
ar
X

iv
:2

00
6.

12
78

2v
1 

 [
m

at
h.

SP
] 

 2
3 

Ju
n 

20
20

INVERSE SCATTERING FOR REFLECTIONLESS SCHRÖDINGER

OPERATORS WITH INTEGRABLE POTENTIALS AND

GENERALIZED SOLITON SOLUTIONS FOR THE KDV EQUATION

ROSTYSLAV HRYNIV, BOHDAN MELNYK, AND YAROSLAV MYKYTYUK

Abstract. We give a complete characterisation of the reflectionless Schrödinger
operators on the line with integrable potentials, solve the inverse scattering problem of
reconstructing such potentials from the eigenvalues and norming constants, and derive
the corresponding generalized soliton solutions of the Korteweg–de Vries equation.

1. Introduction

The main aim of the paper is to complete the theory of reflectionless Schrödinger
operators

Tq := − d2

dx2
+ q(x)

on the line with integrable potentials q that was developed in the work of Marchenko [20]
and Gesztesy, Karwowsky and Zhao [7].

Reflectionless Schrödinger operators on the half-line were constructed for the first
time by Bargmann [1] in 1949 as non-uniqueness examples in the inverse scatter-
ing problem of reconstructing the potential from the phase shift function. After
the inverse scattering theory for Schrödinger operators on the whole line was devel-
oped by Marchenko, Gelfand and Levitan a.o. [5, 21, 22] and the role of the bound
states in the reconstruction was understood, Kay and Moses [14] described explic-
itly all classical reflectionless potentials, sometimes called the Bargmann potentials.
Namely, each such potential q is uniquely characterised by two sets of positive num-
bers, κ1 > κ2 > · · · > κn > 0 and m1, m2, . . . , mn via

(1.1) q(x) = −2
d2

dx2
log det

(
δkj +

m2
ke

−(κk+κj)x

κk + κj

)

1≤k,j≤n

, x ∈ R.

In the above formula, n ∈ N is arbitrary, δkj is the Kronecker delta, and the correspond-
ing Schrödinger operator Tq has spectrum consisting of the absolutely continuous part
covering the positive half-line and of n negative eigenvalues, −κ2

1 < −κ2
2 < · · · < −κ2

n

with m1, m2, . . . , mn being the corresponding norming constants.
The interest in such potentials was revived in 1967 after Green, Gardner, Kruskal

and Miura [4] suggested in 1967 a method of solving the nonlinear Korteweg–de Vries
(KdV) equation

(1.2) ut − 6uux + uxxx = 0
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based on the inverse scattering transform for the related time-dependent family of
Schrödinger operators

Tu(·,t) = − d2

dx2
+ u( · t).

The main observation of [4] was that the scattering data for Tu(·,t)—the reflection
coefficient, bound states, and norming constants—change in time t in a very simple
way, which allows their determination for any t from their initial values and then solving
the inverse scattering problem to find u( · , t). When the Cauchy initial value u(·, 0) for
the KdV equation (1.2) is reflectionless and is given by (1.1), one obtains the explicit
n-soliton solution

(1.3) u(x, t) := −2
d2

dx2
log det

(
δkj +

m2
ke

8κ2

k
te−(κk+κj)x

κk + κj

)

1≤k,j≤n

.

This solution represents n solitary waves first observed by Russell in 1834 that have
many intriguing properties and have been the object of thoroughly study since then;
see, e.g. [3, 6, 28].

In early 1990-ies, Marchenko [20] and Gesztesy a.o. [7] suggested two different meth-
ods of constructing non-classical reflectionless potentials and corresponding general-
ized soliton solutions of the KdV equation. For each µ > 0, let B(−µ2) be the set
of all classical reflectionless potentials q for which the corresponding Schrödinger op-
erators Tq are bounded below by −µ2. Marchenko considered the closure B(−µ2)
of B(−µ2) in the topology of uniform convergence on compact subsets of R, studied

properties of Schrödinger operators Tq with potentials q in B(−µ2), and explained why

such potentials can be considered reflectionless. Namely, for Tq with q ∈ B(−µ2), the
Weyl–Titchmarsh m-functions m± satisfy the relation

(1.4) m+(k) = −m−(k), k ∈ R+,

which also holds for all classical reflectionless potentials. In addition, paper [20] dis-
cusses the corresponding generalized soliton solutions of the KdV equation.

Later, Hur, McBride, and Remling [12] took that property of the related m-
functions as defining the notion of reflectionless Schrödinger (or Jacobi) operators.
In the Schrödinger operator context, they called a locally integrable potential q (or,
more precisely, the Schrödinger operator Tq) reflectionless if the corresponding Weyl–
Titchmarsh functions m± satisfy (1.4) a.e. on R+. The authors then characterised such
potentials in terms of some representing measure σ for the Herglotz functions m± and
derived some other their properties.

