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Abstract

This work aims to develop an efficient implementation of the two-dimensional
artificial life simulation Fungera (Yavorskyi, 2021, GitHub). Initial Python-based im-
plementation of the Fungera allowed to verify that the two-dimensional approach
is viable to study evolutionary processes. Nevertheless, this prototype implemen-
tation is too slow to study emerging evolutionary innovations and emerging eco-
logical relations efficiently. One-dimensional simulator Tierra, the first successful
artificial life evolution simulator, required several million iterations for the emer-
gence of parasites, hyperparasites, “social behavior”, and so on. Because of its two-
dimensional nature, Fungera would require orders of magnitude more time for such
events leading to many weeks of simulations using Python-based implementation.
So, this work aims to develop efficient implementation based on C++. It should
support easy modification of the instruction sets used by the simulation. The other
way this project can be considered as an experiment on two-dimensional computer
architectures, inspired by the esoteric programming language Befunge.
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Chapter 1

Introduction

1.1 Foreword

In an ideal world, biology should study all forms of life, while in reality, it is
concentrated only on life on Earth (Ray, 1991, p.1). This fact means that there is
an open niche in research of alternative forms of life. Artificial life takes this free
space. Artificial life means “life created by human rather than by nature” (Langton,
1995). In this work, the term is used to refer to the simulations and studies related
to natural life but simulated with computers. These researches aim to find reasons
for the natural processes and patterns in the living organism. However, there is no
possibility to study them by examining organic creatures.

1.2 Motivation

This work is very tightly related to Fungera (Poliakov, 2020), the artificial life
simulation, which was a proof-of-concept for the possibility to implement simula-
tion with the truly two-dimensional memory space. Previous artificial life simula-
tors showed remarkable evolutionary results. For example, in the Tierra simulation,
the occurrence of both punctuated equilibrium (Wikipedia contributors, 2021b) and
phyletic gradualism (Wikipedia contributors, 2018) was shown (Ray, 1991, p. 15).
The original Fungera simulator showed the punctuated equilibrium model of the
evolution. The current results and diversity of organisms prove that the Fungera
model is viable to research to achieve more evolutionary results. “Evolution of dig-
ital organisms in truly two-dimensional memory space” (Poliakov, 2020) describes
the results obtained up to the simulation cycle 700000. Other simulations required
significantly more time in order to achieve their results. Taking the dimensional-
ity into consideration, significantly longer executions are required to develop new
evolutionary patterns or exhaust their opportunities.

1.3 Goal

The goal of this work is to create software that allows study Fungera more ef-
ficiently. This includes implementing the simulator in C++, which is compiled pro-
gramming language significantly faster than Python. The implementation needs to
be extensible in order to allow modifying instruction set without great effort. The
GUI (graphical user interface) will also be beneficial for real-time visualization of the
system and troubleshooting in case of the extension of the instruction set.
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Chapter 2

Related Works

2.1 Tierra

2.1.1 Model description

An Approach to the Synthesis of Life is a work of Tom Ray published in 1991,
which aimed to show the origin of the diversity of life. The research involved engi-
neering complex, evolvable organisms and creating conditions that will lead to the
evolution process with increasing diversity and complexity. It is one of the most suc-
cessful and well-known artificial life simulations. The Tierra simulator in its core is
an artificial world that can be referred to as the virtual version of the RNA world of
self-replicating molecules. The simulation resulted in the emergence of such interac-
tions as parasitism, hyperparasitism, sociality, and cheating from just one rudimen-
tary ancestral creature, which consists of code only for self-replication (Ray, 1991,
pp. 2-3).

Organic life needs two primary resources — energy, mainly derived from the
sun, and space to live in. Artificial life parallel for the sun is CPU, and memory is
the analog for the spatial resource. There is a natural selection mechanism in such a
simulation: organisms compete for CPU time and memory space and evolve strate-
gies to do it more efficiently and exploit each other. Digital organisms are computer
programs — creatures constructed entirely of machine instructions that can be re-
ferred to as analogies for amino acids. The ”genome” of a creature is the sequence
of machine instructions that form the creature’s self-replicating algorithm. The pro-
totype creature has a ”genome” of 80 machine instructions (Ray, 1991, p. 5).

