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INVERSE SCATTERING ON THE HALF-LINE

FOR ENERGY-DEPENDENT SCHRÖDINGER EQUATIONS

ROSTYSLAV O. HRYNIV AND STEPAN S. MANKO

Abstract. In this paper, we study the inverse scattering problem for energy-
dependent Schrödinger equations on the half-line with energy-dependent bound-
ary conditions at the origin. Under certain positivity and very mild regularity
assumptions, we transform this scattering problem to the one for non-canonical
Dirac systems and show that, in turn, the latter can be placed within the known
scattering theory for ZS-AKNS systems. This allows us to give a complete de-
scription of the corresponding scattering functions S for the class of problems
under consideration and justify an algorithm of reconstructing the problem
from S.

1. Introduction

The main aim of the paper is to develop the direct and inverse scattering theory
for a class of one-dimensional energy-dependent Schrödinger equations

− y′′ + qy + 2kpy = k2y (1)

on the half-line with integrable potentials p, highly singular potentials q, and some
boundary conditions at the origin. Schrödinger equations of this form arise in var-
ious models of quantum and classical mechanics; for instance, the Klein–Gordon
equation [19, 37] modeling interactions between colliding relativistic spinless par-
ticles (called anti-particles) with zero mass is a special case of (1) when q = −p2.
Further models leading to (1) are mentioned at the end of this section. In quantum
mechanical models, k2 is related to the energy of the system, so that the formal
potential q+2kp of the Schrödinger expression on the left-hand side of (1) becomes
energy dependent, thus giving the name to the equation.

Throughout the paper, we assume p is real-valued and belongs to the space
X := L1(R+) ∩L

2(R+) while q is a real-valued distribution belonging to the space
H−1

loc (R+) and having the form q = u′ + u2 for some u ∈ X . In other words, q is a
so-called Miura potential; see [24] for thorough discussion of Schrödinger operators
with such potentials and Subsection 2.2 for justification of this assumption. We
note that such q may contain e.g. the Dirac δ-functions and local singularities of
the Coulomb 1/x-type that are widely used in quantum mechanics to model various
interactions between or within the elementary particles.

Denote by y[1] := y′ − uy the so-called quasi-derivative of a function y; as sug-
gested in [42, 43], the differential expression −y′′+qy should then be interpreted as
−(y[1])′−uy[1] for the corresponding set of functions. We shall consider the general
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boundary conditions of the form

sinαy[1](0, k) + k cosαy(0, k) = 0; (2)

note that for α = 0 this becomes the Dirichlet boundary condition and for α = π/2
an analogue of the Neumann boundary conditions.

As in the standard case with regular q and p ≡ 0, for real k equation (1) has
the so-called Jost solution f(·, k) uniquely determined by the asymptotics f(x, k) =

eikx(1+o(1)) as x→ ∞. Moreover, for nonzero real k the solutions f(·, k) and f(·, k)
are linearly independent, and there is a number S(k) ∈ C such that the solution

f(·, k)+S(k)f(·, k) satisfies the boundary condition (2). The function S is called the
scattering function of the problem (1), (2) and is a direct analogue of the scattering
function for the classical Schrödinger scattering problem.

Note that the Jost solutions exist also for k in the open upper half-plane C+,
and the Jost function

s(k) := sinα f [1](0, k) + k cosαf(0, k) (3)

is analytic in C+ and continuous in the closure C+. A short computation shows
that the scattering function S can be expressed in terms of the Jost function s as

S(k) =
s(k)

s(k)
=

sinαf [1](0, k) + k cosαf(0, k)

sinαf [1](0, k) + k cosαf(0, k)
.

In general, the Jost function s may have zeros in C+, but in contrast with the
classical Schrödinger scattering problem they need not belong to the imaginary axis.
If z0 ∈ C+ is a zero of s, then f(·, z0) is a solution of (1) belonging to the Hilbert
space L2(R+) and satisfying the boundary condition (2), and in that case z0 is
called an eigenvalue, or bound state of the problem (1), (2). The eigenvalues always
come in complex conjugate pairs and, moreover, may have multiplicity larger than
one. The scattering function S and the eigenvalues together with the corresponding
norming constants form the scattering data of the problem (1), (2). We note,
however, that under the standing assumptions on q, the Jost function s is zero-
free in C+ and thus there are no eigenvalues (see Subsection 2.2); as a result, the
scattering data is just the scattering function S.