A drawback of the approach of [12,20] is that spectral properties of the Schrödinger

operators with potentials in B(−µ2) are not easy to get; they are only implicitly en-
coded in the measure σ related to the m-functions m±. On the contrary, the approach
of Gesztesy a.o. [7] allowed to construct operators and soliton solutions to KdV with
prescribed properties. Namely, the authors suggested to pass to the limit as n→ ∞ in
formula (1.1) for classical reflectionless potentials and in formula (1.3) for the n-soliton
solutions of the KdV equation. They gave some conditions on sequences κj and mj

under which such a passage to the limit is possible; the most crucial condition was that

∑

j≥1

m2
j

κj
<∞,

which guarantees that the determinant of the corresponding infinite matrix exists. It
was proved that the limits q of (1.1) produce reflectionless Schrödinger operators and
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the limits of (1.3) are classical solutions of the KdV equation. One of the most striking
results of [7] is that the sequence of κj can be fairly arbitrary, and thus the Schrödinger
operators constructed that way may have an arbitrary countable (bounded below) set
of negative bound states −κ

2
j and, therefore, an arbitrary bounded below negative

spectrum; the corresponding limit potentials are nevertheless bounded and smooth
and generate classical solutions of the KdV equation. In the case where the sequence
(κj)j∈N is in addition summable, the obtained generalized reflectionless potentials q
and corresponding Schrödinger operators Tq allowed a more explicit description. For
instance, the potential q is then integrable on the whole line, and the numbers mj

continue to be norming constants for the eigenvalues −κ2
j .

The main aim of this paper is to specify the results of Marchenko [20] and Gesztesy
a.o. [7] in the class of integrable reflectionless potentials. In that case, the negative
spectrum of Tq is discrete and consists of at most countably many negative eigen-
values −κ2

1 < −κ2
2 < · · · < −κ2

N , with N ≤ ∞. By the Lieb–Thirring inequal-
ity [11, 17, 29], the sequence (κn)n∈N is then summable. Moreover, for each eigen-
value −κ2

n the corresponding (right) Jost solution e( · , iκn; q) is square integrable and
thus one can introduce the norming constant mn. It turns out (and that is probably
the most surprising fact, see Corollary 5.2) that there is absolutely no restrictions on
the norming constants save that mn > 0. We prove that fact by exploiting an alter-
native formula for the Bargmann potentials, not using determinants. That alternative
formula allowed us to pass to the limit as n→ ∞ in the classical formula and to derive
the explicit formula (3.6) and (3.7) for such generalised reflectionless potentials, thus
giving their complete characterisation.

We also prove that every such reflectionless potential is uniquely determined by the
scattering data, the sequences of negative eigenvalues and the corresponding norming
constants. To that end, we used the characterisation of generalized reflectionless po-
tentials q due to Marchenko [20] and Hur a.o. [12] and showed that such a q is uniquely
determined by three negative spectra, that of Tq and its half-line restrictions T+

q and
T−
q by the Dirichlet condition y(0) = 0. As a by-product, we also described all possible

discrete spectra of Tq, T
+
q and T−

q for generic reflectionless integrable q. We note that
on that way we had to derive a generalisation a known formula relating the norming
constant and the three discrete spectra and to prove some interpolation result for re-
lated Blaschke products, which can be of independent interest. On the other hand,
we actually show that each integrable reflectionless potential is a limit in L1(R) of
a sequence of classical reflectionless potentials with special spectral properties, which
opens the straightforward way to use the continuity results of our previous work [9]
and generalise many classical relations (e.g. for Jost functions, m-functions etc) to this
wider class.

Yet another advantage of describing reflectionless potentials by formulae (3.6)–(3.7)
is that their straightforward modification produces solutions of the KdV equation,
which can be called generalised soliton solutions. As we shall see, the proof is self-
contained and is mainly based on the special algebraic structure of the solutions (com-
bined with approximation arguments as necessary).

We conclude this introduction by describing how the paper is structured. In Sec-
tion 2, we combine some preliminaries on the Jost solutions, scattering coefficients,
their continuity on the potential, and properties of the classical reflectionless poten-
tials to be used throughout the paper. Section 3 starts with providing insight for
formulae (3.6)–(3.7), which are proved in Theorem 3.1 to give integrable reflectionless
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potentials with prescribed eigenvalues and norming constants. To justify uniqueness
theorem 5.1, we first prove in Section 4 that each integrable reflectionless potential q is
uniquely determined by the discrete spectra of Tq and its Dirichlet half-line restrictions
T+
q and T−

q , and then combine it with the three-spectra formula (5.8) and an interpola-
tion result for Blaschke products (Theorem 5.7) proved in Section 5. Finally, in the last
Section 6 we prove that natural modification of (3.6)–(3.7) with time-evolving norming
constants mj produces a classical solution to the KdV equation. The appendix con-
tains some auxiliary results on special class of Herglotz functions, Blaschke products,
and relations between self-adjoint operators and their inverses.

2. Preliminaries

Throughout the paper, we denote by Q1 the space of all real-valued functions in
L1(R) with the inherited topology of the latter; C+ and C− denote the open upper
and lower half-planes, respectively. Every statement involving the ± signs should be
regarded as two separate statements, with ± replaced with + in the first statement
and with − in the second.

In this section, we collect some facts from [9, 19] that will essentially be used in the
proof of the main results of this paper.

