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“The First Law: Performance drives success, but when performance can’t be measured, net-
works drive success.”

Albert-L4szl6 Barabasi
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Effectivity of various vaccination scenarious on scale-free networks

by Mykola KYRYCHENKO
Abstract

Nowadays because of technological progress many fields of study get a second
wind. This is because many of them need complex computations and a lot of fea-
tures were analysed at the level of the idea. In my opinion networks are one of them.
Alongside with technological progress many fields such as social networks, finan-
cial networks and computer networks are developing. Almost all the spheres of life
touch those fields. Because of this connectivity many concepts could be considered
under the perspective of networks. This perspective can explain many common con-
cepts in the math language. Many common questions can be answered by numbers
and those answers are more accurate. Moreover the fields considered as networks
have a lot in common and the leading ideas of one sphere could be applied to the
other sphere.
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Chapter 1

Introduction

In this work we analyse the effectiveness of various vaccination scenarios on scale-
free networks. Epidemic spreading has been a highly discussed topic recently with
millions of people dying every year due to epidemics. The importance of the topic
has been further proven by COVID pandemic, with minor slowdowns of the pan-
demic saving numerous lives. Spreading of the epidemic was analysed with help of
complex networks. We are simplifying complex networks by representing them as
graphs with nodes being individuals and links representing individuals’ relations.
Each individual(node) is described by a specific state at a given time. Those nodes
and edges were viewed under cellular automata topology. In other words we will
consider the state of each individual (agent-based stochastic approach) and a spread-
ing process via predefined rules. We have implemented many vaccination methods
on the different networks and models. Spreading processes behave differently ac-
cording to the generation method but have many features in common. For better
understanding of those features we implemented different compartment models to
enhance understanding of spreading processes. The goal of this work is to anal-
yse the spreading processes using various network types. Consequently, to discover
patterns and identify ways to slow down the spreading.

1.1 Spreading processes

One of the options to slow down the pandemic is to figure out the factors deter-
mining speed of spread and influence those factors. This could be done via mathe-
matical modelling of the network. In Alun L.Lloyd and Robert M.May paperLloyd
and May, 2001 authors analyse the spreading processes of computer viruses as well
as biological viruses. Common features were found to unite both spreadings under
one concept. The concept to study epidemic dynamics and spreading processes was
called compartmental models. A compartment model provides mathematical tools
to study transformation between different compartments of a system. Kermack and
McKendrick layed a foundation for epidemics modelingKermack and McKendrick,
1927. The model is created using following steps. All individuals in a network are
labeled according to the model parameters we chose. Speaking in terms of graphs,
nodes of a graph are labeled with predefined values. At the same time, nodes might
change their states and labels via predefined scenarios. Those scenarios and the state
changing are described by simple differential equations with values 3 and y.

B > 0is the contact rate. This rate shows how many susceptible individuals
could be infected by one infected individual during a given period of time with the
whole population being susceptible except one individual. Basically it represents the
probability of transmitting infection between infected and susceptible individuals.
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v > 0is a recovery rate. Basically it is a probability for an infected individual to
recover. It can also be viewed as the average duration of a disease (an average time
an individual needs to recover). A basic reproduction number Ry = /7 is a ratio
that shows the expected proportion of infected individuals in a population where all
individuals are susceptible except one Dietz, 1976.

For example, let’s consider a kettle with water as a closed system. For a period of
time we are boiling it. At the beginning, all water molecules are in a state W-water.
During the boiling process some of the W entities with some probability turn into
steam and change its state to S. Worth mentioning that S entities can not turn back
into W because a steam in such environment can not transform back to water (the
transport rule of a compartment model). At the end of the process all molecules are
in state S. In this work we are considering SI, SIS and SIR models. Linda J. S. Allens
workAllen, 1994 and A. Lajmanovich and J. A. YorkeLajmanovich and Yorke., 1976
proposed a deterministic model in a discrete-time case alongside with defining the
different compartment models which are implemented in this paper.