2.1.2 Virtual computer

The simulation takes place on a virtual MIMD type computer. This virtual ma-
chine’s machine code is designed with evolution in mind in contrast to the real ma-
chine code, which is almost certain to result in invalid and non-functional programs
because of mutation or recombination events. Each organism has its own processor.
There is no true parallelism; it is emulated by allowing each creature to execute in a
small-time slice in turn. Each CPU has two address registers, two numeric registers,
an error flag register, a stack pointer, a stack, and an instruction pointer. The instruc-
tion set includes simple arithmetic operations, bit manipulation, moving data be-
tween registers and RAM, IP manipulation instructions. IP indicates the position in
RAM where the code of the organism is currently executed. Code is executed in the
fetch-decode-execute-increment-IP style. The instruction is fetched from the RAM;
then, bits are decoded to determine the corresponding command. The command is
executed, and IP is incremented to the next point in memory (except commands that
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directly manipulate the IP, such as JMP, CALL, RET). The RAM is one-dimensional
and shared between all CPUs (Ray, 1991, p. 6).

2.1.3 Instruction set

Traditional CPU instruction sets are not suitable for genetic operations such as
mutation. A new instruction set was developed. This virtual programming lan-
guage, ”Tierran”, was designed to be the same order of magnitude as the genetic
code. The information in DNA is encoded through 64 codons, which consist of 20
amino acids. Tierran language consists of 32 instructions which are represented by
five bits. It is achieved by restricting the operands to be only registers or stack. An-
other crucial feature of the Tierran language is addressing by a template. The tem-
plate set of the instruction NOP_0 or NOP_1 follows the JMP command. When the
JMP command is executed, the CPU searches for the pattern, inverted to the given
in both directions. For example, on the execution of command JMP NOP_1 NOP_1
NOP_0, the system will search for the sequence NOP_0 NOP_0 NOP_1, and in case
it was found, the IP will be moved after this sequence. Other than that, instructions
are similar to most ”real” instruction sets (contains such standard instructions as
MOV, CALL, PUSH, POP) (Ray, 1991, p. 7).

FIGURE 2.1: Normal addressing and template addressing

2.1.4 Operating system

In order to work, the virtual machine needs the operating system, which defines
the mechanisms for IPC, memory, and CPU time allocation. The Tierran operating
system establishes the environment. In combination with ISA, it also describes the
topology of possible interactions between creatures. OS operates a block of RAM,
which is referred to as ”soup”. Each organism has its block of memory in the soup.
The OS provides cellularity so that memory allocations protect creatures as a ”semi-
permeable membrane.” Each organism has exclusive write permissions in its block



Chapter 2. Related Works 4

of memory. Read and execute permissions are not restricted from other organisms
that are not owners of the memory block. Each creature can have the write privileges
in at most two memory blocks: its memory block and the block of the child. Mem-
ory block for the offspring is received through the execution of memory allocation
instruction. When the organism ”divides”, the creature’s child becomes an indepen-
dent organism. It obtains its registers, IP, stack, and CPU. The parental organism, in
its turn, loses the write permission to the child’s memory block (Ray, 1991, pp. 8-9).

Multitasking allows organisms to ”live” in the memory simultaneously. It is im-
plemented through a ”slicer queue” -— a queue of all creatures (each having its
virtual CPU). These virtual CPUs receive slices of real CPU time in turns. Since the
time slices are small relative to the generation time of the creatures, the author calls
it approximate parallelism. There is no true parallelism in such an approach. The
”slice power” — a variable that defines whether the ”slicer queue” is size neutral or
if it favors the organisms of large or small size can be configured. If power is greater
than 1, large creatures get more CPU cycles per slice. If it is less than one, then tiny
organisms get more CPU cycles (Ray, 1991, p. 9).

