.vEv.E.
.E.>E>vEv.E.>E>.E..E.+E+yEydEd?E?yEycEc^E^^E^.E.>E>.E..E..E.vEv&E&.E.
E.EE>EEvEE.EE>EE.EE.EE+EEyEEdEE?EEyEEcEE^EE^EE.EE>EE.EE.EE.EEvEE&EE.E
.E.>E>vEv.E.>E>.E..E.+E+yEydEd?E?yEycEc^E^^E^.E.>E>.E..E..E.vEv&E&.E.
vEv<E<.E..E.^E^aEayEy+E+cEcyEy-E-.E.aEaPEPdEdPEP.E..E.cEcPEP<E<bEb.E.
EvEE<EE.EE.EE^EEaEEyEE+EEcEEyEE-EE.EEaEEPEEdEEPEE.EE.EEcEEPEE<EEbEE.E
vEv<E<.E..E.^E^aEayEy+E+cEcyEy-E-.E.aEaPEPdEdPEP.E..E.cEcPEP<E<bEb.E.
@E@.E..E.^E^.E.bEbdEdWEWbEbaEaLEL.E..E..E..E.<E<^E^cEcxEx?E?<E<.E..E.
E@EE.EE.EE^EE.EEbEEdEEWEEbEEaEELEE.EE.EE.EE.EE<EE^EEcEExEE?EE<EE.EE.E
@E@.E..E.^E^.E.bEbdEdWEWbEbaEaLEL.E..E..E..E.<E<^E^cEcxEx?E?<E<.E..E.
cEc.E.>E>.E.+E+xExaEa+E+xExdEd-E-xExcEc.E..E..E..E..E..E..E.^E^:E:.E.
EcEE.EE>EE.EE+EExEEaEE+EExEEdEE-EExEEcEE.EE.EE.EE.EE.EE.EE.EE^EE:EE.E
cEc.E.>E>.E.+E+xExaEa+E+xExdEd-E-xExcEc.E..E..E..E..E..E..E.^E^:E:.E.
dEd^E^<E<.E.vEvdEd0E0.E..E..E..E..E.cEcaEabEb~E~bEb+E+bEbyEy+E+<E<.E.
EdEE^EE<EE.EEvEEdEE0EE.EE.EE.EE.EE.EEcEEaEEbEE~EEbEE+EEbEEyEE+EE<EE.E
dEd^E^<E<.E.vEvdEd0E0.E..E..E..E..E.cEcaEabEb~E~bEb+E+bEbyEy+E+<E<.E.
>E>vEv.E.vEvbEb-E-bEb0E0bEbPEP<E<^E^bEb?E?bEb-E-.E..E.<E<.E.<E<.E..E.
E>EEvEE.EEvEEbEE-EEbEE0EEbEEPEE<EE^EEbEE?EEbEE-EE.EE.EE<EE.EE<EE.EE.E
>E>vEv.E.vEvbEb-E-bEb0E0bEbPEP<E<^E^bEb?E?bEb-E-.E..E.<E<.E.<E<.E..E.
dEd.E..E.SES>E>PEPbEbSESbEb?E?bEb^E^>E>-E-bEb?E?bEbvEv^E^.E.^E^.E..E.
EdEE.EE.EESEE>EEPEEbEESEEbEE?EEbEE^EE>EE-EEbEE?EEbEEvEE^EE.EE^EE.EE.E
dEd.E..E.SES>E>PEPbEbSESbEb?E?bEb^E^>E>-E-bEb?E?bEbvEv^E^.E.^E^.E..E.
cEc.E.^E^bEb.E..E..E..E..E..E..E..E..E..E..E..E..E.<E<.E..E..E..E..E.
EcEE.EE^EEbEE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE<EE.EE.EE.EE.EE.E
cEc.E.^E^bEb.E..E..E..E..E..E..E..E..E..E..E..E..E.<E<.E..E..E..E..E.
@E@>E>.E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E.:E:^E^
E@EE>EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE:EE^E
@E@>E>.E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E.:E:^E^
^E^.E..E.<E<.E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E.
E^EE.EE.EE<EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.EE.E
^E^.E..E.<E<.E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E..E.

