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Abstract

The Kinship Verification aims to determine blood relativeness between people from
visual data. This problem gains more attention from the research community during
the last few years due to low human and machine performance on this task. Mul-
tiple attempts were taken to improve the performance of the Kinship Verification,
but most of them are done under diverse experimental settings, and the results are
benchmarked on different datasets. In our work, we conduct an ablation study to
compare these improvements and determine whether different approaches are com-
patible with each other or should be applied separately. This ablation study consists
in testing different feature extractors, embedding combinations, neural network hy-
perparameters and such data preprocessing techniques as data augmentation, face
alignment and image normalization. This thesis showcases the importance of reach
feature representation and efficient embedding combination for the overall accuracy
of Kinship Verification.
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Chapter 1

Introduction

Kinship recognition is a set of problems in the Computer Vision domain that aims to
determine blood relativeness between people. Given images of the persons, the task
is to determine whether they are relatives or not.

Potential applications of kinship recognition are in genetics, social media, enter-
tainment, missing children and relatives search, border control and criminal investi-
gation.

Also, kinship recognition tasks are of interest because of relatively poor human
performance. In the research [9], authors report average human performance on a
subset of the Cornell Kin dataset as 67.19%, with the lowest and highest accuracy
of 50% and 90%, respectively. In [29] states that machines outperformed humans on
the FIW dataset. In the work [3], authors also proved that machines beat humans on
such datasets as Kin-Wild [22] and Uva Nemo Smile [8].

Even considering the fact that machines beat humans on the Kinship Verifica-
tion task, still, performance of the AI-based methods is not perfect. For instance,
SOTA performance on the biggest nowadays kinship dataset - FIW [29], on the 1-
to-1 kinship verification task is 78% accuracy [28]. Indeed, such performance is a
big obstacle for the usage of such algorithms in real life, especially in some critical
applications. An example of such application could be a search of potential parents
of the lost child, when quite a big chance of the misclassification (more than 20%) of
the current approaches could lead to a bigger set of the candidates, which will need
further additional testing via other methods. However, by developing more accu-
rate methods, we can decrease that gap between the current state and the desired
one and allow the usage of kinship recognition algorithms in everyday life.

During the last decade, researchers were attempting to improve the accuracy of
the Kinship Verification methods in diverse ways and on different datasets. The is-
sue of that is that separate improvements in different works can not be compared
since they were done under different experimental settings. So, the main contribu-
tions of this work are:

• benchmark of different improvements, proposed in other works, on one dataset
with the same experimental settings, so that they could be compared

• study of how each of the improvements influences the overall performance
and which of their combinations performs better

All our code and models wights are available in the GitHub repository1. The
rest of the work is organized as follows: in the next part of the Chapter 1 main
Kinship Recognition problems are described; Chapter 2 provides a review of the
existing methods for the Kinship Verification and highlights current problems in this
field; Chapter 3 describes what was done during ablation study; Chapter 4 contains

1https://github.com/franchukpetro/kinship_verification

https://github.com/franchukpetro/kinship_verification
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FIGURE 1.1: Kinship recognition problem types [30]

information about experimental setup and explains experiments and their results.
Finally, Chapter 5 concludes our work.

1.1 Kinship recognition problems types

As already was mentioned, kinship recognition is a set of problems, each of which
involves different inputs and tasks. This section briefly explains such problems as
kinship verification, tri-subject verification, and search retrieval. For further re-
search, the 1-to-1 task of kinship verification was selected, as it is most fundamental.
In case of improvements in this task, the same improvements can be applied to other
tasks.

1.1.1 Kinship verification

The task of kinship verification is to determine whether two persons are blood rel-
atives. Input is defined as two images with faces, and output is a simple binary
label, kin or non-kin. Besides two images, usually, kinship relation is given as prior
knowledge for the task. In most datasets, there are such relation types as siblings
(brother-brother (BB), sister-sister (SS) and brother-sister (SIBS)) and parent-child re-
lations (mother-daughter (MD), mother-son (MS), father-son (FS), father-daughter
(FD)), but there are also grandparent-grandchild relations (grandfather-grandson
(GFGS), grandfather-granddaughter (GFGD), grandmother-grandson (GMGS) and
grandmother-granddaughter(GMGD)), which are present, for instance, in FIW dataset[29][30].