In a fixed-sized memory soup with self-replicating creatures in it, there is a prob-
lem with overpopulation. This problem is solved by implementing mortality. All
organisms, when born, are put into the ”reaper” queue. When the memory allo-
cated for simulation fills to a set percentage, it begins to ”kill” the creatures from
the top of the reaper. When the organism is killed, it is removed from the ”reaper”
and the ”slicer queue,” its memory block is deallocated. However, the organism’s
”dead” code remains in the soup. Organisms in the queue are sorted by the number
of errors they made during the execution of machine instructions. There are two
relatively challenging to execute machine instructions. Successful execution of these
instructions moves the organism down in the queue as long as it has not more errors
than the organism below. The reaper queue eliminates organisms with broken or
seriously damaged algorithms and frees the memory for new organisms. In general,
the older creature gets, the higher is the probability of death (Ray, 1991, p. 10).

Evolution is a change in the genomes of the creatures over successive genera-
tions. Tierra simulator implements it in three aspects. At some set background rate,
bits are randomly selected from the entire soup and flipped, preventing organisms
from immortality as each organism will eventually mutate to death. The mutations
may also happen during the replication of organisms: the bits are randomly flipped
at some rate during copy instruction execution. The rate of mutations during repli-
cation is higher than random bit flips. Both mutation mechanisms are set to happen
in variable intervals to prevent possible periodic effects. In addition to the mutation
mechanism, the behavior of the Tierran instruction set is probabilistic by its nature.
Most of the instructions can be executed with a flaw: the result can be off by 1. For
example, an increment command can add 0 or 2 instead of 1, or a bit-flipping instruc-
tion flips the next higher bit or no bit. All these possible mutations in the genomes
of organisms cause new operational genotypes to evolve through time and provide
open-ended evolution (Ray, 1991, pp. 10-11).

An automated genebank manager is implemented to watch the creation of new
genotypes that appear due to Tierra’s evolutionary mechanisms. When new geno-
types replicate twice with both children being genetically identical, they are given a
unique name and saved to disk. With each genotype, some additional data is stored,
e.g., the name of its ancestor, which allows building a family tree, time and date of
origin, number of errors generated in the first and second reproduction, and other
information. (Ray, 1991, p. 11).
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2.1.5 Results

Mutations can not change the creature’s size directly. However, they change
instructions that form the organism. These changes in template patterns (used in
such instructions as JMP) may change how the organism examines itself, potentially
changing its descendant size or behavior. As a result, such mutation changed the
low order bit in instruction NOP_0, converting it into NOP_1, changing the tem-
plate from indicating copy procedure to the end of the organism. These changes
caused the emergence of parasites. For example, popular Tierra genotype 0045aaa
is not self-replicating. However, due to the ability to read and execute instructions
of different organisms, it can use the initial ancestor to perform the ancestor’s copy
procedure forming parasitic relationships. Other behavioral patterns that appear in
Tierra simulation (Ray, 1991, pp. 13-14):

• Immunity to parasites — some of the size 79 genotypes demonstrated to be
resistant for parasites. Parasites of several genotypes are still able to exploit
their code for their goals. However, the reaper queue will quickly eliminate
parasites’ children from the soup.

• Other parasites can still successfully reproduce using immune to parasite hosts,
therefore developing circumvention of immunity to parasites.

• Hyper-parasites are creatures that can use parasites for reproduction. This
kind of organism manipulates the instruction pointer, so after the copy pro-
cedure, it executes not RET instructions but JMP to the proper address of the
reproduction loop, effectively stealing the parasite’s IP. Hyper-parasites can
form groups.

• Groups of hyper-parasites are invaded by cheaters: hyper-hyper-parasites.
They steal the IP from hyper-parasites when it is passed from one member
of the group to another.

In terms of macro-evolution, the results are dependent on the ”slice power”.
When selecting from the small organism, the simulation shows interesting commu-
nities of tiny parasites. Selection for significant cases usually leads to the continu-
ous increase of the creatures’ size. Long runs with size-neutral selection illustrate
the pattern of interchanging periods of stability with periods of rapid evolutionary
changes. The run that lasted 2.56 billion instructions contained 1180 size classes of
organisms where each size class can consist of several distinct genotypes (Ray, 1991,
pp. 15-16).

