
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Enabling OpenMPI workloads on
bare-metal infrastructure using

Kubernetes

Author:
Mykola BILIAIEV

Supervisor:
Mr. Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Mykola BILIAIEV, declare that this thesis titled, “Enabling OpenMPI workloads
on bare-metal infrastructure using Kubernetes” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Enabling OpenMPI workloads on bare-metal infrastructure using Kubernetes

by Mykola BILIAIEV

Abstract

The purpose of this bachelor’s thesis is to design and develop a software architec-
ture for HPC clusters to support MPI-based workloads. We will demonstrate how
many abstractions such a complex solution involves and how the cluster works from
the software perspective. As a result, we will configure a two-node cluster, develop
software architecture for it, and run workloads on top of it. We will use many tech-
nologies to develop our solution. To better understand the architecture, we will give
a background on the most complex parts like Kubernetes and Docker.

§

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I want to thank my supervisor Oleg Farenyuk for mentoring me and for all the great
knowledge I gathered over the years. I would also like to thank my classmates who
were back to back with me over the last four years. In particular, I want to thank
the people who supported me during my work on this thesis - Hermann Yavorskyi,
Volodymyr Chernetskyi, and Vladyslav Ursul; you did a great job. Last but not least,
I would like to thank Ukrainian Catholic University for the opportunity to study on
such an incredible program.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Problem . 2
1.2 Goal . 2
1.3 Thesis structure . 2

2 Background Information 3
2.1 HPC . 3
2.2 Containerization . 3

2.2.1 Docker history . 3
2.2.2 Docker implementation . 4

2.3 Kubernetes . 5
2.3.1 CRD . 5
2.3.2 Pod life cycle . 6
2.3.3 Operator and controller . 6

2.4 MPI . 7
2.4.1 Mpi in kubernetes . 7

3 Related Works 9
3.1 Rocks Cluster Distribution . 9

Architecture overview . 9
3.2 Apache Mesos . 10

Architecture overview . 10
Execution process . 11

4 Solution Overview 12
4.1 General architecture . 12
4.2 Hardware . 13
4.3 Virtualization . 13

4.3.1 Proxmox . 13
4.3.2 Network . 14
4.3.3 Cluster scaling . 15

4.4 K8S configuration . 16
4.4.1 Node template . 16
4.4.2 Installation . 16

4.5 MPI opearator . 17

v

5 Running workloads 18
5.1 Configure workload container . 18
5.2 Configure MPI task . 18
5.3 Observe mpi results . 19

6 Summary 21
6.1 Future works . 21

Bibliography 22

vi

List of Figures

2.1 Docker diagram . 4
2.2 Replica set controller . 6
2.3 MPI proccess . 7
2.4 MPI operator – source MPI Operator . 8

3.1 Rocks cluster architecture . 10
3.2 Mesos architecture . 11

4.1 Cluster architecture . 12
4.2 Bare metal cluster . 13
4.3 Proxmox cluster . 14
4.4 Network configuration . 15
4.5 Pxe boot . 16
4.6 Control plane . 17
4.7 Custom k8s components . 17

5.1 Mpi-job results . 20

vii

List of Tables

4.1 Hardware specs . 13

5.1 MPIJob specification . 19

viii

List of Abbreviations

CIDR Classless inter-domain Routing (CIDR)
CLI Command Line Interface
CRD Custom Resource Defenition
HPC High Performance Computing
JSON JavaScript Object Notation
K8S Kuberenetes
MPI Message Passing Interface
MPP Massively Parallel Processing

1

Chapter 1

Introduction

At the very beginning, computers were primitive, it took hours to complete some
simple arithmetic tasks, and one character mistake in code could cost hours of work.
One of the first machines, ENIAC (1945), consumed up to 167 square feats – Council,
2005.

With time computers became more and more powerful. Engineers worked hard to
build more efficient hardware and make computer parts as small as possible. New
approaches to extract more performance appeared with each day.

As time went on, the idea of dividing tasks into separate pieces and running those at
the same time arose. This approach would require writing more challenging code,
but at the same time, it would give a considerable performance boost. The emer-
gency of shared memory multiprocessors in the 60’s changed the approach to writ-
ing efficient programs. Programs that supported the usage of multiple cores were
much more efficient. Parallel computing became a standard.