1.1.2 Tri-subject verification

Tri-subject verification, instead of determining whether two persons are related, is
focused on the relation of both parents and their child. As an input for this type of
task, 3 images are provided: images of the father, mother and possible child (i.e. son
or daughter). The task is to predict binary label whether this third one is really the
child of the first two[30].

1.1.3 Search and retrieval

Search and retrieval is a many-to-many mapping task usually used for the missing
children search. As input, few images of the lost child are provided, and the gallery,
with pictures of all possible parents. The task is to obtain a ranked list of the persons
from the gallery, where the top persons in that list will be the most possible parents
of that lost child[30].
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Chapter 2

Related work

As already was mentioned in the Chapter 1, this work focuses only on kinship ver-
ification, but not on the tri-subject verification or the search and retrieval tasks. The
most common approaches to deal with kinship verification are metric learning, fine-
tuning models, pretrained on the Face Recognition tasks, and their combination.

2.1 Metric learning

The main idea behind this method is to optimize metric between classes, in case of
kinship verification - between kin and non-kin. It is quite a common approach in
the Face Recognition field, where the faces of one person will create a cluster of the
points in the embedding space, which can be easily separated from the cluster of
another individual. On the contrary, in the kinship verification, this cluster should
contain not only the faces of one person but also the faces of all family members,
creating so-called family clusters, resulting in more complex task. In the last decade,
researchers have made many efforts to learn such metric to create these family clus-
ters. In [41] authors proposed discriminative multi-metric learning (DMML), where
they learn multiple distance metrics from features, which they get from multiple
face descriptors. In [39] was developed an approach based on the color features
and extreme learning machines (ELM). In [19] authors developed a method named
KVRL-fcDBN, which is currently one of the SOTA metric learning methods, result-
ing in 96% accuracy on the KinWild I & II datasets. Also, such methods as MHDL
[24] and MvGMML [15] were proposed.

2.2 Transfer learning

Transfer learning is another group of approaches for kinship verification. As the
problem setting of the kinship verification is very similar to the Face Recognition
field, usually pretrained models are taken from it. There are several benchmark
datasets in the FR field, such as VGGFace 1/2 [27][4], LFW [16] and MSCeleb[11], on
which models were pretrained using some special loss (angular softmax in SphereFace[20],
triplet loss in FaceNet[31], large margin cosine loss in CosFace[37] or additive angu-
lar margin loss in ArcFace[6]). These pretrained models are used as feature extractor,
which will transfer faces from images to embedding space.

After feature extraction from the images, there are two ways to get a binary la-
bel (i.e. kin/non-kin): a) compute the distance between feature embeddings of two
faces and tune threshold to produce binary label ; b) using Siamese network archi-
tecture(meaning two neural networks with shared weights), get embeddings of both
of the images, fuse them and feed through few FC layers.
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a) In [33] authors re-detected faces with RetinaFace[7] detector, aligned them and
used the ArcFace model to produce image embeddings. The cosine distance between
two face embedding was then used as a predicted probability of the kinship. Given
approach results in SOTA performance in the kinship verification problem on the
FIW dataset with 78% accuracy. In another work [21] was proposed to use multiple
feature descriptors for different features extracted from the face image. After feature
extraction, the euclidean distance between two face embeddings of the same fea-
ture descriptor is computed. All distances are then summed up and used as a final
prediction score.

b) In [42] authors used the classical architecture of the Siamese network in their
approach, with ResNet50[12] pretrained on VGGFace2 as a feature descriptor. Au-
thors combined extracted embeddings in a few different ways, fused them into one
embedding and then fed it into 2 fully connected layers. Approach from [23] is very
similar to the previous one, except that now authors used two feature extractors -
ResNet50 pretrained on the VGGFace2 and FaceNet. In another work [17], authors
used ResNet50 pretrained with ArcFace loss for feature extraction and proposed to
use a so-called kinship comparator - set of the local experts, each of which responsi-
ble for one kinship relation type (i.e. FS, FD, etc.).

2.3 Common issues with the kinship verification

During the literature review, we have noticed few problems with current approaches
for kinship verification. Some of them are connected with data, and some with ex-
isting solutions at all.