2.1. Jost solutions and scattering coefficients. For each q ∈ Q1 and λ ∈ C+\{0},
the equation

(2.1) − y′′ + qy = λ2y

has a unique solution e+(·, λ; q) that is asymptotic to eiλx at +∞, i.e., such that

lim
x→+∞

e−iλxe+(x, λ; q) = 1.

Such a solution is called the (right) Jost solution. Note that up to a constant factor,
the Jost solution e+(·, λ; q) with λ ∈ C+ is the only solution of equation (2.1) that is
square integrable at +∞.

Analogously, for every λ ∈ C− \ {0} one introduces the (left) Jost solution e−(·, λ; q)
satisfying the relation

lim
x→−∞

e−iλxe−(x, λ; q) = 1;

for λ ∈ C−, it is the only solution of (2.1) (up to multiplication by a constant) that is
square integrable at −∞.

Lemma 2.1 ( [9]). Assume that q ∈ Q1; then the right Jost solution satisfies the
following inequality for all x ∈ R and λ ∈ C+ \ {0}:

|e+(x, λ; q)− eiλx| ≤ ‖q‖1
|λ| exp{‖q‖1/|λ| − | Imλ|x}.

In addition, the Jost solution depends continuously on q in the following sense: if q̃ is
another potential in Q1 and α := max{‖q‖1, ‖q̃‖1}, then

|e+(x, λ; q)− e+(x, λ; q̃)| ≤
‖q − q̃‖1

|λ| exp{2α/|λ| − | Imλ|x}

for all x ∈ R and all λ ∈ C+ \ {0}.
4



Corollary 2.2. For every δ > 0, we have

(2.2)

∫

±x>K

|e±(x, λ; q)|2 dx = o(1), K → +∞,

uniformly in λ and q satisfying ± Imλ > δ and ‖q‖1 ≤ 1/δ, respectively.

For a potential q ∈ Q1 and every real non-zero k, the left Jost solutions e−( · , k; q)
and e−( · ,−k; q) form a fundamental system of solutions to the energy equation

−y′′ + q(x)y = k2y;

therefore, there are unique coefficients a(k) and b(k) such that

(2.3) e+(x, k; q) = a(k)e−(x, k; q) + b(k)e−(x,−k; q).
Using the asymptotic properties of the Jost solutions, we conclude that the function a
satisfies the relation

2ika(k) = W
(
e+(·, k; q), e−(·,−k; q)

)
,

with W (f, g) = f ′g − fg′ being the Wronskian of functions f and g. In particular,
the above formula can be used to extend a to the open upper-half complex plane C+;
the extended function (still denoted by a) is analytic in C+ and continuous up to the
punctured real line R \ {0}.

Applying the same arguments as in the classical case of Faddeev–Marchenko poten-
tials, i.e., real-valued potentials q from L1(R; (1 + |x|)dx) (cf. [19]), we conclude that
|a(k)|2 = 1 + |b(k)|2, so that a(k) never vanishes on R \ {0}; the functions

t(k) :=
1

a(k)
, r−(k) :=

b(k)

a(k)

are called the transmission and (left) reflection coefficients. The (right) reflection
coefficient r+ can be derived analogously; as in the calssical case of Faddeev–Marchenko
potentials,

r+(k) = −b(−k)
a(k)

.

Definition 2.3. A real-valued function q in L1(R) is called a (generalized) reflectionless
potential if the corresponding reflection coefficients vanish identically on R \ {0}. The
set of all (generalized) reflectionless potentials in L1(R) will be denoted by R1.

Clearly, a potential q ∈ Q1 is reflectionless if and only if the transmission coefficient
satisfies the condition |t(k)| ≡ 1, or if |a(k)| ≡ 1 for k ∈ R \ {0}. In Subsection 4.2,
we mention an alternative (and more general) definition of reflectionless potentials in
terms of the associated Weyl–Titchmarsh m-functions; the corresponding relation was
first derived by Marchenko [19] and then turned into definition by Hur a.o. [12]; see
also [25, 27] for similar treatments of reflectionless Jacobi matrices.

2.2. Continuity of eigenvalues and norming constants. For each q ∈ Q1 with
n ≤ ∞ negative eigenvalues −κ2

1 < −κ2
2 < . . . , we define a non-increasing sequence

κκκ(q) := (κj)
∞
j=1 of non-negative numbers, with κn+1 = κn+2 = · · · = 0 if n is finite. By

the Lieb–Thirring inequality [17] (for the case under consideration proved by Weidl [29]
and with the exact constant established by Hundertmark a.o. [11]), we have

‖κκκ(q)‖1 =
∑

j≥1

κj ≤ 1
2
‖q‖1.
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In particular, the sequence κκκ(q) belongs to ℓ1(N); one of the main results of [9] states
that, moreover, the mapping

Q1 ∋ q 7→ κκκ(q) ∈ ℓ1(N)

is continuous.
Assume that −κ

2 is an eigenvalue of a Schrödinger operator Tq with q ∈ Q1.
Then the corresponding eigenfunction ψ must be collinear to the right Jost solution
e+(·, iκ; q) at +∞ and to the left Jost solution e−(·,−iκ; q) at −∞; therefore, the two
Jost solutions are collinear, i.e.,

e+(·, iκ; q) = C+e−(·,−iκ; q)
with C+ = e+(x, iκ; q)/e−(x,−iκ; q). In particular, the right Jost solution is an eigen-
function, and the (right) norming constant m+ corresponding to the eigenvalue −κ2

is the inverse L2-norm of this Jost solution, i.e.,

m−2
+ :=

∫

R

|e+(x, iκ; q)|2 dx.