Multiprocessors have their limitations. Whenever there is a need to scale the system,
the solution is to buy new machines or upgrade hardware on nodes. It comes with
a cost of a longs downtime or an unexpected budget. Mainframes (What is a main-
frame) tried to solve this issue. Those machines could work non-stop for years. This
solution also allows changing hardware parts without downtime; however, sooner
or later, the system would still reach hardware limitations. In the early 1990s, the
first clusters appeared. A cluster consists of many nodes with similar hardware. It
connects in a fast local area network, with some software on top that allows running
tasks across all nodes. This approach allows clusters to scale horizontally, utilizing
all of compute nodes.

As the Massively Parallel Processors and clusters became popular, the need for some
parallel computing standards arose. One of the most popular solutions is MPI (Mes-
sage passing interface), a single API interface that simplifies the development of
parallel programs – Itro to mpi.

Clusters started appearing in many countries and Fields. Competition for the best
performance began. In 1993 the community decided to make this competition offi-
cial and created TOP 500 list. This list shows the top 500 most performance clusters
in the world.

As part of this thesis, we collaborated with the Institute Of Condensed Matter Physics
who owns an HPC cluster. This cluster is far from TOP500, but it is still one of the
biggest in Ukraine. This collaboration allows us to experiment with real cluster hard-
ware and apply cluster architectures in practice.

Chapter 1. Introduction 2

1.1 Problem

The cluster creation process is long and tedious. It starts with building the physi-
cal environment for the cluster: cooling and ventilation, power supply, and security.
The next step is to build nodes, choose proper hardware with a sufficient amount
of resources. Good network performance is crucial; a dedicated solution like Infini-
Band network can be a great choice. Then comes the tricky part, how to run actual
workloads in this cluster.

The software part is as important as hardware. There are a variety of architectures to
utilize maximum performance from the cluster. We want to explore this world and
create an architecture that will be compatible with any HPC cluster and give ability
run MPI workloads.

1.2 Goal

This thesis aims to build an architecture that allows running MPI workloads on the
bare-metal Kubernetes cluster. The architecture objectives are the following:

• Fault tolerance – Cluster must be durable, and failure of any single node should
not impact the overall functioning of the system

• Observability – Ability to see the state of MPI workloads, collect results and
analyze historical data.

• Scalability – Whenever there is a lack of computation power, the cluster should
support scale without downtime. Section 4.3.3 goes in details about implemen-
tation.

• Maintenance – The ability to update the cluster and keep all system compo-
nents secure should be easy.

Institute Of Condensed Matter Physics lets us utilize a two-node cluster as part of
our thesis – Fig.4.2

1.3 Thesis structure

We start with chapter 1 where we describe our goals and objectives. In chapter 2 we
look over the main theory and technologies we utilize in our cluster. In chapter 3 we
will explore different existing solutions. In chapter 4 we showcase our solution, de-
scribe how it works. In chapter 5 we run some workloads in the cluster and observe
successful results.

3

Chapter 2

Background Information

2.1 HPC

High-Performance Computing is a way to process an immense amount of data and
perform demanding calculations at an incredible speed. HPC cluster requires special
software and hardware to maximize performance. A single cluster consists of tenths
to thousands of nodes that utilize software to compute tasks in parallel.

HPC clusters play a significant role in today’s world. They are used to calculate
complex tasks in different fields. Many types of research rely on those compute
powers. Those include molecular modeling, quantum mechanic, physics, Financial
institutions, and many others.

2.2 Containerization

Containerization allows to wrap and isolate applications without significant over-
head. This technology allows to easily manage application dependencies, manage
software versions, seamlessly deploy and update environments.

Containerization is becoming increasingly popular, and there is a giant ecosystem
surrounding it. The most popular ones are Docker (Docker) and Kubernetes (Kuber-
netes). Those two will be looked at in great detail, as they play a significant role in
the architecture solution.

2.2.1 Docker history

The fact is that containers have been in computer science for a long time. The first
parts of containerization appeared in UNIX V7 year 1979. This distribution intro-
duced chroot, one of the three most essential parts of containerization, more on that
later – A Brief History of Containers: From the 1970s Till Now.

