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Abstract

Programming 3D graphics is a pretty challenging task. However, such a technology
is widely helpful in different areas, for example, architecture prototyping, digital
showrooms, or creating movies. Furthermore, one of the most popular usage cases
is the video game industry. As it happens when some technology is widely used,
there is much software that already implements this technology. The 3D rendering
software targeted for creating games is called game engines. However, modern game
engines also can be used for other purposes. Such flexibility gives an overwhelm-
ing functionality for those who do not want to create something huge. We created a
light-weighted game engine that does not require much computer resources (pow-
erful CPU and GPU) to run and still is capable of creating 3D games.

The source code can be found here: https://github.com/nazariyb/FRTEngine.
And the freshest builds are placed here: https://github.com/nazariyb/FRTEngine/

releases.

HTTP://WWW.UCU.EDU.UA
https://github.com/nazariyb/FRTEngine
https://github.com/nazariyb/FRTEngine/releases
https://github.com/nazariyb/FRTEngine/releases
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Glossary

AAA (games) Games which require high budget for development. It can be tens of
millions or more. 1

Game mechanics Game mechanics is a combination of restrictions and things player
can do in a game. 1

Gameplay The way players interact with a game and what they feel during that.
Sometimes is used as synonymous to "game experience". 1

Puzzle video game A game which gameplay is based on solving puzzles. 1
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Chapter 1

Introduction

1.1 Motivation

Nowadays, game engines take a prominent place in the computer technologies world.
Even though they are called to be game engines, it is only for historical reasons. This
type of software is also widely used in such fields as architecture, automotive and
transportation, broadcast and live events, film and television, training and simu-
lation, etcetera. Still, the game industry entirely covers our field of interest. For
comparison, the movie industry surpassed $100 billion in revenues for the first time
in history, with earnings reaching $101 billion in 20191, while games overtake this
number in 2017 by earning $108.9 billions2 and in 2019, its revenue hit $150 billion3,
and it is instantly growing.

1.2 Problem

Since most game engines are made to cover as many as possible needs (as for dif-
ferent genres of games and other fields, too), they become too overwhelmed when
developing a simple game. In this work, we refer to a simple game that does not need
a tone of technologies and features commonly included in game engines. Those are
realistic physics and lighting, landscape building, super cool (realistic or just very
detailed) sky/animations/clothing/etcetera, advanced AI system, so on. Even if a
game developer does not use those features explicitly, they can be partly involved
by some stuff that a person is using. Moreover, such tools make development tools
heavier, which means both a programmer and a player need a more powerful com-
puter for running them properly.

1.3 Context

The best example of simple games is puzzle games. Such games do not require
much content, high levels, or an extensive library for simulating physics and have
an accent on mechanics and exciting riddles. A great example of puzzle games is
Tetris. It demonstrates how the quality (of the idea) beats the quantity (of mechanics
and content) and confidently competes with AAA games. Different Tetris titles take
two entries in the Top-10 most sold game titles over history4. The Tetris franchise

1https://variety.com/2020/film/news/global-entertainment-industry-surpasses-100-
billion-for-the-first-time-ever-1203529990/

2https://vgsales.fandom.com/wiki/Video_game_industry
3https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-

and-movies-combined-thanks-to-the-pandemic-11608654990
4https://en.wikipedia.org/wiki/List_of_best-selling_video_games

https://variety.com/2020/film/news/global-entertainment-industry-surpasses-100-billion-for-the-first-time-ever-1203529990/
https://variety.com/2020/film/news/global-entertainment-industry-surpasses-100-billion-for-the-first-time-ever-1203529990/
https://vgsales.fandom.com/wiki/Video_game_industry
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://en.wikipedia.org/wiki/List_of_best-selling_video_games
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is the second most sold game franchise ever, with 495 million downloaded/sold
copies5. Therefore, we will use it as the primary reference for our solution and for a
demonstration of the former.

1.4 Proposed solution

We suggest making our game engine that satisfies minimal requirements for puzzle
games. As a result, it will not contain any unnecessary code, hence will not use
computer resources that it does not need.

1.5 Goals

Even game engines for simple titles still might have many things to be done. Shortly
our task is to have the main game mechanics running. Hence we define two goals:

1. The first one is to implement basic game engine functionality:

• Low-level: Windows application, Input handling

• Utilities: Event system, Logging, Time helper

• Rendering: Camera, Graphics resources, Rendering pipeline

• Game architecture: Game objects, Game world

• Visual effects: Shaders, Dynamic lighting

2. To demonstrate how does the engine work and how it can be used, we will
implement basic Tetris mechanics:

• Tetris board

• Tetrimino (aka tetromino)

• Automatically falling + full-controlable6 tetrominoes

• Clearing of lines

• Leveling

Expected result

It is not considered to make a copy of Tetris; we want to make a game with a ruleset
based on the game Tetris. More information about it can be found here: https:
//en.wikipedia.org/wiki/Tetris.

1.6 Chosen technologies

As the base language of an application, we have chosen C++17. It is a compelling
and efficient language, which has been used for decades. The latest fully supported
version grants new features that are convenient in usage and still efficient. We will
exploit GPU using DirectX12 - one of the leading libraries on the market. It provides
an API for high-performance utilization of GPU and allows to make games that run
on Windows (one of the most popular platforms for gaming) and Xbox. Based on
this list, for compilation, we will use Microsoft Visual Studio Compiler 2019.

5https://en.wikipedia.org/wiki/List_of_best-selling_video_game_franchises
6https://tetris.fandom.com/wiki/Tetromino

https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/List_of_best-selling_video_game_franchises
https://tetris.fandom.com/wiki/Tetromino


3

Chapter 2

Game Engines

2.1 What is a game engine?

Game engines are often confused with a development environment that contains a
user interface for creating and editing game worlds (for example, Unity Editor or
Unreal Editor). However, according to Wikipedia, a game engine is conceptually the
core software necessary for a game program to run correctly. Therefore, technically, a
game engine could be (and in most cases, it is) a bunch of dynamic libraries. Also,
from the definition, we see no specified list of features that should be present in a
game engine - it depends on the needs of the specific game. In Figure 2.1 it is shown
a diagram of possible game engine architecture. There are only a few engines that
probably have all mentioned parts. However, there are no engines that have some-
thing that is not listed here. More information about the architecture of (massive)
game engines can be found in Section 1.6 of Gregory, 2018

2.2 Similar solutions

2.2.1 Unreal Engine

Unreal Engine 4 is a potent tool for prototyping and creating games. It started its
journey in 1998 and continues improving.

One of its powerful tools is Blueprints. Blueprints is a system for visual pro-
gramming which allows doing pretty much anything that can be done in code. Vi-
sual programming is easy and fast in development. However it has a cost. It is less
efficient than a code, although this is not noticeable for relatively small games. Be-
cause of its nature, it is hard to keep visual "code" clean. When the project grows
and logic becomes more complex, the "code" turns into a mess.

Besides that, UE4 (Unreal Engine 4) also has many convenient and powerful tools
for rig and timeline animations, creating a user interface, editing the game world,
creating and editing materials. Its powerful rendering part is why UE4 can be used
even for creating movies that look like they were filmed in the traditional way (for
example, the series The Mandalorian). Its optimized networking code makes games,
created with Unreal, capable of handling online events for millions of players. For
instance, during Travis Scott’s Astronomical live event in Fortnite, there were 12.3
million concurrent players online1.

When the game is made with UE4, it is programmed in C++.

1https://www.statista.com/statistics/1097635/fortnite-travis-scott-players/

https://www.statista.com/statistics/1097635/fortnite-travis-scott-players/
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2.2.2 Unity

Unity allows deploying games on mobiles, consoles, desktop computers, TV boxes,
web, and virtual reality systems. It has a wide variety of tools and plugins. Among
them, it is possible to apply animation created for one object to other. Thanks to its
component-based architecture, it is effortless to use. There is no need to care about a
vast hierarchy; if something should be added to the game, just create a script, sprite,
mesh, or another component and drag-and-drop it on GameObject.

Even though it has a bunch of performance issues and glitches, it is also actively
growing, as well as the number of noticeable games made with Unity2. Due to its
simplicity and amount of courses and documentations about Unity, many people
start their career in the game industry with this game engine. Furthermore, much of
them do not leave it. In 2019 Unity had one and half million monthly active creators3.

Unity uses C# as a scripting API. This language is pretty easy to learn and pro-
vides high performance.

