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Abstract

Navigational applications often suffer from restricted and granular movement pos-
sibilities caused by a limited capture of real-world locations. Even the largest collec-
tions of street photos like Street-View, Mapillary [31], and SPED win more in geo-
graphical coverage than in qualitative capture of specific scenes. A possible solution
to this problem could be post-processing of available image collections and gener-
ation of new photos that would restore the missing parts. This is the task of novel
view synthesis - a known area in computer graphics and vision, that has shown im-
pressive results over last several years [26], [27], [33], etc. However, the problem of
real-world outdoor scene reconstruction is the most challenging, and is still a sub-
ject to active research. In this work we will explore different approaches to novel
view synthesis and evaluate some of them on the sparse real-world imagery from
Street-View dataset.
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Chapter 1

Introduction

Virtual navigation for either leisure, commercial, or educational purposes has be-
come an important part of our lives. Especially so at these times of restricted trav-
eling possibilities. An important problem in this area is that of novel view synthesis,
which refers to the generation of additional images of a known scene from different
perspectives.

In this work we will review the main types of NVS approaches, and their histor-
ical development. Then we will evaluate several of them on outdoor urban imagery.
The best known application with the highest coverage rate for virtual world naviga-
tion is Google StreetView, so improving its experience would make the most impact.
We will describe the process of collecting data from the service, the challenges of
NVS in such a varied environment, and finally compare the performance of several
methods on this dataset. The two main flaws that we will try to solve with the latest
approaches to novel view synthesis are:
1) lack of smoothness in transitions between photo-locations
2) restriction of movement, only allowing to follow a trajectory of the capturing de-
vice.
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Chapter 2

Background

2.1 NVS definition

The goal of Novel View Synthesis (NVS) is to generate a realistic scene representa-
tion for an arbitrary camera position based on available views of that scene. Basi-
cally, figuring out what would something look like when viewed from a different
angle, having previously seen it from just a few different camera positions.

This high-level problem formulation in practice includes several sub-tasks. First
of all, understanding the spacial context of the scene. This can be achieved by ei-
ther an explicit reconstruction of the underlying 3D shapes or by leveraging deep
networks and learning relations between the neighbouring views and the target im-
age or learning the patterns of pixel flow between adjacent views. Both strategies
have several disadvantages in a general setup, but have successful applications un-
der specific constrains. For example, explicit usage of precomputed 3D shapes on
datasets of standalone synthetic objects that belong to a common domain like fur-
niture models or car designs can simplify the task greatly, but would be useless
for real-world imagery datasets that deal with significantly wider variety of object
domains, cluttered scene compositions and occlusions. And vice versa, using ap-
proaches calibrated for complicated scenes on standalone objects would fail to recre-
ate the object at the level of detail as high as it is usually required for applications
offering a single-item overview.

Another common sub-task in NVS pipeline for real-world imagery is camera
calibration, performed as part of data preprocessing. While there are some datasets
collected with identical cameras (like Street-View and KITTI), they are either small or
commercialised. So open-source image collections captured with variable hardware
(e.g. Mapillary platform for street-level photography, Real-Estate dataset of indoor
apartment photos, etc.) need to first be standardized. Also, when trying to use
unstructured photo collections, pose estimation and pose correction are necessary.

As an optional but quite helpful step for unconstrained collections of outdoor
photography some approaches [NeRF-W] also use semantic segmentation to filter
out images that contain massive occludors. Occlusion can be caused by an unfor-
tunate camera position or a captured passing-by object, and can complicate models’
interpretation of the scene.
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NVS applications

Computer graphics

Novel View Synthesis first appeared in computer graphics industry as an alterna-
tive to volume rendering. A traditional volume rendering process was operating
a 3D model and used computationally expensive physics engines to perform tasks
like texture mapping, shadow locating, determining local lighting conditions, glares,
deformations, etc. Often if a shift of viewpoint is very slightly (e.g. in smooth 3D an-
imation or visual effects), triggering the whole rendering process from scratch just
wasn’t efficient. So, a group of image-based rendering algorithms were proposed
that synthesised intermediate views between already rendered frames with image
interpolation. Consequently compensating with memory cost due to the need to
store those key frames, for improvement of more crucial characteristics like: render-
ing latency and frame rate.