FIGURE 3.3: Fungera-2/Cellgera ancestor

Chapter 3. Extending Fungera instruction set 18

>C:.v.v.<...:.PaSa-ya-ya-yaR
^....$<v^cy?<...............
..>-ya-yb-yc^...............
..^ccd*bbd*aad*dy0dSdP<.....
.......>>>v..........<^cx?<.
..........>LbdWad-xc-xb-xa^.
..........^.........a-acd*<.
.................>@cdSaSc.^.
....>......................v
R.by+by+by+bSbP::^c+cab~..C<

FIGURE 3.4: Fungera-3 – directed jump ancestor

FIGURE 3.5: Fungera-3 ancestor code parts marked by their functions.

FIGURE 3.6: Fungera-3 ancestor execution flow.

Chapter 3. Extending Fungera instruction set 19

>CC:.....PaPb~abc+c+yc+yc+ycv
..vdaLc<cy-bcb*b-cSbc@cy+cy+<
.......^....by-ay-bdb*<......
..W....^...........<..^ada*<.
..b.................>*cdc..^.
..d...........>?xcv^^dy0cy-<.
..>-xc-xa-xb..^...>?ycvPdSd^.
^....................$<......
........................C:..R

FIGURE 3.7: Fungera-4 – direction independent jump ancestor.

FIGURE 3.8: Fungera-4 ancestor code parts marked by their functions.

FIGURE 3.9: Fungera-4 ancestor execution flow.

20

Chapter 4

Investigation of the Fungera
behavior

4.1 Additional metrics for investigation

Because Fungera is a living system with many complex interactions between organ-
isms and environment and organisms with each other, the only way to truly under-
stand its behavior is to observe organisms’ actions and interactions using a visual
debugger. But there’s a problem with this approach: we cannot observe raw sim-
ulations on each and every run and each and every moment, because, obviously, it
takes too much time. Also, because we cannot see all registers of all organisms at the
same time. Therefore, we need some additional metrics for a better understanding
of simulation behavior and to know where to look and see the general trend behind
this evolution.

4.1.1 Total organisms entropy and per-site entropy

There are many definitions of entropy from different fields: from information theory
to physics. But on the intuitive level entropy means this: how much potential in-
formation can be extracted from this system. How much do genomes of organisms
have in common? This helps us measure the convergence of evolutionary processes
to some specific genotypes or sets of genotypes.

On a mathematical level, the formula for it looks like this:

H = ∑ H(i, j),

where H(i, j) is a per-site entropy for points of the 2D genome.

A per site entropy is calculated according to this formula:

H(i, j) = ∑ pk log pk

Where pk is estimated by:

pk ≈
nm

N
,

where nm is a number organisms with some command in this site and N is a total
number of organisms.

Basically, total entropy shows us how diverse genomes are (zero entropy means
they’re all the same and big entropy means that we have a huge difference between

Chapter 4. Investigation of the Fungera behavior 21

them). Per-site entropy allows us to understand, what areas of organisms are most
different between living organisms at this moment and then to see later, which gene
variations are associated with which behaviors. This way, we can see the heatmap
and see if our mutations are functional and influence something or they are non-
critical (for example, one NOP type replaced with the other, like ”:” and ”.” NOP-
instructions).

4.1.2 Expected lifetime

Because we have no fitness function for the organism, the only way to estimate how
well-adjusted our organism is, we need to know its life duration. But, because simu-
lation is pretty random, the life duration of one organism in simulation is simply not
representative of its general fitness and survivability. So, to make this more accu-
rate, we need to observe organisms across many runs and make conclusions about
it. Also, it’s helpful to understand whether an organism can survive on its own or
not.

In order to do this, we introduce a new metric called expected life. Basically, an
organism is put into an empty simulation with frequent mutations and its lifespan
is measured across multiple simulations with different random seeds and averaged.