The direct scattering problem consists in finding the scattering data for given
potentials p, q, and the constant α in the boundary conditions. The inverse scat-
tering problem is to construct p, q, and α given the scattering data. A complete
solution to the scattering problem for a given class of problems (1), (2) includes
several subtasks, such as to characterise the corresponding set of scattering data, es-
tablish the reconstruction algorithm, prove uniqueness and continuous dependence.
In the classical setting with p ≡ 0, q of Faddeev–Marchenko class, and α = 0, a
complete solution to the scattering problem has been known since the 1950-ies and
is well explained in e.g. [6, 28, 31, 38]. We review below some related work on the
inverse scattering in the energy-dependent case but observe here that satisfactory
results have only been derived only when there are no eigenvalues, or bound states
of (1)–(2).

Here, our aim is to give a complete solution of the inverse scattering problem for
energy-dependent Schrödinger equation (1) subject to the boundary conditions (2)
and under the weakest possible regularity assumptions on the potentials p and q.
Under these assumptions, the problem possesses no bound states; we give a com-
plete description of the scattering functions for the problem under consideration,
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prove existence and uniqueness of solution to the inverse scattering problem, and
suggest a reconstruction algorithm. The main results of the paper are summarized
in Theorem 1 below. Our approach consists in transforming the scattering problem
for energy-dependent Schrödinger equation (1) to the one for non-canonical Dirac
systems, and then placing the latter within the well developed scattering theory for
ZS-AKNS systems. The method is motivated by a similar approach to problems
on finite intervals realized in [13] and [39].

In the context of the scattering theory, the energy-dependent Schrödinger equa-
tions (1) were considered first by Cornill [7] and Weiss and Scharf [46], where the
authors derived the Marchenko equation for (1) and conjectured the applicability
of the classical Gelfand–Levitan–Marchenko inverse scattering method developed
in the works of Gelfand and Levitan [11], Krein [26, 27], and Marchenko [29, 30];
see also the reviews [8, 9] and the books [6, 28, 31, 38].

Jaulent and Jean [14, 16] were seemingly the first to develop systematically
the inverse scattering theory for Schrödinger equations of the form (1). In the
radial case, when there are no bound states, the authors established a procedure of
recovering the potentials p and q from the scattering data, under the assumption
that p and q are real-valued and integrable along with their derivatives. In the
later publications [17, 18] they also extended they approach to solve the inverse
problem associated with the equation (1) on the whole line. Namely, they derived
the Marchenko equation coupled with a nonlinear ordinary differential equation for
∫∞

x
p(t) dt. Also, Jaulent used the generalization of that method to treat the case

of purely imaginary p in his short paper [15] containing no complete proofs.
Schrödinger equations (1) with p being imaginary as well as real were studied

by Sattinger and Szmigielski in [40, 41]. The authors proved the invertibility of
the scattering transform by means of a simple vanishing lemma when there are no
bound states. If the potential p is real with zero mean, their method is simpler
than the one of Jaulent and Jean, as it permits recovering p by solving an algebraic
equation rather than a differential equation. Although in generic situation the
scattering transform may not be invertible for one or more bound states, in [40]
the authors solved the inverse problem for a single bound state and obtained a so-
called breather solution. In [40, 41] the inverse scattering problem is formulated as
a Riemann–Hilbert problem on a Riemann surface. As an application the authors
proved a global existence theorem for a family of so-called isospectral flows. The
one-soliton solution of this nonlinear equation is similar in structure to the well-
known breather solution of the sine-Gordon equation. Isospectral flows for energy-
dependent operators arise in various applications; for instance, an energy-dependent
isospectral operator generates the Camassa–Holm equation that describes a special
shallow water wave and is related to the Dym hierarchy [5].

Adapting an algorithm suggested originally by Deift and Trubowitz [8], Kami-
mura [20, 22, 23] generalized the results of Jaulent and Jean to a wider class of
potentials. He studied the inverse problem on the half-line [23] as well as on the
whole line [22] and also applies in [21] the inverse scattering theory for (1) with
q = 0 to reconstruct an oceanic flow from the data of an observable property in the
ocean.

Aktosun et al. [1, 2] described the wave propagation in a nonconservative medium
by equation (1) with a real q and a purely imaginary p. In their model Im p
represents the energy absorption or generation, while q represents the restoring
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force density. The authors solved one-dimensional inverse scattering problem for
equation (1) with bound states for integrable p and q from the Faddeev–Marchenko
class under some additional restrictions on p and q. Observe that the direct and
inverse scattering problems for equation (1) with real p and with purely imaginary p
are essentially different. For instance, in the latter case the differential operators
arising in the left-hand side of (1) are not self-adjoint even for real k and the
corresponding scattering matrices are not unitary.

