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Abstract. We study the spectra of PT -symmetric Hamiltoni-
ans H that are rank-one perturbations of a self-adjoint PT -
symmetric Hamiltonian H0. We show that the discrete spectrum
of H may include any number of complex-conjugate pairs of com-
plex numbers of arbitrary algebraic multiplicity

1. Introduction

In their seminal paper [7], C. Bender and S. Boettcher studied a
family of (generally non-Hermitian) Hamiltonians

− d2

dx2
− (ix)α

and showed that, when α ≥ 2, they have only real eigenvalues. The au-
thors suggested that such a rather unusual phenomenon was due to the
fact that the non-real potential V (x) := −(ix)α possesses the so-called
PT -symmetry property, in the sense that PT V (x) = V (x)PT . Here P
and T are the space parity and time reversal operators respectively, de-
�ned as (Pf)(x) = f(−x) and (T f)(x) = f(x). That paper initiated a
new branch of quantum mechanics called PT -symmetric quantum me-
chanics [8�10] that has found numerous experimental con�rmations [5].
Soon afterwards, dozens of non-Hermitian PT -symmetric Hamiltoni-
ans with real spectra were discovered, as well as many PT -symmetric
Hamiltonians possessing non-real eigenvalues; see [5] for an extensive
review of the related physical bibliography and the book [6] for a wide
overview of the current state of the art of the �eld.
Much work has been done since then to �nd su�cient and/or neces-

sary conditions for reality of the spectrum of PT -symmetric Hamilto-
nians. In particular, reality of the spectrum was understood to depend
on the exact, or unbroken PT -symmetry [11,17], for Hamiltonians with
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a hidden symmetry�i.e., a metric, or charge conjugation operator [4],
for quasi-Hermitian [21] or pseudo-Hermitian Hamiltonians [29�31] etc.
Some results were obtained by developing perturbation theory for

PT -symmetric Hamiltonians [12�15]. Assume that H0 is a PT -
symmetric Hamiltonian with discrete spectrum, H ′0 is its relatively
bounded PT -symmetric perturbation, and Hε := H0 + εH ′0. As the
discrete spectrum of every PT -symmetric Hamiltonian is symmetric
with respect to the real line, every real simple eigenvalue must remains
simple and thus real for small ε. On the contrary, non-simple eigen-
values (i.e., eigenvalues of multiplicity larger than one) often split and
move into complex domain when ε departs from zero.
The purpose of this paper is to discuss spectra of H0 under PT -

symmetric additive perturbations that are �small� in a di�erent sense,
namely, are of rank one. In the �nite-dimensional setting, spectra of
matrices under rank-one perturbations were shown in [22] to change
quite arbitrarily; that result was also speci�ed for structured (normal,
Hermitian and unitary) matrices. The approach of [22] is purely alge-
braic and is based on the perturbation analysis of the related deter-
minants; for that reason, it allows no direct generalization to in�nite-
dimensional setting. Behaviour of the Jordan structure of a matrix
or operator under a generic rank-one or low-rank perturbations was
discussed in [16, 19, 34, 35], while perturbation of structured matrices
(such as real, symmetric, symplectic, orthogonal in Euclidean or in-
de�nite inner product spaces) and matrix pencils have recently been
discussed in [2,3,18,23�28,33]. A detailed spectral analysis of rank-one
perturbations of self-adjoint Hamiltonians was made in [36].
In this paper, we prove that a rank-one PT -symmetric perturbation

of a self-adjoint Hamiltonian can dramatically change its discrete spec-
trum. Namely, we shall demonstrate that, using such perturbations,
the discrete spectrum of any Hermitian PT -symmetric Hamiltonian
operator can be changed at will to contain any desired �nite set of
complex conjugate pairs of bound states with any desired degeneracy.
More explicitly, we prove that, given an arbitrary self-adjoint and PT -
symmetric Hamiltonian H0 with discrete spectrum, for any number n
of non-real complex-conjugate pairs z1, z1, z2, z2, . . . , zn, zn, and any
sequence of natural numbers m1,m2, . . . ,mn there is a PT -symmetric
rank-one perturbation H of H0 such that zk and zk are eigenvalues of H
of (algebraic) multiplicity mk for every k = 1, 2, . . . , n. In addition, our
proof leads to an algorithm of constructing rank-one perturbations of
desired spectral e�ect. These facts demonstrate that reality of the
spectra of PT -symmetric Hamiltonians is a non-trivial phenomenon,
whose understanding requires deep mathematical analysis.
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The paper is organized as follows. In the next section, we dis-
cuss general properties of PT -symmetric Hamiltonians and their rank-
one perturbations. In Section 3, we give an example of a rank-one
PT -symmetric perturbation of the kinetic Hamiltonian having eigen-
values at the points ±i and then prove a more general statement
in Theorem 3.2 that any 2n eigenvalues of an arbitrary self-adjoint
PT -symmetric Hamiltonian H0 can be moved into arbitrary n com-
plex conjugate eigenvalue pairs by a PT -symmetric rank-one per-
turbation. Then in Section 4, we demonstrate by example that a
rank-one PT -symmetric perturbation can lead to degenerate non-real
eigenvalues and then prove in Theorem 4.2 that, for every self-adjoint
PT -symmetric Hamiltonian H0 and any 2n of its eigenvalues, a PT -
symmetric rank-one perturbation H of H0 exists for which the selected
eigenvalues get transformed into an eigenvalue pair z and z of mul-
tiplicity n. We combine the above two e�ects into the most general
Theorem 5.1 in Section 5 and explain how it applies to the quantum
harmonic oscillator. Finally, Section 6 summarizes the results and dis-
cusses possible generalizations.