In 2008 something very similar to modern containers appeared LXC (Linux Contain-
ers). It introduced the two missing parts, namespaces, and cgroups. The problem
was that it was pretty hard to manage those containers, requiring some deep exper-
tise in Linux – A Brief History of Containers: From the 1970s Till Now.

The most popular containerization software is Docker. Solomon Hykes created Docker
in 2013. Docker allows the functionality of LXC with fantastic simplicity. Now any-
one can use containers for their daily tasks – A Brief History of Containers: From the
1970s Till Now.

Chapter 2. Background Information 4

2.2.2 Docker implementation

The ecosystem of Docker consists of client-oriented parts and container implemen-
tation.

The actual containerization is provided by three main kernel components:

• Cgroups - this component allows isolating resources per container. It defines
how much CPU/RAM should be available for the application. From the inside
of the container, it will only access that predefined amount of computes power.
Whenever a container tries to exceed those resources, it will either be throttling
or killed by OOM killer1 – Cgroups.

• Chroot - allows isolation of the file system for the container. It will change the
root directory of a container and limit access only to this directory’s scope –
Chroot.

• Namespaces - namespaces allow to isolate many parts of the container. For
example, network namespace isolates containers to its only network interface
or PID2 namespace, gives visibility of the root and children’s process starting
from number 1 – Namespaces.

FIGURE 2.1: Docker diagram

Docker is a wrapper around those tools. Whenever we send commands through
CLI, Docker will do all of the hard work - configure namespace, isolate file-system,
provide CPU/RAM resources.

1Out of Memory Killer is a special process that runs in Linux kernel, it make sure that all critical
system component has enough memory, and kills non-important ones is system is low on memory.

2PID is a unique process id

Chapter 2. Background Information 5

2.3 Kubernetes

Kubernetes is a container orchestrator. In simple words, k8s allows the management
of container workloads without pain. All services are in YAML3formatted files with
descriptions of how they should behave. For example, specify the number of repli-
cas required, CPU/RAM resources needed, which code to execute, define execution
parameters.

Kubernetes consists of many components that communicate with each other. This
approach makes the system more reliable and faults tolerant. Single component
failure will not impact overall cluster functionality. The (Luksa, 2018) book does a
good job of introducing k8s.

Kubernetes consists of the following components:

• Master node – is the main node that runs all of the core k8s components. Those
components are called the control plane. The control plane makes all decisions
about the cluster state.

• Pod – is the smallest entity in k8s. It usually represents one running container.
The developer can configure a multi-container pod, but there is usually no
need for that.

• API Server – is the core component of the k8s Control Plane. Most of the com-
munication goes through the API server. The API server is the only part that
exposes Restful API.

• ETCD – is the persistence of the control plane, a key-value database, where
k8s stores information about the current state, which resources should be de-
ployed. The Control plane makes sure that all resources described in ETCD are
running in the cluster.

• Scheduler – is the component responsible for scheduling pods. Scheduler looks
into ETCD and finds new pods, and then it assigns a specific node to each pod.

• Kubelet – this component runs on each node in the cluster. It is responsible for
reading information about pods from ETCD and deploying those containers
on the node.

• Controller Manager – this component under the hood runs many controllers.
Each of the controllers is responsible for some part of the system. For example
Replication controller continuously checks if any of the replica sets needs to be
increased or decreased.

2.3.1 CRD

Kubernetes has many native Resource Definitions. Those resources allow us to con-
figure our k8s environment.

All Resource Definitions are native to the k8s API and can not be extended; for this
purpose, CRDs are used. CRD stands for Custom Resource Definition. This feature
allows us to extend the native Kubernetes API.

3YAML is a human readable language, it is usuallly used for configuration files.

Chapter 2. Background Information 6

2.3.2 Pod life cycle

To understand a bit deeper how k8s works we are going to explore what happens
when user tries to create a new pod:

1. Create a YAML file with pod description.

2. Use a kubectl utility to send data to the API server.

3. API Server validates the request and puts information about this pod into
ETCD.

4. Scheduler sees changes in ETCD and finds a proper node for this pod. Suppose
a node with the required amount of resources is available. In that case, the
scheduler assigns a node to this pod by putting this information in ETCD. If
there are no resources for this pod, it will stay pending until more resources
are available.