4.1.3 Replication/Non-replication

Another criterion of organism fitness is whether it replicates itself. One of the many
criteria to determine if something is alive is whether it reproduces and reproduction
is frequently included in life definitions. Also, in our simulation, an organism is
killed if it doesn’t replicate, so it’s a good measure of the livability of the whole
genome/species, etc.

In order to measure these metrics, an organism is placed into an empty environment
with absolutely no mutation, so it’s fully deterministic and nothing can break its
genome or replication loop. This way, we can see whether it is able to create a child
organism (by itself).

4.1.4 Snapshots analysis

We could try to analyze every snapshot, but there is a problem with this approach.
Estimating expected lifespan, finding if a genome is a replicator or a non-replicator,
and doing other analysis can take up to several minutes, while each snapshot is
taken every 20 seconds. Therefore, for 20 seconds of running one(!) simulation,
we would need several minutes of calculating some metrics. Therefore, we need
some method of selecting snapshots that are most interesting to us – some method
of summarizing.

The first step of this analysis is using a simple moving average, which is also called
rolling mean with a sliding window for smoothing. This helps us to determine
global trends that are not dependent on some short-term anomalies. Also, we see
the general tendencies behind short-term fluctuations of values. In our case, as a
function of interest, we take a moving average of entropy, because it shows us how
diversity is developing in the whole ecosystem.

Then, when we see general trends behind the moving average, phenomenons that
are interesting for us, occur in local extremes, when the situation is changing, and

Chapter 4. Investigation of the Fungera behavior 22

when the first derivative is the biggest which is when we can have diverse organisms
that replicate the most.

Example of summarizing of entropy plot. Before smoothing:

FIGURE 4.1: Before smoothing

After smoothing:

FIGURE 4.2: After smoothing.

After summarizing: By using summary snapshots, in this case, we get the most
interesting information with only 14% of snapshots to analyze.

Chapter 4. Investigation of the Fungera behavior 23

FIGURE 4.3: After summarizing (summary points marked red).

4.1.5 Caching genome metrics

Let’s say that we have a snapshot, we have extracted all unique genotypes from it
and we need to do further analysis of each genome. For each genotype we need to
get the expected lifespan and if it is a replicator or not in order to find interesting
species that can survive on their own.

But the problem is that in order to find if it’s a replicator and the expected lifespan for
one genotype, we need to run at least 5-10 simulations to get the expected lifespan,
which can take up to 2 or 3 minutes. Given that we can have up to 4000 organisms in
a relatively small simulation (500 to 500), it would take extremely long to calculate
these metrics even for one snapshot.

In order to solve this problem, we introduced genome caching: we store all unique
genomes with their life expectancies and replication flags in a separate cache file and
write into it when we encounter some new genome. This way, we can drastically
speed up snapshot analysis.

4.2 Analysis pipeline

So, if we put all the additional analysis metrics and approaches together, we have
this analysis pipeline:

1. Per site entropy and simulation entropy is calculated during simulation run
and dumped into separate metrics snapshots.

2. All simulation entropies from metrics files are copied into one time series and
points, that are interesting and critical are found (by searching for local ex-
trema and points with biggest first derivatives).

Chapter 4. Investigation of the Fungera behavior 24

3. Then, we analyze genomes in chosen snapshots for expected life and replica-
tion/nonreplication

4. Then, we output all this into a file for future analysis

Console utility was developed to automate it.

25

Chapter 5

Results

5.1 Base instruction set

With basic Fungera, simulation ran until at least 4.5 million cycles. As we can see
from the entropy plot, the entropy was continuously increasing, while the number of
organisms peaked at about 550 organisms. This shows us that differences between
organisms were increasing, while the number of organisms remained almost the
same.

Figure 5.3 shows results of the replication/nonreplication analysis.

We can see that the number of self-replicating organisms decreased with time and
sometimes became zero even after about 400 thousand cycles. This shows that the
starting ancestor was relatively fragile and that even with mutation rate once every
400 cycles it became disruptive for all ancestors.