2.2 Avida

Avida is an artificial life simulation inspired by Tierra. Chris Adami developed
it because of the need for a larger and faster system designed for evolution towards
complexity (Adami, 1994, p. 1). The software distributed with Avida includes the
following applications (Ofria, 2003, p. 11):

• Avida core, which provides virtual hardware and services parallel to Tiera’s
OS

• Analysis and statistics tools, with test environment which allows studying or-
ganisms outside the environment
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• GUI, which allows interaction with previous parts

Avida proposes a memory model in the shape of a torus, the surface of which is the
grid (Adami, 1994, p. 1).

Although memory is described as an M x N grid, the model is pseudo-two-
dimensional. Organisms are not two-dimensional. Each organism is allocated a
sweep of the torus. This sweep is circular. Therefore when the last instruction is
executed, execution continues from the beginning of the creature. Despite being cir-
cular, it has a defined starting point necessary for the self-replication process. The
organisms are isolated in their stripes of memory and can be affected only by the
command which splits the new organism from its ancestor. In this case, the new
organism can replace the old one (Ofria, 2003, p. 11).

The core principle of the self-replicating organism is similar to the Tierra: its
initial state can be described by the string of symbols (instructions). This string is the
genome of the organism. However, the virtual hardware is different. The memory
has already been described. Avida’s virtual CPU has two stacks. Only one can be
active. However, there is an instruction to switch active stack. The CPU also has
four labeled heads. These heads are pointers to the positions in memory. One of
the heads is the instruction pointer. The other two are “write” and “read” heads.
They are used in the self-replication process. The first one indicates the position in
the memory to which the instruction at the read head position is being written. All
heads may be placed only inside the memory allocated for this organism. In this
way, an organism in Avida has restricted write, read and execute permissions, in
contrast to Tierra, where only write permissions are restricted. Since the organism is
not able to write in memory which is not part of him when memory for the child is
allocated, organism size is increased (Ofria, 2003, p. 12).

FIGURE 2.2: The h-alloc command extends the memory, so that the
program of the child organism can be stored. Later, on h-divide, the
program is split into two parts, one of which turns into the child or-

ganism (Ofria, 2003, p. 74)
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The last head is the flow control head which is used for jumps and loops. It is
worth mentioning that this head also is used to implement addressing by the tem-
plate, the mechanism similar to the one in Tierra (the difference is that Avida has 3
NOP instructions) (Ofria, 2003, p. 14).

2.3 Amoeba

This work aimed to build a system that generates a self-replicating ancestor
from a randomly generated code sequence, which is the parallel for prebiotic soup
(Wikipedia contributors, 2021a). The first version of Amoeba was using a reduced
set of instructions with only 16 machine operations compared to Avida’s 24 and
Tierra’s 32. Amoeba-I is not Turing-complete. The second version uses an instruction
set of size 32. Moreover, in this version, two stacks for each virtual CPU were added.
The memory is two-dimensional similar to Avida’s memory model (Pargellis, 2001,
pp. 1-2), though in the same meaning as in Avida – organisms are one-dimensional.

Amoeba defines the ”codon” as a pattern that encodes specific machine instruc-
tions. Therefore, each organism consists of codon-operation pairs. Amoeba uses 64
of such codons in order to encode 32 machine operations randomly. This allows ad-
dressing any operation of the creature in a new way, similar to the template match-
ing. The CPUs are dynamically assigned to a particular lattice site. When the child
is created using the MALL instruction, the virtual CPU is created on a lattice part.
The codon-operation pairs are copied to this virtual CPU’s operation stack (Pargellis,
2001, p. 4).

The first version of Amoeba was producing only inefficient organisms that could
reproduce only once before dying. Such organisms are not the aim of this research.
They were called protobiotic cells. However, the diversity of the organisms that
emerged from the second version is more comprehensive. A probiotic cell evolved
into a self-replicating biotic organism in 3472 generations. This result shows the
possibility of simulating artificial life without a predefined ancestor (Pargellis, 2001,
p. 8).