Kaup [25] treated the direct and inverse scattering problem for Schrödinger equa-
tion (1) with the coefficients p and q tending to non-zero limits at infinity. Such
an equation may be reformulated as equation (1) with potentials of the Faddeev–
Marchenko class but with k2 replaced by k2+m and is connected with a long-wave
approximation of Boussinesq-type equations. The case when m equals 1 was stud-
ied in [44], where the author proved that the problem may be reduced to matrix
analogue of (1) without the mass parameter m. Similar inverse scattering problem
was treated in [33].

Inverse scattering for energy-dependent Schrödinger equations has also appeared
in the literature in the context of the waves propagation in nondispersive media
where the wave speed depends on position. Such waves (e.g., sound, electromag-
netic, or elastic ones) may be described by an equation with a potential k2q that
is proportional to the energy [3, 4]. Inverse scattering problem for the Schrödinger
equations with polynomial energy-dependent potentials were discussed in [35, 36].

The paper is organized as follows. In the next section, we explain how the scatter-
ing problem for the energy-dependent Schrödinger equations (1) canbe transformed
to that for related non-canonical ZS-AKNS systems. Using this correspondence, In
Section 3, we characterize the set of scattering functions for the energy-dependent
Schrödinger equations under consideration, and then in Section 4 we completely
solve the inverse scattering problem and provide a reconstruction algorithm.

2. Preliminaries

2.1. Miura potentials and their Riccati representatives. We shall consider
the case where the potential q admits a Riccati representation given by the Miura
map [34]. Recall that the Miura map is the nonlinear mapping

M : L2
loc(R) → H−1

loc (R),

u 7→ u′ + u2.

The Miura map has played a fundamental role in the study of existence and well-
posedness questions for KdV and mKdV equations, since it relates smooth solutions
of these equations, see [34].

The range of the Miura map may be characterized as follows. For q ∈ H−1
loc (R)

real-valued and ϕ ∈ C∞
0 (R), consider the Schrödinger form

q(ϕ) :=

∫

|ϕ′(x)|2 dx+ 〈q, |ϕ|2〉,

where 〈·, ·〉 is the pairing between H−1
loc (R) and H1

comp(R). In [24] it was shown

that if q is any real-valued distribution in H−1
loc (R) for which the Schrödinger form q

is nonnegative, then q may be presented as q = Mu for a function u ∈ L2
loc(R)

that need not be unique. We will call such a potential q a Miura potential, and
we will call any function u with q = Mu a Riccati representative for q. It is not
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difficult to see that two Riccati representatives for a given q differ by a continuous
function. Moreover, any Riccati representative u is the logarithmic derivative of a
positive distributional solution to the zero-energy Schrödinger equation for q, and
the differential expression ℓ(y) := −y′′ + q can be written as

ℓ(y) = −y′′ + qy = −(y[1])′ − uy[1] = −
( d

dx
+ u

)( d

dx
− u

)

, (4)

with y[1] = y′ − uy being the quasi-derivative of y.
In this paper, we will study inverse scattering for the subset of the Miura poten-

tials which admit a real-valued Riccati representative u ∈ X(= L1(R+)∩L
2(R+)).

In this case, such a Riccati representative is unique, so we may parameterize the
potentials by their Riccati representatives from X .

2.2. Spectral properties of the problem (1)–(2). Since equation (1) depends
both on the spectral parameter k and its square k2, it can naturally be placed within
the theory of quadratic operator pencils [32]. Recall that under our assumptions, q
in (1) is a Miura potential, i.e., that q = u′+u2 for someMiura representative u ∈ X .
Denote by I the identity operator in L2(R+), by Az, z ∈ C, the differential operator
in L2(R+) given by (4) on the domain

dom(Az) =
{

y ∈ ACloc(R+) ∩ L
2(R+) |y

[1] ∈ ACloc(R+), ℓ(y) ∈ L2(R+),

sinαy[1](0) + z cosαy(0) = 0
}

and by B the operator of multiplication by the function p. For every z ∈ C, set

T (z) := Az + zB − z2I;

T is a quadratic operator pencil related to the problem (1)–(2). It is an operator-
valued function of z ∈ C; for every z, T (z) is a well-defined operator on the domain
dom(T (z)) = dom(Az).

We call a number z0 ∈ C resolvent point of the operator pencil T if the operator
T (z0) is boundedly invertible in L2(R+), i.e., if 0 is in the resolvent set of the
operator T (z0). Next, z0 ∈ C is an eigenvalue of T if 0 is an eigenvalue of the
operator T (z0); in that case, every non-trivial function y ∈ dom(T ) satisfying
T (z0)y = 0 is called a corresponding eigenfunction. Similarly, z0 ∈ C is a point of
the essential spectrum of T if 0 is in the essential spectrum of the operator T (z0).