Another interesting thing is that somehow even after death of the last self-replicator,
organisms continued to appear. This can be caused by some aberrant organisms –
“microvesicles”, allocating random memory chunks and splitting them as a child.
Also, the reaper was probably not strong enough to stop aberrant organisms from
appearing.

5.2 Instruction set with direction-dependent jumps and calls

The simulation with directed jumps and calls died after about 140 000, but the reaper
was harsher this time and killed after only 10 execution errors.

As we can see on this plot, at iteration 125 thousand the number of replicators
rapidly decreased, while the total number of organisms increased, which means that
they replicated for the last time and then almost all of the child organisms were non-
replicating because of some kind of mutation.

If we look at the code of all replicators, we can see that each one of them differs from
the starting ancestor insignificantly, by only one command, that is not executing.

5.3 Instruction set with direction-independent jumps and calls

With this instruction set, the situation was different: it was running for 600 thousand
of cycles with relatively stable entropy and a slowly decreasing number of organ-
isms. We can say that this instruction set was more robust than previous ones and at
least it had a relatively stable population.

Chapter 5. Results 26

FIGURE 5.1: Entropy – Fungera-1

5.4 Instruction set with error correction (Cellgera)

This one was the most interesting, because it had relatively low entropy and popu-
lation, compared to previous ones, but it was more robust and resilient to mutations
because of the error correction mechanisms.

Chapter 5. Results 27

FIGURE 5.2: Number of replicating vs non-replicating organisms –
Fungera-1

FIGURE 5.3: Replicators/nonreplicators – Fungera-3

Chapter 5. Results 28

FIGURE 5.4: Number of organisms – Fungera-3

FIGURE 5.5: Entropy – Fungera-3

Chapter 5. Results 29

FIGURE 5.6: Ancestor – Fungera-3, original and mutated.

FIGURE 5.7: Entropy – Fungera-4.

Chapter 5. Results 30

FIGURE 5.8: Number of organisms – Fungera-4.

FIGURE 5.9: Entropy – Fungera-2/Cellgera.

Chapter 5. Results 31

FIGURE 5.10: Number of organisms – Fungera-2/Cellgera.

32

Chapter 6

Conclusions

6.1 Conclusions

As we can see, even some tiny changes in instruction sets and ancestor organisms
have shown to greatly influence the simulation behavior. In the basic Fungera in-
struction set, the ancestor was not robust enough and therefore it often became ex-
tinct before the first million cycles and aberrant organisms prevailed. The same thing
was in the instruction set with directed jumps, non-replicators replaced and replica-
tors, and the whole simulation died. What’s interesting is that the same parameters
instruction set with direction-independent jumps and calls behaved very differently.
It had a stable population and entropy, at least to the degree to which the simulation
ran. The instruction set with error correction proved to be more resilient because of
repair mechanisms but replicated much slower.

The implementation of analysis tools and new instruction sets is located in this
GitHub repository: https://github.com/Arattel/fungera_analysis/tree/master

6.2 Future work

The experiments with instruction sets were severely bound by time constraints: one
run with an instruction set with direction-independent jumps took about 24 hours.
Therefore, there was not enough time in the simulation to test all hypotheses and
come to some conclusion about the exact relationship between new species. For ex-
ample, in Tierra simulation parasites started appearing after many millions of cycles.
In the case of Fungera, the complexity is much bigger. Therefore, in order to test our
hypotheses, we need more runs and faster runs.

So, further research for this looks like this:

1. Testing different ancestors.

2. Trying to write parasites manually in different instruction sets in order to check
whether these sets are conductive to parasitism.

3. More runs for better data.

https://github.com/Arattel/fungera_analysis/tree/master

33

Bibliography

Adami, Christoph (1999). Introduction to Artificial Life. Berlin, Heidelberg: Springer-
Verlag. ISBN: 0387946462.

Adami, Christoph and et al. (2015). Avida: Default Ancestor Guided Tour. https://
github.com/devosoft/avida/wiki/Default-Ancestor-Guided-Tour.