One can similarly introduce the left norming constant, viz.

m−2
− :=

∫

R

|e−(x,−iκ; q)|2 dx.

Clearly, both m+e+(·, iκ; q) and m−e−(·,−iκ; q) are eigenfunctions of the operator Tq
for the eigenvalue −κ2 of norm one; therefore, they differ by a unimodular factor (in
fact, ±1); in particular,

(2.4) m+|e+(·, iκ; q)| ≡ m−|e−(·,−iκ; q)|.
The right and left norming constants are closely related; namely, arguments similar to
those in [19, Ch. 3.5] show that

(2.5) (m+m−)
−2 = −

(
ȧ(iκ)

)2
.

In what follows, we shall mostly consider the right norming constants and thus will
be writing m instead of m+ whenever no confusion can arise.

Next we show certain continuity of the norming constants. Assume that qn is a
sequence of integrable potentials with the property that −κ

2 is an eigenvalue of every
operator Tqn and let mn be the corresponding norming constant. Assume next that,
as n → ∞, the sequence qn converges in L1(R) to a function q0. Continuity of the
eigenvalues [9] guarantees that −κ2 is an eigenvalue of the operator Tq0 ; let m0 be the
corresponding norming constant.

Lemma 2.4. Under the above assumptions, the limit of mn as n → ∞ exists and is
equal to m0.

Proof. We prove that the eigenfunctions e+(·, iκ; qn) converge in the topology of L2(R)
to the eigenfunction e+(·, iκ; q0). By Lemma 2.1, there exists a c > 0 independent of n
such that

|e+(x, iκ; qn)− e+(x, iκ; q0)|2 ≤ c‖qn − q0‖21e−2κx

and thus, for every a ∈ R,
∫ ∞

a

|e+(x, iκ; qn)− e+(x, iκ; q0)|2 dx→ 0

6



as n→ ∞. By similar arguments applied to the left Jost solutions,
∫ a

−∞

|e−(x,−iκ; qn)− e−(x,−iκ; q0)|2 dx→ 0

as n → ∞ for every a ∈ R. Choose now a ∈ R such that e−(a,−iκ; q0) 6= 0; then
pointwise convergence of the Jost solutions guarantees that also e−(a,−iκ; qn) 6= 0 for
all n large enough and hence that

Cn :=
e+(a, iκ; qn)

e−(a,−iκ; qn)
→ e+(a, iκ; q0)

e−(a,−iκ; q0)
=: C0

as n→ ∞. Now the estimate∫ a

−∞

|e+(x, iκ; qn)− e+(x, iκ; q0)|2 dx ≤ 2C2
n

∫ a

−∞

|e−(x,−iκ; qn)− e−(x,−iκ; q0)|2 dx

+ 2(Cn − C0)
2

∫ a

−∞

|e−(x,−iκ; q0)|2 dx

along with the above convergence results for Cn and e−(·,−iκ; qn) completes the proof.
�

2.3. Properties of the classical reflectionless potentials. We conclude this sec-
tion by listing some properties of the classical and generalized reflection potentials;
cf. [7, 9, 12, 19] and the references therein.

Assume that q is a reflectionless potential such that the corresponding Schrödinger
operator possesses n negative eigenvalues −κ2

1 < · · · < −κ2
n and (right) norming

constants m1, . . . , mn. Then

(a) q is negative and is equal to

q(x) = −4

n∑

j=1

κjm
2
j |e+(x, iκn; q)|2;

in particular, the following trace formula holds:
∫

R

|q(x)| dx = 4
n∑

j=1

κj ;

(b) q admits an analytic continuation in the strip

Πκ1
:= {z = x+ iy ∈ C | |y| < κ

−1
1 }

and obeys therein the inequality

(2.6) |q(x+ iy)| ≤ 2κ2
1(1− κ1|y|)−2;

(c) the corresponding scattering coefficient a is a rational function given by

a(z) =
n∏

j=1

z − iκj

z + iκj

.

We observe that (2.4) also implies an alternative representation of q with the left
Jost solutions and the left norming constants m1,−, . . .mn,−, viz.

q(x) = −4
n∑

j=1

κjm
2
j,−|e−(x,−iκj ; q)|2.
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If q ∈ Q1 is reflectionless, then by the results of [9], a is given by a similar Blaschke
product (finite or inifinite depending on the number of negative eigenvalues), i.e.,

a(z) =
∏

j≥1

z − iκj

z + iκj

.