Under the assumptions on the functions u and p, for every z ∈ C the operator
T (z) is a relatively compact perturbation of the operator Az − z2I [45]; as a result,
we conclude that the essential spectrum of the operator pencil T coincides with the
whole real line. Next, eigenvalues come in complex conjugate pairs: indeed, if z is
an eigenvalue of T with corresponding eigenfunction y, then z is an eigenvalue of T
with an eigenfunction y.

We observe that if q is a Miura potential, then T has no non-real eigenvalues.
Indeed, integration by parts on account of (4) shows that, for every z ∈ C and
every y ∈ dom(Az), we have

(Azy, y) = ‖y[1]‖2 + y[1](0)y(0) = ‖y[1]‖2 − z cotα|y(0)|2

if sinα 6= 0 or (Azy, y) = ‖y[1]‖2 otherwise. Assuming z = σ + iτ with τ 6= 0 is
an eigenvalue of T with an eigenfunction y and separating the real and imaginary



6 HRYNIV AND MANKO

parts in the scalar product (T (z)y, y), we conclude that

(By, y)− cotα|y(0)|2 = 2σ‖y‖2

and

‖y[1]‖2 + σ(By, y)− σ cotα|y(0)|2 + (τ2 − σ2)‖y‖2 = 0

in the case sinα 6= 0; otherwise, the terms with cotα should be omitted. Both
cases lead to the contradiction ‖y[1]‖2 + |z|2(y, y) = 0, thus justifying absence of
non-real eigenvalues.

Conversely, if the operator pencil T has no non-real eigenvalues, then under some
mild conditions [32] we have A0 > 0 and then q must be a Miura potential. There-
fore, under the assumption that the energy-dependent Schrödinger equation (1) has
no eigenvalues (there can be no real eigenvalues due to the asymptotics of the Jost
solutions, see Subsection 2.4), it is natural to assume that the potential q is a Miura
potential q =Mu for some function u.

2.3. Transformation to a ZS-AKNS system. Next we establish a relation be-
tween solutions to the energy-dependent Schrödinger equation (1) with Miura po-
tentials q =Mu and those for some Dirac-type equation. Namely, take any solution
y(·, k) of (1) for a nonzero k and set y2(·, k) := y(·, k) and y1(·, k) := y[1](·, k)/k,
i.e.,

y1(·, k) =
y′2(·, k)− uy2(·, k)

k
; (5)

here u is the Riccati representative of the potential q belonging to X . Then y1 and
y2 satisfy the system

y′2 − uy2 = ky1,

−y′1−uy1+2py2 = ky2,

i.e., the column vector y(·, k) :=
(

y1(·, k), y2(·, k)
)t

satisfies the non-canonical Dirac
system

σ2y
′ + P (x)y = ky, (6)

where

σ2 :=

(

0 1
−1 0

)

and P :=

(

0 −u
−u 2p

)

. (7)

The boundary condition (2) for y read

sinαy1(0, k) + cosα y2(0, k) = 0. (8)

Conversely, if y(·, k) =
(

y1(·, k), y2(·, k)
)t

solves the above Dirac system, then
the first component y1 verifies (5), while the second component y := y2 solves the
equation

−
( d

dx
+ u

)( d

dx
− u

)

y + 2kp(x)y = k2y,

which coincides with the energy-dependent Schrödinger equation (1) with q =
Mu = u′ + u2.

Hence in order to construct the Jost solutions for the energy-dependent Schrödin-
ger equation (1) with a Miura potential q = B(u), it suffices to study the Jost
solutions for the corresponding Dirac system (6). To this end we make a substitution

y = Uz =

(

i −i
1 1

)

z
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with a vector z := (z1, z2)
t and after straightforward calculations recast (6) as

z′ +Q(x)z = ikσ3z, (9)

with

σ3 :=

(

1 0
0 −1

)

, Q :=

(

ip −u+ ip
−u− ip −ip

)

; (10)

the boundary condition (8) then becomes

eiαz1(0, k) + e−iαz2(0, k) = 0.