2.2.3 Godot

Godot is a new, growing game engine that perfectly fits for 2D games with pixel
graphics. Although it still can be used for 3D, it does not provide a good enough
toolset for it and is not recommended for this yet.

2.2.4 Other engines

We will briefly review other game engines, which for one or another reason, do not
need much attention in terms of our project.

The Quake family of engines

id Software made the first 3D first-person shooter. It is Castle Wolfenstein 3D (1992).
It is considered that this company was also the first who started reusing code when
creating games. Moreover, this reusable part of code later started to be called a game
engine. Based on id Software’s engine, the following games were made: Doom, Quake,
Quake II, Quake III, and some other companies’ games. Even Valve’s Source has roots
in it.

Source Engine

Valve’s Source can rival Unreal Engine 4 in terms of the tool set and graphics. How-
ever, it is oriented for creating FPS games, such as the Half-Life series.

DICE’s Frostbite

This engine has various powerful toolsets and is capable of creating games of differ-
ent genres, for example, Mass Effect, Battlefield, Need For Speed, Star Wars Battlefront
II and others. However, it cannot be used outside EA because it is a proprietary
engine.

2https://en.wikipedia.org/wiki/List_of_Unity_games
3https://venturebeat.com/2020/08/24/unity-files-for-ipo-reveals-163-million-loss-

for-2019-and-1-5-million-monthly-users/

https://en.wikipedia.org/wiki/List_of_Unity_games
https://venturebeat.com/2020/08/24/unity-files-for-ipo-reveals-163-million-loss-for-2019-and-1-5-million-monthly-users/
https://venturebeat.com/2020/08/24/unity-files-for-ipo-reveals-163-million-loss-for-2019-and-1-5-million-monthly-users/
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Rockstar Advanced Game Engine (RAGE)

Grand Theft Auto V and Red Dead Redemption, alongside many other games, are based
on this engine. It is also capable of creating cross-platform games.

CRYENGINE

The latest version of this engine allows making games targeting almost all popular
platforms and provides s powerful suite of tools and high-quality real-time graphics.

Sony’s PhyreEngine

Any licensed Sony developer gets access to this engine, which supports developing
only for Sony’s consoles.

Microsoft’s XNA Game Studio

This game engine was based on C# language and aimed at encouraging players to
create their games and share them with others. However, XNA is no longer sup-
ported since 2014.

GameMaker Studio

Game Maker is costly, though powerful, game engine for 2D games.

Construct

Although it is not as expensive as GameMaker, it is not as powerful as the latter.
Moreover, it still aimed for 2D games.
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FIGURE 2.1: Runtime game engine architecture
Source: Gregory, 2018
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Chapter 3

Technologies

3.1 Overview

Since we want the software to be as efficient as possible, we will use native SDKs
and not cross-platform. For idea demonstration, one platform will be enough. Our
choice is Windows because it is the most popular platform for gaming. Moreover,
if needed, code written for Windows can be extended to running on Xbox without
losing any performance. A game is just an application. The most efficient and light-
weighted way to make an application on Windows is to use Windows API. The
native solution for graphics on the Windows platform is DirectX. We do not have
any restrictions, so we will use the latest version, which is 12.

3.1.1 Windows API (WinAPI)

WinAPI provides access to several platform implementations which interact with
OS directly. We are going to use it to create and set up a window of an application.
WinAPI also grants us the possibility to handle any events by processing messages
coming in an endless loop. We are going to use them to handle mouse and keyboard
input.

3.1.2 DirectX 12

Microsoft DirectX and Windows API are a collection of APIs for handling tasks re-
lated to multimedia, especially game programming1. We are going to need two of
them: Direct3D and DirectXMath.

Direct3D

Direct3D is the graphics API at the heart of DirectX. It provides very convenient and
effective features for interacting with a graphics processing unit. Some of them are
command queues and lists, descriptor tables, and pipeline state objects2. We
will provide more details later, with examples of usage.

DirectXMath

DirectXMath provides convenient structures to work with vectors and matrices.
Nevertheless, what is great about this library, that it uses the Intel (AMD chips
support it too, though) SSE2 (Streaming SIMD (Single Instruction Multiple Data)

1https://en.wikipedia.org/wiki/DirectX
2https://docs.microsoft.com/en-us/windows/win32/direct3d12/what-is-directx-12-

https://en.wikipedia.org/wiki/DirectX
https://docs.microsoft.com/en-us/windows/win32/direct3d12/what-is-directx-12-
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Extensions 2) instruction set. SIMD registers are 128-bits wide, allowing SIMD in-
structions to operate on four 32-bit floats or ints at once. Using these instructions
significantly increases the efficiency of mathematical operations on vectors and ma-
trices, vital in such high-performance and high mathematically dependent software
as video games.

3.2 The rendering pipeline

The rendering pipeline is the sequence of steps committed by GPU to draw a 2D
picture on screen given geometry description of the 3D world.

FIGURE 3.1: The Direct3D 12 graphics pipeline and state

In the right part of the Figure 3.1 are listed rendering (graphics) pipeline stages.
We are going to discuss them in this section. Descriptors, Descriptor heaps, Descrip-
tor tables, Root, and other resources are perfectly explained in Section Direct3D 12
Programming Guide > Resource Binding in Direct3D 12 of Direct3D 12 graphics. Ren-
der target views and Depth-stencil view are covered, respectively, in Section 4.3.7 and
Section 4.3.8 of Luna, 2016

3.2.1 The input assembler stage

The goal of the input assembler stage is to read geometric data (vertices, indices)
from memory and assemble it into geometric primitives (triangles, lines) in GPU-
understandable format.

Vertices

In Direct3D, vertices can be considered as an extended version of vertices of geo-
metric primitives. They still can store the spatial location of points where edges of
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figure meet. However, they also can contain any additional data we need. For our
needs, we define the following vertex structure:

struct Vertex
{

DirectX :: XMFLOAT3 position;
DirectX :: XMFLOAT3 normal;
DirectX :: XMFLOAT2 uv;

};

XMFLOAT2 and XMFLOAT3 from namespace DirectX are just structures for repre-
senting mathematical 2D and 3D vectors correspondingly. Field position represents
the spatial location of a vertex in 3D space. We will discuss normals and uvs later.
We can initialize and store vertices data in any way that is convenient for us. And
then just give its address to Input Assembler.

Topology

Since we can define almost whatever data format we want to use in code and pass
to IA (Input assembler) contiguous data, we have to specify how to read it. Let us
start with a topology type. For example, in case we want IA to transform every three
vertices into a triangle, we would set Triangle List (Figure 3.2a) topology. We can
use Triangle Strip (Figure 3.2b) topology to make IA consider each next triangle
shared one side with a previous one. That is, vertices 0, 1, 2 build up a triangle, the
next triangle consists of vertices 1, 2, 3 and so on.

(A) Triangle list topology

(B) Triangle strip topology

FIGURE 3.2: Examples of possible primitive topologies.
Dash circled arrow shows an order of vertices for assembling. A short
solid arrow indicates the first vertex of a triangle. Source: Direct3D 11

graphics

Indices

Before continuing, let us clarify why we need those triangles (often referred to as
polygons) at all. It is the most efficient way for GPU to work with points, lines, or
triangles. We are not using points and lines in our project not to discuss them, but
the same logic we use for triangles can be applied to lines and points. The graphics
processing unit uses those primitives to build complex solid 3D objects. Vertices and
indices are raw materials for this. Say, we have the following vertices:

// for sake of example , ignore normals and uvs ,
// and consider its to be in two dimensional space
using Vertex = DirectX :: XMFLOAT2;

Vertex v0 = { 0.0f, 0.0f };
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Vertex v1 = { 0.0f, 1.0f };
Vertex v2 = { 1.0f, 0.0f };

Vertex v3 = { 1.0f, 0.0f };
Vertex v4 = { 0.0f, 1.0f };
Vertex v5 = { 1.0f, 1.0f };

Here, v0, v1, v2 are positions of one triangle and v[3-5] of another. It would be OK,
however, as we see, v1 and v2 represent the same geometrical points as v3 and v4
(see Figure 3.3a). That is, these triangles are two parts of the same square. Therefore,
two of its vertices will be stored and processed twice, not what we want in most
cases. In order to use the same vertex multiple times, we have to say IA what vertices
to use and where they should be used. This is what indices in Direct3D are for.
Vertex vertices [4] =
{

{ 0.0f, 0.0f }, // 0
{ 0.0f, 1.0f }, // 1
{ 1.0f, 0.0f }, // 2
{ 1.0f, 1.0f }, // 3

}

UINT indices [6] =
{

0, 1, 2, // triangle 1
1, 2, 3 // triangle 2

}

That is, indices is an array of numbers that are used literally as indices to subscript
an array of vertices. Therefore, one triangle will be formed from vertices[0],
vertices[1] and vertices[2], and the other one from vertices[1], vertices[2],
and vertices[3] (see Figure 3.3b).