Such a function a is unimodular on R, so that indeed r ≡ 0. Also, the function
a(·; q) was proved in [9] to depend continuously on q ∈ Q1 in the topology of uniform
convergence on compact subsets of R \ {0}; in particular, this implies that the family
of all reflectionless potentials that are integrable on the whole line form a closed subset
of L1(R).

Denote by B(−κ2) the set of all classical reflectionless potentials q for which
the corresponding Schrödinger operators Sq have spectra contained in [−κ2,∞).

Marchenko [20] studied the closure B(−κ2) of B(−κ2) in the topology of uniform

convergence on compact subsets of R; potentials in B(−κ2) admit analytic extension
in the strip Πκ1

and obey therein the bound (2.6). One of the important results of [20]
(proved earlier in [18]) reads

Proposition 2.5. The set B(−κ2) is compact with respect to the uniform convergence
on compact subsets of R.

We build upon this result and construct sequences of classical reflectionless potentials
that, in addition, converge in the topology of L1(R).

Definition 2.6. Assume that κκκ = (κj)j∈N is an arbitrary strictly decreasing sequence
of positive numbers belonging to ℓ1(N). We say that a sequence (qn)n∈N of classical
reflectionless potentials satisfies assumption A(κκκ) if the following two conditions are
satisfied:

(1) for every n ∈ N, the set {−κ2
j }nj=1 is the negative spectrum of the operator Tqn;

(2) denote by mj,n, j ≤ n, the right norming constants of the operator Tqn corre-
sponding to the eigenvalues −κ2

j ; then, for every j ∈ N, the limit of mj,n as
n→ ∞ exists and is positive.

Lemma 2.7. Assume that (qn)n∈N is a sequence of classical reflectionless potentials
satisfying assumption A(κκκ). Then there exists a subsequence of (qn)n∈N that converges
uniformly on compact subsets of R as well as in the norm of the space L1(R) to some
reflectionless potential q ∈ Q1; moreover, ‖q‖1 = 4

∑∞
j=1 κj.

Proof. By Proposition 2.5, there is a subsequence (qnk
)k∈N of (qn)n∈N converging uni-

formly on compact subsets of R. We prove next that the sequence (qn)n∈N is uniformly
integrable, i.e., that

∫

|x|>K

|qn(x)| dx = o(1), K → +∞,

uniformly in n ∈ N. This implies that the subsequence (qnk
)k∈N converges also in the

L1(R)-topology; the limit q ∈ L1(R) is then reflectionless and

‖q‖1 = lim
k→∞

‖qnk
‖1 = 4

∞∑

j=1

κj

as claimed.
8



Recall that qn is equal to

qn(x) = −4

n∑

j=1

κnm
2
j,n|e+(x, iκj ; qn)|2

and that its L1-norm is equal to 4
∑n

j=1 κj ; in particular, ‖qn‖1 ≤ α := 4
∑

j≥1 κj .
Given ε > 0, we first find M ∈ N such that

∑

j>M

κj < ε/8

and then set
q̃n(x) = −4

∑

1≤j≤M

κjm
2
j,n|e+(x, iκj ; qn)|2.

By the definition of the norming constants mj,n we see that, for every n ∈ N,

‖qn − q̃n‖1 ≤ 4
∑

j>M

κj < ε/2;

also, the assumptions of the lemma imply that

sup
n≥M

∑

1≤j≤M

κjm
2
j,n =: C <∞.

By Corollary 2.2, there exists K > 0 such that
∫

x>K

|e+(x, iκj ; qn)|2 dx < ε/8C

for all j ≤ M and all n ∈ N. As a result, we conclude that
∫ +∞

K

|qn(x)| dx ≤ ε/2 +

∫ +∞

K

|q̃n(x)| dx ≤ ε/2 + ε/2 = ε,

yielding the required result on the positive half-line, i.e., that

(2.7)

∫

x>K

|qn(x)| dx = o(1), K → +∞

uniformly in n ∈ N.
We next prove an analogous result on the negative half-line. Firstly, observe that

the formula
q̂n(x) := qn(−x), x ∈ R, n ∈ N,

defines a sequence (q̂n)n∈N of reflectionless potentials such that the negative spectrum
of the operators Tq̂n coincides with the set {−κ2

j }nj=1. In addition, the right norming
constant mj(Tq̂n) of Tq̂n is equal to mj,n,−, the left norming constant of the original
operator Tqn corresponding to the eigenvalue −κ

2
j .

In view of (2.5), we find that

m2
j,n,− = −m−2

j,n

(
ȧn(iκj)

)−2
,

with

an(z) :=
n∏

j=1

z − iκj

z + iκj

.

It follows from Lemma A.3 that

lim
n→∞

(
ȧn(iκj)

)−1
=

(
ȧ(iκj)

)−1
,

9



where

a(z) :=

∞∏

j=1

z − iκj

z + iκj
.

Therefore, the sequence (q̂n)n∈N of the classical reflectionless potentials satisfies the
assumption A(κκκ). By virtue of the estimate (2.7) established above, we conclude that

∫ +∞

K

|qn(−x)|2 dx = o(1), K → +∞,

uniformly in all n ∈ N. The proof is complete. �

3. Reflectionless potentials with prescribed spectral data: existence

3.1. Classical reflectionless potentials, revisited. In this subsection, we rewrite
formula (1.1) for the classical reflectionless potentials in a way that will allow direct
generalizations to the case q ∈ Q1.