2.3.1 Color and illumination bias

There are several benchmark datasets in the kinship recognition field now: Cornel-
lKin [9], KinFaceW I/II [22], FIW [29], UB Face [34] and many others. During data
collection, a big part of the family members pairs were taken from the same photo,
causing additional color and illumination bias. To prove that, researchers trained a
simple CNN classifier, which was aiming to determine whether faces were cropped
from the same photo [5]. They evaluated this model on different kinship recognition
datasets and achieved the lowest accuracy on the FIW dataset (58.6%) and highest
on the KinFaceW II (90.2%).

2.3.2 Age gap

In some works [30][40] authors mentioned that the more significant the age gap be-
tween two family members is, the less probability is that kinship will be detected.
It also can be seen by a closer look at the accuracy for each type of relationship of
SOTA methods - the worst accuracy is usually for the grandparent-grandchild pair
type.

2.3.3 Influence of the race, gender and emotions

In the [13] was analysed the influence of gender on kinship verification accuracy.
This work showed that both humans and machines perform better on the same gen-
der pairs. It also can be confirmed by the fact that almost all SOTA kinship verifi-
cation models perform better on the same gender pairs (i.e. father-son pair will be
recognized better than father-daughter).
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Ethnicity is another aspect that could influence the performance of kinship recog-
nition. Different races could transmit other hereditary traits, which will result in
different inherited visual traits.

Besides that, different emotions could also be an obstacle during kinship verifi-
cation. For example, will the emotions be the same between relatives (even between
mother and son)? Will visual features be critically influenced by totally different
emotions on the images of a pair of family members (smiling mother and crying
son)? That is rather a question to the classical Face Recognition field but should be
considered while developing robust kinship recognition algorithms.

2.3.4 Prior knowledge of the kinship-relation types

Most current solutions assume kinship-relation type (i.e. FS, MS, BB, etc.) apriori.
The reason for this is the architecture of the current solution. Previous researches
proved that different relation types inherit different visual traits[34]. That is why
it is common to use separate models for each kinship-relation type, resulting in a
number of models same as a number of possible types (usually 11). The drawback
of such an approach is applicability in real life, as it is very inefficient to have 11
separate models (in terms of the storage and resources for the training of all of them).

Besides this, many real-life applications will not satisfy such requirements and
instead will require to predict the type of the kinship-relation.
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Chapter 3

Problem statement

As a method for ablation study, the transfer-learning approach was selected due to
the fact that all current state-of-the-art methods are based on it [28]. The most intu-
itive way to determine some relation between a pair of inputs is to use the Siamese
network, which is why many recent papers are based on it. As was mentioned
earlier, Siamese network architecture means using two sub-networks with shared
weights, while each of two inputs is fed into a separate sub-network. In a kin-
ship verification setting, those sub-networks are typically used as feature extractors
[42][23][17] to encode high-dimensional image data into low-dimensional embed-
dings. After extraction, embeddings are combined and fused to one vector, which
will then be fed into a shallow neural network to produce an output score (Figure
3.1). As a loss function to train whole method, Binary Cross-Entropy (BCE) loss was
used, which is defined as

Hp(q) = −
1
N

N

∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi))

Existing solutions, which uses the Siamese network, differs mainly in feature ex-
tractors, feature combination methods and subsequent neural network architecture.
In our work, we conduct an ablation study of these different parts of the Siamese
network and propose the best choices for them.

Besides Siamese networks architecture, few works also pay attention to such
data preprocessing techniques as data augmentation and face alignment. To ver-
ify whether these steps are helpful for kinship verification, some experiments with
them were also conducted.

3.1 Feature extractor

To understand visual data, we should extract both low and high level features from
the images. For this task, convolutional neural networks are widely used. They
have a lot of capacity to encode spatial data into low-dimensional embeddings and
can learn both low(e.g. lines, edges, etc.) and high (eyes, lips, nose in case of face
recognition) level patterns.

For the kinship verification problem, such CNNs as ResNet50 or SeNet50 [14]
are typically used as feature extractors. In [42] authors state that ResNet-50 archi-
tecture performs slightly better, while in [23], both CNN architecture got the same
performance. Except for the feature extractor’ architecture, dataset and loss func-
tion, which were used during model training, are important. The most common are
VGGFace/VGGFace 2 dataset with triplet loss, FaceNet with its triplet loss and Ar-
cFace’s additive angular margin loss. Besides this, in [23] authors tried to use two
feature extractors - VGGFace SeNet50 and FaceNet SeNet50.
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FIGURE 3.1: Example of the Siamese network architecture

Our work investigates how different feature extractors and their number influ-
ence the solution’s overall performance. The idea behind this is that different models
are pretrained on the different datasets and with different losses could result in quite
different features extracted, each giving some more information about the image. As
a baseline feature extractor, single ResNet50 pretrained on the VGGFace dataset was
selected, but we have also tried feature extractors based on the FaceNet, ArcFace,
OpenFace[2] and DeepID[35] models. Besides this, we also have conducted experi-
ments with combinations of these feature extractors.