We note that the system (9) is still not in a canonical form, but it takes the
ZS-AKNS canonical form after the substitution z(x) := exp(iϕ(x)σ3)w(x) with

ϕ(x) :=
∫∞

x
p(t) dt: indeed, the equation for w(·, k) =

(

w1(·, k), w2(·, k)
)t

reads

w′ + V (x)w = ikσ3w (11)

with V (x) :=
(

Q(x) − ip(x)σ3
)

e2iϕ(x)σ3 , i.e., with

V (x) =

(

0 v(x)

v(x) 0

)

, (12)

and v(x) := (−u(x) + ip(x))e−2iϕ(x). We observe that under the assumption made
on p and u the function v belongs to the space X . Set p0 := ϕ(0) =

∫∞

0 p(t) dt and
β := α+ p0; then w should satisfy the boundary condition

eiβw1(0, k) + e−iβw2(0, k) = 0. (13)

2.4. Jost solutions. Properties of the Jost solutions for the canonical ZS-AKNS
system (11) with v ∈ X were thoroughly studied in the papers [10, 12]. Namely, it
was proved therein that for every real k ∈ R the equation

Ψ′ + VΨ = ikσ3Ψ (14)

with V of (12) and a complex-valued v ∈ X has a unique matrix 2 × 2 solution
Ψ obeying the asymptotics Ψ(x, k) = eikxσ3 (1 + o(1)). Next, there exists a matrix
2× 2 kernel Γ such that

Ψ(x, k) = eikxσ3 +

∫ ∞

0

Γ(x, ζ)e2ikζ dζ; (15)

moreover, Γ has the property that for every fixed x ≥ 0 the function Γ(x, ·) belongs
to X ⊗M2(C) and depends continuously therein on x ≥ 0.

Therefore, one concludes that the corresponding non-canonical ZS-AKNS system

Φ′ +QΦ = ikσ3Φ

withQ of (10) has a unique matrix 2×2 solution Φ obeying the asymptotics Φ(x, k) =
eikxσ3(1 + o(1)); clearly, this solution satisfies Φ(x, k) = exp(iϕ(x)σ3)Ψ(x, k). Fur-
ther, Y (x, k) := UΦ(x, k) is a matrix-valued solution of the Dirac equation (6); its
first column y obeys the asymptotics

y(x, k) = U exp(iϕ(x)σ3)ψ1(x, k) =

(

i
1

)

eikx(1 + o(1))

as x → ∞, where ψ1 is the first column of the matrix solution Ψ. The second
component of y = (y1, y2)

t is the Jost solution of the energy-dependent Schrödinger
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equation (1) with q =Mu, while y1 = y
[1]
2 /k. The integral representation of Ψ leads

to the following representation of y:

y(x, k) = eik(x+ϕ(x))

(

i

1

)

+

∫ ∞

0

g(x, ζ)e2ikζ dζ,

where g = (g1, g2)
t is a function with the property that gj(x, ·) belongs to X and

depends therein continuously on x ≥ 0.

Lemma 1. For every nonzero k ∈ R, the Jost solution f(·, k) of the energy-

dependent Schrödinger equation (1) with a Miura potential q =Mu, u ∈ X, exists

and is unique.

Proof. The above considerations produce a particular Jost solution f(·, k) of (1)
in a constructive manner from the Jost solution of the companying ZS-AKNS sys-
tem (14). To justify uniqueness of the Jost solution, it is enough to observe that

f(·, k) is another solution of (1) that is linearly independent of f(·, k) as it obeys

a different asymptotics at +∞. Clearly, no linear combination f(·, k) + cf(·, k) is
asymptotic to eikx at +∞, whence the Jost solution is unique. �

3. Direct scattering problem

3.1. The scattering function. Recall that the scattering function S for the prob-

lem (1), (2) is equal to s(k)/s(k), where the Jost function s is given by (3). In terms
of the Jost solution y of the Dirac system (6), the Jost function reads

s(k) = k
(

sinαy1(0, k) + cosαy2(0, k)
)

.

The scattering function S then takes the form

S(k) = −
sinαy1(0, k) + cosα y2(0, k)

sinαy1(0, k) + cosα y2(0, k)
;

it is uniquely defined by the requirement that the function y(·, k) +S(k)y(·, k) is a
solution of the system (6) satisfying the boundary condition (8).

Making the substitution y = U exp(iϕ(x)σ3)w, one gets the following represen-
tation of s,

s(k) = k
(

ei(α+p0)w1(0, k) + e−i(α+p0)w2(0, k)
)

,

in terms of the Jost solution w = (w1, w2)
t of the ZS-AKNS system (11); respec-

tively, the scattering function S becomes

S(k) = −
ei(α+p0)w1(0, k) + e−i(α+p0)w2(0, k)

e−i(α+p0)w1(0, k) + ei(α+p0)w2(0, k)
. (16)

3.2. Scattering for ZS-AKNS systems. In view of the results proved in [12],
the above formula for the scattering function S suggests that it is also a scattering
function for some canonical ZS-AKNS system.