Assume that q is a real-valued potential of Faddeev–Marchenko class, i.e., that
∫

R

(1 + |x|)|q(x)| dx <∞.

According to the classical inverse scattering theory for Schrödinger operators on the
line [19], the potential q satisfies the relation

q(x) = −2
d

dx
k(x, x),

where k(x, t) is the kernel of the so-called transformation operator. This kernel k can
be obtained as a solution of the Marchenko equation

(3.1) k(x, t) + f(x+ t) +

∫ ∞

x

k(x, s)f(s+ t) ds = 0, x < t,

in which f encodes the scattering data for Tq, i.e., the reflection coefficient r+, the
negative spectrum −κ2

1 < −κ2
2 < · · · < −κ2

n < 0 and the corresponding norming
constants m1, m2, . . . , mn:

f(s) :=
n∑

j=1

m2
je

−κjs +
1

2π

∫

R

r+(k)e
iks dk.

In the reflectionless case (r+ ≡ 0), equation (3.1) is degenerate of rank n, and thus
can be solved explicitly. In that case the solution k must be of the form

(3.2) k(x, t) =
n∑

j=1

gj(x)mje
−κjt;

plugging that expression into the Marchenko equation, we arrive at the following linear
system of equations for determining gj:

gj(x) +mje
−κjx +

n∑

l=1

gl(x)

∫ ∞

x

mlmje
−(κl+κj)s ds = 0, j = 1, . . . , n,

or

(3.3) gj(x) +mje
−κjx +

n∑

l=1

gl(x)
mlmj

κl + κj
e−(κl+κj)x = 0, j = 1, . . . , n.
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Solving this via Cramer’s rule and then plugging the result into (3.2) gives the Kay–
Moses formula (1.1).

Gesztesy a.o. [7] proved that, under some conditions on κj and mj , one can pass to
the limit in the Kay–Moses formula to get a generalized reflectionless potential. One
of the most essential conditions in [7] was that

∞∑

j=1

m2
j

κj
<∞,

imposing a strong restriction on norming constants and thus not allowing complete
characterization of all integrable reflectionless potentials and their scattering data.

This is the reason we decided to use a slightly different approach leading to a formula
for all reflectionless potentials in Q1. Namely, in the Euclidean space Cn we introduce
the column vector

Φn(x) :=
(
m1e

−κ1x, . . . , mne
−κnx

)⊤

and G(x) :=
(
g1(x), . . . , gn(x)

)⊤
; then k(x, t) = G⊤(x)Φ(t), and the above system

reduces to the vector-valued equation

G(x) +

∫ ∞

x

Φ(s)Φ⊤(s) dsG(x) = −Φ(x).

Since the matrix

M(x) :=

∫ ∞

x

Φ(s)Φ⊤(s) ds

is nonnegative, I +M(x) is nonsingular, and the above equation has a unique solution

G(x) = −(I +M(x))−1Φ(x);

the kernel k of the transformation operator then is

k(x, t) = G⊤(x)Φ(s) = −Φ⊤(x)(I +M(x))−1Φ(t),

and the potential q is given by the formula

q(x) = −2
d

dx
k(x, x) = 2

d

dx
Φ⊤(x)(I +M(x))−1Φ(x).

We next observe that the (k, l)-entry of the matrix M(x) is equal to
(
M(x)

)
k,l

=
mkml

κk + κl
e−(κk+κl)x

To make possible passage to the limit as n → ∞, we introduce the vector κκκn :=
(κ1, . . . ,κn)

⊤ in C
n, the n× n matrix Γn with entries

(Γn)k,l :=
κkκl

κk + κl
,

and two diagonal matrices An and Kn,

An = diag{α1, . . . , αn}, Kn = diag{κ1, . . . ,κn}
with αj := κj/mj . With these notations, we see that Φn(x) = A−1

n e−Knxκκκn,

M(x) = A−1
n e−KnxΓnA

−1
n e−Knx,

and

(3.4) Qn(x) := Φ⊤(x)(I +M(x))−1Φ(x)

= κκκ
⊤
n (A

2
ne

2Knx + Γn)
−1
κκκn = 〈(A2

ne
2Knx + Γn)

−1
κκκn,κκκn〉Cn ,

11



where 〈· , ·〉Cn is the standard scalar product in Cn. Combining the above relations
(and writing qn instead of q for consistency), we conclude that

(3.5) qn(x) = 2Q′
n(x) = 2

d

dx
〈(A2

ne
2Knx + Γn)

−1
κκκn,κκκn〉Cn.