2. Preliminaries

Assume that H is a separable Hilbert space with inner product 〈·, ·〉
(linear in the �rst component and anti-linear in the second one) and
H0 is a self-adjoint Hamiltonian in H with simple discrete spectrum.
Under this assumption, the operator H0 is necessarily unbounded, has
compact resolvent, and its spectrum σ(H0) consists of real simple eigen-
values that can be listed in increasing order as λn, n ∈ I, where I = N
if H0 is bounded below and I = Z if it is bounded neither below nor
above. We denote by vn, n ∈ I, the corresponding normalized eigen-
functions.
Next we introduce the abstract notions of the space parity operator
P and time reversal operator T in H; these are modelled by bounded
commuting operators in H with the following properties:

(a) P is a unitary involution, i.e., P2 = I and, for all f and g in H,
〈Pf,Pg〉 = 〈f, g〉;

(b) T is a conjugation operator, i.e., T 2 = I and for all f and g
in H

〈T f, T g〉 = 〈g, f〉.
Clearly, the operators (Pf)(x) = f(−x) and (T f)(x) = f(x) in the
Hilbert space H = L2(R) are just standard particular examples of such
symmetries. A mirror symmetry with respect to any hyperplane in Rn
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through the origin is another example of the operator P in the Hilbert
space H = L2(Rn).

De�nition 2.1. A densely de�ned (unbounded) operator A is called
PT -symmetric if

PT Af = APT f
for all f in the domain of A.

We assume that the unperturbed Hamiltonian H0 is PT -symmetric.
This implies that H0(PT vn) = PT (H0vn) = λnPT vn, so that PT vn
is an eigenfunction of H0 corresponding to the eigenvalue λn along
with vn. Since λn was assumed simple, we have PT vn = cnvn for a
complex cn with |cn| = 1. As observed in [9], by appropriate scaling
this constant can be absorbed into vn; then we have PT vn = vn, i.e.,
there is no spontaneous symmetry breaking in H0.
Our aim is to study spectral properties of the PT -symmetric Hamil-

tonians H that are rank-one perturbations of H0. We recall that a
linear operator A acting in the in�nite-dimensional space H is of rank
one if the range ranA of A is one-dimensional. Taking an arbitrary non-
zero vector ψ ∈ ranA, we conclude that Af = c(f)ψ for every f ∈ H,
with a bounded linear functional c(f); as a result, there is ϕ ∈ H such
that Af = 〈f, ϕ〉ψ. Therefore, a generic rank-one perturbation H of
H0 is of the form

(2.1) H = H0 + 〈·, ϕ〉ψ,

where ϕ and ψ are �xed non-zero functions in H, in the sense that

Hf = H0f + 〈f, ϕ〉ψ

for every f ∈ dom(H) = dom(H0). Our primary objective is to under-
stand how much the spectrum of H0 can change under such rank-one
perturbations.
We observe that the Hilbert space adjoint H∗ of the rank-one per-

turbation H (2.1) of H0 is given by

H∗ = H0 + 〈·, ψ〉ϕ,

so that H is Hermitian (i.e., self-adjoint in the Hilbert space H) if
and only if the functions ϕ and ψ are collinear. PT -symmetry of H
requires quite di�erent properties of ϕ and ψ, as the following lemma
demonstrates.

Lemma 2.2. The rank-one perturbation 〈·, ϕ〉ψ is PT -symmetric if
and only if there is a number c ∈ C with |c| = 1 such that PT ϕ = cϕ
and PT ψ = cψ.
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Proof. PT -symmetry of the rank-one perturbation A = 〈·, ϕ〉ψ requires
that, for every f ∈ H,

PT (Af) = 〈f, ϕ〉PT ψ = 〈PT f, ϕ〉ψ = A(PT f).