2.1.1 Visual effects in cinematography and animation

For some visual effects, NVS also found application cinematography. A descrip-
tive example of using view interpolation mentioned above is the Bullet Time scene
in 1999’s Matrix. Making a high-resolution shot of such slow action would have re-
quired way more cameras than it was physically possible to place on a camera rig. So
in order to up-sample the captured frames and produce a pleasantly looking slow-
motion, novel view synthesis was used to generate frames as if taken from view-
points on a rig between the real cameras. [CVPR 20] Interestingly, such collabora-
tions also bring ideas from animation innovations to computer graphics works. For
example, Disney’s idea to split a scene into several layers according to depth of its
objects inspired multi-plane data structure used for small interpolations on densely
photographed environment. As well as later representations built on it (more de-
tails on that in Scene Representations section). The main idea behind it is to shift the
planes with higher depth value less in order to simulate the natural slow motion of
farther placed objects.

2.1.2 Virtual Reality

In its core, novel view synthesis is a way to reconstruct complete visual information
about a world scene. And thus is essential for realistic observation experience in VR
applications. one would need to obtain a photo or a rendering for every reasonable
angle and position for the whole scene. Which would be quite costly (if even pos-
sible). This makes novel view synthesis essential for virtual reality experiences that
recreate real-world places or require high rendering speed on lower-class hardware.

Apart from VR, novel view synthesis has applications in regular fields that use
embedded interactive 3D presence modules. Some specific examples include: pro-
viding unrestricted view of items in online shopping, fixing the eye contact issue
in video-conferencing applications [5], adding depth and inter-occlusion to custom
backgrounds, improving presence experience in navigation software, enhancing photo
editing by allowing 3D object manipulation [14] or perspective changes, making an
interactive 3D scenery from users’ sketches, etc.
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Virtual Tourism

Virtual tourism (especially relevant at the time of writing) and the concomitant im-
mersive routing experience is (arguably) the most interesting and challenging appli-
cation, as it’s concerned with the raw outdoor scenery. In one or another form virtual
tourism existed for a long time, but restriction of movement and discrete transitions
between available viewpoints make it feel less real. To quickly obtain intermediate
frames and make movement smoother, novel view synthesis is required.

For a long time virtual tourism was only available in a form of prerecorded video
sequence or quantized navigation interface between photographed locations [from
first rel. works]. Recent spread of capturing technology (available drones, Street
View car fleets, etc) and advances in view synthesis for natural scenery made pos-
sible experiences like Google Earth (where the popular sightseeing destinations are
well-captured by aerial photography and available for for view from any position in
high resolution, and the rest of the world is recreated in lower fidelity, more like for
reference).

2.1.3 Training improvement for other computer vision tasks

Collecting an optimal amount of data is undeniably important for successful train-
ing and better generalisation of machine learning models. For many areas of com-
puter vision, there’s a limited choice of big datasets, and construction of custom
ones is time-consuming. Dataset augmentation is a known technique for artificial
upsampling of data that helps overcome this problem. However, it has high variety
and size requirements for initial datasets as well (due to commonly used genera-
tive models which require more data). Several NVS methods are well optimised to
work on limited amount of input views, and can produce additional data samples
for smaller datasets. Some of computer vision tasks, like object detection, semantic
segmentation, and classification tasks, have been proven to even gain performance
and robustness when trained on NVS-augmented data. [24]

2.1.4 Robotics

Novel view synthesis is concerned with both static (mostly) and dynamic (e.g.[35])
scenes. In vision-dependent robotics systems, synthesis of future frames under dif-
ferent views helps in planning of collaborative activities [15], and making robot
traversability predictions in unstable environments [12].

2.1.5 3D Video stabilization

When a camera capturing some video- or photo-sequence has a jittery trajectory
(e.g. first-person camera for streaming extreme sports, hand-held camera capture
an amateur video), producing rapidly changing views, we would like to stabilize
the resulting video for a more comfortable watching. This can be achieved by se-
lecting several key camera positions from existing chaotic trajectory, constructing a
smoother one, and generating missing frames between those key positions. To gen-
erate an intermediate view, different approaches either use frame stitching with 3D
proxies (Kopf, Cohen, and Szeliski 2014) or image warping (CPW) guided by de-
tected feature points. The latter one can also be enhanced if textureless region (like
ground or building) that lack feature points are handled as planar surfaces trans-
formed by estimated homography, as described in [39].
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2.2 Evolution of NVS approaches