1.1.1 SImodel

The basic and the simplest model is named SI model according to the two possi-
ble states which individuals might have (S-susceptible and I-infected). This model
is used to describe micro parasitic infections where individuals don’t get immunity.
It means that individuals never recover and have lifelong infections. The model is
considered during some time T. Let’s consider a case with a static predefined popu-
lation of size N. Most individuals initially are in a state S, the predefined number of
individuals starts at I. In any given time 0 < t < T the following rule takes place.

S(t)+I(t) =N

This means that a fraction of susceptible individuals is proportional to the fraction
of the infected individuals. The example with kettle is actually a SI model.
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FIGURE 1.1: SI diagram

1.1.2 SIS model

SIS model is a compartment model similar to SI where individuals might be in two
possible states S, I. In this model the population hardly leaves the infected state. The
main difference compared to SI model is that after an individual becomes infected
there is still a probability to change his state to S. The significant impact of studying
and analysing spreading processes in SIS and SIR models was introduced in Bogufia
and Pastor-Satorras, 2002Pastor-Satorras and Vespignani, 2001Pastor-Satorras and
Vespignani, 2002Y.Moreno, Pastor-Satorras, and Vespignani, 2005Moreno and Vazquez,
2003Barthélemy et al., 2005. Population in this model does not develop immunity
to the disease. Most sexually transmitted diseases could be described via SIS model.
Even RNA viruses such as coronavirus or the simple cold due to fast mutation also
fall into a category analysed via the SIS model. Let’s consider an environment where
each member of a population is born in S state. In that case the differential equations
that describe spreading process look like:

dS
m = —(B/N)SI+ I
ol

S = (B/N)SI=71

Where N = S(t) + I(t) — the population size. Basic reproduction number Ry = B .

Y

FIGURE 1.2: SIS diagram
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SIS model
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FIGURE 1.3: custom SIS graph

1.1.3 SIR model

One of the most widely used epidemic models is the SIR model. In a SIR model, all
individuals in the population with size N have three possible states: S-susceptible,
I-infected, R-recovered. In this model individuals are changing their state via the
following rule, S goes only to I and I goes only to R. R state is considered as a re-
covered and is fully removed from the spreading process (math has no mercy while
treating recovered and “dead” individuals in the same way). Compared with two
other previous models, in the SIR model individuals develop immunity (state R).
This model could be applied to childhood diseases (measles, chickenpox). Let’s con-
sider an environment where the whole population is susceptible to some disease (S
state). We assume that birth rate is equal to death rate. The dynamics of a SIR model
is described by the next equations:

aS
dl
=7 = BSI/N =11
oR
a =

Where b > 0.

N = S(t) + I(t) + R(t) - the population size.

As we assumed that birth rate is equal to death rate ¢:
Basic reproduction number Rg = B /7y .
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FIGURE 1.4: SIR diagram
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FIGURE 1.5: custom SIR graph

1.2 Complex networks

The idea of complex networks is applied in various fields including social net-
works, biological networks, financial networks,etc. Most interactions between enti-
ties or individuals happening within complex systems and associated relationships
could be simplified and further represented by graphs [14]. Not long ago following
the development of hardware scientists masivelly began to study complex networks.
The first works are dated at the end of the previous century. Main advantage of this
approach is an ability to analyze complex systems using advanced mathematical
tools and consequently derive insights that are usually hidden from the observer.
In a graph, individuals are represented by the graph’s nodes and their interactions
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by links between the nodes(edges). Social networks or WWW do not have any re-
strictive rules for individual relations (some of the individuals have more neighbors
and respectively more relations) meaning that such types of networks have no scale.
Complex networks, unlike tree graphs or mesh graphs, are classified by non-trivial
features and complex structure. Complex networks are also called scale-free net-
works (SF) with node degree distribution p(k) obeying a power-law:

p(k) ~ k™

ResearchCohen, D.ben-Avraham, and Havlin, 2002 conducted that analyzed net-
works including World Wide Web(WWW), Social Networks or even complex so-
cietal networks are described by

2<A<3

100000 {

80000

80000 1

100 200 00 400 00
Degree

FIGURE 1.6: power law distribution of custom BA graph
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FIGURE 1.7: log form of power law distribution of custom BA graph

First graph shows a scale-free network depicted by Barabasi-Albert Graph (BA)Barabasi
and Albert, 1999. This model has A parameter A = 3.
BA networks also follow two rules:

e Growth
e Preferential attachment

Growth implies that a new node always could be added. It differs in comparison
with random network models where the number of nodes is fixed. In BA networks
the number of nodes always grows. For instance, following networks obey men-
tioned rules and can be described using BA graphs.