(A) A square built from six Vertex objects (B) A square built from four Vertex objects

FIGURE 3.3: Usage of indexing
When not using indices, we use two different Vertex objects to define
the same vertex. In indexed square, two vertices are associated with

the same Vertex object.

3.2.2 The vertex shader stage

A shader is a code that runs on a GPU. Similar to C++ programs, shader has a "main"
function that serves as an entry point. It takes some data and outputs some data. It
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also can have access to special registers of shared memory on GPU. Our task here is
to define the "main" function, and it will be called for us by the GPU driver. It will be
run simultaneously in multiple threads for multiple data since GPU is designed for
such operations. There are different shader types for different purposes which work
with different data. Asthe vertex shader stage name claims, this type of shader
works with vertices (see Figure 3.4). Based on data we passed to IA, it assembles
primitives and feeds vertices data to the vertex shader.

FIGURE 3.4: Vertex shader usage scheme
Vertex shader code is simultaneously running on multiple cores of
GPU and processing vertices of primitives. It takes Vertex data as
input and return the structure which will be later fed to pixel shader

as input parameter.

Local space and world space

A game scene or level is just some location that can be mathematically represented
by many objects with their coordinates in the scene coordinate system. It is com-
monly referred to as a world space. However, as we know, 3D objects are not solid
items and consist of points (vertices). Thus we have to define the location for every
vertex. That means, if we want to draw the same object multiple times in different
places, we need to create a distinct object with its vertices, which means duplication
of data. Also, we might want to reuse the same object in other scenes. Again, it re-
quires recreating an object with coordinates relative to the new world. The solution
is pretty straightforward - to make 3D models in local space. All model points have
positions relative to their coordinate space. Each object has its own coordinate space
with the origin, for instance, in the object’s center.

Thus, when adding an object to the scene, we have to translate its points’ posi-
tions to world space (Figure 3.5). Since each point (vertex) can be reinterpreted as
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(A) (B)

FIGURE 3.5: Local and World spaces
Since we create an object relative to local space (A), later we have to

transform it to world space (B) in order to know how to draw

a vector, we have to find the position of this vector relative to world space. Fur-
thermore, suppose we have unit vectors that aim in axis directions. In that case, we
can multiply the coordinates of points of the object by the respective vector to get
its representation in world space. Mathematically, we can describe as having vector
pL = (x, y, z) in local space, and we want to find a pW = (x′, y′, z′) in world one.
uL, vL, wL are unit vectors alongside of axis. That is we can define p as following:

pL = xuL + yvL + zwL

And, if we know uW , vW and wW , then

pW = xuW + yvW + zwW

However, we also have points and not only vectors, so we want to save their
locations. Thus we introduce one more variable in our equation - the origin of the
local frame. Let us denote it QL. Now, we come to the following:

pL = xuL + yvL + zwL + QL

And if we have the coordinates of the origin relative world frame we can always
find pW = (x′, y′, z′):

pW = xuW + yvW + zwW + QW

See Figure 3.6 for geometry representation of the equation (for 2D case).
It is not very convenient to use two different equations, so we can handle them

by one equation by adding one more parameter w. In vectors we set it to 0 so it
removes part for changing a location. Setting it to 1, the equation will properly
transform points:

(x′, y′, z′, w) = xuW + yvW + zwW + wQW
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FIGURE 3.6: Change of point’s transformation
The geometry of finding the coordinates (x′, y′) of point p relative
to Frame B (world space) knowing coordinates of vectors u and v
(which aim, respectively, along the x− and y−axes of Frame A (local

space)), and origin Q relative to world space. Source: Luna, 2016

In fact, we can rewrite it in language of matrices:

[
x′ y′ z′ w

]
=
[
x y z w

] 
ux uy uz 0
vx vy vz 0
wx wy wz 0
Qx Qy Qz 1


And it gives us a matrix called a world matrix W:

W =


ux uy uz 0
vx vy vz 0
wx wy wz 0
Qx Qy Qz 1


Although this is a working way, it is not always easy to figure out the coordinates

of the local space origin and axes relative to the world space. A more common and
convenient way to define a world matrix is to use a sequence of transformation -
scaling matrix S to change the size of an object in the world, then a matrix of rotation
R which defines the orientation of the local space relative to the world one, and to
define the origin of the local space relative to the scene the translation matrix T is
used: W = SRT.

We have all objects in world space, but it is still just a geometrical representation
of data. So how do we show it on a 2D screen? We have to use a camera, just like
we were shooting a movie. Although our camera is virtual, it can "see" only limited
space. That volume is the part of the world that should be rendered and visible to
the player. The camera sits at the origin of its own local space called view space. The
change of coordinate transformation from world space to view space is called the
view transform, and the corresponding matrix is called view matrix.

If the origin, x−, y−, and z−axes of view space with homogeneous coordi-
nates relative to world space, are described, respectively, by QW = (Qx, Qy, Qz, 1),
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uW = (ux, uy, uz), vW = (vx, vy, vz), and wW = (wx, wy, wz), then, as we know from
3.2.2, we can change coordinates from local space to world space with the following
matrix:

W =


ux uy uz 0
vx vy vz 0
wx wy wz 0
Qx Qy Qz 1


Nevertheless, in this case, we want reverse effect - change coordinates from world
space to local one (view space). We have to use inverse W−1. Since the scale of
objects does not change when changing the coordinate system, we can ignore the
scale matrix: W = RT. This form simplifies computation of an inverse:

V = W−1 = (RT)−1 = T−1R−1 = T−1R

=


1 0 0 0
0 1 0 0
0 0 1 0
−Qx −Qy −Qz 1




ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

 =


ux uy uz 0
vx vy vz 0
wx wy wz 0
−Q · u −Q · v −Q ·w 1


When we defined a view matrix, we have to figure out how to construct it. Let Q
be the camera position and let w be the camera look direction. Both are relative
to world space. Furthermore, let j be the normalized "up" direction. The thing is,
sometimes xy-plane can be used as a "ground plane". But more common approach
is to use xz-plane for this purpose. We will do so too. Anyway, we need specify it:
j = (0, 1, 0). Now we use cross product to find the vector Which is orthogonal to
up direction and w. The latter describes one of axis of camera local space, that is we
will find the vector that describes the second "horizontal" axis:

u =
j×w
||j×w||

Having u and w, we can find v. Since they are orthogonal units vectors, their cross
product is a unit vector too and there is no need to normalize it:

v = u×w

Therefore, having camera position, look and up directions, we can derive camera
local space which the view matrix will be constructed from.

Projection and homogeneous clip space

Even though our camera is virtual, it still has some restrictions like a real one. It
can see only some specific volume, which is described by the frustum. Our task is
to project 3D geometry from the frustum to the 2D projection window, parallel to
xy-space. The center of projection coincides with a camera position at the origin of
the camera’s local space. In Section 5.6.3.1 of Luna, 2016 it is described how we can
define a frustum having a near plane n, far plane f , vertical field of view angle α,
and aspect ratio r. The near and far planes are parallel to the projection window and
xy-plane, so they can be described as a value along the z-axis (Figure 3.7 visualizes
it). The aspect ratio is given by the ratio of the width of the projection window to its
height.
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FIGURE 3.7: The camera’s view frustum
This is a view frustum shape of a camera whose look direction
goes alongside z−axis, and up direction goes in opposite direc-
tion to y−axis (since y−axis goes down in this example). Here,
the real resolution does not matter, so the height of projection
plane is set to 2, and width equals to aspect ratio s (s =
projection_width/projection_height). The projection plane itself is
in the middle (the blue one), and is placed at distance g from the ori-
gin (camera position). The farthest (gray) plane is far plane. Every-
thing beyond this plane is not projected onto the projection plane
(so, is not visible to a player). The nearest to the camera plane
(green) is near plane. However, this is not always the case, in fact
it is more common to encounter the system, where the near plane if
further from a camera than a projection plane. Everything, whose
z−position is lower than n (near plane’s z position) is not projected.