3.2. Formula for integrable reflectionless potentials. The above formula allows
a direct infinite-dimensional generalization. Namely, take an arbitrary positive and
strictly decreasing sequence κκκ = (κn)n∈N in ℓ1(N) and an arbitrary sequence m =
(mn)n∈N of positive numbers and define an auxiliary sequence α = (α1, α2, . . . ) with
αj := κj/mj. Next, in the Hilbert space H := ℓ2(N) with the scalar product 〈·, ·〉 and
standard basis ej, we introduce positive diagonal operators

K = diag{κ1,κ2, . . . }, A = diag{α1, α2, . . . }
and the operator Γ defined via

〈Γek, ej〉 =
κkκl

κk + κl
=: (Γ)k,l.

Theorem 3.1. Under the above notations, the function

(3.6) Q(x) := ‖(A2e2xK + Γ)−1/2
κκκ‖2

is well defined on the real line and the formula

(3.7) q(x) := 2Q′(x)

defines a reflectionless potential inQ1 such that the negative spectrum of the Schrödinger
operator Tq coincides with the set {−κ

2
n}n≥1 and the corresponding norming constant

for −κ2
n is mn.

This theorem gives a complete description of the scattering data for the Schrödinger
operators with potentials in Q1: as we already know, the bound states generate sum-
mable sequences of κj , and there is absolutely no restriction on the norming constants
mj except that mj > 0.

In the rest of this subsection, we derive some auxiliary results which, in particular,
will show that formula (3.6) is well defined. We start with establishing some properties
of the operator Γ.

Lemma 3.2. The operator Γ is positive and of trace class.

Proof. In the Hilbert space L2(R+), we introduce functions

φj(x) := e−κjx, j ∈ N,

and an operator F : ℓ2(N) → L2(R+) acting via

Fc :=
∑

j∈N

κjcjφj, c = (cj)j∈N ∈ ℓ2(N).

With (ej)j∈N being the standard orthonormal basis of ℓ2(N), we have

∑

j∈N

‖Fej‖2 =
∞∑

j=1

κ2
j

2κj
=

∞∑

j=1

κj

2
<∞,

so that F is a Hilbert–Schmidt operator.
Assume that the kernel of F is non-trivial. Then for some n ∈ N we have

(3.8) φn =
∞∑

j=n+1

cjκjφj ,

12



with (cj)j∈N ∈ ℓ2. As
∞∑

j=n+1

|cj|κj <∞, repeated differentiation of equality (3.8) results

in the relations

φn =
∞∑

j=n+1

(
κj

κn

)s

cjκjφj

for all s ∈ N. Using the dominated convergence theorem and passing to the limit as
s→ ∞, we conclude that φn ≡ 0, which is a contradiction.

By direct verification, Γ = F ∗F ; as a result, the operator Γ is positive and of trace
class. �

Lemma 3.3. The vector κκκ belongs to the domain of Γ−1/2; moreover,

(3.9) lim
t→0+

〈(tI + Γ)−1
κκκ,κκκ〉 = ‖Γ−1/2

κκκ‖2 ≤ 2
∑

j>1

κj .

Proof. Recall the notations qn,An,Kn, Γn and κκκn introduced in the previous subsection.
According to (3.5), we get

1

2

∫

R

|qn(t)| dt = lim
x→−∞

〈(A2
ne

2Knx + Γn)
−1
κκκn,κκκn〉Cn = 〈Γ−1

n κκκn,κκκn〉Cn = 2

n∑

j=1

κj .

Denote now by Pn the orthogonal projector in H = ℓ2(N) onto the first n coordinates
and by P ′

n := I − Pn the complementing orthoprojector. Observe that the restriction
of PnΓPn onto PnH is just Γn and that Pnκκκ can be identified with κκκn. Take any t > 0;
then we get

〈(tI + PnΓPn)
−1
κκκ,κκκ〉 = 〈(tPn + PnΓPn)

−1Pnκκκ, Pnκκκ〉+ t−1‖P ′
nκκκ‖2

= 〈(tIn + Γn)
−1
κκκn,κκκn〉Cn + t−1‖P ′

nκκκ‖2,
so that

lim sup
n→∞

〈(tI + PnΓPn)
−1
κκκ,κκκ〉 = lim sup

n→∞
〈(tIn + Γn)

−1
κκκn,κκκn〉Cn

≤ lim
n→∞

〈Γ−1
n κκκn,κκκn〉Cn = 2

∞∑

j=1

κj .

On the other hand, since the operator Γ is of trace class, its compressions PnΓPn

converge in norm to Γ. Therefore, the above limit superior exists in fact as the limit
and

lim
n→∞

〈(tI + PnΓPn)
−1
κκκ,κκκ〉 = 〈(tI + Γ)−1

κκκ,κκκ〉 ≤ 2
∞∑

j=1

κj .

It follows from the latter inequality and Proposition A.4 that κκκ belongs to the domain
of Γ−1/2 and that

‖Γ−1/2
κκκ‖2 = lim

t→0+
〈(tI + Γ)−1

κκκ,κκκ〉 ≤ 2

∞∑

j=1

κj .

The proof is complete. �

Corollary 3.4. The function Q of (3.6) is well defined on the whole real line and
satisfies there the bound |Q(x)| ≤ 2

∑∞
j=1κj.
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Proof. For every x ∈ R, the operator A2e2xK is positive, so that by Proposition A.5 we
get

(A2e2xK + Γ)−1 ≤ Γ−1.