1) In WWW by creating a new web page that is connected to other web pages we
add an additional node and expand the network.

2) In society by giving birth to a child who will communicate with other individ-
uals we add an additional node and expand the network.

3) In the science world by starting a new thread of research the network built by
papers and researches start to expand.

Preferential attachment means that a newly created node will be connected to pop-
ular nodes with higher probability than to the unpopular ones. Popularity is defined
by the number of connections node has. Popular nodes are called hubs. This is dif-
ferent to random network models where node’s neighbours are chosen randomly.
For example:
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1) A new individual more likely will create an account in Facebook (the most
popular social network) than in other social networks. At least because the chance
that he or she is familiar with Facebook is higher.

2) The more a football player plays in a regular season the higher chance that he
or she will play in a finals just because of his or her confident performance.

3) The more close people of an individual are customers of a specific bank the
higher chance that he will be a new customer of that bank. That bank will look more
secure to put money in and he or she will tend to be a new customer of that specific
bank rather than put his or her money to unknown random bank.

FIGURE 1.8: BA graph 40 nodes
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1.3 Cellular automaton

A cellular automaton(CA) is a discrete mathematical model described by the cells
grid and the relation rules (the rules of the cells state changes). Wolfram in his work
Wolfram, 2002 lays the groundwork of a modern understanding of the cellular au-
tomata backbone. Basically it is a model which can explain a system with discrete
time and space. The set of states of the cells is predefined. The states could be consid-
ered in a digital way or any other. Cells of that system could be placed in different
ways. The number of cells (the population size) could be either finite or infinite.
There are a lot of types of CA but in this work we are interested in a deterministic
one. As mentioned previously, the time is considered to be discrete. In a specific
point of time a cell could be in one specific state from the system’s set of states. A
state of a cell depends only on the states of its neighbors and its own previous state
(a state in the previous period of time). The concept of a neighbor is a key concept
in CA theory because it could be viewed as a main tool that sets the dynamics con-
cepts. The states are changing only following the predefined rules of a system. Such
a system is called memoreless because the cells “remembers” only the last state in
the previous point of time. This is similar to DTMC(a discrete time Markov chain)
where time and states are discrete. There are a lot of similarities with previously
described compartment models. Let’s consider how SI, SIS and SIR compartment
models are implemented following the mentioned scenario. Let’s say that we anal-
yse models during some discrete time T. The population has a fixed size N. That
means that for SI and SIS models the fractions are described in the following way:

S(t)+1(t) =N

For the SIR model:
S(t)+I(t)+R(t) =N

Where0 <t < T
The whole population changes the states every time stamp. Consider a J to be a state

of population.
0={S,I,R}

Time is discrete and changes: r->t + 1.According with time change, the i** individual
(i ={0...N}) changes its state as §;— > d;1 with respect to the rules of the system.
Algorithm of the change for each model will looks like

SI model
* choose individual i
e if §;(t) = S then the state with probability B becomes infected 6;(t + 1) = I

e if §;(t) = I do nothing

SIS model
¢ choose individual i
 if §;(t) = S then the state with probability f becomes infected d;(f +1) = I

e if §;(t) = I then the state with probability y becomes susceptible J;(t +1) = S
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SIR model

e choose individual i

e if §;(t) = I then the state with probability oy becomes susceptible 6;(f +1) = R
else with a probability B one of the susceptible neighbor(j) becomes infected
((Si(t) =85> §i(t + 1) =1)