Also, it was tested whether the whole feature extractor should be fine-tuned,
or just a few top layers will be sufficient. Such an experiment was done only with
the VGGFace model because we assume that it will work identically for all other
architectures.

3.2 Embedding combination

After extraction of the features from two input images, their embeddings are com-
bined and fused. In [23] authors state that different combinations are needed to
promote discrimitivity into the model, while in [42] authors state that fusion adds
more nonlinearity and helps fully-connected layers to learn better similarity metrics.
The number of combinations on this stage varies from method to method, but usu-
ally, it is from 3 to 5 different combinations. The combination itself can be any linear
or nonlinear function, such as x1 − x2 or (x1 + x2)2, where x1 and x2 are the embed-
dings of the first and second image respectively. However, in most works, authors
used almost the same combinations:

• in [26] authors used such combinations as x1 + x2, x1 − x2, x1 ∗ x2,
√

x1 +
√

x2
and x2

1 + x2
2

• in [23] authors proposed x2
1− x2

2, (x1− x2)2, x1 + x2, x1− x2, x1 ∗ x2,
√

x1−
√

x2,√
x1 +

√
x2

• in [42] x1 + x2, x1 − x2, x1 ∗ x2, x2
1 − x2

2, (x1 − x2)2 combinations were used
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In our work, we compare the influence of different sets of these combinations on
the overall solution performance.

3.3 Neural network architecture

After embeddings are extracted by feature descriptors and fused into one embed-
ding vector, the last is fed into a Neural Network, which consists of fully connected
layers. In [42] authors used two FC layers with 128 and 1 neuron respectively, while
in [23] authors also used 2 FC layers but did not implicitly indicate the number of
units in them.

To our knowledge, none of the existing works in the kinship verification field
include some research on how NN architecture influences the accuracy of the whole
system. By doing experiments with the number of fully connected layers and the
number of units in each of them, we want to verify whether hyperparameters of the
NN influence the overall performance.

3.4 Face alignment and cropping

The accuracy of the deep learning model highly correlates to the quality of the train-
ing data. In the case of the FIW dataset, some images are not perfectly cropped,
which causes some additional noise from the background. As was already men-
tioned in the Chapter 2 , researchers proved the presence of the color and illumina-
tion bias caused by cropping faces of the family members from the same pictures.

In [36] authors proposed some additional image preprocessing to overcome this
issue, named ‘image normalization’. Given process includes face re-detection, crop-
ping an ellipse-shaped region with the face and its further geometrical alignment
and normalization. As stated in the paper, the authors used the Active Shape Mod-
els [25] technique to identify 76 facial landmarks, and an ellipse, which fit the 15
landmarks around the chin the best, was then used to crop the face (Figure 3.2).

FIGURE 3.2: Example of the image normalization from the [36]

More recently, authors of another work [33] used a similar process in their state-
of-the-art solution, stating that better face detection and registration further improve
model performance. Authors re-detect face by RetinaFace detector and, using ob-
tained from its landmarks, align face (Figure 3.3). As authors released code for the
detection and cropping of faces, we just used it in our experiments.

To implement ‘image normalization’, proposed in [36], we used HOG detector
and pose estimator based on an ensemble of regression trees [18] from the dlib1

Python library to obtain facial landmarks. The ellipse’s width is defined as the dis-
tance between nose and cheek edge, while height - as the distance between nose and

1https://github.com/davisking/dlib

https://github.com/davisking/dlib
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FIGURE 3.3: Example of the face alignment from the [33]

chin. Such cropping will work well on full faces (e.g. column 3 and 4 of the Figure
3.4), but for faces turned to the side, only part of the face will be cropped, while the
redundant background will remain on the image (columns 1 and 2 of Figure 3.4).
For such a case, more comprehensive ellipse selection is needed, which is beyond of
the scope of our work.