2.2.1 First works. Interpolation between densely-spaced views

Contrary to common belief of View Interpolation for Image Synthesis (1993) by Shen-
chang Eric Chen and Lance Williams [3] being the seminal paper in the field [29], the
idea of generating intermediate views using interpolation technique was first intro-
duced in A Novel Approach to graphics (1992) paper by Tomaso Poggio and Roberto
Brunelli [23]. The authors tried to decrease the computational complexity of graphic
animation rendering, by synthesising intermediate views from a set of stored key
frames instead of computing the frame from a 3D volume. Due to specifics of the
intended application, the views of interest were assumed to be described by a set
of input features/conditions (e.g. a 2D position, an action name, or a facial expres-
sion in case of character animation), and generated rather realistic than theoretically
correct. For each animation setup a network of radial functions would be created
based on initially given key data samples (frames along with meta features), where
each radial function would be responsible for one known frame. Then, much like
in neural networks, a novel frame could be obtained from superposition of results
these functions would give for its input features. To overcome the challenge of direct
generation of pixel values, such networks would actually produce an approximate
sketch of final frame - a matrix of control points on which the new frame’s texture
would be later inpainted. [23].

View Interpolation for Image Synthesis (1993) however had a different approach
for interpolation process - applying morphing algorithm to image pairs with pre-
computed correspondence maps. Image morphing is generally performed in two
stages: first, the input images are warped into an approximated common shape to
avoid mutual cross-fading effect after pixel re-combinations; after that, each pixel
of the resultant image is computed as a weighted combination of input pixels from
respective area. The last stage can be a simple nearest neighbour combination or can
perform an adaptive interpolation, that takes into consideration not only a specific
region of image, but also the underlying textures and presence of any edges. Both
stages require a prior knowledge about pixel correspondences in a given image pair.
Which used to require human supervision and posed a strong argument against us-
age of morphing algorithms for systems with high latency requirements. However,
as the experiments in this [3] paper were performed on synthetic images, the image
ranging values (basically the distance between an image point and the optical center
of the virtual camera) could be used for finding such per-pixel correspondences. Fur-
thermore, to avoid this still time-expensive search step, the correspondence maps (or
"morph" maps) were precomputed and stored as arrays of 3D offset vectors, unique
to morphing direction for each pair. This decision, although compromised method’s
memory cost, did accomplish the goal of minimising the rendering latency.

Both of described approaches assumed camera step (i.e. baseline) to be very
small, and could only preform view interpolation on a well-captured scene. For
more advanced tasks, like interpolation on sparse datasets and extrapolation in prin-
ciple, a better understanding of the underlying 3D structure was required. From this
point, NVS approaches range between two main categories:

• geometry-based synthesis, splitting the NVS task into explicit 3D shape re-
construction or acquisition, and then using it to re-render the scene for a novel
3D view point;
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• learning-based synthesis, leveraging the power of deep neural networks to
predict the output frame based on input images, often implicitly working with
geometry obtained through convolutions or encoding.

2.2.2 Geometry-based approaches

3D reconstruction being a field of computer vision on its own, gave geometry-based
approaches a good choice of reconstruction techniques for all different tasks.

Scene geometry can be described with volumetric primitives (points, polygonal
meshes, voxels, etc.) or with mappings from known pixels into 3D space known as
depth maps. Sometimes it makes sense to introduce a custom volumetric primitive
designed for a specific case. Like trees of polyhedral primitives in [6] entitled to
model basic architectural building blocks and simplify the task of building’s model
reconstruction).

In NVS applications designed for single-class standalone objects, it became com-
mon to use a predefined base 3D model with features shared by most of class sam-
ples, and adjust it according to input images of a specific object. While for more
challenging cases of multi-class objects of non-uniform shapes, an explicit 3D model
should be constructed under a supervision from user controls, or using approxi-
mation techniques. Shape approximation technique was chosen depending on the
number of available views and preferred data structure for shape representation.