All three planes are orthogonal to z−axis. Source: Lengyel, 2019

A complete explanation of the perspective projection is presented in Section 5.5.1
of Lengyel, 2011. Thus, we will just provide a perspective projection matrix which
is used in Direct3D: 

2n
w 0 0 0
0 2n

h 0 0
0 0 f

f−n 1

0 0 −n f
f−n 0


Where n and f are, respectively, near and far planes, w and h are, respectively,

width and height of the projection screen.
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3.2.3 The geometry shader stage

The geometry shader takes primitives as an input. If we passed the list of triangles to
IA, the geometry shader would get three vertices that define a triangle. This shader
can destroy, create or tessellate geometry primitives and is used, for instance, to
create particles or cloth simulation.

The tessellation

The tessellation means dividing triangles of a mesh into smaller ones. Thanks to this,
the mesh becomes more detailed. It is useful, for example, when having complex
objects, animations, or creating more details when the camera is near to the object.
Figure 3.8 shows an example of tessellation.

(A) Before tessellation (B) After tessellation

FIGURE 3.8: Tessellation
After a tessellation a square still remains the same size, but now it
consists of more triangles (polygons). For instance, a waving (vertex-

based) animation can be applied to it now.

Stream output

After changing geometry, the data can be written back to memory, from where it
will be taken to the top of the pipeline. So, the new geometry will be processed
with previous stages and then rendered. This stage is not mandatory and will not
be exploited by us.

3.2.4 Clipping

If, after previous operations, some vertices go further than frustum boundaries, they
must be clipped. The intersection points will be taken as new vertices for primitives.
This stage is completely done automatically by hardware, and we do not have to
worry about it.
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3.2.5 Triangle traversal

Each triangle is broken into fragments by the rasterizer. Usually, each fragment cor-
responds to each pixel. This stage also interpolates the vertex data (position, nor-
mals, uvs, or others) to generate per-fragment corresponding attributes.

3.2.6 Z-Test

Pixel shaders (which we will talk about in the following subsection) are potentially
very computationally expensive. There is no sense in running it on pixels that are
further from us than other ones. Newer graphics cards discard such pixels before
calling pixel shader on them (older GPUs process pixels first and then discard un-
necessary ones).

3.2.7 Pixel shader

A pixel shader is sometimes also referred to as a fragment shader. It inputs an
interpolated vertices data (such as position, normal, or others) and uses it to calculate
the fragment’s color. It is very flexible and can have access to multiple textures. The
pixel shader is used for computing lightings, shadows, reflections, or other various
effects.

3.2.8 The output merger stage

This stage takes pixel fragments from pixel shader and runs various tests on them.
If tests are passed, it writes a pixel to the back buffer. This stage is also responsible
for blending. If an object is semitransparent or translucent, its pixels are mixed with
pixels of an object from the back using a special formula, which is not in our lists of
subjects for discussion.
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Chapter 4

Implementation (FRTEngine)

4.1 Architecture

We decided to call our engine FRTEngine. Every class mentioned in this chapter is
nested into a namespace frt. Each class has defined with a macros FRTENGINE_API
before its name. This macros unrolls to

#ifdef FRTENGINE_EXPORTS
#define FRTENGINE_API __declspec(dllexport)
#else
#define FRTENGINE_API __declspec(dllimport)
#endif

FRTENGINE_EXPORTS is pre-defined in FRTEngine project settings. That is, other
(game) projects do not have it. Thus, classes defined in base project we mark as
ones, that will be exported via dll (dynamic library). When header files of those
classes are included in derived projects, we tell a compiler that these classes’ imple-
mentations will come with dll.

On Figure 4.1 is shown the UML diagram of FRTEngine architecture. Only the
most essential class members and methods are listed. Even though it seems a bit
messy now, we will explore it step by step logically and understandably. We highly
recommend looking at our GitHub repository during or after reading this to under-
stand a concept better.

ITickable

Before we go to the heart of the project, let us discuss a class ITickable which is a
base class for almost half of the other classes in the project.

As will be shown in 4.3, some objects have Update() and Render() functions.
In fact, almost every object has them (or at least Update()). These methods are
called every frame. Update() is considered to calculate a new state of an object
and Render() roughly is meant to pass updated data to GPU. However, Render() is
quite a wide-meaningful term and it is used only in Graphics. Instead, other objects
have a method called PopulateCommandList().

Since most objects are capable of such functionality, we added a simple interface:

LISTING 4.1: Interface ITickable
class FRTENGINE_API ITickable
{
public:

virtual ~ITickable () = default;
virtual void Update () = 0;
virtual void PopulateCommandList () = 0;

};

https://github.com/nazariyb/FRTEngine
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4.2 Windows application

Before going to the root of the application - its entry point, and its interaction with
OS, let us observe the App class - the class which is created to be an entry point to
the logic of our application, "the main" class. It (technically, its instance) stores and
manages classes (their instances) responsible for fundamental parts of an applica-
tion. Those are: Window 4.2.1 - it does all work related to communication with OS.
It also owns a Graphics 4.4 which is responsible for rendering; GameWorld 4.5.3 - it
spawns, destroys and manages GameObjects 4.5.1. Besides other stuff, it also has a
static template function (see Listing 4.2) which allows to create an instance of the
class derived from App, that is GameApp - the class derived in project of game, for
example TetrisApp.

LISTING 4.2: ’Launch’ function of App
template <class T>
App* App:: Launch(HINSTANCE hInstance , HICON icon)
{

static_assert(std::is_base_of <App , T>:: value);
_instance = new T();
_instance ->Init(hInstance , icon);
_instance ->Run();
return _instance;

}

It is noticeable that we assign the newly created instance of the game app to
_instance field of itself: _instance = new T();. We do so because our App is con-
sidered to have only one instance over entire application, which is pretty obvious,
as far as App is associated with the application. Thus, we implemented it with the
design pattern Singleton1 in mind. In App’s constructor we create the GameWorld:
world = new GameWorld();. In Init method the Window (4.2.1) is created, and Time
(4.2.5) is initialized:

window = new Window(_windowWidth , _windowHeight , _windowName , icon);
Time::Init();

App::Run() function is pure virtual, so it must be overridden in derived class.
The one more important function is static void Shutdown();. It deletes App’s in-
stance and as result, its destructor is called, which in its turn deletes window and
world since they were allocated on a heap. And the last but not least two functions
that we want to mention are Update() and Render().

They both are evoked successively in a "while-true" loop (see Listing 5.3) in main
function. Here are their implementations:

LISTING 4.3: App::Update() and App::Render() implementations
void App:: Update ()
{

Time::Tick();
window ->GetGraphics ().Update ();
world ->Update ();

}
void App:: Render () { window ->GetGraphics ().Render (); }

We are going to discuss mentioned above functions in the following sections.

1https://en.wikipedia.org/wiki/Singleton_pattern

https://en.wikipedia.org/wiki/Singleton_pattern
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4.2.1 Window

Main function (entry point)

As we mentioned, we use Windows API for creating an application itself. First of
all, the entry point of such a program differs from standard C++ programs. It has the
following signature:

int WINAPI WinMain(
HINSTANCE hInstance , HINSTANCE hPrevInstance ,
LPSTR lpCmdLine , int nCmdShow

);

Here, WINAPI is typically defined to calling convention __stdcall. Argument
hInstance is called a "handle to an instance" and is used by the operating system
for executable identification. We will refer to it later. Argument hPrevInstance is
present only for backward compatibility and is always zero. The last two arguments
we will not use.

For more convenient debugging we have added custom Exception class and
throw its instances from anywhere is needed. Then we use MessageBox which is
provided by WinAPI to show message about an error occurred and exit the appli-
cation. As we saw in 4.2, Launch calls function Run which will be overridden in
derived class. This function also must contain "while-true" loop of the game to have
everything running properly. We will discuss the structure of the loop in Section 5.1
(Listing 5.3).

WinAPI window class

The next step is to register a window class which is nothing like a class in OOP
programming languages. Window class is a set of attributes, which includes linking
to hInstance. OS associates all these parameters with a name, which we can specify
when creating a window. WinAPI allows us to set various window attributes such
as title, width, height, location, etc. and a set of special flags that control available
window actions and styles. We also associate a window procedure with this window
which is basically a function with the following signature:

LRESULT CALLBACK MainWndProc
(

HWND hwnd , // handle to a window
UINT uMsg , // message identifier
WPARAM wParam , // first message parameter
LPARAM lParam // second message parameter

);

In MainWndProc we check message type and send it further if needed. For more
convenient handling of those events inside an application we use custom written
Events (4.2.2).