Therefore, PT ψ and ψ are collinear, i.e., PT ψ = cψ for some complex
number c; as PT is an isometry, we see that |c| = 1. The above relation
now implies that 〈PT f, ϕ〉 = c〈ϕ, f〉 for all f ∈ H. Using properties
of P and T , we �nd that

〈PT f, ϕ〉 = 〈T f,Pϕ〉 = 〈PT ϕ, f〉
and thus conclude that PT ϕ = cϕ with the same constant c. �

Corollary 2.3. Set c = eiα; replacing ϕ and ψ with eiα/2ϕ and eiα/2ψ,
respectively, we do not change the rank-one perturbation 〈·, ϕ〉ψ and
reduce c to the case c = 1. Therefore, without loss of generality we can
(and shall) assume that the functions ϕ and ψ are PT -symmetric, i.e.,
that they satisfy the relations PT ϕ = ϕ and PT ψ = ψ.

Next we characterize the spectrum of the operator H; a useful in-
strument for that purpose is the characteristic function F of H de�ned
for λ ∈ ρ(H0) via [1, Sec. 1.1.1]

(2.2) F (λ) := 〈(H0 − λ)−1ϕ, ψ〉+ 1.

Indeed, as explained in loc. cit., if λ ∈ ρ(H0) is such that F (λ) 6= 0,
then λ is in the resolvent set ρ(H) of H and the resolvent (H − λ)−1

satis�es the Krein resolvent formula

(H − λ)−1 = (H0 − λ)−1 − 〈 · , (H0 − λ)−1ϕ〉
F (λ)

(H0 − λ)−1ψ.

Therefore, the resolvent (H−λ)−1 is compact whence H has a discrete
spectrum.
Denote by an and bn the Fourier coe�cients of the vectors ϕ and ψ

with respect to the orthonormal basis of eigenfunctions vn,

(2.3) ϕ =
∑
n∈I

anvn, ψ =
∑
n∈I

bnvn.

Set
I0 := {n ∈ I | anbn = 0}, I1 := {n ∈ I | anbn 6= 0};

it was shown in [16] that the intersection σ(H0) ∩ σ(H) =: σ0(H)
coincides with the set {λn | n ∈ I0}. Next, using the spectral theorem
for the HamiltonianH0, we can write the characteristic function F ofH
in (2.2) as

(2.4) F (λ) =
∑
n∈I1

anbn
λn − λ

+ 1;
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then another interesting result proved in [16] is the following relation
between the zeros of F and the bound states of H.

Proposition 2.4. Zeros of F coincide with the bound states of H in-
cluding multiplicities, i.e., if λ is a zero of F of multiplicity k ≥ 1, then
λ is a bound state of H of algebraic multiplicity k if λ 6∈ σ0(H) and of
algebraic multiplicity k + 1 otherwise.

We recall that algebraic and geometric multiplicity of an eigenvalue
are de�ned as follows [20]. Assume that λ is an isolated point of the
spectrum σ(A) of a linear operator A. We form the corresponding
Riesz spectral projector

(2.5) Pλ =
1

2πi

∫
Γ

(A− z)−1 dz,

where Γ is a contour in the resolvent set of A whose interior contains λ
but no other points of σ(A), and call the dimension dim ranPλ of the
range of Pλ the algebraic multiplicity of the eigenvalue λ. If the alge-
braic multiplicity of λ is �nite, then it coincides with the dimension of
the root subspace, i.e., the set of all vectors v for which there is k ∈ N
such that (A − λ)kv = 0. The geometric multiplicity of the eigen-
value λ is the dimension of the nullspace of the operator A − λ. An
eigenvalue λ is called semi-simple if its algebraic multiplicity coincides
with the geometric one.
Proposition 2.4 gives an e�ective tool of constructing a rank-one per-

turbationH with the prescribed set of non-real degenerate bound states
through constructing the characteristic function (2.4) with prescribed
zeros of desired multiplicities. Following this path, it was shown in [16]
that, under no PT -symmetry assumptions, the perturbed Hamilton-
ian H can possess an arbitrary non-real spectrum of arbitrary algebraic
multiplicity. However, PT -symmetry of H imposes some restrictions
on its bound states and their multiplicities, as well as on the functions
ϕ and ψ.
Firstly, although a PT -symmetric Hamiltonian H may have non-

real eigenvalues, they necessarily come in complex conjugate pairs: in-
deed, if λ is an eigenvalue of H with eigenvector v, then the equality
H(PT v) = λPT v shows that λ is also an eigenvalue of H with eigen-
vector PT v. Secondly, it follows from the formula (2.5) for the Riesz
projector that the root subspaces Hλ and Hλ of H for the eigenvalues λ
and λ satisfy the relation Hλ = PT Hλ, which shows that the algebraic
multiplicities of λ and λ coincide. Finally, PT -symmetry of ϕ and vn
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implies that ∑
n∈I

anvn = ϕ = PT ϕ =
∑
n∈I

anvn,

so that the Fourier coe�cients an of ϕ are real; in the same manner we
show that all Fourier coe�cients bn of ψ are real.
It follows from [16] that the eigenvalues of H can be labelled by µn,

n ∈ I, in such a way that each µn is repeated according to its algebraic
multiplicity and |µn−λn| → 0 as |n| → ∞. As a result, the eigenvalues
µn of H with su�ciently large |n| are simple and real, so that H may
have at most �nitely many non-real eigenvalues. We shall prove in the
following sections that except for these restriction (of �niteness and
symmetry including multiplicities), the non-real spectrum of H can be
arbitrary.