The shape representation that is most flexible in terms of input requirements is
point cloud. Point clouds can be used for both individual objects and natural scenes,
and are produced by a Structure-From-Motion (SFM) algorithm, which only requires
multiple input views (technically, at least two). The idea behind SFM reconstruction
is that if every point visible from a camera belongs to a ray passing though this
camera’s optical center, then given a big amount of points and several cameras, we
can detect planar relation between such rays, and recover coordinates of both points
and cameras relative to a basis placed on an arbitrary chosen camera. The most chal-
lenging part of SFM actually precedes this pose estimation process and lies in point
matching across the available frames. Point correspondence is now performed by
feature detection algorithms, that are designed to be invariant to some image trans-
formations, thus able to find same unusual key points (e.g. pixels on edge intersec-
tions, contrasting textured regions, thin lines, or sharp contours) on images from dif-
ferent camera positions. Examples of widely known feature detectors nowadays are
SIFT (Scale-invariant feature transform), SURF(Speeded Up Robust Features), and
ORB (Oriented FAST and Rotated BRIEF). For example, point clouds were used in
Content-Preserving Warps (CPW) for 3D Video Stabilization (2009) [17] that pioneered
3D video stabilization a structure-aware image warping algorithm was used that
worked with scene’s point clouds. The generation of a plausible frame sequence for
a new, smoothed camera trajectory is performed in the following way. First, the ini-
tial trajectory is recovered, and the point cloud representation of a captured scene is
reconstructed using SFM algorithm. Then the smoother trajectory is aligned around
the initial one, and initial frames are warped into novel appearance simultaneously
minimising the displacement of point cloud and the distortion the current 2D frame.
Of course, the resulting stabilized video sequence is not quite geometrically coherent
due to described compromise, but the error is not noticeable to human perception.
[17] Later, this method was improved to also handle less textured areas, that lacked
feature points necessary for successful image warping. In Plane-Based Content Pre-
serving Warps for Video Stabilization [39] it was suggested to label such regions dur-
ing frame segmentation, and treat them as planar surfaces that can be manipulated
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according to an estimated homography matrix. The texture-rich regions are left un-
labeled, and are handled by the standard CPW, thus not degrading performance for
previous cases.

On the other hand, depth values can be obtained from any amount of initial
views. Since depth maps have a simpler structure than actual 3D shapes, they can
be successfully predicted even from a single frame by deep learning methods. For
cases with several perspectives available, as well as for imagery taken with a stereo
camera, multi-view stereo (MVS) algorithms are widely used.

2.2.3 Learning-based approaches

The reasoning behind using imagery alone in learning-based NVS comes from the
interpretation of NVS goal in context of real-world applications. Yes, in many cases
realism and image quality is preferred over exact geometrical accuracy, as long as
this geometry error is left unnoticed by observers. Getting a highly-detailed surface
model of non-trivial scenes (nature photography, elaborately detailed objects, differ-
ent object compositions, etc) is still a challenging task. So for the cases where details
matter using methods purely based on image data is recommended. Intuitively, un-
less a NVS task was constrained to a specific data domain, applying machine learn-
ing methods should make more sense, as unseen data could be derived based on
more high-level data patterns.

With recent breakthroughs in machine learning field, neural networks became
capable of solving more abstract and complex tasks, and gained lots of attention
from other fields. Soon the first works in NVS using the power of neural networks
were introduced. They were obtaining an implicit geometry representation from
input imagery using convolutional neural networks, and then conditionally gener-
ating pixels of the novel image from scratch. [30] [34] This formulation was too
complicated for a network to learn on limited data. Therefore, early learning-based
approaches were still limited to applications with a small number of object domains,
and required lots of training data in order to generalise.

A better problem formulation was suggested by Zhou et al in View Synthesis by
Appearance Flow [38]. Instead of pixel values, the network was predicting flow vec-
tors, that held the coordinates of the source pixel from input image. This way the
learning task was simplified and was more view transformation than naive image
synthesis. Nevertheless, there it also had a downfall in its inability to generate re-
gions that are not present on the source image. So, later followed an attempt [28]
trying to combine pixel-wise generation and flow prediction with a learned confi-
dence mechanism.

Another way to simplify the learning task - or rather to separate the part that
actually needs to be learned from simpler parts that don’t worth spending time to
teach the network to perform - is to optimize the scene representation:

Scene representation

In the simplest case, NVS is used on a posed photo collection, and produces novel
views in a form of simple 2D images. However, a good choice of data structure for
representing a scene can simplify the task significantly, and offer competitive results
at fewer computational complexity. For example, for interpolation between densely-
sampled photo set, multi-plane images are able to use the depth information alone
to transform the input imagery into a qualitatively acceptable results. They trans-
form an image into a stack of planes, each holding a unique part of image, according
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to its known or estimated depth. So that a 3D presence effect can be achieved by
slight shifting of the sub-planes according to their depth values (when those with
smaller depth move more drastically and recreate the contrast between easy fore-
ground changes and almost static background called motion parallax).

A good example in context of learning-based approaches is DeepStereo work by
Flynn et al [7]. Authors there represent scenes with multi-plane sweep volumes so
that input views are reprojected onto a common viewpoint plane for several depth
values and stacked together before being fed to the network. This representation
spares the network a need to learn concepts of camera rotation, and limits the pixel
areas used for determining values on synthesized view. In a later work [27], Yicun
et al suggested an improved version of similar construct by replacing pre-set dis-
crete depth values with self-learned depth ranges, and reprojected views with pixel
displacements.