2.4 Fungera

The main goal of Fungera was to increase the complexity and diversity of or-
ganisms. Tierra produces a wide diversity of organisms at the beginning of the sim-
ulation. However, the diversity of the creatures reaches the plateau. Several reasons
were examined as suspects for causing such behavior. Several approaches were used
to solve the issues. However, there were no significant differences in evolutionary
processes. The problem seems to be in the one-dimensional nature of the artificial
world. Other reason – it’s inherent unlocality: the effort to access the memory is not
growing with the distance. Avida and Amoeba tried to solve this problem by im-
plementing pseudo-two-dimensional models of RAM. However, these models use
multiple one-dimensional memory spaces where instructions are isolated along the
lines. In order to proceed with research in this direction, Mykhailo Poliakov under
the guidance of the Oleg Farenyuk developed Fungera — a truly two-dimensional
artificial life simulation (Poliakov, 2020, p. 10).
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2.4.1 Befunge & Fungera instruction set

In order to create a truly two-dimensional organism, a two-dimensional instruc-
tion set is required. Most two-dimensional programming languages are considered
esoteric because bare-metal machines are designed with one-dimensional RAM and
CPU (registers, stack, etc.). In order to create the instruction set, the modification of
Befunge Programming Language was used — Befunge-98. In this language, the IP
(Instruction pointer) can move in four directions, and four corresponding operators
change the direction of the IP. There is also the instruction that changes any character
in the grid to another character. This instruction makes Befunge even more beneficial
to use since it provides the base for self-replicating code. This ability is already very
similar to the Tierran alternative. The Fungera instruction set is created by combin-
ing the two-dimensional nature of the Befunge-98 and Tierran instructions designed
with open-ended evolution in mind (Poliakov, 2020, p. 11).

Code Sym Ops Description Type
[0, 0] . 0 Template constructor Template
[0, 1] : 0 Template constructor Template
[1, 0] a 0 Register modifier Register
[1, 1] b 0 Register modifier Register
[1, 2] c 0 Register modifier Register
[1, 3] d 0 Register modifier Register
[2, 0] ^ 0 Direction modifier (up) Direction
[2, 1] v 0 Direction modifier (down) Direction
[2, 2] > 0 Direction modifier (right) Direction
[2, 3] < 0 Direction modifier (left) Direction
[3, 0] x 0 Operation modifier Operation
[3, 1] y 0 Operation modifier Operation
[4, 0] & 2+ Find template, put its address in register Matching
[5, 0] ? 4 If not zero Conditional
[6, 0] 0 1 Put [0, 0] vector into the register Arithmetic
[6, 1] 1 1 Put [1, 1] vector into the register Arithmetic
[6, 2] - 2 Decrement value in register Arithmetic
[6, 3] + 2 Increment value in register Arithmetic
[6, 4] ~ 3 Subtract registers and store result in register Arithmetic
[6, 5] * 3 Add registers and store result in register Arithmetic
[7, 0] W 2 Write instruction from register to address Replication
[7, 1] L 2 Load instruction from address to register Replication
[7, 2] @ 2 Allocate child memory of size Replication
[7, 3] $ 0 Split child organism Replication
[8, 0] S 1 Push value from register into the stack Stack
[8, 1] P 1 Pop value of register into the stack Stack

TABLE 2.1: Initial Fungera instruction set, (Poliakov, 2020, p. 12)

Fungera’s instruction set introduces one new concept that is not present in Tier-
ran or Befunge -— modifiers. For example, Tierran instruction SUB_AC (subtract
register RC from register RA and put the result into RA) consists of Fungera’s in-
struction ~ (subtract) followed by the three register modifiers: ~aca. Modifiers by
themselves are machine instructions as well. However, they are NOP instructions.
Implementation of the instruction set in such a way is more straightforward because
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there is no need to define every operation that could be performed in the instruction
set since they can be made by combining simpler instructions with modifiers. More-
over, it makes the machine code more readable and familiar to the users of modern
PLs. These aspects make the reversed set of the instructions equivalent to the origi-
nal, e.g., +acb is the same as bca+ if the first case IP moves from the left to right and
in the second case vice versa (Poliakov, 2020, p. 12).