Adami, Christoph and C. Titus Brown (June 1994). “Evolutionary Learning in the 2D
Artificial Life System "Avida"”. In: Artifical Life IV.

Baker, Christopher R., Victor Hanson-Smith, and Alexander D. Johnson (2013). “Fol-
lowing Gene Duplication, Paralog Interference Constrains Transcriptional Circuit
Evolution”. In: Science 342.6154, pp. 104–108. ISSN: 0036-8075. DOI: 10 . 1126 /
science.1240810. URL: https://science.sciencemag.org/content/342/6154/
104.

Callaway, Ewen (2017). “Oldest Homo sapiens fossil claim rewrites our species’ his-
tory”. In: Nature. DOI: doi:10.1038/nature.2017.22114..

Chatterjee, Nimrat (2017). “Mechanisms of DNA damage, repair and mutagenesis”.
In: Environ Mol Mutagen. DOI: doi:10.1002/em.22087.

Christodoulou, Fay et al. (Feb. 2010). “Ancient animal microRNAs and the evolution
of tissue identity”. In: Nature 463, pp. 1084–8. DOI: 10.1038/nature08744.

De Dinechin, Floren (1997). “Self-replication in a 2D von Neumann architecture”. In:
URL: https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.
pdf.

Diss, Guillaume et al. (2017). “Gene duplication can impart fragility, not robustness,
in the yeast protein interaction network”. In: Science 355.6325, pp. 630–634. ISSN:
0036-8075. DOI: 10.1126/science.aai7685. URL: https://science.sciencemag.
org/content/355/6325/630.

Fernandez, Ariel and Michael Lynch (June 2011). “Non-adaptive origins of interac-
tome complexity”. In: Nature 474, pp. 502–5. DOI: 10.1038/nature09992.

Forbes, Andrew A. (2010). Evolution Is Change in the Inherited Traits of a Population
through Successive Generations. URL: https://www.nature.com/scitable/knowledge/
library/evolution- is- change- in- the- inherited- traits- 15164254/. (ac-
cessed: 16.05.2021).

Good, Benjamin et al. (Nov. 2017). “The Dynamics of Molecular Evolution Over
60,000 Generations”. In: Nature 551. DOI: 10.1038/nature24287.

Greenbaum, Benjamin and Andrew Pargellis (2016). “Digital Replicators Emerge
from a Self-Organizing Prebiotic World”. In: The 2019 Conference on Artificial Life
28, pp. 60–67. URL: https://www.mitpressjournals.org/doi/abs/10.1162/978-
0-262-33936-0-ch016.

Kapheim, Karen M. et al. (2015). “Genomic signatures of evolutionary transitions
from solitary to group living”. In: Science 348.6239, pp. 1139–1143. ISSN: 0036-8075.
DOI: 10.1126/science.aaa4788. eprint: https://science.sciencemag.org/
content/348/6239/1139.full.pdf. URL: https://science.sciencemag.org/
content/348/6239/1139.

https://github.com/devosoft/avida/wiki/Default-Ancestor-Guided-Tour
https://github.com/devosoft/avida/wiki/Default-Ancestor-Guided-Tour
https://doi.org/10.1126/science.1240810
https://doi.org/10.1126/science.1240810
https://science.sciencemag.org/content/342/6154/104
https://science.sciencemag.org/content/342/6154/104
https://doi.org/doi:10.1038/nature.2017.22114.
https://doi.org/doi:10.1002/em.22087
https://doi.org/10.1038/nature08744
https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.pdf
https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.pdf
https://doi.org/10.1126/science.aai7685
https://science.sciencemag.org/content/355/6325/630
https://science.sciencemag.org/content/355/6325/630
https://doi.org/10.1038/nature09992
https://www.nature.com/scitable/knowledge/library/evolution-is-change-in-the-inherited-traits-15164254/
https://www.nature.com/scitable/knowledge/library/evolution-is-change-in-the-inherited-traits-15164254/
https://doi.org/10.1038/nature24287
https://www.mitpressjournals.org/doi/abs/10.1162/978-0-262-33936-0-ch016
https://www.mitpressjournals.org/doi/abs/10.1162/978-0-262-33936-0-ch016
https://doi.org/10.1126/science.aaa4788
https://science.sciencemag.org/content/348/6239/1139.full.pdf
https://science.sciencemag.org/content/348/6239/1139.full.pdf
https://science.sciencemag.org/content/348/6239/1139
https://science.sciencemag.org/content/348/6239/1139