* if 4;(t) = S or é;(t) = R do nothing
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Chapter 2

Literature review

In this section I would like to introduce works which were used fundamental for
our research and identify gaps in existing researches that our work will be explor-
ing. There are plenty of works where authors investigate spreading processes on
complex networks. The first work I analysed was written by Viktoria Blavatska and
Yurij HolovatchBlavatska and processes, 2020. In their research SI, SIS, SIR models
were implemented via cellular automata algorithm. The dynamics of the spreading
processes were shown by comparing different values of contact rate and using the
critical value of basic reproduction number as a threshold (value that is a border
of disease-free equilibrium and endemic equilibrium). Non-homogeneous environ-
ment was considered where individuals take part in a spreading process similar to a
case where a part of a population has already gotten sick and gained some immunity
to the disease. On the other hand it is analogical to a vaccination process. Effective-
ness of each corresponding scenario was compared. In the models the probability
for susceptible individuals to become infected is calculated dynamically depend-
ing on the number of its infected neighbors. Linda ]. S. Allen in her workAllen,
2008 introduced three different methods for formulating stochastic epidemic mod-
els. She implemented SIS and SIR deterministic models in order to analyse those
stochastic modeling processes: DTMC (discrete time Markov chain), CTMC (contin-
uous time Markov chain) and SDE (stochastic differential equation). I was mostly
interested in the DTMC model as its idea is similar to CA(cellular automata) but the
other approaches gave me a better understanding of the basic concepts of spreading
processes. Besides a common case where a population has fixed size, the author con-
siders a case with a variable population size. She introduces the concepts of a birth
rate and death rate which depend on the population size. For example the equation
for the SIS model in this case will look like:

oS
e
ol
S = (B/N)SI— (p+ )1
Where b > 0 - the birth rate.
Besides analysing the final size of a population she underscored the next concepts:
outbreak of a disease and a duration of epidemic. The different parameters of a
model that cause the outbreak were introduced and illustrated via graphs. The ex-
pected duration of an epidemic was analysed in the SIS model. For the stochastic
SIS model the probability of absorption is equal to 1 because there is no immunity in
a system but depending on the parameters the time of an absorption is different.

—(B/N)SI+ (B+ 7)1

The work that helped me the most in understanding the construction algorithms
of the graphs obeying power-law distribution was introduced by Holovach et al[14].
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Authors introduced the models of network construction (Erd6s—Rényi model, Watts-Strogatz
model, Barabasi-Albert model). The algorithms of constructing those models were
explained in depth which helped me to build a complex network. Also as a part of
Watts-Strogatz model concept of a small world model was introduced where ansam-

ble graphs are traced.

FIGURE 2.1: The Watts-Strogatz model for small-world graphs.

Authors introduced two mechanisms that are the base to construct Barabasi-
Albert graph(growth and preferential attachment) and a step by step algorithm of
building this graph. Also authors introduced a randomization method for building
a complex network using which concepts I was building graphs for my simulations.
In addition to the above, the authors introduced the main features of graph theory
(clusters, graph ensembles, transitions in graphs, graph energy, betweenness central-
ity...) and their applications that helped me to better understand the “importance”
of specific nodes in a network which helped me to implement different vaccination
methods.

Chantan Nguyen and Jean M. Carlson in their workNguyen and Carlson, 2016
introduced real-time vaccination in a stochastic SIR model. They tried to simulate
a real world case where vaccine deployment delay, limited vaccines and other fea-
tures have been taken into account. They considered the epidemic spreading from
city to city where those cities could be viewed from graph perspective as clusters
(analysis of subpopulation). At the end they identify a tradeoff between those fea-
tures and propose methods and protocols of vaccination. They introduced a concept
of coupled populations. It was explained by the real world case of two cities where
an individual from one city can contact individuals from the other city. The popula-
tion of cities remains the same even if an individual from city A in a specific point
of time is located in city B. Obviously they considered that the amount of those
individuals is very small. They considered the outbreak as a threshold and took
vaccination actions depending on the parameter values that caused the outbreak.
Also one of the real world features that they introduced is herd immunity which
occurs when a critical fraction of the population is vaccinated (basic reproductive
number becomes such that the epidemic process begins to die out). Using that value
of basic reproductive number as a lower threshold they analyse a minimum number
of vaccinations needed in order to overcome the disease in a small period of time.
The optimal method of vaccination is determined by minimizing the expected final
size of infection with respect to the fraction of vaccine allocated in each city. That
work clarified the non-static methods of vaccination that inspired me to implement
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my own protocols on the SIS model. The results of their work are illustrated on the
Figure below