3. Non-real eigenvalues

We start with the following example that will serve as a motivation
for the more general results.

Example 3.1. Let H be the Hilbert space L2(−π, π), with the stan-

dard space parity Pf(x) = f(−x) and time reversal T f(x) = f(x).

We consider in H a kinetic Hermitian Hamiltonian H0 = − d2

dx2
subject

to the Neumann boundary conditions y′(−π) = y′(π) = 0. The spec-
trum of H0 coincides with λn := n2 for n ∈ Z+, and the normalized
eigenfunction for the eigenvalue λn is the constant v0(x) = 1/

√
2π if

n = 0 and vn(x) := cosnx/
√
π if n > 0.

We will construct a rank one perturbation H = H0 + 〈 · , ϕ〉ψ of H0

which is PT -symmetric and shares with H0 all its eigenvalues except
λ0 and λ1, these being moved to ±i. According to [16], ϕ and ψ can
be taken to be linear combinations of v0 and v1, i.e.,

ϕ(x) = a0v0 + a1v1, ψ(x) = b0v0 + b1v1.

As we mentioned in Section 2, the rank-one perturbation H is PT -
symmetric if PT ϕ = ϕ and PT ψ = ψ; with the above form of ϕ and
ψ, this is equivalent to having a0, a1, b0, and b1 real.
The characteristic function F of H in (2.4) reads

F (z) =
a0b0

−z
+

a1b1

1− z
+ 1,

and we need to satisfy two equations,

F (i) = F (−i) = 0.

This leads to a linear system of two equations in variables x = a0b0

and y = a1b1 possessing the unique solution, x = 1 and y = −2. One
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of the many choices for the Fourier coe�cients can be a0 = b0 = 1,
a1 = −b1 =

√
2, leading to

ϕ(x) =
1 + 2 cosx√

2π
, ψ(x) =

1− 2 cosx√
2π

.

Therefore, the corresponding operator H is

H = − d2

dx2
+

1

2π
〈 · , 1 + 2 cosx〉(1− 2 cosx)

with dom(H) = dom(H0). By construction, vk ⊥ ϕ for k > 1, so that
each such vk is an eigenfunction of H corresponding to the eigenvalue
µk = k2. A direct veri�cation shows that w± := 1 ± i− 2 cosx satisfy
the relations Hw± = ±iw± and thus are the eigenfunctions for the
eigenvalues±i. As the set of functions {vk}k>1∪{w±} is a basis ofH, we
conclude thatH has no other eigenvalues, so that the set {k2}k>1∪{±i}
is the spectrum of H as claimed.

More generally, the next theorem shows that any 2n real eigenvalues
of H0 can be moved to any n pairs of (non-real) complex conjugate
points by a PT -symmetric rank one perturbation.

Theorem 3.2. Assume that H0 is a self-adjoint operator in a Hilbert
space H that is also PT -symmetric with respect to certain space par-
ity P and time reversal T . Assume further that H0 has a compact re-
solvent and denote by σ(H0) := {λk}k∈I the spectrum of H0. Then for
every n ∈ N, every n pairwise distinct points z1, z2, . . . , zn in the upper
complex half-plane C+, and every set of 2n pairwise distinct eigenvalues
λk1 , λk2 , . . . , λk2n of H0 there exists a rank-one PT -symmetric pertur-
bation H of H0 whose spectrum is(

σ(H0) \ {λkj}2n
j=1

)
∪ {z1, z1, z2, z2, . . . , zn, zn}.

Proof. For convenience, we denote by µj := λkj and wj := vkj , j =
1, . . . , 2n, the chosen eigenvalues and the corresponding eigenvectors of
the operator H0. Also, set ωk := zk and ωk+n := zk for k = 1, 2, . . . , n.
It follows from the considerations of Section 2 that the functions ϕ
and ψ in the rank-one perturbation H of H0 can be chosen from the
subspace H0 := ls{w1, w2, . . . , w2n}, so that

(3.1) ϕ =
2n∑
j=1

cjwj, ψ =
2n∑
j=1

djwj
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for some cj and dj. We set xj := cjdj for j = 1, . . . , 2n; then the
characteristic function of H = H0 + 〈 · , ϕ〉ψ is equal to

F (z) :=
2n∑
j=1

xj
µj − z

+ 1,

and we look for xj such that F has 2n zeros ω1, ω2, . . . , ω2n. The equal-
ities

F (ω1) = F (ω2) = · · · = F (ω2n) = 0

form a linear inhomogeneous system of 2n equations for 2n variables
x1, x2, . . . , x2n, viz.