5. After scheduler assigns pods to a specific node, kubelet running on that node
sees this information and deploys pod.

2.3.3 Operator and controller

Understanding an operator pattern and its implementation is essential in the scope
of this thesis.

Controller is a single binary that endlessly runs in the control plane, watches for
specific events, and reacts to them.

FIGURE 2.2: Replica set controller

Figure 2.2 represents a simplified flow of a replica set controller. One of its purposes
is to ensure that the required amount of replicas is running at any moment.

An operator is a very similar concept. An operator is a controller, but the controller
is not always an operator. The primary purpose of the operator is to solve some
domain-specific logic. The operator also utilizes the concept of CRDS.

The combination of controller and CRDS is what we call an operator. As part of this
thesis, we will deploy a few operators: Prometheus Operator, MPI operator. The
second one is the crucial one.

Chapter 2. Background Information 7

2.4 MPI

Message Passing Interface (MPI) (Itro to mpi) is one of the standardized communica-
tion protocols for parallel computing. It is prevalent in HPC. Mpi can run on a single
computer by spawning multiple processes or in the cluster by spawning processes
on other nodes.

When we start a MPI program, we usually define the amount of process we require.
The program starts with a single process. After MPI Initialization, it spawns the N-1
child process with a unique id from 0 to N.

Each child knows about its rank (child id), and based on this number, program
knows how to behave.

FIGURE 2.3: MPI proccess

2.4.1 Mpi in kubernetes

To deploy MPI, we will use MPI Operator. This operator will make the process of
creating new MPI workloads easy. Figure 2.4 shows MPI operator architecture.

After the operator is deployed (Section 4.5) all of its components are available in the
cluster.

How it works:

1. Config Map – controller creates a k8s resource ConfigMap. The ConfigMap is
a JSON file that defines some parameters. It contains all information that MPI
enalbed pods require for proper functioning; a script with a mpirun4 command
that each pod will execute and hostfile - file with DNS names of all other MPI
pods.

2. RBAC – controller configures resources-based access so that pods have all nec-
essary privileges.

3. Workers – conroller creates and waits for the successful creation of worker
pods. After they are created, they go into infinite sleep, until launcher will
start workloads on them.

4. Launcher – controller creates launcher which reads from the config created in
step 1 and starts workload on all worker containers.

5. End – successful finish of launch container will indicate controller that it can
delete all resources.

4mpirun command allows to execute parallel openmpi jobs

Chapter 2. Background Information 8

FIGURE 2.4: MPI operator – source MPI Operator

9

Chapter 3

Related Works

The cluster architecture designed in this thesis focuses on Kubernetes. We will go
over two other solutions which have their market share and a different approach to
cluster management.

Rocks (Rocks Cluster Distribution) at some point in time was a best practice solution
for clusters. The popularity peaked in the 2000s. We will look into what features this
tool has.

Then we will explore Apache Mesos (Apache Mesos Architecture) as it has a big chunk
of the market in today’s world. This solution has some exciting features and can
compete in some places with Kubernetes.

3.1 Rocks Cluster Distribution

Rocks Cluster Distribution is one of the most popular Linux distribution for HPC
clusters. Initially, it was running on top of Red Hat Linux. Modern cluster is based
on CentOS. Rocks include many tools straight from the box, such as MPI and batch-
queuing systems such as Sun Grid Engine (SGE), which users can utilize straight
after installing the cluster.

Rocks can extend their features with such called rolls (Roll CDS). For example, this
feature easily configures Lustra roll or Java roll, saving a lot of time and effort. Rolls
and many other features made it widespread in the world of academia and gov-
ernment. According to Rocks Cluster Distribution in 2010, it was employed in 1,376
clusters.

Rocks did a great job in the 2000s solving problems for the academic world. In
today’s world, there are new approaches and designs that rocks do not support.

Here are a few drawbacks of the system:

• Bad container support – it is hard to imagine a sophisticated product without
containerization. A more modern solution like Mesos or Kubernetes already
has advanced container orchestration.

• Community – the popularity of the rocks has decade over the years. Update of
the distribution is irregular, and its community is shrinking.