0'12 [] T T T T T _IT= 1 T ]
T=5
7=10
0.1+ =20 J
7=30
——no vaccination
{7 0.08 - -

probability P(E)
o
o
(o]

©
o
=

0.02

30 40 50 60 70
combined final epidemic size E

FIGURE 2.2: SIR vaccinated

Where the section of a graph where function grows could be considered as an
outbreak.
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Chapter 3

Implementation

In this section I would like to describe how the networks used were constructed
and the vaccination protocols implemented based on the approaches described in
the previous section. This section is divided into two parts. The first part is the al-
gorithms of the complex network construction and the second one is the vaccination
protocols for SIS and SIR models which were introduced in 1.1.2 and 1.1.3.

3.1 Barabasi-Albert model

The first complex network I used was Barabasi-Albert graph. It’s A coefficient is
equal to 3. The detailed algorithm of building BA model is introduced hereBarabasi
and Albert, 1999Barabdsi and Albert, 1999. As was mentioned in 1.2 that algorithm
has two base rules.

* Growth is starting from the small population of individuals(nodes denoted as
np). At every time step a new node n < ng is added to a network

* Preferential attachment.
The probability of the new node to become a neighbor of an existing node i
depends on the node degree k; of a node i.

N
P(ki) = k/ Y _k;

i

Where N is a population size of an observed point of time.

3.2 Custom network

To generate a scale free network we used a method called configuration modelBender
and Canfield, 1978Molloy and Reed, 1995. It is a method of generating random
graphs with predefined degree sequence. At the start we have some population
with size N and with no relations (all the nodes are disconnected). The degrees of
the nodes are in range ki, < ki < kyjax. We assign the next values:

kmin =2
kmax - Nl/z

We measure an upper threshold to decrease the degree correlationsCatanzaro, Bogufid,
and Pastor-Satorras, 2005. For example in the BA model we do not have such value



Chapter 3. Implementation 15

that is why in Figure 1.2 we do not have a straight line. To each node i we assign
its k; randomly. The edges in the network are added randomly according to the
corresponding ky, of a node (we avoid multiple connections and self-connections).
At the end we do have an adjugate square matrix containing Oth and 1th (1th for
neighbors).

3.3 Vaccination methods

In this section I would like to introduce the vaccination methods implemented by
the SIS and SIR models (the corresponding algorithms are described in the chapterl).
Before diving into the topic I would like to introduce the critical basic reproduction
number concept R.. For the SIS and SIR model it differsDorogovtsev and Mendes,
2001.

For SIS model:
R. = ’A(/ 2
For SIR model:
Re=k/k2—k

If Rg value is higher that R, then the spreading leads to the endemic state. If Ry is
lower that R, spreading dies during some time, which depends on the difference.
That value takes an important role in our investigation as we used it as a threshold.
The next vaccination methods were implemented by the networks introduced above.

e BAmodel A =3

¢ Custom network with A = 2.1
e Custom network with A = 2.2
¢ Custom network with A = 2.3

Where A was introduced in section 1.2

From the equation derived in 1.2 we can conclude that the higher A corresponds
to a sparser network. In our simulations we consider having a limited number of
vaccines. At the beginning all individuals of a population of a size N are in the S
state.

3.3.1 Vaccinated SIR

The system described by implementing the SIR model for the complex networks
will have some restrictions. Let’s consider a situation when the population is aware
of the coming disease but can not be gradually vaccinated. The individuals can
be vaccinated in a predefined way. Meaning that we choose individuals which we
would vaccinate only once and only at the beginning of the simulation (before the
disease came).