FIGURE 3.4: Example of the implementation of the image normaliza-
tion, described in the [36]

3.5 Data augmentations

The idea of data augmentation is to increase the training dataset and add some more
variation to it by applying some transforms to the input data, such as rotation, flips,
color jittering, etc. Although data augmentation is the default technique to improve
deep learning model performance, we notice that just a few works report its us-
age in their solutions. In [23] was used blurring, flipping, contrast and brightness
changes as data augmentation, while at [17] authors used horizontal flipping, con-
trast, brightness and saturation changes.

In the kinship verification problem, data augmentation can improve the perfor-
mance of the deep learning models on the grandparent-grandchild pairs. This type
of relationship is problematic because of two reasons: a small amount of data com-
pared to other types of relationships and a big age gap between individuals. A
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small amount of grandparent-grandchild pairs can be increased by applying differ-
ent transforms to them, while to overcome the age gap problem, in [38] was pro-
posed to use GANs [10] to rejuvenate the older face and decrease the age gap.

In our work, we could not conduct experiments with a bigger dataset or addi-
tional network for data augmentation due to computational constraints. Still, we
have done experiments with different image data augmentation techniques to in-
vestigate whether they influence the overall performance.
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Chapter 4

Experiments

4.1 Experimental setup

4.1.1 Dataset

During experiments, the Families in the Wild (FIW) dataset was used to train the
models. To our knowledge, it is the biggest dataset today for the kinship verification
task, and most of the latest works are based on it. FIW dataset contains almost 12
000 images from nearly 1 000 families.

Only part of the 5-fold variation of the FIW dataset was used due to computa-
tional constraints. Each fold contains image pairs that do not overlap with any other
fold, so we used 10% of the 3rd fold ( 10 000 pairs) as our train set, 1% of the 2nd
fold ( 1 000 images) as a validation set, and 10% of the 1st fold ( 8 700 pairs) as our
test set.

4.1.2 Metrics

One of our metrics is a simple Accuracy score, defined as the ratio of correct predic-
tions to all predictions. As a threshold value to binarize our predictions, we selected
a value of 0.5.

As the accuracy score is dependent on the binarization threshold, which we as-
sign to it manually, it can not fully represent the ability of the classification model
to learn. That is why it was decided to also use AUC ROC score during our experi-
ments to understand better the influence of the changes we made.

4.1.3 Implementation details

For neural network architecture implementation and training, we were using a Python
framework named TensorFlow [1](version 1.15). NN models were trained and eval-
uated on the single NVIDIA T4 GPU.

Pretrained weights and architecture implementation for the VGGFace model were
taken from Python package keras-vggface1, while for rest models (FaceNet, ArcFace,
OpenFace and DeepID) from package deepface [32].

For face alignment, described in [33], we used authors code, shared publically in
their GitHub repository2. For image normalization[36] implementation Python’ dlib
package was used.

For tracking and visualization loss and metrics, we were using the TensorBoard
toolkit.

1https://github.com/rcmalli/keras-vggface
2https://github.com/vuvko/fitw2020

https://github.com/rcmalli/keras-vggface
https://github.com/vuvko/fitw2020
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4.2 Results

4.2.1 Feature extractor

As was already mentioned in the Chapter 3, such models as VGGFace, FaceNet,
ArcFace, OpenFace, DeepID were tested in the role of the feature extractor.

Before comparing the performance of different models, an experiment to deter-
mine how models should be fine-tuned was conducted. During this test, one VG-
GFace feature extractor was fine-tuned completely, while in another VGGFace fea-
ture extractor, just 3 top layers were unfrozen and fine-tuned. Evaluation results
(Table 4.1) showed that fine-tuning of few layers leads to worse performance, so for
further experiments, it was decided to fine-tune the whole feature extractor.

Fine-tuning Accuracy AUC ROC
All layers 0.637 0.695
3 top layers 0.596 0.629

TABLE 4.1: Influence of the fine-tuning whole neural network and
part of it

Our initial model is based on the work [42], where set of feature combination is
defined as x2

1 − x2
2
⊕

(x1 − x2)2 ⊕
x1 ∗ x2, where

⊕
denotes concatenation, x1 and x2

denotes features of the first and second input image respectively. Neural network
consists of 2 fully connected layers: FC 1 with 128 units and ReLU activation; FC 2
with 1 unit and sigmoid activation function, which produce final probability value
(Figure 3.1). During tests, nothing in the overall solution architecture, except the
feature extractor, was changed. Each model was trained for the 100 epochs.