2.3 Main challenges

2.3.1 Disoclusions, Holes, Cracks, Artifacts

Both geometry- and learning-based approaches have issues that need to be addressed
when choosing a method for application. When geometry-based method is used on
sparse dataset and gets to reconstruct disocluded regions, it often suffer from ‘holes’
in rendered scenes in case a novel viewpoint is significantly different from original
ones. To overcome this issue, a variety of hole-filling CV algorithms was developed.
Most of them attempting to retrieve its texture from neighbouring patches or closest.
Although they don’t perform well on highly-detailed areas and areas of high curva-
ture [16]. Another approach to this problem considers dividing scene objects into
segments, and assuming all pixels that belong to the same segment have common
texture. In this case holes fillings are derived from semantically reasonable neigh-
bouring areas. Of course, a deep learning approaches already exist for hole filling.
E.g. Ambient Point Clouds for View Interpolation by Goesele et al, 2010 [8].

Meanwhile, learning-based approaches that avoid 3D supervision are left with
no context about underlying shapes can produce visual artifacts like ghosting of
dislocated objects, sketchiness of thin shapes, and uncontrolled patterns on non-
Lambertian surfaces. An alternative approach that allows to not deal with pixels
directly and operate on gradients instead.
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Chapter 3

Related Works

The ambitious goal of implementing an unconstrained interactive walk through a
reconstructed real-world environment has been a subject to research for a long time.

3.1 Movie Maps: An application of the optical videodisc to
computer graphics

One of the first attempts of a our world walk-through system was developed as early
as in 1980-s. Back then, displaying a scene was costly, so a choice of route could not
been performed interactively. The solution and the main innovation of the Movie
Maps work was simultaneous usage of two optical videodiscs to serve the current
tour sequence and to preload views for potential next location at real time speed.

3.2 The Virtual Museum Interactive 3D navigation of a Mul-
timedia database

Developed in 1992, the Virtual Museum was aimed at bringing more immersive
experience to virtual museum visits. For exhibition objects it had a pre-rendered
animation sequences, triggered on item selection. Its innovation was however in a
different aspect, - panning and transitioning moves allowed to simulate a discretized
walk around the museum building. All the virtual navigation and animation was
served using a real-time video decompression method.

3.3 Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach

The first related work actually leveraging the power of an NVS approach was in-
troduced by Debevec et al in 1996. Using photogrammetric modeling to obtain
scene geometry approximation allowed to simplify stereopsis task and obtain more
detailed depth maps. Which in turn improves the texture mapping process, and
produces a much higher-quality views even from sparse frames. Its tight focus on
building domain, however, poses significant limitation in applications. Theoretically
it could be extrapolated to an architecture-oriented reconstruction of some city, but
not to a general-purpose virtual touring, as it would need to give up its building-
optimized scene representation structure in order to model other objects.
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3.4 Google Maps’ Street View Experience

The first outdoor walk-around experience with huge world coverage was introduced
as part of Maps experience by Google. User movement there is still limited to the
trajectory of capturing camera, but each photographed location is represented with
a pan-able panorama, giving sense of local.

3.5 Google Earth

Presented in 2001, Google Earth is specifically made for virtual tourism, and also
uses NVS for environment completion. The main tourist destinations are densely-
captured by aerial cameras, while the rest of the world is reconstructed. We haven’t
found any official disclosure about used method or training data, but we suspect that
they used satellite data, as there are many NVS approaches that performed qualita-
tively better when tested on Street View.

3.6 Building Rome in a Day

A work on 3D city reconstruction from unstructured datasets of amateur photogra-
phy. This task is complicated by the need of pose estimation and camera calibration
for the various data sources. Despite the impressive results, using such reconstruc-
tion for touring would be a turn back to the need volumetric rendering. Also, being
reconstructed at as large scale it would lack the detailedness under a close-up walk
of a virtual tourist. [1]

3.7 DeepStereo

A research work from 2016 on novel view synthesis for Street View dataset. Used a
learning-based approach, that was still a novelty at that time. Results were compa-
rable to SoTA and qualitatively satisfying, but the involved rendering process was
causing huge latency even at inference time. This approach could be used to record
a sequence for tour guide to voice, it wouldn’t allow an interactive walk through.

3.8 Fast View Synthesis with DeepStereo

A much faster solution released in 2019 by Tewodros et al [9] built on base of the
previous method. Reduced inference latency from minutes to seconds, and so far is
one of the best candidates. yet not tested on different dataset. However, with more
recent approaches in competition can be outperformed.