For convenience, we created a "wrapper" class for WinAPI Window. Thus, all
those initialization will be encapsulated by our Window’s methods. We will not de-
scribe them in detail. However, besides creating and handling a window (program)
on WinAPI level, it also owns Mouse, Keyboard and Graphics (We will talk about them
in the following sections). It probably will not be the best solution for big projects.
However, it works very well for our project, so this is the case when we should act
according to the design principle "Keep it simple, stupid" (KISS). This is not the only
place in our project where we apply this principle.
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4.2.2 Event system

When something meaningful happens in the game, it is referred to as an event. It
could be a player pressed a button, one object hit another, an explosion went off, or
something else. It is not convenient and makes code messy for an object to know
every other object, which should be notified when something happens, and notify
them. The solution is to have a special structure, which is commonly called an Event.
Rarely, command or message is used. This entity stores information about what hap-
pened, for example, what button was pressed. An event also has a list of listeners that
will be notified when needed. The significant advantage of such a system is that the
object which generates an event does not need to know what objects want to be noti-
fied. They care about subscribing to the desired event. The list of listeners means a list
of functions. When event is invoked it calls each listener. When an object subscribes
to an event it adds a listener to event’s list of listeners. More information can be
found in Section 16.8 of Gregory, 2018.

That is, each event instance will have its list of listeners, which in our case are
functions that must return nothing and take a pointer to Event. Such listeners can
be added using overloaded operator +=. Example of possible using:

LISTING 4.4: Event usage example
struct Object
{

static Event objectConstructedEvent;
Object () { objectConstructedEvent.Invoke (); }

};

Event Object :: objectConstructedEvent {};
//...

{
Object :: objectConstructedEvent += []( Event *) { std::cout << "One

more instance of type Object constructed !\n"; };
Object o1, o2;

}

Output:
One more instance of type Object constructed!
One more instance of type Object constructed!

4.2.3 Input

The place where the events are exploited the most at the moment is the Input system.
As we mentioned at the beginning of 4.2.1, WinAPI sends us system events (mes-
sages) for everything. And in our Window we process those messages. Then based
on message’s type we can know whether it is an input event. There are a bunch of
predefined types in WinUser.h (see Listing 4.5 for examples) (from Windows SDK). If
message type matches one of these types, we create and delegate a special MouseEvent
or KeyboardEvent.

LISTING 4.5: Example of input event types
#define WM_KEYDOWN 0x0100
#define WM_KEYUP 0x0101
#define WM_CHAR 0x0102
#define WM_MOUSEMOVE 0x0200
#define WM_LBUTTONDOWN 0x0201
#define WM_LBUTTONUP 0x0202
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#define WM_LBUTTONDBLCLK 0x0203

Keyboard

Firstly, we defined a KeyabordEvent class, which is pretty much like an Event, but
contains additional information. It has type event (Press/Release a key), code of
button which was interacted with, and character if pressed button is a character key.
There is also a class for handling all keyboard events. It contains states of all keys
and all types of events.

LISTING 4.6: Class Keyboard (shorten version)
class FRTENGINE_API Keyboard
{
public:

KeyboardEvent onKeyPressedEvent;
KeyboardEvent onKeyReleasedEvent;
KeyboardEvent onCharEnteredEvent;
inline bool IsKeyPressed(unsigned char keycode) const noexcept;

};

It is possible to subscribe to those events from somewhere and do anything
needed when input occurs:

keyboard.onKeyPressedEvent += [this] (Event* event)
{

// we receive a pointer to base class event
// which actually refers to KeyboardEvent , so we cast it
KeyboardEvent* ev = static_cast <KeyboardEvent *>(event);

if (ev->GetKeyCode () == ’W’))
{

// move tetromino down
// (we will talk more about it later)
tetromino ->MoveY(-2.f);

// write log to file
Loger:: DebugLogInfo("Tetromino moved down");

}
}

We talk about logging in 4.2.4.

Mouse

As far as for keyboard, we have classes for Mouse and MouseEvent. The latter con-
tains type which could be one of (Press, Release, WheelUp, WheelDown, Move, EnterWindow,
LeaveWindow), and MouseState (POINTS is a struct from Windows SDK, it consists of
two shorts, for x and y):

LISTING 4.7: Class MouseState
enum class FRTENGINE_API MouseButtonType : uint8_t
{

None , Left , Right , Middle , Other
};
struct FRTENGINE_API MouseState
{

MouseButtonType buttonType;
POINTS pointerPosition;

};



4.2. Windows application 23

We will not list here a source of Mouse, since it is pretty big. Nevertheless, it contains
event instances for all of MouseEvent types (just like a Keyaboard contains different
KeyboardEvents). It also stores the last MouseState.

4.2.4 Logging

Since we make an application and not a console program, our window is created for
rendering a picture for a game, and there is no place for logging there. Moreover,
we do not make a game editor program where we could place a window with logs.
However, logging is crucial both for development and for the released game. We
decided to make logging to a file - fast in implementation, convenient in use. We
made three types of log - Info, Warning, and Error. Also there are two sorts of each
type - Debug and Release (or Deploy). The former is not written to file if the project
configuration is "Release." Even for more gain, we also print the date and time of the
log. Example:

RLS 2021:04:30 08:26:37 [Info] Create App
RLS 2021:04:30 08:26:37 [Warning] Could not open file ’texture.png ’,

using default values
DBG 2021:04:30 08:26:37 [Error] Division by zero
RLS 2021:04:30 08:26:37 [Info] Exiting from app with code 0

DBG stands for Debug which means this message would not be printed in "Release"
configuration. And RLS means Release.

4.2.5 Time

One more vital part of every game engine is a time library. As we saw in 4.2.4, one
of its possible usages is to print time in logs to be more aware of when something
was going on. We also will use it to drop tetromino every few seconds automatically.
Since our needs are pretty simple, so the time library is simple too:

LISTING 4.8: Class Time
class FRTENGINE_API Time
{
public:

static void Init();
static void Tick();
inline static float GetSecondsSinceFirstTick ();
inline static float GetDeltaSeconds ();
static LPSYSTEMTIME GetCurrentSystemTime ();

private:
static float _secondsSinceFirstTick , _deltaSeconds;
static std:: chrono :: steady_clock :: time_point _lastTickTime;

};

Init() function stores current time std::chrono::steady_clock::now() to field
_lastTickTime. Tick() is called after each frame is rendered and stores/calculates
values of _secondsSinceFirstTick and _deltaSeconds. The latter represents how
much time has passed since the previous tick. GetCurrentSystemTime() returns a
special structure which contains current time in convenient format. It has a sepa-
rate field for every part of date, that is for current year, current day, and so on. The
smallest date part is has is current milliseconds. This structure is used in logging
(4.2.4).
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4.3 Render

4.3.1 Camera

Our Camera does pretty much that what we discussed in 3.2.2. And as we remember,
to figure out frustum, and as a result, construct a view matrix, it is mandatory to have
cameraposition, cameralookdirection, and updirection. So we store those parameters:
DirectX :: XMFLOAT3 _position , _lookDirection , _upDirection;

They will be set on initialization and will be used to form a view matrix. Conve-
niently, DirectX already has matrix creation implemented:
DirectX :: XMMATRIX Camera :: GetViewMatrix ()
{

return XMMatrixLookToRH(XMLoadFloat3 (& _position), XMLoadFloat3 (&
_lookDirection), XMLoadFloat3 (& _upDirection));

}

Furthermore, we also wrap DirectX function for getting a projection matrix:
DirectX :: XMMATRIX Camera :: GetProjectionMatrix(float fov , float

aspectRatio , float nPlane , float fPlane)
{

return XMMatrixPerspectiveFovRH(fov , aspectRatio , nPlane , fPlane);
}

Moreover, we provide a possibility to change camera position and rotation in
run-time.