¢ The first vaccination method which is implemented in this paper is a ran-
dom vaccination. At the beginning of a model simulation we took a prede-
fined number of random susceptible individuals and changed their state to
R. Because state R is considered as immune and doesn’t spread infection it
can be considered as vaccinated. In the scope of analysing the spreading pro-
cesses those individuals could be completely “removed” from a network. This
method we consider to be the least effective vaccination method as we do not
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specify any features of a graph. We used it for comparison with other methods
in order to clarify their effectiveness.

¢ The second vaccination method which is implemented is target hub vaccina-
tion (ranked by hubs vaccination). The intuition behind this method is the
next one. As hubs are the individuals with the most neighbors (nodes with the
highest degree value) we want them to be in a state R because that state does
not spread an infection. At the beginning of the model simulation we took
a predefined number of susceptible individuals with the most neighbors and
changed their state to R. Comparing the results we can see that target hub vac-
cination shows a better performance than a random one. It was concluded that
vaccination of hubs is more effective than a vaccination of random individu-
als. But what if for some reasons it is almost impossible to determine specific
hubs in some situations. To solve this problem the following idea was used.
Consider a case when we don’t know features of the individuals and therefore
consider all individuals of a complex network to be the same. In other words
we would like to improve the random vaccination algorithm.

The next vaccination method that handles that idea is random neighbor vac-
cination. The intuition behind this idea is the following. We would like to
increase a chance to randomly target a hub of a network. When we vaccinated
individuals at random we were considering the whole scope of a network. But
it is possible to narrow that scope. As was mentioned above we have a fixed
number of vaccines. We would like to consider a scope of neighbors of a ran-
domly chosen individual i. The probability of finding a hub in a scope with
a size N; is way higher than in a scope N. At the beginning of a model simu-
lation we randomly choose some predefined number of individuals. Then we
randomly choose a random neighbor of each individual found previously and
vaccinate it. Not significantly but such a method on a hundreds simulations
showed better results compared to a random vaccination considered before.

* But what if we go further and vaccinate a random neighbor of a random neigh-
bor of a random individual. The intuition is the same but we would like to
see at which step this idea will stop giving better results. At the beginning
of a model simulation we randomly choose some predefined number of in-
dividuals. Then we randomly choose a random neighbor of each individual
found previously. For each of those random neighbors we randomly choose
one neighbor and change its state to R.

¢ The next method is called target vaccination with respect to betweenness cen-
trality. Before introducing an algorithm I would like to describe a concept of
betweenness centrality and why we have chosen it to vaccinate a networkHolovatch
et al., 2006.
Betweenness centrality is a measure of a node importance in the network. Con-
sider the nodes x,y,i. It shows the number of the shortest paths which go

through i.
o(i) = ) (B(x,i,y)/B(x,y))

Where B(x,y) is the total number of the shortest paths and B(x,i,y) the total
number of the paths which go through the nodei. o(i) is also called load. At the
beginning of the model simulation we took a predefined number of susceptible
individuals with the highest value ¢ and vaccinate them.
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3.3.2 Vaccinated SIS

The system described by implementing the SIS model on the complex networks
which we would like to vaccinate will also have some basic restrictions. Unlike
the SIR case here a population can be vaccinated dynamically but the number of
vaccines is fixed for each time iteration.

¢ The first vaccination method is a random one. At each time iteration we ran-
domly vaccinate a predefined number of susceptible individuals. Those V in-
dividuals could be considered as removed. We continue a process until the
vaccines run out. We need this method for a lower threshold as it is supposed
to be the worst vaccination method.

* The second vaccination method is based on the hubs targeting. The idea is sim-
ilar to the approach used in the SIR model. At each time iteration we vaccinate
a fixed number of the most popular individuals(hubs). As they are considered
to be removed we recalculate the sorted table of hubs and repeat the process
until the vaccines run out.