3.9 NeRF-W

[20] A recent approach, extending NeRF [19] working using a radiance function ab-
straction to represent all density and color of a scene perceived from a particular
viewpoint under particular direction. Utilising large unstructured datasets of sight-
seeing spots, this approach is able to reconstruct a scene with impressive accuracy
despite inconsistent visibility conditions and distinguish sample-dependent features
from core scene structure. However, it is only applicable to recreation of popular
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spots because of the amount of data needed to make multi-layer perceptron repre-
sent this a scene.
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Chapter 4

Choosing NVS approaches for our
problem

4.1 Specifics of our problem

4.1.1 Challenges of outdoor NVS

Synthesising outdoor views is quite a challenging task due to variety of our world. A
photograph of some street or landscape would naturally contain more inter-composed
objects from different domains, with elaborate shapes (e.g. thin streetlights, non-
uniformly shaped flora, decorations, and even passing-by people) and different depth,
contributing to higher occlusion rates. It would also include more complex textures,
and non-Lambertian surfaces causing non-trivial illumination effects (like reflections
in the water, soft reflection in a shop window, partial transparency of a glass build-
ing, and scattered light rays under tree crowns). On top of that, outdoor scenes
undergo constant change of visibility conditions, - from day to night, from sunny
weather to fog or rain, etc. Therefore, even in carefully constructed datasets a scene
often has inconsistent appearance across many views.

To deal with both impaired visibility and lighting inconsistency we could pre-
process data with some image restoration module to return the photographs to their
basic form. A huge success in such task was achieved by restoration neural net-
works [2]. However, most of them are strictly specialized for canceling out some
particular effect when trained (e.g. morphology-based de-rain [22], GAN-based de-
rain [32], defog [18]), and would pose a bigger problem to be combined. A more
elegant solution was proposed in NeRF-W [20], where transient (sample-dependent
visuals, caused by variable conditions on scene) and static (structural information)
features are extracted by two different networks, and only static component is used
to produce a scene coherent for different viewing angles.

4.1.2 StreetView Dataset

For our experiments we collected Street View data for several parts of Paris city,
totalling 450K photographs for 70K locations. All data was obtained through Google
Static Street View API. For experiments on the approach with single-image input,
there’s also a publicly available "PitOrlManh" dataset containing similar data for
three US cities. We didn’t use this one on other approaches because of its greater
camera rotation per location, which complicates the fetching of related views.

Street View imagery is available as photos of panorama, sliced by rotation angle
and focal width that can be set in the request. Panoramas can be identified by hash
names or by coordinates of the photo-locations. To get all panoramas available in
some area, we first determine all photo-locations in this area using geopy library,
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then gather metadata like whether it is an indoor or outdoor photo, or the hash
names that are later used as a more convenient identificator. Then, we complete
direct requests to the Static Street View API to fetch photographs in six directions
from each panorama.

Baseline

In a dataset of photographed route sequences, a baseline refers to a distance between
the closest two locations, in other words a step of between two captured locations.
The smaller baseline, the denser scene sampling would be, and the better setting for
interpolation. In KITTI dataset [21], the smallest constant baseline value (which can
be artificially increased) is 0.4m, while for Street View the it is on the order of 1-3m
in Paris (for more the 50% of all samples) but is more variable.

4.1.3 Solution requirements

Since we are trying to recreate pretty real places, that can be used for navigational
or educational purposes apart from the main entertainment intention, our primary
concern should be the accuracy of synthesised scenes. In future work it could be
interesting to also generate imaginary environments based on learned scene patterns
across the world and conditioned with location, illumination and other potential
features to see what does the network associate different world areas with. However,
this would be task on intersection of NVS and image geolocalization domains, and
would need much more research.

At the same time, for such visually-oriented activity as virtual tourism, the as-
pects of image quality and its aesthetic appeal are equally important as the accuracy
of the scenery. In case of synthesis problem, image quality means not only high
resolution and sharpness, but also preferably the lack or minimization of visual arti-
facts like ghosting of transient occludors, cracks in reconstructed geometry and local
blurriness that are typical for generative solutions.

We’ve already seen in the Background section, there’s no golden solution that
could simultaneously provide high reconstruction accuracy in geometry and the
high level of detail in texture. Therefore, we can assume a perceptual accuracy could
be sufficient. This means we will still keep high requirements for structural accuracy,
but can compromise it slightly if a combination with better detailedness is available.