Indeed, consider the 2 × 2 matrix Jost solution Ψ = (ψjl)
2
j,l=1 of the ZS-AKNS

system (14). The column vectors ψ1 and ψ2 are linearly independent and solve
equation (11); therefore, there is a linear combination of the form ψ1(·, k)+cψ2(·, k)
satisfying the boundary condition (13). The coefficient c is equal to

−
eiβψ11(0, k) + e−iβψ21(0, k)

e−iβψ11(0, k) + eiβψ21(0, k)
(17)
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and is called the scattering function for the problem (11), (13).
It is proved in [12] that the scattering functions for canonical ZS-AKNS sys-

tems (11) with potentials (12) for v ∈ X and subject to the boundary condition (13)
belong to the following set S.

Definition 1. We say that a function S : R → C belongs to the class S if and only

if

(1) there are F ∈ L1(R) ∩L2(R) and γ ∈ [0, π) such that for all k ∈ R it holds

S(k) = e2iγ +

∫ ∞

−∞

F (ζ)e2ikζ dζ; (18)

(2) the function S is unimodular, i.e. (S(k))−1 = S(k) for all real k;
(3) the winding number W (S) of the function S is equal to zero.

We recall that the winding number W (f) of a function f that is continuous on
the extended real line R (i.e., f is continuous on R and possesses finite and equal
limits limk→±∞ f(k)) is the integer number equal to

W (f) :=
log f(+∞)− log f(−∞)

2πi
.

One of the main results of [12] can be formulated as follows.

Proposition 1. The function S is the scattering function of the problem (11),
(13) corresponding to some (v, β) ∈ X× [0, π) if and only if S belongs to S and the

number γ in its integral representation (18) is equal to β.

Moreover, the paper [12] gives an algorithm based on the Marchenko equation
that for a given function S ∈ S constructs a ZS-AKNS system (i.e., the function v
in the potential Q and the number β in the boundary condition) whose scattering
function is this S.

4. Inverse scattering for energy-dependent Schrödinger equations

The representation (16) of the scattering function for the energy-dependent
Schrödinger equation (1) in terms of the Jost solution w of the companying canon-
ical ZS-AKNS system (11) reveals a close connection to the scattering functions of
the latter.

We parametrise the set of problems (1), (2) by the triples (u, p, α) ∈ X×X×[0, π)
of Riccati representatives u of the potential q, the potential p, and the constant α
in the boundary conditions. Our main result gives a complete description of the
scattering functions for equations (1) subject to the boundary conditions (2):

Theorem 1. A function S is the scattering function of the problem (1), (2) cor-

responding to some (u, p, α) ∈ X ×X × [0, π) if and only if S belongs to S and the

number γ in its integral representation (18) is equal to γ0 := (α+ p0)(mod π).

The proof of this theorem can naturally be split into three parts: necessity
(i.e., characterization of the scattering functions), uniqueness (different energy-
dependent Schrödinger equations lead to different scattering functions), and ex-
istence (every function in S is the scattering function for some problem under
consideration).

Also, as shown in Section 2, the energy-dependent Schrödinger equations (1) are
in one-to-one correspondence with the related Dirac systems (6) in non-canonical
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form. Therefore one can study non-canonical Dirac systems (6) instead of (1); the
corresponding boundary conditions are given by (8).

Proof of necessity. On account of the representation (16) and Proposition 1 we
conclude that the scattering function S of every non-canonical Dirac system (6),
(8) corresponding to some (u, p, α) ∈ X ×X × [0, π) belongs to S. �

Proof of uniqueness. Assume that there exist two Dirac-type problems (6) with
potentials Pj , j = 1, 2, of the form (7), i.e., with

Pj :=

(

0 −uj
−uj 2pj

)

, uj , pj ∈ X, j = 1, 2,

and subject to the boundary condition (8) with the respective αj ∈ [0, π) instead
of α, sharing the same scattering function S. We shall prove that P1 = P2 and
α1 = α2.

Indeed, as explained in the previous section, the scattering problem for every
Dirac-type system (6) can be transformed to the scattering problem for a canonical
ZS-AKNS system (11); moreover, the scattering functions for both systems will be
the same.

Set ϕj(x) :=
∫∞

x
pj(t) dt and vj := (−uj + ipj)e

−2iϕj , j = 1, 2. Then the
above transformation gives two canonical ZS-AKNS systems (11) with potentials Vj ,
j = 1, 2, of the form (12), in which v is replaced by vj ; the corresponding boundary
conditions have the form (13) with some (plausibly different) β1 and β2 from the
interval [0, π). Since the scattering functions for these ZS-AKNS systems are the
same, Proposition 1 yields the equality v1 = v2 and β1 = β2. In particular,

| − u1(x) + ip1(x)| = | − u2(x) + ip2(x)| =: r(x), (19)

and there exist functions ηj(x) such that

−uj(x) + ipj(x) = r(x)eiηj (x), j = 1, 2.