4.3.2 Graphics resource

GraphicsResource does not do anything by itself, but is a helpful class. It derives
from ITickable (4.1) and stores an address of a Graphics instance. It is also a friend
of Graphics so it can provide (delegate) access to some of Ggraphics fields. For
instance:
inline ID3D12GraphicsCommandList* GetCommandList ()
{ return _owner ->_commandList.Get(); }

4.3.3 Vertex buffer

VertexBuffer is publically derived from a GraphicsResource. Its task is to pass
an object’s vertices to the Input assembler, just like we described in 3.2.1. Since
the vertex structure can be anything, we defined VertexBuffer’s constructor as a
template:
template <typename V>
VertexBuffer(Graphics* owner , V* vertices , UINT verticesNum) :

GraphicsResource(owner) { // ... }

For this and for most of other classes we deleted default constructors, since we
do not need them.

VertexBuffer also contains the following fields:
ComPtr <ID3D12Resource > _vertexBuffer , _vertexBufferUploadHeap;
D3D12_VERTEX_BUFFER_VIEW _vBufferView;

ComPtr<T>is just a smart pointer from Windows SDK. ID3D12Resource is encap-
sulation of ability of CPU and GPU to write and read from physical memory. It
provides an abstraction for working with raw data. D3D12_VERTEX_BUFFER_VIEW is a
struct from d3d12.h library:
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typedef struct D3D12_VERTEX_BUFFER_VIEW {
D3D12_GPU_VIRTUAL_ADDRESS BufferLocation;
UINT SizeInBytes , StrideInBytes;
} D3D12_VERTEX_BUFFER_VIEW;

D3D12_VERTEX_BUFFER_VIEW is used to work with heaps (ID3D12Resource), D3D12_GPU_VIRTUAL_ADDRESS
is unsigned 64-bit integer. After setting up heaps and scheduling them for upload-
ing to GPU, we have to save description of all that data to _vBufferView at the end
of the constructor:

_vBufferView.BufferLocation = _vertexBuffer ->GetGPUVirtualAddress ();
_vBufferView.StrideInBytes = vertexSize; // sizeof(V)
_vBufferView.SizeInBytes = vertexBufferSize; // verticesNum *

vertexSize

Then, when the Render() method of the Graphics will be called, it will call
PopulateCommandList() of GameWorld, which will call PopulateCommandList() of
every GameObject’s instance. Each GameObject’s instance will call PopulateCommandList()
of each GraphicsResource it has. And then we comes to the VertexBuffer:

inline virtual void PopulateCommandList () override { GetCommandList ()->
IASetVertexBuffers (0, 1, &_vBufferView); }

We will talk later about what is _commandList. However, we are already pretty
aware about IASetVertexBuffer(...), because IA in its name stands for InputAssembler
which is known from 3.2.1. So, here we give it vertices that will be used to construct
primitives. Let us take a look on this function’s signature (it is defined in d3d12.h):

void IASetVertexBuffers(
UINT StartSlot ,
UINT NumViews ,
const D3D12_VERTEX_BUFFER_VIEW *pViews

);

StartSlot is basically an index for device’s data where to write buffer, we always
write to the first slot (with 0 index). Since we pass only one D3D12_VERTEX_BUFFER_VIEW,
we set NumViews to 1.

4.3.4 Index buffer

IndexBuffer is very similar to VertexBuffer except we do need it to be templated:

class FRTENGINE_API IndexBuffer : public GraphicsResource
{
public:

IndexBuffer(Graphics* owner , UINT8* indices , UINT indicesNum);
inline virtual void PopulateCommandList () override { GetCommandList

()->IASetIndexBuffer (& _indexBufferView); }
protected:

ComPtr <ID3D12Resource > _indexBuffer , _indexBufferUploadHeap;
D3D12_INDEX_BUFFER_VIEW _indexBufferView;

};

Instead of D3D12_VERTEX_BUFFER_VIEW, we have D3D12_INDEX_BUFFER_VIEW:

typedef struct D3D12_INDEX_BUFFER_VIEW
{
D3D12_GPU_VIRTUAL_ADDRESS BufferLocation;
UINT SizeInBytes;
DXGI_FORMAT Format;
} D3D12_INDEX_BUFFER_VIEW;
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Format is in some way equivalent of StrideInBytes from D3D12_VERTEX_BUFFER_VIEW.
It defines which type of data is used and of what size. Since for setting indices we use
the array of UINT8 (unsigned 8-bit integer), we set Format to DXGI_FORMAT_R8_UINT.
R does not mean anything here, it is just for backward compatibility. 8 stands for size
of each element in bits.

4.3.5 Constant buffer

We did not talk about ConstantBuffer in 3.2, as far as it does not influence the ren-
dering directly, and we do not have to pass it to InputAssembler. However, it is still
a pretty crucial thing, so we will take a close look at it. ConstnatBuffer is a great
example of GPU resource ID3D12Resource. We will process/compute some data on
CPU and put in ConstantBuffer which shaders can read from. For example, we
will put there world, view and projection matrices, light and material settings. That
is everything that is needed to calculate positions of vertices and colors of pixels.

Ideally, it is better to use different buffers for different purposes. For example,
use one buffer for light constants since they are the same for all objects on the scene
and another buffer for per-object data (rotation, translation, or others). However, for
simplicity, we will use only one buffer SceneObjectConstatntBuffer. Every object
will own a copy of per-scene constants, which is pretty OK in our case. Moreover,
it even helps to optimize data usage. Due to hardware specifics, the data block
passed through the constant buffer has to be 256-byte aligned. That is, if our data
weights less than 256 bytes, other (256 - ourDataSize) bytes will be used for nothing.
So, if the total size of the constants is less than 256 bytes, it is better to have one
256-bytes buffer instead of two ones. However, this method has a disadvantage -
some constants that are permanent constants through the entire game lifetime will
be updated every time we update per-object constants. Nevertheless, that will do
for us.

Firstly, we have to define a constant buffer struct that we will work in code
with:

LISTING 4.9: Constant buffer structure
struct SceneObjectConstantBuffer
{

DirectX :: XMFLOAT4X4 model , viewProj;
DirectX :: XMFLOAT3 cameraPosition;
FLOAT roughness;
DirectX :: XMFLOAT3 lightPosition1;
FLOAT falloffStart;
DirectX :: XMFLOAT3 lightPosition2;
FLOAT falloffEnd;
DirectX :: XMFLOAT3 lightColor;
float progress;
DirectX :: XMFLOAT4 ambient , diffuseAlbedo;
DirectX :: XMFLOAT3 FresnelR0;
FLOAT padding [5];

};

Besides we align the entire strcut size, we also should align its attributes by
16 bytes. The main reason why do we do this is that C++ packing to heap rules may
differ from shader reading form heap rules. That is, the C++ compiler may pack such
fields

DirectX :: XMFLOAT3 lightPosition1 , lightPosition2;
FLOAT falloffStart , falloffEnd;
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in the following way:

lightPosition1.x, lightPosition1.y, lightPosition1.z, 0,
lightPosition2.x, lightPosition2.y, lightPosition2.z, 0,
falloffStart , falloffEnd , 0, 0

However, if shader will try read read it as following:

lightPosition1.x, lightPosition1.y, lightPosition1.z,
lightPosition2.x, lightPosition2.y, lightPosition2.z,
falloffStart , falloffEnd , 0, 0

everything will be messed up. Thus, it is a rule of thumb to manually arrange data
in constant buffers.

Now, it is time to discuss our ConstantBuffer class. It encapsulates interaction
with DirectX constant buffer. Firstly, we create heap, that will be uploaded to GPU.
Therefore, we set the property D3D12_HEAP_TYPE_UPLOAD, then resource descriptor
is created, it stores the size of the buffer (which is divisible by 256). Then we map
the memory of SceneObjectConstantBuffer (typename C) to upload heap. Thus,
if we change _buffer, GPU will instantly get those changes. THROW_IF_FAILED is
our macros which throws a custom exception when something goes wrong. The ex-
ception will be caught in 4.2.1. The next step is to create the constant buffer view
in ID3D12DescriptorHeap. So we use cbvSrvHandle to set offset in amount of al-
ready created buffers (+ amount of textures, because they both are stored in the
same DescriptorHeap) to write the newly created constant buffer view to the cor-
rect place. Since the upload heap is mapped to the _buffer, all we need to do to
update its data is to update _buffer. In destructor we want to unmap the heap and
free memory.