Another requirement following from navigational nature of the recreated world
is that text should be preferably valid. The reason behind this is that users might find
information like street names or shop signboards important for their future routes
and general world orientation. If followed, it would weight against GANs that have
a common issue of not being able to generate coherent text imagery. This require-
ment is, however, secondary, because navigational information can be embeded into
the interface, and despite local writings being a representation of the culture at the
virtually visited destination, it is rather complementary, and should probably be ad-
dressed after the main goal is achieved.

So far we’ve discussed performance requirements. But for an interactive system
we also have to comply with a reasonable maximum margin for latency of the in-
ference. We’ve seen some well-performing works take minutes to generate a new
frame, and therefore be useless for our application despite high benchmark scores.
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To sum up, we need a high perceptual accuracy requirement for scenes synthesis,
meaning highest possible accuracy with possible slight compromise in favor of bet-
ter image quality; and an interactive inference rate for the system as whole, meaning
minimal latency of a scene generation.

4.2 Approaches chosen for experiments

In order to meet our solution requirement for accuracy, we can’t use "hallucinating"
generative algorithms as they are optimized to produce realistic but genuinely in-
correct results. It also limits us to interpolation, because any synthesis in directions
beyond the known views would need predictions based on statistical priors instead
of specific objects or even possible underlying geometry.

The following approaches were chosen based on requirements described in the
previous subsection and their stated performance on related datasets (e.g. KITTI).

4.2.1 Base model - Fast View Synthesis with DeepStereo

[10] Based on Deep Stereo research, which has a documented performance on Street
View dataset, this approach claims to keep a comparable accuracy with fixed latency
issue.

4.2.2 Self-guided Novel View Synthesis via Elastic Displacement Net-
work

[27] Proposes an optimized structure for scene representation called Layer Displace-
ment Maps to model geometric transformation in a computationally-inexpensive
way and simplify the learning task for the network.

4.2.3 Monocular Neural Image-based Rendering with Continuous View
Control

[4] Specifically optimized for continuous interpolation to simulate smaller move-
ment steps. Combines direct pixel prediction performed by deep network with rea-
soning based on the underlying 3D geometry.

4.2.4 SynSin: End-to-end View Synthesis from a Single Image

[33] Knowing that the baseline value (step-size between photo-locations) in Street
View dataset is inconsistent, we would like to also include for comparison one ap-
proach that works with single-image input. In case of close accuracy report, a less
resourceful method would obviously be preffered. This particular work was origi-
nally trained and optimized for indoor task, but showed unexpectedly good gener-
alisation scores when tested on other setups, including outdoor scenery.
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Chapter 5

Experiments

5.1 Data preparation - Multi-view grouping and pairing

(A) source view (B) target view

The problem from which we started this work is that photo locations in Street
View are not dense enough to provide a seamless transition between them. As we
can see on Figure X, it is also not enough to obtain multiple views of the same part
of scene. This is why most of our experiments are based on single-view models.
Still, approaches that work with single-image inputs require two views at the train-
ing time - a source view from which the camera movement and prediction is hap-
pening, and a target view, holding the destination. To obtain such photo pairs, we
find the the closest location with regards to the great-circle distance between, com-
puted by Haversine formula, and then choose an angle such that both views would
be facing forwards (i.e. centered on the road and consecutive). Thus having maxi-
mum common context. The photographs per location are indexed with their original
panorama identifier and their azimuth shifting by 60 degrees relative to the North.
To determine which azimuth we need to get for two given locations x, y, we compute
the arc tangent between y2 − y1 and x2 − x1, and reason from specific cases.

To reduce complexity of finding the closest location we split the map into an
imaginary grid, so that every location would belong to an indexable square area
(and would likely share it with the closest locations already, depending on the set
precision). If the amount of target locations inside the area is not sufficient, we ex-
pand the attention area concentrically. However, there are cases when the closest
location is actually on the neighbouring street our a nearby underground road. This
is where the choice of Paris streets brings advantages, because the data on street
junctions is available in Google’s 2014 Hash Code dataset. So we can determine if a
suggested target location belongs to the same street as the source one or at most to a
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junction in order to avoid misleading data samples. Some inconsistencies, however,
could not be easily detected, so will still be present in the dataset. For example, when
a reasonable closest point is occluded by signs, sidewalk borders, tunnels, greenery
or by a privacy blur. See the following figures for example.