Feature extractor Accuracy AUC ROC
VGGFace 0.637 0.695
ArcFace 0.607 0.652

OpenFace 0.571 0.603
FaceNet 0.528 0.540
DeepID 0.488 0.488

TABLE 4.2: Influence of different single feature extractors on the
whole method

Since in [23] and [26] authors used two feature extractors instead of single, it
was also tested such pairs as VGGFace + FaceNet, VGGFace + ArcFace, VGGFace
+ OpenFace and ArcFace + OpenFace in our work. VGGFace + FaceNet pair was
selected for comparison due to its usage in the [23] and [26], while the rest of the
pairs were selected based on the better performance in the previous experiment.
Due to computational constraints and the fact that most of these models achieved
maximum accuracy from 20 to 40 epochs, it was decided to train models for this
experiment only for 50 epochs.

From the results of the experiments (Tables 4.2 and 4.3) we can say that feature
extractor influences a lot the performance of the whole method. Also, using two fea-
ture extractors instead of one can lead to a small boost in performance (e.g. adding
FaceNet to the VGGFace increases accuracy by 3%). Still, those feature extractors
should be carefully selected, as loss in the performance is also possible (e.g. adding
OpenFace model to VGGFace model decreases accuracy by 1%).
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Feature extractors Accuracy AUC ROC
VGGFace + FaceNet 0.669 0.738
VGGFace + ArcFace 0.665 0.739

VGGFace + OpenFace 0.658 0.741
ArcFace + OpenFace 0.633 0.690

TABLE 4.3: Influence of different pairs of feature extractors on the
whole method

VGGFace + FaceNet and VGGFace + ArcFace feature extractors showed the best
performance, for further work first pair was selected.

4.2.2 Embedding combination and fusion

During experiments, the influence of different sets of embedding combinations from
such papers as [42],[23] and [26] was tested. Similarly to the experiment setting in the
Section 4.2.1 section, nothing except combinations themselves was changed. Models
were trained for 50 epochs.

# Combination Ref Accuracy AUC ROC
1 (x2

1 − x2
2)

⊕
(x1 − x2)2 ⊕(x1 ∗ x2) [42] 0.669 0.738

2 (x2
1 − x2

2)
⊕
(x1 − x2)2 [42] 0.604 0.651

3 (x1 + x2)
⊕
(x1 − x2)

⊕
(x1 ∗ x2) [42] 0.672 0.755

4 (x1 + x2)
⊕
(x1 − x2) [42] 0.621 0.678

5 x1
⊕

x2 [42] 0.622 0.672
6 (x2

1 − x2
2)

⊕
(x1 − x2)2 ⊕(x1 ∗ x2)

⊕
(x1 +

x2)
⊕
(x1 − x2)

⊕
(
√

x1 +
√

x2)
⊕
(
√

x1 −
√

x2)
[23] 0.674 0.753

7 (x1 + x2)
⊕
(x1 − x2)

⊕
(x1 ∗ x2)

⊕
(
√

x1 +√
x2)

⊕
(x2

1 − x2
2)

[26] 0.666 0.742

TABLE 4.4: Influence of different sets of feature combinations on the
overall performance

After performing a comparison of different sets of the feature combination(Table
4.4), we can draw two conclusions:

• performing a combination of features via some linear or nonlinear operation
almost always (except #2 combination) improves the performance of the over-
all solution. Experiment #5, in which extracted features were just concatenated
without any linear/nonlinear operation, shows much worse accuracy (4-5%
less) in comparison to other experiments

• in our case, the best combination sets were #3 and #6, showing the biggest
boost in the performance (+ 5%) compare to #5 experiment

The 3 combination set was selected for further experiments since its AUC ROC
score is the biggest.

4.2.3 NN architecture choices

Our baseline NN architecture is similar to one described in [42]: two FC layers,
with 128 and 1 neurons respectively. The size of the embedding vector, obtained
by feature embeddings fusion, which is fed as an input, is 1152.
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Five experiments with different numbers of FC layers and units were conducted.
In the experiment #1 number of units was decreased, while other experiments in-
volved increasing the number of both layers and units.