Bibliography 34

Lieberman, Erez et al. (Nov. 2007). “Quantifying the evolutionary dynamics of lan-
guage”. In: Nature 449, pp. 713–6. DOI: 10.1038/nature06137.

Matute, Daniel R. et al. (2010). “A Test of the Snowball Theory for the Rate of Evolu-
tion of Hybrid Incompatibilities”. In: Science 329.5998, pp. 1518–1521. ISSN: 0036-
8075. DOI: 10.1126/science.1193440. URL: https://science.sciencemag.org/
content/329/5998/1518.

McKay, Chris P (2004). “What Is Life—and How Do We Search for It in Other Worlds?”
In: PLoS Biol. DOI: doi:10.1371/journal.pbio.0020302.

Moyle, Leonie C. and Takuya Nakazato (2010). “Hybrid Incompatibility “Snow-
balls” Between Solanum Species”. In: Science 329.5998, pp. 1521–1523. ISSN: 0036-
8075. DOI: 10.1126/science.1193063. URL: https://science.sciencemag.org/
content/329/5998/1521.

Pagel, Mark, Quentin Atkinson, and Andrew Meade (Oct. 2007). “Frequency of Word-
Use Predicts Rates of Lexical Evolution throughout Indo-European History”. In:
Nature 449, pp. 717–20. DOI: 10.1038/nature06176.

Pargellis, A (Feb. 2001). “Digital Life Behavior in the Amoeba World”. In: Artificial
life 7, pp. 63–75. DOI: 10.1162/106454601300328025.

Poliakov, Mykhailo (2020). “Evolution of digital organisms in truly two-dimensional
memory space: Bachelor’s thesis”. In:

Ray, Thomas (1991). “Evolution, Ecology and Optimization of Digital Organisms”.
In: URL: https://www.cc.gatech.edu/~turk/bio_sim/articles/tierra_
thomas_ray.pdf.

– (1993a). “An Evolutionary Approach to Synthetic Biology: Zen and the Art of Cre-
ating Life”. In: URL: http://www.sci.brooklyn.cuny.edu/~sklar/teaching/
f05/alife/papers/ray-zen.pdf.

Ray, Thomas S. (1993b). “An Evolutionary Approach to Synthetic Biology: Zen and
the Art of Creating Life”. In: Artificial Life 1.1-2, pp. 179–209.

Soria-Carrasco, Víctor et al. (2014). “Stick Insect Genomes Reveal Natural Selection’s
Role in Parallel Speciation”. In: Science 344.6185, pp. 738–742. ISSN: 0036-8075. DOI:
10.1126/science.1252136. URL: https://science.sciencemag.org/content/
344/6185/738.

Tan, Chris Soon Heng et al. (2009). “Positive Selection of Tyrosine Loss in Metazoan
Evolution”. In: Science 325.5948, pp. 1686–1688. ISSN: 0036-8075. DOI: 10.1126/
science.1174301. URL: https://science.sciencemag.org/content/325/5948/
1686.

Tusso, Sergio et al. (2020). “Experimental evolution of adaptive divergence under
varying degrees of gene flow”. In: bioRxiv. DOI: 10.1101/2020.11.02.364695.
URL: https://www.biorxiv.org/content/early/2020/11/03/2020.11.02.
364695.

Wagner, Peter J., Matthew A. Kosnik, and Scott Lidgard (2006). “Abundance Dis-
tributions Imply Elevated Complexity of Post-Paleozoic Marine Ecosystems”. In:
Science 314.5803, pp. 1289–1292. ISSN: 0036-8075. DOI: 10.1126/science.1133795.
URL: https://science.sciencemag.org/content/314/5803/1289.