4.3.6 Mesh

Mesh class is considered to store geometry data about an object - its vertices and
indices, Index-, Vertex- and ConstantBuffers to upload geometry data to GPU. It
also has some additional data, such as its position in the world space or color. This
is all data it stores:

LISTING 4.10: Mesh’s data
std::vector <ConstantBuffer <SceneObjectConstantBuffer >*>

_constantBuffers;
IndexBuffer* _indexBuffer;
VertexBuffer* _vertexBuffer;
float _radius;
DirectX :: XMFLOAT3 _worldPosition;
static const unsigned int _vertexBufferSize , _indexBufferSize;
Vertex _vertices[_vertexBufferSize ];
static const std::vector <unsigned char > _indices;

Mesh has several methods for initialization and updating buffers. Some of them
are: InitializeGraphicsResources(...) and InitializeConstantBuffers(...),
UpdateConstantBuffer(...) and PopulateCommandList(). Besides, Mesh is respon-
sible for setting uvs (this is done during specifying vertices positions) and calculating
normal for each triangle. To do so, we firtsly have to compute two vectors that lies
on triangle’s edges: u = p1 − p0, v = p2 − p0 for the triangle given by its vertices
p0, p1, and p2. Then the face normal is calculated as following:

n =
u× v
||u× v||
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It is saved to Vertex::normal field. The perfect explanation of calculating normals
is given in Section 7.7.1 of Lengyel, 2011.

There are two classes that inherits from Mesh: Cube and Plane. They generate
geometry data which forms, respectively, cube and plane (actually, a parallelepiped).

4.3.7 Graphics (rendering) pipeline

Class Graphics does a lot of DirectX-related work which worth a separate paper to
be discussed in. We will make a brief overview of its functionality. On initializing
phase, it initializes the Camera, loads pipeline and assets. In LoadPipeline() it de-
scribes and creates a swap chain, a command queue, and create descriptor heaps.
In LoadAssets() root signature is created. It also creates the pipeline state which
includes loading shaders. Here, we specify, how to pass data to the vertex shader:

D3D12_INPUT_ELEMENT_DESC inputElementDescs [] =
{

{" POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT , 0, 0,
D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA , 0},

{" NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT , 0, 12,
D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA , 0},

{" TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT , 0, 24,
D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA , 0},

};

"POSITION", "NORMAL", and "TEXCOORD" are special semantics for shader to know
where its data is. We already met DXGI_FORMAT in the Section 4.3.4. This one type
DXGI_FORMAT_R32G32B32_FLOAT means we are dealing with three 32-bit numbers of
type float. This is a format of POSIITON and NORMAL; TEXCOORD consists of two num-
bers.

We define three different pipeline states because we have three types of ob-
jects.

In Update function we wait for previous frame to be rendered. In Render we
populate command list and execute command queue.

4.4 Graphics

Firstly, we worked with textures. This functionality is still present and is able to
work. However, we have discovered a great field for experiments in shaders. We al-
ready discussed what vertex shader (3.2.2) and pixel shader (3.2.7) are for. Now,
let us take a look at how to implement them. They are written in High-Level Shading
Language (HLSL)2. We use the latest version 5.0.

4.4.1 Vertex shader

The first thing we do here is defining the structure of the constant buffer in the same
way as in the Listing 4.9. Names do not need to match, though. Here, we use
float4x4 type to represent a matrix of size 4 by 4, and floatN for vectors, where
N is dimension of vector and can have value 2, 3 or 4. For scalars float is used.

register(b0) points at which register we put this buffer. Vertex shader’s main
function has the following signature:

PSInput main(float3 position : POSITION , float3 normal : NORMAL , float2
uv : TEXCOORD)

2https://en.wikipedia.org/wiki/High-Level_Shading_Language

https://en.wikipedia.org/wiki/High-Level_Shading_Language
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PSInput is a custom defined structure. Vertex shader creates, initializes and
returns it. Later it will be passed to the pixel shader. Inside the shader we do
what we described in 3.2.2. Transform coordinates to world space. We need the
4th element to be 1 because it is a point and we want to save its location during
transformation. After transformation ’w’ is not needed anymore.

PSInput result;
float4 positiomWorld = mul(float4(position , 1), model);
result.positionWorld = positionWorld.xyz;

Then transform normal without saving its position relative to world since it is a
direction.

result.normal = mul(normal , (float3x3)model);

Calculate positionnrelative to homogeneous space

result.positionHomogeneous = mul(positionWorld , viewProj);

Construct custom-defined structures Light and Material and save them to result.

4.4.2 Pixel shader

We have three different pixel shaders for different types of objects: FloorPixelShader.hlsl,
BlockPixelShader.hlsl, and BoardWallPixelShader.hlsl. The shader for the floor
is almost the same as the one for blocks, except some light constants differ. So we
will skip FloorPixelShader.hlsl here.

BlockPixelShader.hlsl

In pixel shader’s signature we have to specify special semantic SV_TARGET, so GPU
will be able to associate its output with memory where pixel color should be saved.

float4 main(PSInput input) : SV_TARGET

Since the triangle traversal stage 3.2.5 does not know whether it interpolates normal
or texture coordinates, it will not renormalize a normal if the latter becomes a non-
unit vector after the interpolation. So, we have to do it by ourselves.

input.normal = normalize(input.normal);

Then we calculate direction to the camera:

float3 toCamera = normalize(input.cameraPosition - nput.positionWorld);

Then we calculate lightings (4.4.3) and return a resulting color.

BoardWallPixelShader.hlsl

LISTING 4.11: Pixel shader for board walls
float4 main(PSInput input) : SV_TARGET
{

const float t = InverseLerp(input.progress , input.progress + 0.1,
input.uv.y);

const float4 outputColor = lerp(float4 (0.38, 0.66, 0.49, 1), float4
(0.92, 0.32, 0.38, 1), saturate(t));

// the same code as in BlockPixelShader.hlsl:main (...)

return litColor;
}
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InverseLerp(float a, float b, float v) is an inverse linear interpolation,
that is it returns interpolation weight given an interpolated value v on segment [a, b]:
w = v−a

b−a ;
input.progress indicates our progress on level, range of its values is from 0.0

to 1.0. input.uv.y means position of a fragment along y-axis, in range from 0.0 to
1.0. saturate() clamps value to range from 0.0 to 1.0. Therefore, t will be equal
to 0 if position of pixel (in percent, along y-axis) is less than or equal to percent of
progress. If fragment’s position is in range from progress to progress + 10%, t will
be equal to (pixel position - progress) * 10 and will lie in range 0.0 < t < 1.0.
And, finally, if fragment y-coordinate is grater than progress t will have value of
1.0. If we then linearly interpolate between two colors based on value t we will get
a progress bar with gradient transition with length 10% of object’s length. Figure 4.2
shows how do walls look like when progress is 30% - about 30% of wall along its
height is green, the rest - is red.

4.4.3 Lighting

Even though the lighting model is very simplified, we will take a quick look at how
it works. We will not cover topics that we do not use.

Ambient lighting

In the real world, one of the light sources that illuminate objects is indirect light.
That is the light that bounced of some other objects. Until a few years ago, it was
almost impossible to compute all those bounds in real-time. Even though now there
is hardware capable of doing such a task, it is still costly.

One of the steps to achieving a similar effect to the one we have in the real world
is to add ambient lighting. It is just a number that we predefine, and it is considered
an amount of undirectional light that the object receives. Then an object color is just
multiplied by this number: input.ambient * input.material.DiffuseAlbedo.

Specular lighting

Some light reflects when it hit the surface, and some refract. Reflected rays are re-
ferred to as specular light. Such light reflects in a specific direction, so it may not
travel to the eye (camera). Thus, this type of light is dependent on where do we
watch it from. Its level of "spreading" depends on the roughness of the surface. The
rougher material is, the more scattered the reflected light is.

Point light

In this project, we used only a point light analog to a light bulb from the real world. It
illuminates in all directions. This light loses its intensity depending on the distance.
A simple way to calculate it is to use a linear falloff function:

attenuation =
f allo f f End− distanceToLight

f allo f f End− f allo f f Start
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Then clamp it to range [0, 1]:

attenuation =


1 attenuation > 1
0 attenuation < 0
attenuation otherwise

On Figure 4.3 is shown how does the flat surface with a low level of glossiness
looks like.

4.5 Game world

4.5.1 Game Object

We implemented a simple abstract class to identify every object that can be placed
into a scene. It implements interface ITickable and declares two new methods:
InitializeGraphicsResources(...), InitializeConstantBuffers(...).