Observe that the equality v1 = v2 yields the relation η1 − 2ϕ1 = η2 − 2ϕ2(
mod 2π), so that η2 − η1 = 2(ϕ2 − ϕ1)(mod 2π). Since pj = r sin ηj , we get

p2 − p1 = r(sin η2 − sin η1) = 2r sin(ϕ2 − ϕ1) cos(ϕ2 − ϕ1 + η1).

Next we set θ := ϕ2 − ϕ1 and recall that pj = −ϕ′
j to get the following equation

for θ on R+:

θ′ = −2r sin θ cos(θ + η1). (20)

By the definition of ϕj , the function θ vanishes at +∞, i.e.,

θ(x) → 0, x→ ∞. (21)

Now we claim that the problem (20)–(21) possesses only trivial solution θ ≡ 0.
Observe that θ solves the integral equation

θ(x) = 2

∫ ∞

x

r(t) sin θ(t) cos(θ(t) + η1(t)) dt;

thus, we get the bound

|θ(x)| ≤ 2

∫ ∞

x

|r(t)||θ(t)| dt (22)
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holding for all positive x. Introduce the least monotonically decreasing majorant
of the function θ:

Θ(x) := max
t≥x

|θ(t)|.

By virtue of (22) we derive the estimate

Θ(x) ≤ 2

∫ ∞

x

|r(t)||θ(t)| dt ≤ 2Θ(x)

∫ ∞

x

|r(t)| dt.

Due to the definition of r (see (19)) and the inclusions uj , pj ∈ X , r is integrable,
and thus there is an x0 ≥ 0 such that

∫ ∞

x0

|r(t)| dt <
1

4
;

then we find that Θ(x0) = 0 and so θ is zero for x ≥ x0.
Next we show that θ is zero on R+. Assume the contrary and denote by x∗

the greatest lower bound of all x such that θ = 0 a.e. on (x,∞). Then x∗ > 0 by
assumption, and since the function r is integrable, there exists x∗ ∈ (0, x∗) such
that

∫ x∗

x∗

|r(t)| dt ≤
1

4
.

Thus

Θ(x∗) ≤ 2Θ(x∗)

∫ x∗

x∗

|r(t)| dt ≤
1

2
Θ(x∗),

which implies that Θ vanishes a.e. on (x∗, x
∗). This contradicts the definition of x∗

and the assumption that x∗ > 0; therefore x∗ = 0 and Θ vanishes on R+.
As a result, we get that θ is zero on R+, i.e., that ϕ1 = ϕ2 on R+, whence

u1 = u2 and p1 = p2 on R+ by virtue of the relation v1 = v2. Now the formula (16)
shows that α1 = α2(mod π), and the proof is complete. �

Proof of existence. Given an arbitrary S in S, we use Proposition 1 and find a
unique canonical ZS-AKNS system (11) and the number β in the boundary condi-
tions (13) having this S as its scattering function. The potential V of this ZS-AKNS
system has the form (12) with some complex-valued function v ∈ X .

Our task is to represent this function v as (−u + ip)e−2iϕ for some functions u
and p from X and with ϕ(x) :=

∫∞

x
p(t) dt. In other words,

−u(x) + ip(x) = v(x)e2iϕ(x),

and, equating the imaginary parts and recalling that p = −ϕ′, we get the differential
equation

ϕ′ = −(Re v) sin 2ϕ− (Im v) cos 2ϕ (23)

for the function ϕ. By the definition of ϕ, it should vanish at +∞.
First we prove that the above equation has a unique solution vanishing at +∞.

Lemma 2. Suppose that v1 and v2 are real-valued functions in L1(R+). Then the

equation

φ′ = −v1 sin 2φ− v2 cos 2φ (24)

admits a unique real-valued solution φ on R+ tending to zero as x tends to infinity.
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Proof. Fix a number x0 ≥ 0 such that
∫ ∞

x0

(

|v1(t)|+ |v2(t)|
)

dt <
1

4

and consider the function space

Y =
{

f ∈ AC(x0,∞) | ∀x ≥ x0, f(x) = f(x), lim
x→∞

f(x) = 0
}

with the norm

‖f‖Y :=

∫ ∞

x0

|f ′(t)| dt.