Werner, Thomas et al. (2010). “Generation of a novel wing colour pattern by the
Wingless morphogen”. eng. In: Nature 464.7292, pp. 1143–1148. ISSN: 0028-0836.

Wikipedia (2021). Esoteric programming language — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Esoteric%20programming%
20language&oldid=1012423150. [Online; accessed 29-May-2021].

Wikipedia (2021). Primordial soup — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 17-May-2021]. URL: https://en.wikipedia.org/w/index.php?title=
Primordial_soup&oldid=1020031403.

https://doi.org/10.1038/nature06137
https://doi.org/10.1126/science.1193440
https://science.sciencemag.org/content/329/5998/1518
https://science.sciencemag.org/content/329/5998/1518
https://doi.org/doi: 10.1371/journal.pbio.0020302
https://doi.org/10.1126/science.1193063
https://science.sciencemag.org/content/329/5998/1521
https://science.sciencemag.org/content/329/5998/1521
https://doi.org/10.1038/nature06176
https://doi.org/10.1162/106454601300328025
https://www.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
https://www.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/papers/ray-zen.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/papers/ray-zen.pdf
https://doi.org/10.1126/science.1252136
https://science.sciencemag.org/content/344/6185/738
https://science.sciencemag.org/content/344/6185/738
https://doi.org/10.1126/science.1174301
https://doi.org/10.1126/science.1174301
https://science.sciencemag.org/content/325/5948/1686
https://science.sciencemag.org/content/325/5948/1686
https://doi.org/10.1101/2020.11.02.364695
https://www.biorxiv.org/content/early/2020/11/03/2020.11.02.364695
https://www.biorxiv.org/content/early/2020/11/03/2020.11.02.364695
https://doi.org/10.1126/science.1133795
https://science.sciencemag.org/content/314/5803/1289
http://en.wikipedia.org/w/index.php?title=Esoteric%20programming%20language&oldid=1012423150
http://en.wikipedia.org/w/index.php?title=Esoteric%20programming%20language&oldid=1012423150
https://en.wikipedia.org/w/index.php?title=Primordial_soup&oldid=1020031403
https://en.wikipedia.org/w/index.php?title=Primordial_soup&oldid=1020031403

Bibliography 35

Wikipedia (2021a). RNA world — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=RNA%20world&oldid=1025093805. [Online; accessed 29-
May-2021].

– (2021b). Speciation — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=Speciation&oldid=1022365674. [Online; accessed 29-May-
2021].

http://en.wikipedia.org/w/index.php?title=RNA%20world&oldid=1025093805
http://en.wikipedia.org/w/index.php?title=RNA%20world&oldid=1025093805
http://en.wikipedia.org/w/index.php?title=Speciation&oldid=1022365674
http://en.wikipedia.org/w/index.php?title=Speciation&oldid=1022365674

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Requirements for a good simulation
	Conclusion
	Requirements for a good simulation

	Related works
	Tierra
	Avida
	Amoeba
	Fungera

	Extending Fungera instruction set
	Instruction set with error correction – Fungera-2/Cellgera
	Instruction set with direction-dependent jumps and calls – Fungera-3
	Instruction set with direction-independent jumps and calls – Fungera-4
	Ancestor organisms for instruction sets Fungera-2, 3, 4
	Instruction set with error correction (Fungera-2)
	Instruction set with direction-dependent jumps and calls (Fungera-3)
	Instruction set with direction-independent jumps and calls

	Investigation of the Fungera behavior
	Additional metrics for investigation
	Total organisms entropy and per-site entropy
	Expected lifetime
	Replication/Non-replication
	Snapshots analysis
	Caching genome metrics

	Analysis pipeline

	Results
	Base instruction set
	Instruction set with direction-dependent jumps and calls
	Instruction set with direction-independent jumps and calls
	Instruction set with error correction (Cellgera)

	Conclusions
	Conclusions
	Future work