Architecture overview

The architecture of the cluster consists of four essential components – Fig.3.1:

Chapter 3. Related Works 10

• Worker Nodes – nodes that run the actual workload. They are all intercon-
nected over a speed local area network that allows high throughput and low
latency. Users can configure their Node types, such as a storage node with
Lustre configured on it.

• Frontend Node – a node that serves as an entry point for workload configura-
tion and gives access to cluster observability.

• Compute network – high-speed network usually utilizes infinite band Net-
work interfaces. This network is primary used for workloads.

• Communication network – this is a regular network which we use for nodes
communication or management. If the high-speed network fails, the commu-
nication network works as a safety measurement.

FIGURE 3.1: Rocks cluster architecture

3.2 Apache Mesos

Apache Mesos is an open-source cluster manager (Apache Mesos Architecture) that
handles workloads in a distributed environment. It was initiated as a UC Berke-
ley project. The big difference in opposite to the k8s is that Mesos supports many
workload types, not only containers.

Apache Mesos is similar to Kubernetes in many ways. It allows the management of
container workloads across all nodes with out-of-the-box DNS resolution.

Architecture overview

The architecture of Mesos consists of many parts and requires some time to get a
fluent understanding of it Apache Mesos Architecture. Figure 3.2 gives an overview of
the components.

Core components of Apache Mesos:

• Framework – for a specific workload type, a framework is deployed. In case
mpi workload is needed – the mpi framework should be present in the cluster.
The framework itself has two main parts, scheduler, and executor. A sched-
uler is responsible for properly scheduling and assigning tasks to the nodes.

Chapter 3. Related Works 11

An executor is running on those nodes and processes the tasks given by the
scheduler.

• Agent Daemons – each node runs a different agent daemon. It manages the
node state, framework state.

• Master Daemon – the master daemon manages all agent daemons.

FIGURE 3.2: Mesos architecture

Execution process

The execution process is the same for any workload. Workloads will only differ in
the implementation of executor and scheduler.

Execution process of the cluster looks as follows:

1. Agent sends information about how many resources they have available on
each node. The master agent then goes through defined policies and informs
specific frameworks how many resources they can utilize.

2. Each framework’s scheduler decides which workloads should be deployed on
which node and how much resources they will consume.

3. Master daemon collects data from frameworks. After that is sends information
about tasks to all agent daemons. Agents call the specific executor on their
nodes with supplied information, and the computing begins.

As a summary, Apache Mesos is a popular modern solution for many clusters. It is
worth giving this technology a look when deciding how to configure a cluster.

12

Chapter 4

Solution Overview

4.1 General architecture

FIGURE 4.1: Cluster architecture

Chapter 4. Solution Overview 13

We split the cluster into three abstract parts:

• Hardware – configuration of physical nodes, power supply, network equip-
ment. Configuration of automatic node connection into the cluster.

• Virtualization – configuration of virtualization managing tool. Setup of a vir-
tual machine for Kubernetes master and workers nodes.

• Containerization – configuration of container-based resources. Control plane
components, mpi operator, observability tools (Prometheus and grafana), and
container registry.

4.2 Hardware

With help from the Institute for Condensed Matter Physics of the National Academy
of Sciences of Ukraine, we were able to get two cluster nodes (Figure 4.2) for our
experiments and architecture configuration.

Node one Node two
RAM 135Gb 8Gb
CPU Cores Gb 8Gb
Processor AMD Opteron(tm) 6128 Intel(R) Xeon(R) CPU E3-1230 V2
Storage 2Tb 0.5Tb

TABLE 4.1: Hardware specs

FIGURE 4.2: Bare metal cluster

4.3 Virtualization

4.3.1 Proxmox

Proxmox Virtual Environment (Proxmox website) is an open-source server virtualiza-
tion management platform. It can manage containers and virtual machines. Prox-
mox stores all VM templates locally. The ability to quickly create configured nodes
allows us to scale a cluster when it has insufficient resources. Proxmox also allows
us to observe cluster states and get alerts when something is going wrong.
We configure the ISO image of proxmox on our two physical nodes. After we fully
configure proxmox nodes, we can access GUI (Figure 4.3) through the exposed port.