2.4.2 Organism structure

Organisms are Tierra-like too except for being two-dimensional. Therefore, we
have a new element in the CPU — ”delta”, which is the direction in which the IP is
incremented. IP can be moved up, down, left, and right through memory. Another
difference is that all registers are general-purpose registers. There are also concepts
of the main memory and the child memory blocks. First is the address of the organ-
ism, the second – address of the memory where the organism is reproducing. Since
the organisms are two-dimensional creatures, all elements of CPU are vectors of size
2 (Poliakov, 2020, p. 11).

CPU element Description
RA General-purpose register A
RB General-purpose register B
RC General-purpose register C
RD General-purpose register D
IP Instruction pointer
Delta IP direction
Stack Stack of configurable size (default 8)
Main memory block Allocated memory block for organism itself
Child memory block Optional memory block for child allocation

TABLE 2.2: CPU structure in Fungera (Poliakov, 2020, p. 11)

2.4.3 Memory

The memory in the Fungera simulator is truly a two-dimensional RAM grid
with a configurable size. Each sell can hold one instruction, which makes it again
very similar to Tierra’s RAM. All CPUs share it. The address of each cell is a two-
element vector. The grid is not circular in contrast to Avida. Tierra’s, Avida’s,
Amoeba’s, and Fungera’s memory models are visualized in the Fig. 2.3. Another
difference from the Tierra is that organism has to write permissions only when it
has allocated memory for the child. However, the write permission is not tied to
the child’s memory block or its own. The organism has write privileges in each cell
of the RAM. Mutations occur only by changing random instruction to random one
from the instruction set with a configurable rate (Poliakov, 2020, p. 13).

Each organism in the simulation is added to the Queue. There is only one queue
as opposed to Tierras’s ”reaper” and ”slicer queue”. Mortality is achieved in three
ways:

• organisms dies if it made more than a configured amount of errors;

• the Queue removes configured percentage of creatures with most errors when
the memory is filled to a configured extent;
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FIGURE 2.3: Tierra, Avida, Amoeba vs. Fungera memory design (Po-
liakov, 2020, p. 13)

• the infertile organisms are removed after a configured amount of cycles.

This queue also is responsible for multitasking in order to simulate parallelism.
However, as for now, all CPUs receive the same CPU time slice despite their size:
enough to execute just one machine instruction (Poliakov, 2020, p. 13).

2.4.4 Results

More than 170 size classes emerged in the large-scale simulation with memory
size [5000, 5000]. However, only a few of them are capable of further reproduction
and evolution. Different behavioral patterns in different size classes occur as well
as it was in the Tierra simulator. For example, the offsprings emerged, which can
reproduce only to the right and downwards. At the same time, this organism’s re-
production cycle was shorter (Poliakov, 2020, p. 17).

Results in micro- and macro-evolution prove that Fungera is a step in the new
direction which may lead to valuable results and conclusions. However, it is stated
in the work that the implementation of the simulation needs improvement: Fungera
should be reimplemented using compiled, efficiency-oriented language like C++;
simulator itself and GUI should be separate objects, which will allow running the
simulation faster without the visualization; there should be a work done to reach
some true parallelism (Poliakov, 2020, p. 25).
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Chapter 3

Implementation

The work of Mykhailo Poliakov proves that the Fungera instruction set and
a virtual computer model are viable to research and can lead to meaningful evo-
lutionary results. In the described simulation runs, a significant number of size
classes emerged. Some of them are even capable of reproduction. Several succes-
sors showed different reproduction strategies; some, such as microvesicles, have an
interesting behavioral difference, which is close to parasitism. All these conclusions
are based on the results of the original paper, which describes the results of simu-
lation reaching cycle 700000 (Poliakov, 2020, p. 25). In comparison, some runs of
Tierra reach 2.56 billion executed instructions (Ray, 1991, p.16). It is evident that
for further analysis, there is a need for a simulator that runs significantly faster to
diversify the number of runs with different configurations and various initial condi-
tions. Also, research of the Tierra-like artificial life requires ability to easily change
the instruction sets.