(3.2)
x1

µ1 − ωk
+

x2

µ2 − ωk
+ · · ·+ x2n

µ2n − ωk
= −1, k = 1, 2, . . . , 2n.

The coe�cient matrix M of that system has entries

mkj :=
1

µj − ωk
and thus is a non-singular Cauchy matrix [32].
It follows that system (3.2) has a unique solution x1, x2, . . . , x2n.

Taking now conjugates of each equation in (3.2), we arrive at the system

2n∑
j=1

xj
µj − ωk

+ 1 = 0, k = 1, 2, . . . , 2n.

Since ωk = ωk+n for k = 1, 2, . . . , n, we see that x1, x2, . . . , x2n is also
a solution of the linear system (3.2). By uniqueness of solutions, we
conclude that every xj satis�es xj = xj and thus is real.
The functions ϕ and ψ can be formed e.g. by taking c1 = c2 = · · · =

c2n = 1 and dj = xj, j = 1, 2, . . . , 2n, in formula (3.1). With such a
choice, the rank-one perturbation H of the operator H0 will be PT -
symmetric. By construction, H coincides with H0 on the orthogonal
complement of H0; therefore, every eigenvalue λk of H0 not in the set
µ1, µ2, . . . , µ2n is also an eigenvalue of H with the same eigenvector vk.
By [1, 16], H also possess eigenvalues at the points ω1, ω2, . . . , ω2n. As
the eigenvectors of H corresponding to those eigenvalues form a basis
of H0, we conclude that H has a complete set of eigenfunctions in H
and thus possesses no other eigenvalues. The proof is complete. �

4. Non-simple eigenvalues

Self-adjoint operators in a Hilbert space have (semi-)simple eigenval-
ues in the sense that the corresponding root subspaces coincide with

9



the eigenspaces, i.e., that every non-zero root vector is an eigenvec-
tor. For a non-self-adjoint operator H, however, there may exists the
so-called Jordan chains of eigen- and associated vectors w0, w1, . . . , wn
for an eigenvalue λ, so that Hw0 = λw0 and Hwj = λwj + wj−1 for
j = 1, 2, . . . , n. We start with an example of a rank-one PT -symmetric
perturbation H of a self-adjoint operator H0 such that H has non-semi-
simple non-real eigenvalues.

Example 4.1. We take the same Hilbert space H = L2(−π, π) and
the P and T symmetries as in Example 3.1. Consider the self-adjoint
PT -symmetric momentum operator H0 = 1

i
d
dx

with periodic boundary
conditions; its spectrum coincides with the set Z, and a normalized
eigenfunction vn corresponding to the eigenvalue λn := n is equal to
einx/

√
2π.

We shall construct a PT -symmetric rank-one perturbation H (2.1)
whose spectrum consists of simple eigenvalues k ∈ Z \ {±1,±2} and
eigenvalues ±i each of algebraic multiplicity 2 (i.e., generating Jordan
chains of eigen- and associated vectors of length 2).
According to the results of [16], the functions ϕ and ψ can be taken

as linear combinations of the vectors v−2, v−1, v1 and v2, so that

ϕ = a−2v−2+a−1v−1+a1v1+a2v2, ψ = b−2v−2+b−1v−1+b1v1+b2v2.

The characteristic function

F (z) =
x−2

−2− z
+

x−1

−1− z
+

x1

1− z
+

x2

2− z
+ 1,

where xk = akbk for k = ±1,±2, must obey the following relations:

F (i) = F ′(i) = F (−i) = F ′(−i) = 0.

The equations F ′(±i) = 0 read

x−2

(2± i)2
+

x−1

(1± i)2
+

x1

(1∓ i)2
+

x2

(2∓ i)2
= 0;

adding them, we conclude that x−2 + x2 = 0, and subtracting now the
equation F (i) = 0 from F (−i) = 0 results in the relation x−1 +x1 = 0.
Therefore, we obtain the following system of two equations in x1 and x2:

4

5
x2 + x1 = −1,

8

25
x2 + x1 = 0,

with unique solution x2 = −25/12 = −x−2 and x1 = 2/3 = −x−1.
Now we can choose, e.g., the rank-one perturbation corresponding to

a−2 = a−1 = a1 = a2 = 1 and bj = xj for j = −2,−1, 1, and 2. As the
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coe�cients aj and bj are real, we conclude that the corresponding rank-
one perturbation H of the self-adjoint operator H0 is PT -symmetric.
To show that the constructed operator H possesses eigenvalues ±i,

both of algebraic multiplicity 2, we note that the 4-dimensional sub-
space H0 := ls{e−2ix, e−ix, eix, e2ix} is invariant under H. The corre-
sponding matrix representation of the restriction of H onto H0 is a
matrix of size 4, whose eigenvalues are precisely ±i, both of multi-
plicity 2. Eigenfunction completeness guarantee that H has no other
eigenvalues except ±i and the common eigenvalues Z \ {−2,−1, 1, 2}.