According to evaluation results (Table 4.5), we can see that decreasing number
of units (#1 experiment) decreases overall accuracy by 2%. However, increasing the
number of layers and units in them (experiments #2 and #3) decreased accuracy as
well. Experiment 5 shows the best performance and improves baseline accuracy by
1%. Therefore, it was used during further experiments.

Nonetheless, we can not state that increasing the capacity of the neural network
always leads to a performance boost of the whole system since the performance
boost is insignificant.

Experiment # FC layers Accuracy AUC ROC
0 (Baseline) [128, 1] 0.672 0.755
1 [64, 1] 0.650 0.711
2 [128, 64, 1] 0.663 0.725
3 [256, 128, 64, 1] 0.665 0.724
4 [512, 256, 128, 64, 1] 0.683 0.741
5 [1024, 512, 256, 128, 64, 1] 0.683 0.750

TABLE 4.5: Comparison of influence of different NN architecture on
the overall performance

4.2.4 Face alignment and cropping

Both face alignment[33] and image normalization[36] were done as additional data
preprocessing step, but not as an online data augmentation process. As a baseline,
model #3 from the experiment with embedding combinations(Table 4.4) was used.
NN consist of 2 FC layers - with 128 and 1 units, respectively.

Data preprocessing Accuracy AUC ROC
None 0.672 0.755
Face alignment [33] 0.670 0.740
Image normalization [36] 0.662 0.728

TABLE 4.6: Comparison of influence of data preprocessing on the
overall performance

From the results in Table 4.6 we can see that additional data preprocessing such
as face alignment[33] or images normalization[36] do not improve accuracy at all.

4.2.5 Data augmentation

As a baseline for this experiment, model #5 from Section 4.2.3 was used. During
experiments, such data augmentation techniques as horizontal flip, change of con-
trast, brightness and saturation, conversion to grayscale, and blurring were com-
pared. Also, combinations of the data augmentations which were used in the work
[23] (blurring, flipping, contrast and brightness changes) and work [17] (flipping,
contrast, brightness and saturation changes) were tested. All augmentations were
applied with a probability of 0.5.

Evaluation results (Table 4.7) shows that from single data augmentation tech-
niques boost in performance was gained only with horizontal flip and blurring. Sets
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Augmentation Accuracy AUC ROC
No 0.683 0.750
Horizontal flip 0.689 0.771
Contrast 0.676 0.737
Brightness 0.673 0.742
Saturation 0.667 0.743
Gray 0.676 0.744
Blur 0.681 0.757
Blur, Flip, Contrast, Brightness [23] 0.678 0.749
Flip, Contrast, Brightness, Saturation [17] 0.666 0.731

TABLE 4.7: Comparison of influence of data augmentation techniques
on the overall performance

of data augmentation techniques used in [23] and [17] did not increase the accuracy
of the model.
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Chapter 5

Conclusions

In our work, we have done an ablation study of the Siamese networks for the Kin-
ship Verification problem to compare improvements proposed in other works. All
improvements were tested under the same experimental settings and benchmarked
on the same dataset, which allowed fair comparison. During study, we have tested
diverse feature extractors, feature combinations and neural network architecture
choices, along with such data preprocessing techniques as data augmentation, face
alignment and cropping. Our experimental results show that:

• not all CNNs can be used as feature extractors for kinship verification, but
VGGFace and ArcFace showed the best results from the tested models; using
such pairs of the feature extractors as VGGFace + FaceNet and VGGFace +
ArcFace improves the performance by 3%

• combination of the embeddings via some mathematical operations is needed
to increase the performance by 4-5% depending on the exact combination set

• experiments showed that a neural network, which consists of two FC layers
with 128 and 1 units respectively, is a good trade-off between performance
and number of training parameters

• neither face alignment [33] nor image normalization[36] improves model per-
formance

• such data augmentation techniques as horizontal flipping and blurring could
improve the accuracy of the model for kinship verification

Summing up, we can say that feature extractors and embedding combinations
plays key role in the model performance, while some data augmentation techniques
could increase accuracy by 1-2%.

As possible next steps, we consider using the additional GAN to decrease the age
gap between people (Section 3.5), try to remove the influence of the emotions (Sec-
tion 2.3.3) and use advanced method for the face alignment and cropping (Section
3.4).
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