Chapter 4. Solution Overview 14

FIGURE 4.3: Proxmox cluster

4.3.2 Network

We have two Network topologies, the overlay, and underlay (Difference between Un-
derlay Network and Overlay Network).
All cluster nodes and virtual machines are in 192.168.0.1/24 private underlay net-
work. All nodes can access the public internet for an update or external communica-
tion through a default gateway. Inbound traffic by default is fully closed, and only
particular ports are forwarded through the router. For example, we expose port 8006
for proxmox and port 6443 for k8s API-server.
We configure one of the proxmox nodes to have a static IP. Any new node uses this
IP to join into proxmox cluster. After we join a new node into a cluster, we will see it
in proxmox GUI (Figure 4.3). When we create a virtual machine in proxmox, it will
get a dynamic IP from the same CIDR block. See underlay network architecture –
Figure 4.4.
Kubernetes has its overlay Cluster Networking over which all k8s components com-
municate. This overlay network has many implementations, and their overview is
out of scope.

Chapter 4. Solution Overview 15

FIGURE 4.4: Network configuration

4.3.3 Cluster scaling

The ability to quickly add new hardware and virtual nodes is crucial. The Preboot
eXecution Environment, PXE, is a specification that enables pxe-clients, nodes that
have support for PXE, to boot from the network.
When we add new servers into the cluster, they go directly to the pxe server to start
the booting process. To add a node into a cluster, we need to connect it to the same
local area network. Through the TFTP server client will receive ISO image and start
the installation of proxmox distribution – Figure 4.5.
We configure ISO images to connect into the cluster at boot time automatically.
When we boot the node over the network for the first time, this machine executes a
script that joins the node into the cluster.

$ pvecm add $ipv4_stat ic_proxmox_address −− f i n g e r p r i n t $auth_info

Chapter 4. Solution Overview 16

FIGURE 4.5: Pxe boot

4.4 K8S configuration

Kubernetes has two main types of nodes, masters, and workers. The only differ-
ence is in the workload types they host. Following best practice, we will configure
all control plane components on master nodes and run workloads only on worker
nodes. Users can still decide to run workloads on master nodes, but it can negatively
impact cluster performance.

4.4.1 Node template

In proxmox, we can create VM templates. Our main template will use a base image
ubuntu 20.04. Some of the important packages are:

• Docker – Each VM must have a container engine available so that k8s can cre-
ate containers on our nodes.

• Kubeadm – Tool which simplifies the k8s installation process.
• kubectl – CLI utility for communication with k8s API-server.

We will enable DHCP for all nodes as default. The master node will overwrite
this configuration with a static IP so that worker nodes can communicate with
API-server. We will generate a template only on one proxmox node, and it will
be available for the cluster – Figure 4.3.

4.4.2 Installation

After all necessary tools are installed we can utilize kubeadm utility to install cluster.
Cluster initialization commands:

• Initialize cluster by installing control plane on master nodes. Configured clus-
ter on Figure 4.6

$ kubeadm i n i t −−args

• Configure network plugin. We will install one of k8s Cluster Networking com-
ponents called weave net 1.

$ kubect l apply − f " h t tps :// cloud . weave . works/k8s/net
? k8s−vers ion=$ (kubect l vers ion | base64 | t r −d '\n ') "

• From all worker nodes we join k8s cluster. We supply static IP of our master
node, and an authentication token.

$ kubeadm j o i n <contro l −plane −host >: < contro l −plane −port >
−−token <token > −−discovery −token −ca−c e r t −hash sha256 : < hash>

1Weave net is a netowork toolkit that connects containers into a virtual network.

Chapter 4. Solution Overview 17

FIGURE 4.6: Control plane

After successful control plane configuration, we need to deploy some extra compo-
nents. We will deploy Prometheus2 with Grafana3 for observability and local docker
registry, so that we can quickly pull and push images. Deployed components – Fig-
ure 4.7.

4.5 MPI opearator

To enable mpi workloads we need to deploy mpi-operator. Kubeflow has an open
source solution for that - MPI Operator. mpi-operator.yaml describes which re-
sources to deploy for operator.