We can now generalize the above example as follows.

Theorem 4.2. Assume that H0 is a self-adjoint Hamiltonian in a
Hilbert space H that is also PT -symmetric with respect to certain space
parity P and time reversal T . Assume further that H0 has a compact
resolvent and denote by σ(H0) := {λk}k∈I the spectrum of H0. Then
for every n ∈ N, every non-real z0 in the upper complex half-plane C+,
and every set of 2n pairwise distinct eigenvalues λk1 , λk2 , . . . , λk2n of H0

there exists a rank-one PT -symmetric perturbation H of H0 whose
spectrum is (

σ(H0) \ {λkj}2n
j=1

)
∪ {z0, z0},

and the eigenvalues z0 and z0 are of algebraic multiplicity n and possess
chains of eigen- and associated vectors of length n.

Proof. The proof is constructive and similar to that of Theorem 3.2.
For convenience, we denote by µj := λkj and wj := vkj , j = 1, . . . , 2n,
the chosen eigenvalues and the corresponding eigenvectors of the opera-
torH0. It follows from the considerations of Section 2 that the functions
ϕ and ψ in the rank-one perturbation H of H0 can be searched for in
the subspace H0 := ls{w1, w2, . . . , w2n}, so that

(4.1) ϕ =
2n∑
j=1

cjwj, ψ =
2n∑
j=1

djwj

for some cj and dj. We set xj := cjdj for j = 1, . . . , 2n; then the
characteristic function of H = H0 + 〈 · , ϕ〉ψ is equal to

F (z) :=
2n∑
j=1

xj
µj − z

+ 1,
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and we look for xj such that F has zeros z0 and z0, each of multiplic-
ity n. The equalities

F (z0) = F ′(z0) = · · · = F (n−1)(z0)

= F (z0) = F ′(z0) = · · · = F (n−1)(z0) = 0

form a linear inhomogeneous system of 2n equations for 2n variables
x1, x2, . . . , x2n, viz.

(4.2)

x1

µ1 − z0

+ . . . +
x2n

µ2n − z0

=− 1,

x1

(µ1 − z0)k
+ . . . +

x2n

(µ2n − z0)k
= 0, k = 2, . . . , n,

x1

µ1 − z0

+ . . . +
x2n

µ2n − z0

=− 1,

x1

(µ1 − z0)k
+ . . . +

x2n

(µ2n − z0)k
= 0, k = 2, . . . , n.

We prove in Lemma 4.3 below that the coe�cient matrix of that system
is non-singular. As a result, there is a unique solution x1, x2, . . . , x2n.
By taking the complex conjugate of every equation in the above sys-
tem, we get a solution x1, x2, . . . , x2n of the system with z0 and z0

interchanged. As this merely amount to interchanging �rst n and the
last n equations, we conclude that x1, x2, . . . , x2n is also a solution of
the original system, so that xk = xk for each k = 1, 2, . . . , 2n.
As a result, the numbers xk are real, and we can take ck = 1 and

dk = xk for k = 1, 2, . . . , 2n in formula (4.1). The resulting functions ϕ
and ψ lead to a PT -symmetric rank-one perturbation H of H0 of (2.1).
As the characteristic function (2.4) of that operator satis�es the above
system, in view of [16] it has the required eigenvalues of prescribed
multiplicities. Lack of other eigenvalues follows from completeness of
eigenfunctions, and the proof is complete. �

Now we prove the fact that the coe�cient matrix of the system (4.2)
is non-singular. We �x pairwise distinct numbers µ1, µ2, . . . , µ2n and
denote by D(z1, z2, . . . , z2n) the Cauchy determinant of the matrix M
with entries

mjk =
1

µk − zj
, j, k = 1, 2, . . . , 2n.

It is known [32] that

(4.3) D(z1, z2, . . . , z2n) =

∏∏
j>k(µj − µk)(zj − zk)∏

j

∏
k(µj − zk)

.

Lemma 4.3. The coe�cient matrix of system (4.2) is non-singular.
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Proof. We use row linearity of determinants to derive the explicit for-
mula for the determinant of the coe�cient matrix in (4.2). On the �rst
step, we replace rows 2 to n of the matrix M = M1 by their di�er-
ences with the �rst row to obtain the matrix M ′

1. The j
th row of M ′

1,
j = 2, . . . , n, has entries

zj − z1

(µk − z1)(µk − zj)
, k = 1, 2, . . . , 2n.