(A) source view (B) target view (C) not suspicious locations

FIGURE 5.2: E.g.: undetected occlusion when going through a tunnel

FIGURE 5.3: E.g.: Privacy blur

FIGURE 5.4: E.g.: Tree completely occluding a house on the lef

5.2 Metrics

Qualitative assessment of novel view synthesis is hard to perform without human
supervision. Moreover, the actual requirement for a synthesised view is to be re-
alistic, and indistinguishable by users from real views. The discriminator network
sounds like a good match for this goal. To also analyse the coherence of synthe-
sised images, we would compare Inception Score (IS) of initial dataset and produced
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images. Inception Score evaluation uses a pre-trained Inception network (e.g. on
ImageNet dataset) to classify output imagery and then analyses the distribution of
classification labels. For a well-performing generation network, this analysis should
yield a higher classification confidence and a higher label variety. [25], [11]

For Quantitative evaluation we use combinations of the following metrics

• L1 - posed as difference between the predicted and the ground-truth values
calculated per pixel; it is less prone to over-penalizing big errors caused by
outsider samples, than the more common L2.

• MS-SSIM. SSIM (Structural SIMilarity index) is a metric specifically intro-
duced to evaluate perceptual quality like a human vision system would. This is
achieved by looking at the neighbouring pixels’ distribution parameters when
computing a per-pixel value. So that the formula per pixel p comparison be-
tween images x and y is defined as:
SSIM(p) = 2µxµy+C1

µ2
x+µ2

y+C1
· 2σxy+C2

σ2
x+σ2

y+C2

Where µ, σ refer to mean and variance of a considered image patch around
p, and C1, C2 are constants that ensure stability for cases when a denominator
approaches 0. The two terms of a formula represent luminance and contrast
comparisons. MS-SSIM is an improved version of basic SSIM, that considers
perceptual accuracy at different scales, as it has been proved to be a factor in
human perception. Due to its nature of using the surrounding patches of im-
age, MS-SSIM performs worse on the edge regions of an image, and therefore
needs to be coupled with another metric for objective evaluation. [37]

• LPIPS - evaluates the distance between feature embedings of two images, ob-
tained with VGG classification network trained on ImageNet. [36] This allows
to find the semantical proximity, and would be useful for encouraging scene
coherence.

• PSNR (Peak signal-to-noise ratio) - uses a relation between the maximum pos-
sible signal and the present noise. For two images x, y o size w, l a PSNR value
would be computed as:
PSNR(x, y) = 10 · log10(2552/( 1

w·l · ∑i ∑j (xij − yij)
2)) [13]

Despite being a less robust metric for structural comparison on its own (since
its MSE term could produce the same evaluation for several different visual er-
rors ), PSNR provides a valuable measure noise presence, and would be useful
to include for image clarity concerns.

5.3 Main experiment setup

Our main experiment is to test different approaches on Street View data and learn
possible directions or problems that need to be addressed for its possible application.

All models are trained in using Google Colaboratory, on high-RAM GPU accel-
erator. If an approach doesn’t have an implementation publicly available, we imple-
ment it using a PyTorch-based framework Catalyst for code re-usability.

To get the baseline sooner, we started with the Monocular Neural Image-based
Rendering with Continuous ViewControl (will be referred to as MNCV) approach,
which had a checkpoint of a model pretrained on KITTI dataset available. Since
KITTI is also a collection of street imagery, it was a good fit. At the same time



Chapter 5. Experiments 18

StreetView’s examples require larger viewpoint changes, so the task was still chal-
lenging. We first compare the how good does their model generalise to a slightly
different domain of data, and get the initial evaluation purely out of their check-
point. Then we fine-tune it on 200K of Street View data samples, and compare the
performance with previous state.

L1 SSIM
MNCV (pretrained on KITTI) 0.453373 0.5229340
MNCV (fine-tuned on StreetView) 0.344686 0.5370018

FIGURE 5.5: Performance of MNCV pretrained on KITTI.
(1) source view, (2) predicted target view, (3) ground truth target view

It appears model’s performance have improved through fine-tuning, since it got
more exposure to data with larger change between the views. The typical appear-
ance of a StreetView sample might be also different from the dataset used for pre-
training e.g. due to being focused on a different locale.

Due to the tendency of generative/semi-generative models training from scratch
to take much longer, and due to a late start of working on the experimental part, the
rest of the experiments will become available until the final presentation day.
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5.4 Additional experiments

Street data contains a lot of transient occlusions, which impair the scene construc-
tion. After having initial results for the chosen approaches, an extra experiment
would be to use preprocessed data with removed occludors and certain types of
objects (e.g. cars, pedestrians).

As described in [37], the choice of metrics in the cost function can influence per-
ceptual quality of restored imagery. As another experiment, we would like to test
different metric combinations to achieve better image quality.
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