* The last method is partly based on the previous one but with some addition.
Let’s consider a situation where the disease had a tendency to begin spread-
ing in some specific part of the network. But what if the “biggest” hubs (the
most popular individuals) are in the other “end” of the network. As the vac-
cine number is fixed there are more important nodes to vaccinate. Our model
is based on the cellular automaton algorithm meaning that the more infected
individuals are in the network the faster disease is spreading. It means that
we would like to start the vaccination process from the first iteration of time.
To deal with it we proposed the next algorithm. At each time iteration for all
susceptible individuals we find the shortest path to the infected individuals.
The next step is to clarify the importance of susceptible individuals. It is done
by introducing the importance coefficient C For an individual s corresponding
Cs will be looking like

Cs = ks xe R

Where R is the shortest path to an infected individual. The higher R corre-
sponds to lower C;.
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Chapter 4

Results

In this section I would like to show the results of the experiments described above.
The results are represented via images and tables. At the end of the section I will
provide some short conclusions. In our experiments some of the parameters are
constant and some are changing. The population size of the complex networks N =
15000 is fixed for all simulations.

In this section we introduced the results of the proposed methods 3.3.1
The parameters for the further experiments
Number of initial infected individuals I = 200
Number of vaccines = 200
v¥=0.6
Total observation time T = 100
B is changing inrange 0 < p <1
SIR vaccinations
The values that we used as a measure of effectiveness for the SIR model is a number
of recovered individuals at some huge period of time. It could be considered as a
post pandemic value because the number of infected individuals in the SIR model
directly depends on the number recovered. Basically in some period of time we will
not be susceptible enough to become infected and at this period of time the R stables
too (it could be viewed as a cumulative number).
SIR vaccinations
The value that we used as a measure of effectiveness for the SIS model is a number
of infected individuals at some huge period of time. The intuition is the next one.
As infected individuals directly depend on the susceptible in some period of time
the fraction will also stabilize (due to the algorithms of SIS and SIR model written in
1.3).

¢ A = 3 (Barabasi-Albert graph)
The minimal k = 2
The random vaccination
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FIGURE 4.2: The target hubs vaccination
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The random neighbor vaccination
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The random neighbor of random neighbor vaccination
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The hubs vaccination
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The random neighbor vaccination
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The random neighbor of random neighbor vaccination

lambda 2.1
1.0
beta
- Q01
0.8 - — 003
—_— 0E
— .2
—_— .3
0.6 — 04
as L
—_— .3
0.4 1
0.2 1
U-D T T T T T T
0 20 40 60 80 100
T
FIGURE 4.8: The random neighbor of random neighbor vaccination
* A=22
The random vaccination
lambda 2.2
1.0
beta
— Q01
0.8 - — 003
—_ 08
—_— 02
—_— 03
0.6 - — 04
ac — 05
—_ 0B
0.4 1
0.2 1
D-D I I I I I I
0 20 40 60 80 100
T

FIGURE 4.9: Random vaccination



Chapter 4. Results 25

The hubs vaccination
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The random neighbor vaccination
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The random neighbor of random neighbor vaccination
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The hubs vaccination
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The random neighbor vaccination
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The random neighbor of random neighbor vaccination
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beta 0.01 beta 0.03 beta 0.08 beta (.2 beta 0.3 beta 0.4 beta 0.6 beta 0.8

Random 0.02766660667 0.02986666667 01012666667 (.4370666667 06638666667 (0.7972666667 09467333333 0.9885333333
Target hubs 0.02773333333 0.029 003593333333 0.1303333333 0.4454  0.6386666667 0.8536  0.9394666667
Random neighbor 0.02733333333  0.03033333333 006426666667 0.3704666667 06185333333 (.7654 09266666667 0.9788
Random neighbor of Random neighbor 0.0282 003013333333  0.09086666667 0.3759333333 0.6262 07815333333 0.9311333333 09823333333
Betweenness centrality 0.0278 003046660067 0.08746666667 0.3674666667  0.6080666667 (.7326 09044666667 0.9796666667