As the determinant of the resulting matrix does not change under such
a transformation, we see that

D(z1, z2, . . . , z2n) = D2(z1, z2, . . . , z2n)
n∏
j=2

(zj − z1),

where D2(z1, z2, . . . , z2n) is the determinant of the (2n) × (2n) ma-
trix M2, whose rows j = 2 to j = n have entries

1

(µk − z1)(µk − zj)
, k = 1, 2, . . . , 2n,

and the rest rows are the same as in the matrix M1.
On the second step, we subtract the second row of the matrix M2

from its rows j = 3 to j = n; the resulting jth row then becomes

zj − z2

(µk − z1)(µk − z2)(µk − zj)
, k = 1, 2, . . . , 2n.

Therefore,

D2(z1, z2, . . . , z2n) = D3(z1, z2, . . . , z2n)
n∏
j=3

(zj − z2),

where D3(z1, z2, . . . , z2n) is the determinant of the matrix M3, which is
M2 with rows j = 3 to j = n replaced by the ones with entries

1

(µk − z1)(µk − z2)(µk − zj)
, k = 1, 2, . . . , 2n.

Continuing this process, we get a sequence of matricesMm and their
determinants Dm(z1, z2, . . . , z2n), m = 2, 3, . . . , n, de�ned recursively
via

(4.4) Dm−1(z1, z2, . . . , z2n) = Dm(z1, z2, . . . , z2n)
n∏

j=m

(zj − zm).

In particular, Dn is the determinant of the matrix Mn whose jth row,
j = 1, 2, . . . , n, has entries

(µk − z1)−1 · · · (µk − zj)−1, k = 1, 2, . . . , 2n,
13



and rows n+ 1 to 2n are the same as in the matrix M1.
We now repeat the above process for rows n+ 1 to 2n of the matrix

Mn+1 := Mn: �rst, we subtract the (n + 1)st row from the rows n + 2
to 2n, then the row n+2 from rows n+3 to 2n of the resulting matrix,
and so on. After this procedure, we obtain the matrix M2n, whose j

th

row, j = n+ 1, . . . , 2n, has entries

(µk − zn+1)−1(µk − zn+2)−1 · · · (µk − zn+j)
−1, k = 1, 2, . . . , 2n.

The determinant of M2n can be found explicitly using (4.3) and the
recursive relations between Dm−1 and Dm; as a result, we �nd that

D2n(z1, z2, . . . , z2n) =

∏
j>k(µj − µk)

∏2n
j=n+1

∏n
k=1(zj − zk)∏

j

∏
k(µj − zk)

.

It remains to observe that the coe�cient matrix of interest is the
M2n with z1 = z2 = · · · = zn = z0 and zn+1 = zn+2 = · · · = z2n = z0;
therefore, its determinant is equal to

D2n(z0, z0, . . . , z0, z0, z0, . . . , z0) =
(z0 − z0)n

2∏
j>k(µj − µk)∏2n

j=1 |µj − z0|2n
.

As that determinant is non-zero for z0 ∈ C+, the proof is complete. �

5. Possible non-real spectrum of H

We now combine the approaches of Sections 3 and 4 to prove the
general result of this paper on non-real spectra of PT -symmetric rank-
one perturbations H of H0. Take an arbitrary n, then an n-tuple
(m1, . . . ,mn) of natural numbers, and a set M := {z1, . . . , zn} ⊂ C+ of
n pairwise distinct non-real numbers from the upper complex half-
plane. Set N := 2(m1 + m2 + · · · + mn), choose any N pairwise
distinct eigenvalues λk1 , λk2 , . . . , λkN of H0, and set Λ0 := σ(H0) \
{λk1 , λk2 , . . . , λkN}.

Theorem 5.1. Under the above assumptions, there is a PT -symmetric
rank-one perturbation H of H0 whose spectrum is

σ(H) = Λ0 ∪M ∪M

and the eigenvalues zk and zk, k = 1, . . . , n, are of multiplicity mk.