My work provides a more efficient and flexible implementation of the Fungera
simulation in C++.

In order for the implementation of the Fungera simulation in C++ to be efficient,
the existing issues in the original Python implementation need to be addressed:

• TUI implementation is embedded into the Fungera abstractions such as RAM,
organism, and the simulation class itself.

• Simulation can not run without TUI.

In order to eliminate such flaws from the current implementation (Yavorskyi,
2021), GUI was designed to be a separate essence from the very beginning and use
simulation as the source of data. This decision results in the minimization of the
simulation deceleration caused by the GUI support. Simulation only notifies the GUI
that the data has changed, which allows executing the simulation without the GUI
with little to no drawbacks brought by the GUI feature. This part is crucial because
the graphical interfaces are not needed in the long run when the data for further
analysis is collected. Basic logging is enough to know the status of the execution.
Interfaces are needed mainly for debugging purposes: to check if the simulation runs
correctly, examine the behavior of a specific creature, and visualize the simulation
when modifying the instruction set.

The GUI was built using Qt — a cross-platform framework implemented in C++
for application development, building robust and extensible GUI for C++ applica-
tions. The framework is designed using model/view architecture to manage the
relationship between data and visual representation. This architecture is a modifi-
cation of the MVC design pattern, where view and controller objects are combined.
Such a solution allows separating the data representation from the way it is stored.
Therefore, the connection between the simulation and GUI is minimized to the noti-
fications that contain updated information.

https://www.qt.io/
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FIGURE 3.1: Connection between simulation and GUI

The GUI can be divided into three sections (Figure 3.2). The first one is showing
the basic status of the simulation:

• current cycle

• number of alive organisms

• number of times queue was killing the organisms

This section also provides information about the selected organism, such as:

• values in the stack and registers

• the position of the IP

• IP direction

• number of errors made by this organism

• etc

The second part is the visualization of RAM. This part of the GUI fixes some is-
sues present in the reference implementation TUI, such as unstable IP of the selected
organism visualization. That allows more convenient step-by-step debugging. New
features were implemented, such as highlighting organisms’ borders and visualiz-
ing memory cell numbers.

The third section is control elements, which allow manipulating the simulation
and implement the troubleshooting feature. The simulation can be paused with the
Pause button. The Cycle button allows executing exactly one simulation cycle. The
Next and Prev buttons change the selected organism, and there is also an option to
choose the exact organism id with a drop-down menu. The Cycle selected button
executes exactly one cycle for the selected organism without executing the code of
any other organisms. To advance the simulation forward for the desired number of
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simulation cycles, use the line edit and the Advance button. A user can choose the
instruction. When the selected organism executes this instruction, the simulation
will be paused. Last but not least, the simulation can be paused when any of the
organisms’ IP reaches configured memory cell.

FIGURE 3.2: GUI for Fungera simulator (1 - Simulation status and se-
lected organism’s properties; 2 - RAM visualization with the selected

organism, its borders, and IP highlighted; 3 - Control elements)

In order to save the information about the state of the simulation for the restarts
of the simulation or further analysis and obtain information about existing geno-
types and other aspects that can be valuable, snapshots are saved at a configurable
rate. The implemented solution is using the Boost Serialization library. This library
allows serializing C++ and saving them on disk. The object which represents a seri-
alized C++ object is referred to as ”archive”. Among the supported archives formats,
this implementation uses two:

• portable text archives - used to save snapshots

• XML archives that are easier to use for further analysis

XML archives are portable as well. However, they are not suitable to save many
snapshots due to the size. The application has the functionality to convert snapshots
in text archives into XML archives.