TABLE 4.1: BA graph
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beta 0,03 beta 0.08 beta 0.2 beta 0.3 beta 04 beta 0.6 beta 0.8

beta 0.01
Random 007083333333
Target hubs (.06316666667
Random neighbor 006819

Random neighbor of Random neighbor 0.069

0.09766666667 0279 0538333333 0.719606667 08320666067 (9448333333 0.9801666667
007333333333 0.09016666667 0337 05228333333 (6651606667 08051666667 (.8991666667

008 01898333333 04865 06441660067 (7588033333 0.9078333333 09533333033
0.08316666667 0203 0553 06875 (8116666667 09161666667 0.9776666667

TABLE 4.2: A = 2.1

beta 0.01 beta 0,03 beta 0,08 beta 0.2 beta 0.3 beta 04 beta 0.6 beta 0.8
Random 006933333333 0.07683333333 025 (5293333333 07113333333 08091666667 09356666667 (0.9831666667
Target hubs 0.06833333333 0072 009533333333 0.2981666667 04813333333 0625 (7998333333 (.8961666667
Random neighbor (.06766666667 0.0845 0158 (4633333333 0,632 0.7541666667 08845 09565

Random neighbor of Random neighbor - 006666666667

0.08166666667  0.2136666667 05296666667 06725 0779 09266666667 0974

TABLE4.3: A =2.2

beta 0,01 beta 0.03 beta008  beta(2 beta 0.3 beta 04 beta 0.6 beta 0.8
Random 0.06% 0076 01958333333 05111666667 0679 0792 0922 09771666667
Target hubs (.06816666667 0.071 0.2% 0.2981666667 0433 05885 07855 08723333333
Random neighbor (06833333333 008316666667 0.159 04273333333 0.6371666667 0.7231666667 0871 09593333333

Random neighbor of Random neighbor 0.0685

0.08006600667 (0.1881066667 04678333333 (.6646606667 07608333333 0.9033333333 0.968

TABLE4.4: A =23
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Analysing the results above we can make some conclusion. First of all the im-
portance of the hubs in a spreading process is enormous. The experiments implied
on all complex networks proved it(hubs vaccinations are considered to be the best
method). The most surprising results showed the neighbor vaccination method.
Through many simulations it is constantly showing better results than the random
individual vaccination. Actually it only underlines the importance of the hubs for
the network. But if we fall deeper and implement the random neighbor of a ran-
dom neighbor vaccination method it will not show the better results(meaning that
the scope of finding hubs is already the most optimal in the random neighbor vac-
cination method). A little bit confusing are results of betweenness centrality vac-
cination method because it has high computational cost and needs more resources
than other algorithms but its performance is on the same level as random neighbor
method. The next “expensive” algorithm based on the shortest path to the infected
individual does not show appropriate results either. It is because of the deterministic
system. The hub vaccination shows better results because the coefficient which we
introduced may be good in a long term perspective but a system is "memoryless". 1
assume the method will perform better but with another coefficient because the idea
of the approach is promising. On the graphs could be easily seen the outbreak of a
disease. Starting from the B coefficient 0.2. I have chosen appropriate  (0.01, 0.03,
0.08) to show the cases with disease-free equilibrium and endemic equilibrium (R
is close to 0.03).
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Chapter 5

Conclusions

In this work many algorithms of building complex networks were introduced
alongside mathematical models to analyse spreading processes on the network. The
models were based on the cellular automaton model. It was done to find out impor-
tant graph features (represented by nodes) which we would like to vaccinate in an
epidemic modelling. Many real world systems could be explained via networking
abstraction analysing them by graph perspective could lead to new solutions of un-
solved features. In this work we conclude that hub is the most important feature in
the scope of the spreading process in the complex networks. Even if its relative loca-
tion in the network is not “comfortable” for the spreading processes it tends to be a
cluster and make all the other locations not “comfortable”. Some of the algorithms
are assumed to be able to improve because they are depending on the predefined
coefficients not dependent on the system. Also the new improved randomisation
vaccination method was successfully implemented and showing constantly better
results than a simple one.
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