Proof. The proof is derived by combining the main steps of the proofs
of Theorems 3.2 and 4.2. For convenience, we denote by µj := λkj and
wj := vkj , j = 1, . . . , N , the chosen eigenvalues and the corresponding

14



eigenvectors of the operator H0. The functions ϕ and ψ in the rank-
one perturbation H of H0 can be searched for in the subspace H0 :=
ls{w1, w2, . . . , wN}, so that

(5.1) ϕ =
N∑
j=1

cjwj, ψ =
N∑
j=1

djwj

for some cj and dj. We set xj := cjdj for j = 1, . . . , N ; then the
characteristic function of H = H0 + 〈 · , ϕ〉ψ is equal to

F (z) :=
N∑
j=1

xj
µj − z

+ 1,

and we look for xj such that F has zeros of multiplicity mk at the
points zk and zk for k = 1, . . . , n. The equalities

(5.2) F (zk) = F ′(zk) = · · · = F (mk−1)(zk)

= F (zk) = F ′(zk) = · · · = F (mk−1)(zk) = 0

for k = 1, 2, . . . , n give an inhomogeneous system of size N in variables
x1, x2 . . . , xN whose coe�cient matrix M has rows of entries

1

(µj − ωk)m
, k = 1, . . . , n, m = 1, . . . ,mk,

where ωk = zk and ωk = zk in the top and the bottom halves of the
matrix M , respectively.
Small amendments in the proof of Lemma 4.3 (where z0 is consecu-

tively replaced with z1, z2, . . . , zn) shows that the coe�cient matrix M
is non-singular, so that the above system in x1, x2, . . . , xN has a unique
solution. As taking conjugate of every equation in the system produces
the same system of equations in the variables x1, x2, . . . , xN , we con-
clude that all xj are real. Therefore, we can take cj = 1 and dj = xj,
j = 1, . . . , N in (5.1); the results of [16] now imply that the points zk
and zk are eigenvalues of the operator H of multiplicity mk, while Λ0

is the common part of the spectra of the Hamiltonians H0 and H. The
proof is complete. �

Remark 5.2. As is clear from the proof of the main results, there are
in�nitely many PT -symmetric rank-one perturbations of H0 producing
the desired spectral e�ect; e.g., in the above proof, the Fourier coe�-
cients ak and bk of ϕ and ψ in (2.3) are determined only up to �xing
their product akbk.
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Example 5.3. Take H0 to be the quantum harmonic oscillator (in
dimensionless coordinates)

H0 = − d2

dx2
+ x2

in the Hilbert space H = L2(R). As is well known [37, Ch.8.3], the
bound states of H0 are λn = 2n + 1, n ≥ 0, and the corresponding
normalized eigenfunctions are

vn(x) =
π−1/4

√
2nn!

Hn(x)e−x
2/2,

with Hn being the nth Hermite polynomial. Let also P and T be the
standard space parity and time reversal operators in H.
With the notations �xed at the beginning of this section, we set µj =

2j − 1 and wj = vj−1, j = 1, . . . , N . Solving the system of N linear
equations generated by the equalities (5.2), we get real values for the
variables x1, x2, . . . , xN , then choose real cj and dj satisfying cjdj = xj,
and, �nally, construct the functions ϕ and ψ via (5.1).
The corresponding rank-one perturbation

H = − d2

dx2
+ x2 + 〈 · , ϕ〉ψ

of H0 is PT -symmetric, has non-real eigenvalues at the points zk and
zk of multiplicity mk, k = 1, 2, . . . , n, and the remaining eigenvalues
and eigenfunctions are µj := 2j+1 and vj, j ≥ N , as in the initial H0.

6. Discussion and conclusion

The main results of the paper show that, given an arbitrary self-
adjoint PT -symmetric Hamiltonian H0 with discrete spectrum, any
�nite subset of its eigenvalues can be moved by a PT -symmetric rank-
one perturbation into any desired collection of complex conjugate pairs,
each with any desired degeneracy. It should be noted that, in fact, H0

need not have purely discrete spectrum and that a continuous spectrum
component may co-exist with bound states. The explicit constructions
suggested in Theorem 5.1 can be accommodated to the spectral sub-
space corresponding to the discrete spectrum.
In this paper, we have not discussed what changes a PT -symmetric

rank-one perturbation may have on the spectrum of H0 globally, for
instance, what are possible asymptotics of the bound state distribution.
This question requires di�erent analytic tools and will be addressed in
a separate research.
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Finally, an interesting observation is that for every PT -symmetric
Hamiltonian H1 with �nite non-real spectrum there is a Hermitian
PT -symmetric Hamiltonian H0 and its rank-one PT -symmetric per-
turbation H such that H and H1 possess the same spectra counting
with multiplicities. To construct H0 explicitly, we denote by N the
total multiplicity of the non-real spectrum of H1 and by {λk} its real
bound states. We then augment {λk} with arbitrary N real values λ′j,
j = 1, 2, . . . , N , denote the union by {µn}, take an orthonormal basis of
H consisting of PT -symmetric functions vn, and construct H0 through
the spectral theorem with bound states µn and eigenfunctions vn,

H0 :=
∑

µn〈 · , vn〉vn.

Then we apply Theorem 5.1 to move the bound states λ′j to non-real
spectrum of H1 by a suitably chosen rank-one PT -symmetric perturba-
tion resulting in a PT -symmetric Hamiltonian H. It is an interesting
open question, if H0 can be chosen so that H coincides with H1.
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