We claim that the space Y is a Banach space over the field R. Indeed, if (fn)n∈N

is a Cauchy sequence in Y , then the sequence of the derivatives (f ′
n) is Cauchy

in L1(x0,∞) and thus converges therein to some real-valued function f0 ∈ L1(x0,∞);
now

f(x) := −

∫ ∞

x

f0(t) dt

is the limit of (fn) in Y .
In the Banach space Y , we introduce the nonlinear integral operator

(

Tf
)

(x) :=

∫ ∞

x

(

u1(t) sin 2f(t) + u2(t) cos 2f(t)
)

dt.

Observe that if φ solves (24), then φ′ is integrable over R+, and upon integrating
both sides of (24) we see that φ is a fixed point of the operator T . Conversely, a
fixed point of T is also a solution of (24) for x ≥ x0 vanishing at +∞. We therefore
look for fixed points of the mapping T .

Clearly, T maps Y into Y . In view of the inequalities

| sin 2f1(t)− sin 2f2(t)|, | cos 2f1(t)− cos 2f2(t)| ≤ 2|f1(t)− f2(t)| ≤ 2‖f1 − f2‖Y ,

we conclude that

‖Tf1 − Tf2‖Y ≤ 2‖f1 − f2‖Y

∫ ∞

x0

(

|u1(t)|+ |u2(t)|
)

dt ≤
1

2
‖f1 − f2‖Y

so that T is a contraction in Y . Next we find that

‖T 0‖Y =

∫ ∞

x0

|u2(t)| dt ≤
1

4
,

and if f is an arbitrary element of the closed unit ball in Y , then

‖Tf‖Y ≤ ‖T 0‖Y + ‖Tf − T 0‖Y ≤
1

4
+

1

2
‖f‖Y ≤

3

4
.

Thus T is a contraction in Y that maps its closed unit ball into itself and therefore
by the Banach fixed point theorem there is a unique φ in the unit ball of Y such
that φ = Tφ. This fixed point φ solves equation (24) on (x0,∞). By the standard
existence and uniqueness theorems, this φ can be extended to a solution of (24)
over the whole half-line R+. The proof is complete. �

In view of the above lemma, equation (23) has a solution ϕ vanishing at infinity.
Set

u := −(Re v) cos 2ϕ+ (Im v) sin 2ϕ,

p := (Re v) sin 2ϕ+ (Im v) cos 2ϕ;
(25)
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then u and p are real-valued, belong to X and, moreover, satisfy the relation v =
(−u+ip)e−2iϕ. Finally, we define the number α ∈ [0, π) from the equality α+ϕ(0) =
β(mod π). As shown in Section 3, the scattering function of (17) for the ZS-AKNS
system constructed at the beginning of this proof is also a scattering function for
the non-canonical Dirac system (6) with potential P of (7) with the u and p of (25)
and with the number α in the boundary condition defined as β − ϕ(0) modulo π.
Therefore the scattering function of the so constructed non-canonical Dirac system
is the function S ∈ S we have started with. The proof is complete. �

Analyzing the proof of the above theorem, we can suggest an explicit algorithm
reconstructing the triple (u, p, α) from S. Namely, given an arbitrary element S
of S, we construct the energy-dependent Schrödinger equation (1) with a Riccati
representative u ∈ X of the potential q, the potential p ∈ X , and the constant
α ∈ [0, π) in the boundary conditions (2) in the following way:

(1) construct the ZS-AKNS system (11), (13) with a potential v ∈ X and a
constant β ∈ [0, π) whose scattering function coincides with S (see [12]):
recover β and F from the integral representation (18), form the matrix-
valued function

Ω(x) :=

(

0 F (x)
F (x) 0

)

and consider the corresponding Marchenko equation

Γ(x, ζ) + Ω(x+ ζ) +

∫ ∞

0

Γ(x, t)Ω(x + t+ ζ) dt = 0 for a.e. ζ > 0

for the kernel Γ = (Γjk)
2
j,k=1 of the Jost solution (15); this Marchenko

equation is uniquely soluble and gives the potential v by

v(x) = −Γ12(x, 0) = −Γ21(x, 0);

(2) having v, find a unique solution ϕ of the equation (23) vanishing at infinity;
(3) define the potentials u ∈ X and p ∈ X via formulas (25), and the constant

α in the boundary condition as β − ϕ(0) modulo π.
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Inst. H. Poincaré Sect. A (N.S.) 17 363–78

[15] Jaulent M 1976 Inverse scattering problems in absorbing media J. Math. Phys. 17 1351–60
[16] Jaulent M and Jean C 1972 The inverse s-wave scattering problem for a class of potentials

depending on energy Comm. Math. Phys. 28 177–220
[17] Jaulent M and Jean C 1976 The inverse problem for the one-dimensional Schrödinger equation

with an energy-dependent potential. I Ann. Inst. H. Poincaré Sect. A (N.S.) 25 105–18
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