The description of the objects that form the simulator should be started with
Fungera class, the central object, which manages all parts. It is responsible for the
execution, creates, and owns Memory and Queue instances. Fungera object is also
the main interface of communication with the whole simulation. Memory object rep-
resents RAM. It holds memory cells, each cell containing machine instruction and a
flag that indicates if some organism occupies the cell. Memory also provides an in-
terface for allocation/deallocation of the memory block, searching for a free block
of the requested size. Queue object is the owner of organisms. It is responsible for
providing real CPU time for all creatures. It has the interface to eliminate the config-
ured percentage of organisms when RAM reaches a set ratio of occupied to free cells.
Organism object holds Fungera’s organism structure along with the implementation
of the instruction set. The relation between objects is described in the figure:

https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/index.html
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FIGURE 3.3: Basic architecture of Fungera simulator

The mutation mechanism was extended in the current implementation of the
Fungera. In order to make changes in organisms more flexible, the ideas from
Tierra’s mutations were adopted into Fungera. The instruction set is still determin-
istic. However, the number of mutations and the probability of mutation can be
configured. Moreover, it is possible to configure mutations during the copying pro-
cess. In order to run Fungera in its original configuration, the number of mutations
from radiation and its probability of it should be set to 1, and the probability of the
mutation during copy instruction should be set to 0.

Regarding the current implementation and reference Python implementation per-
formance, the time was measured of each simulator, reaching 1000, 10000, and 100000
cycles. All the executions were done on the Intel i7-7500U and 16 GB of DDR4 RAM
with a virtual memory size of 1000 by 1000 cells. Since the TUI code of the Python
implementation is embedded into the simulator and affects the performance, it is
fair to compare all of the test runs:
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• Reference implementation with TUI: 0.70 seconds, 6.93 seconds, 357.50 sec-
onds

• Reference implementation with minimized TUI: 0.032 seconds, 0.235 seconds,
13.447 seconds

• Current C++ implementation with GUI: 0.179 seconds, 1.597 seconds, 15.141
seconds

• Current C++ implementation without GUI: 0.0017 seconds, 0.0043 seconds,
0.0417 seconds

The test runs showed that the current implementation with GUI debugger enabled
has almost the same performance as the reference implementation with a minimized
GUI. The simulator’s performance while using GUI is not crucial since its purpose is
the ability to troubleshoot and visualize the system. The consistency of the GUI with
the state of the simulation at any point in time is the real important aspect here. At
each step of the simulation, all the organism status and memory visualization should
be updated. This aspect, along with new features introduced by GUI, makes the
runs with interface enabled slower. Therefore, the regular simulation runs should
be executed with GUI disabled.

FIGURE 3.4: Performance comparison of the reference Python im-
plementation and current C++ implementation with visualization en-

abled
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FIGURE 3.5: Performance comparison of the reference Python imple-
mentation and current C++ implementation with visualization dis-

abled(minimized)
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Chapter 4

Conclusion & Future works

4.1 Conclusion

The result of this work is the implementation of the truly two-dimensional ar-
tificial life simulator Fungera developed in C++. This implementation opens possi-
bilities for further analysis of this artificial world by accumulating data from vari-
ous executions with different configurations and starting conditions. Implemented
GUI brings the possibility to examine newly emerged genotypes and their behav-
ioral patterns step-by-step. The instruction set of the simulation is easy to modify
and integrate new instructions as long as they work with the organism and memory
structures defined by the Fungera. The GUI plays the role of debugger for such mod-
ifications as new instructions can be tested in order to work as expected by the direct
visualization of memory status and the status of the organisms’ key parameters.

4.2 Future woks

While this simulator is faster than the initial Python implementation, true paral-
lelism, which could significantly improve the performance, was outside of the scope
of this work. All instructions that do not interact with the RAM or queue can be ex-
ecuted in parallel in the current design. Before extending the solution with true par-
allelism, instructions that require synchronization when accessing shared resources
such as memory and queue of organisms should be modified to prevent data races.
Nevertheless, the current implementation can be extended to implement this feature
in the future.

Another feature that might be useful is extending the GUI with more controls on
the simulation. Suppose this application will be used to modify the instruction set.
In that case, the possibility of executing the code of only a selected organism might
make it easier to troubleshoot newly added instructions. The opportunity to run the
simulation up to the requested cycle and to make the force snapshot on the current
cycle from the visual interface are features that will help as well.
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