$ g i t c lone ht tps :// github . com/kubeflow/mpi−operator

$ kubect l c r e a t e − f mpi−operatordeploy/v1alpha2/mpi−operator . yaml

FIGURE 4.7: Custom k8s components

2Prometheus is a free software tool for monitoring. This tool records real-time metrics in a time
series database.

3Grafana is a software that visualizes metrics to give observability of the system, it requires source
of metrics, Prometheus is a popular choice.

18

Chapter 5

Running workloads

The final stage is to run mpi workloads in the configured cluster and observe suc-
cessful results. This chapter aims to show how simple and intuitive it is to use our
cluster solution and MPI operator in particular.

5.1 Configure workload container

In our MPIJob specification (Table.5.2), we need to define a container image, and this
image must contain MPI-compatible code. For this workload, we are going to use
an example code (Table.5.1) from Itro to mpi.

include < s t d i o . h>
include <mpi . h>

main (i n t argc , char * * argv)
{

i n t i e r r , num_procs , my_id ;

i e r r = MPI_Init (&argc , &argv) ;

/ * f i n d out MY p r o c e s s ID , and how many p r o c e s s e s were s t a r t e d . * /

i e r r = MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
i e r r = MPI_Comm_size (MPI_COMM_WORLD, &num_procs) ;

p r i n t f (" Hello world ! I 'm process %i out of %i processes\n" ,
my_id , num_procs) ;

i e r r = MPI_Finalize () ;
}

We wrap this code into a container and push it into our private registry. To create the
image, we will use a Dockerfile in which we define build specification – Listing.5.1.
We will use this container in our MPIJob specification.

5.2 Configure MPI task

We describe workload in a YAML file; it contains information about how the work-
load should behave (Table 5.1). A few important fields:

• Kind - specify which resource type to deploy. Mpi controller filters by MPIJob
kind to understand that it should parse this YAML specification.

Chapter 5. Running workloads 19

• Launcher - configuration for the launcher container.
• Worker - configuration for worker containers.

We are going to send this YAML specification to the API-server, and it will create all
of the necessary resources.

$ kubect l apply − f mpijob−workload . yaml

1 apiVersion: kubeflow.org/v1alpha2
2 kind: MPIJob
3 metadata:
4 name: mpi-mini
5 spec:
6 slotsPerWorker: 1
7 cleanPodPolicy: Running
8 mpiReplicaSpecs:
9 Launcher:

10 replicas: 1
11 template:
12 spec:
13 containers:
14 - image: \verb|$image_name|
15 name: \verb|$container_name|
16 command:
17 - mpirun
18 - --allow-run-as-root
19 - -np
20 - "2"
21 - -bind-to
22 - none
23 - ./main
24 Worker:
25 replicas: 2
26 template:
27 spec:
28 containers:
29 - image: \verb|$image_name|
30 name: \verb|$container_name|

TABLE 5.1: MPIJob specification

5.3 Observe mpi results

Check workload results. Mpi-opearator collects and exposes all output in launcher.
Kuberenetes has native way of scraping all logs from stdout. Kubectl utility allows
us to check results - Fig.5.1:

$ kubect l logs <mpi−launcher −name>

Chapter 5. Running workloads 20

FIGURE 5.1: Mpi-job results

FROM debian

RUN apt −get update && apt −get i n s t a l l −y \
cmake \
l i b g t e s t −dev \
l i b b o o s t − t e s t −dev \
openmpi−bin \
openmpi−doc \
libopenmpi −dev \
l i b b o o s t − a l l −dev \
build − e s s e n t i a l \
&& rm − r f /var/ l i b /apt/ l i s t s / *

COPY . / / d a t a

WORKDIR / d a t a

RUN mpicc −o main . / main . c

CMD [" / b i n / bash "]
LISTING 5.1: Dockerfile for mpi workloads

21

Chapter 6

Summary

As part of this thesis, we designed a software architecture for HPC clusters. We
tested our solution on top of bare-metal clusters. We showed both the technical and
theoretical path that it takes to build an HPC cluster.
At the beginning of this thesis, we defined some objectives:

• Fault tolerance – this solution is fault-tolerant, and it does not have a single
point of failure. If some system part breaks, it will not impact the overall func-
tionality.