4.5.2 Mesh pool

All that buffers creation, uploading, and other things are unjustifiably expensive
in terms of CPU/GPU time if we create and delete objects every few seconds and
the total amount of objects is not too big. Whether it is big or not depends on the
complexity of objects. Well, puzzle games mostly have a small number of simple
objects. Thus, it will be much more efficient to instantiate all those objects on start
and hide/move away them (the former is preferable). When we need an object to be
on the scene, we just show it.

The solution we chose is to create MeshPool, which creates a specified amount
of instances of Cube (since it operates with pointers to Cube’s base class Mesh, it can
easily be changed to be a template, so it will be able to create a pool of instances of a
specified type). It is also responsible for their rendering and destruction.

LISTING 4.12: Most relevant parts of Mesh Pool manager
class FRTENGINE_API MeshPool : public GameObject
{
public:

pair <Result , vector <Mesh*>> GetFreeMeshes(unsigned int amount);
void ReleaseMesh(Mesh* mesh);

private:
vector <Mesh*> _meshes;
vector <bool > _meshUsageFlags;

};

Any other game object can "ask" MeshPool for some meshes. If there are enough
meshes (cubes), game object will receive them, otherwise error code NotEnoughFreeMeshes
from enum Mesh::Result will be returned. When game object does not need a cube
anymore, it can give it back to MeshPool passing it into a function ReleaseMesh(Mesh* mesh).
MeshPool will mark in the _meshUsageFlags that mesh with a specific index is now
free and access to it can be granted to other game objects.

4.5.3 Game world

It is not rational and bug-producing to spawn game objects from anywhere. We
add an object which will help us to spawn and destroy GameObjects, and will call
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their Update() and PopulateCommandList() methods every frame. In Listing 4.13 is
shown declaration of some of its functionality.

LISTING 4.13: Game World manages lifetime of Game Objects
class FRTENGINE_API GameWorld : public ITickable
{
public:

template <typename T, class ... Args >
T* SpawnObject(Args &&... args);
void DestroyObject(GameObject* object);

// implements interface ITickable ...
protected:

std::vector <GameObject*> _gameObjects;
};
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FIGURE 4.1: FRTEngine architecture.
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FIGURE 4.2: Board walls are progress bars

FIGURE 4.3: The surface lit by two point lights



35

Chapter 5

Usage example - Tetris

5.1 Tetris App

Firstly, we have to create a "main" class. That is GameApp, and since we are making a
Tetris, it is called TetrisApp. In Listing 5.1 are shown some of its functions.

LISTING 5.1: Tetris App
class TetrisApp : public App
{
public:

int Run() override;
void Update () override;

// resets a progress of a level and spawns new tetromino
void Start();

// resets a progress of a level , clears a board ,
// and deletes a tetromino
void Reset();

};

As we stated in 4.2, it is mandatory for every class, derived from App, to imple-
ment the Run() method. So let us discuss what it does. We have the instance of
our SceneObjectConstantBuffer as static member of Tetromino. Therefore, when
the app starts, we set some common values, such as light constants or camera posi-
tions. Furthermore, we do not need to do it whenever we want to update an object’s
constant buffer.

Then, we spawn some objects (world is created in App’s constructor 4.2):

LISTING 5.2: Spawn game objects in scene
world ->SpawnObject <BoardBox >();
// amount of cubes to create is 10 columns * 20 rows
_meshPool = world ->SpawnObject <MeshPool >(10u * 20u);
// set board size to has 10 columns and 20 rows with cell size 2

_board = world ->SpawnObject <TetrisBoard >(10u, 20u, 2.0f);
tetromino = _board ->SpawnTetromino(world , _meshPool , Levels[

_currentLevel ].color);

Our next step is to setup necessary handlers for input events. For instance, if we
press escape, we exit the app:
window ->keyboard.onKeyReleasedEvent += [this , &running ]( Event* event)
{

KeyboardEvent* ev = static_cast <KeyboardEvent *>(event);
if (ev->GetKeyCode () == VK_ESCAPE) running = false;

};

After all handlers are assigned, some more initializations follows. When every-
thing is ready, we start a game:
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LISTING 5.3: Game main loop
while (running)
{

if (const std::optional <int > ecode = Window :: ProcessMessages ())
return *ecode;

Update ();
Render ();

}

If if statement fails, it means something when wrong while processing Windows (OS)
events. Therefore, the app is terminated.

5.2 Tetromino and Tetris Board

Even though these classes are pretty massive, we will not talk much about them since
they are just an implementation of a part of the logic of the original Tetris game 1,
and of tetrominoes (Tetriminoes) 2 based on API provided by FRTEngine.

5.3 Gameplay

As expected, there are seven types of tetrominoes that are randomly chosen and
spawned when needed. They fall by themselves every several moments (depending
on a level). A player can rotate a falling tetromino clockwise or counterclockwise,
accelerate its falling speed or instantly drop. If one of the board lines is full-filled
by blocks (parts of tetromino), it disappears. If such a case occurs, each block from
above is moved down precisely by the amount of cleared lines (gravity does not
apply). There are ten levels in the game. The color of tetrominoes indicates the
change of level. Each subsequent level makes tetromino falling faster. To reach
the next level, three lines (a small number is chosen to simplify testing) should be
cleared. Progress bar of level progression is built in board walls.

1https://en.wikipedia.org/wiki/Tetris
2https://tetris.fandom.com/wiki/Tetromino

https://en.wikipedia.org/wiki/Tetris
https://tetris.fandom.com/wiki/Tetromino
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Chapter 6

FRTEngine vs Unity

Due to its simplicity, Unity is widely used for making games that do not have big
and complex worlds and tones of content. Puzzle games fall under the description.
Therefore, we decided to reproduce Tetris 3D in Unity. We chose not to completely
copying a game logic since it will not make almost any difference. Nevertheless,
we completely copied the project’s architecture to C# - that is, MeshPool, Tetromino,
TetrisBoard, TetrisApp, and analog for Mesh. We also reproduced a scene and walls
(Figure 6.1). We added a custom shader to the walls to make the progress bar (how-
ever, we turned off the lighting for them). Two point lights are placed on the scene
as well. Tetrominoes fall and land and can be moved. That is, the "heavyweight"
part is reproduced, as shown in Figure 6.2. We used the default setting for building
a project, with the target platform Standalone.

FIGURE 6.1: Scene hierarchy in Unity project

We made a performance comparison in a pretty straightforward way, which is
accessible for every player. We started both games simultaneously and watched re-
source usage in TaskManager. The numbers were very stable during runtime, and
Figure 6.3 shows them. We see that game made with FRTEngine uses a bit more
GPU resources than Unity’s one. Although it may be a deviation, this probably can
be solved by tweaking a rendering pipeline. FRT (FRTEngine) uses as one and half
times much as Unity. In fact, it is not a surprise since, for simplicity, we sometimes
sacrificed memory usage optimization. Even though not all game mechanics (all
game logic including positions calculations and various conditions checking is run
on CPU) are implemented on Unity’s version, it uses about thirteen times more re-
sources.

Nevertheless, performance is pretty much acceptable and roughly can be con-
sidered equal for both games. However, as we mentioned earlier, one of the biggest
disadvantages of such game engines as Unity is that they bring into the project a
plethora of tools, libraries, or features, that are not actually used. So let us take a
look at the size of output files of both programs. We will take into account all neces-
sary files needed for running a game, except system dlls. All binaries of the game
made with FRT take the place of size 394 KB. While all files needed to run the game
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FIGURE 6.2: Tetris 3D made with Unity

FIGURE 6.3: FRTEngine and Unity performance comparison
The entry which has a Unity icon represents a game made with Unity

built with Unity (binaries + additional files) are of size 57.5MB, which is almost one
and half hundred times bigger than ours.
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Chapter 7

Conclusion

7.1 Brief summary

We researched topics about Windows programming and 3D graphics programming.
Furthermore, we combined received knowledge and implemented our game engine.
We made the Teris-like game with our engine. Then we made a comparison with an-
other game engine, Unity. Even though there are still places for improvements and
optimization in FRTEngine, it can already rival Unity in performance when compar-
ing features it is capable of. Moreover, the game made with FRT outweighs Unity
in disk space amount required. Consequently, we demonstrated our idea that the
specialized solution for simple games works better than the universalized one.

7.2 Further improvements

We want to add some new features in the future. For example, loading models from
files (such as .fbx), shadowing, level editor, convenient multithreading- and math-
libraries. To make the engine more flexible, we consider redesigning its architecture.
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