• Observability – Prometheus, in combination with Grafana, gives us visibility
of the system. With this solution, we can monitor our cluster nodes and work-
loads.

• Scalability – a PXE based solution is configured to allow seamless scaling of
the hardware nodes. We also configured the ability to scale the k8s cluster
with new virtual machines.

• Maintenance – as our core technology, we really on k8s. Kubernetes requires
maintains and expertise in it for proper functioning, but supporting k8s is far
easier than most solutions on the market.

The future destination of this architecture is unknown, but we hope that it will be
running in Ukrainian clusters shortly. Well, it is already running in one apartment!

6.1 Future works

Our solution has some places for improvement. Whenever we start new MPI work-
loads, we rely on the k8s default scheduler to schedule them. The behavior of this
scheduler is not always the one we expect. We plan to write our scheduler, which is
going to have different task queues depending on our needs. One more critical im-
provement will be to enable CUDA virtualization as many modoern HPC clusters
require GPU support.

22

Bibliography

apache. Apache Mesos Architecture. URL: https : / / mesos . apache . org /
documentation/latest/architecture/.

Bhardwaj, Rashmi. Difference between Underlay Network and Overlay Network. URL:
https : / / ipwithease . com / difference - between - underlay - network - and -
overlay-network/.

Council, National Research (2005). Getting Up to Speed: The Future of Supercomputing.
National Academies Press. ISBN: 0309095026.

edu, Condor. Itro to mpi. URL: http://condor.cc.ku.edu/~grobe/docs/intro-MPI-
C.shtml.

Foundation, Cloud Native Computing. Kubernetes. URL: https://kubernetes.io.
Hykes, Solomon. Docker. URL: https://www.docker.com/.
IBM. What is a mainframe. URL: https://www.ibm.com/it- infrastructure/z/
education/what-is-a-mainframe.

Kernel.org. Cgroups. URL: https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt.

Kubeflow. MPI Operator. URL: https://github.com/kubeflow/mpi-operator.
Kubernetes. Cluster Networking. URL: https://kubernetes.io/docs/concepts/
cluster-administration/networking/.

Luksa, Marko (2018). Kubernetes in action. Manning Publications. ISBN:
9781617293726.

manual, Linux. Chroot. URL: https://man7.org/linux/man-pages/man2/chroot.2.
html.

– Namespaces. URL: https://man7.org/linux/man-pages/man7/namespaces.7.
html.

Osna, Rani. A Brief History of Containers: From the 1970s Till Now. URL: https://
blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-
docker-2016.

Solutions, Proxmox Server. Proxmox website. URL: https://www.proxmox.com/en/.
TOP500. TOP 500 list. URL: https://www.top500.org/.
wikivisually. Rocks Cluster Distribution. URL: https://wikivisually.com/wiki/
Rocks_Cluster_Distribution.

https://mesos.apache.org/documentation/latest/architecture/
https://mesos.apache.org/documentation/latest/architecture/
https://ipwithease.com/difference-between-underlay-network-and-overlay-network/
https://ipwithease.com/difference-between-underlay-network-and-overlay-network/
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml
https://kubernetes.io
https://www.docker.com/
https://www.ibm.com/it-infrastructure/z/education/what-is-a-mainframe
https://www.ibm.com/it-infrastructure/z/education/what-is-a-mainframe
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://github.com/kubeflow/mpi-operator
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://www.proxmox.com/en/
https://www.top500.org/
https://wikivisually.com/wiki/Rocks_Cluster_Distribution
https://wikivisually.com/wiki/Rocks_Cluster_Distribution

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem
	Goal
	Thesis structure

	Background Information
	HPC
	Containerization
	Docker history
	Docker implementation

	Kubernetes
	CRD
	Pod life cycle
	Operator and controller

	MPI
	Mpi in kubernetes

	Related Works
	Rocks Cluster Distribution
	Architecture overview

	Apache Mesos
	Architecture overview
	Execution process

	Solution Overview
	General architecture
	Hardware
	Virtualization
	Proxmox
	Network
	Cluster scaling

	K8S configuration
	Node template
	Installation

	MPI opearator

	Running workloads
	Configure workload container
	Configure MPI task
	Observe mpi results

	Summary
	Future works

	Bibliography