Therefore, dom(Γ−1/2) ⊂ dom
(
(A2e2xK + Γ)−1/2

)
and

Q(x) = ‖(A2e2xK + Γ)−1/2
κκκ‖2 ≤ ‖Γ−1/2

κκκ‖2 ≤ 2
∞∑

j=1

κj

as claimed. �

3.3. Proof of Theorem 3.1. We give separate proofs of the theorem in two different
cases, the first one when the operator A is uniformly positive and the second one for an
arbitrary positive A. In both cases, we construct a sequence of classical reflectionless
potentials that converges to q in the L1(R)-topology and guarantees that Tq has the
required negative spectrum and norming constants. The first case is much simpler and
more straightforward, and that is the reason why we include it as well.

Case 1: The operator A is uniformly positive. For each n ∈ N, we denote by qn the
classical reflectionless potential corresponding to the eigenvalues −κ2

1 < −κ2
2 < · · · <

−κ2
n and the norming constants m1, m2, . . . , mn. Then the sequence of potentials

(qn)n∈N satisfies the condition A(κκκ) of Definition 2.6 and thus there is a subsequence
(qnk

)k∈N that converges uniformly on compact subsets of R as well as in the topology
of L1(R) to some reflectionless potential q0.

We shall prove below that the corresponding sequence of bounded functions Qn

of (3.4),

Qn(x) = 〈(A2
ne

2xKn + Γn)
−1
κκκn,κκκn〉Cn

converges pointwise on R to the function Q of (3.6). As also, for every x ∈ R,

Qnk
(x) := −1

2

∫ ∞

x

qnk
(t) dt→ −1

2

∫ ∞

x

q0(t) dt =: Q0(x),

we conclude that Q(x) = Q0(x) and thus that

q(x) = 2Q′(x) = 2Q′
0(x) = q0(x).

Convergence of qnk
to q in L1(R) now implies that the operator Tq has the required

scattering data: it is reflectionless, its negative spectrum coincides with the eigenvalues
−κ

2
n, n ∈ N, and the corresponding norming constants are mn.
Therefore, it remains to prove that Qn converge to Q pointwise on R. As the oper-

ator A2e2xK + Γ is uniformly positive, its inverse is bounded and thus

(3.10) Q(x) = 〈(A2e2xK + Γ)−1
κκκ,κκκ〉.

Fix an arbitrary x ∈ R and set for brevity B := A2e2xK . Since ‖PnΓPn − Γ‖ → 0
as n → ∞ and the operators B + Γ and B + PnΓPn are uniformly positive and thus
boundedly invertible, we conclude that the inverse operators converge in norm, i.e.,
that

‖(B + PnΓPn)
−1 − (B + Γ)−1‖ → 0

as n→ ∞. As a result,

|Qn(x)−Q(x)| ≤ |〈(B + PnΓPn)
−1Pnκκκ, Pnκκκ〉 − 〈(B + Γ)−1Pnκκκ, Pnκκκ〉|
+ |〈(B + Γ)−1Pnκκκ, Pnκκκ〉 − 〈(B + Γ)−1

κκκ,κκκ〉| → 0,

and the proof is complete.
14



Case 2: A is strictly positive, but not uniformly positive. In that case the vector κκκ

need not be in the domain of the inverse operator (A2e2xK + Γ)−1 and thus we do not
have representation (3.10). Therefore, we shall make use of a different approximating
sequence Qn.

As we showed above, the operator Γ is positive and compact and thus its finite-rank
approximations PnΓPn converge to Γ in norm. We set

γn := ‖Γ− PnΓPn‖1/2;
then γn are positive for all n ∈ N, converge to 0 as n→ ∞, and

(3.11) Γ ≤ PnΓPn + γ2nI.

Set now

Qn(x) =
〈(
(γnI + A2)e2xK + PnΓPn

)−1
Pnκκκ, Pnκκκ

〉
= 〈(Ã2

ne
2xKn + Γn)

−1
κκκn,κκκn〉Cn,

with Ã2
n denoting the restriction of the operator γnI + A2 onto PnH . Then qn := 2Q′

n

is a classical reflectionless potential corresponding to the negative eigenvalues −κ2
1 <

−κ2
2 < · · · < −κ2

n and norming constants mj,n := κj/(γn + α2
j )

1/2, j = 1, 2, . . . , n.
Therefore, the sequence (qn)n∈N satisfies the assumption A(κκκ) of Section 2 and by
Lemma 2.7 there exists a subsequence (qnk

)k∈N of (qn)n∈N that converges in the topology
of the space L1(R) to some reflectionless potential q0 ∈ Q1 of norm ‖q‖1 = 4

∑∞
j=1 κj .

We next observe that

κj(q) = lim
k→∞

κj(qnk
) = κj , mj(q) = lim

k→∞
mj(qnk

) = κj/αj = mj,

so that the operator Tq0 possesses the required negative eigenvalues and norming con-
stants. This also implies that for all x ∈ R,

lim
k→∞

Qnk
(x) = −1

2
lim
k→∞

∫ ∞

x

qnk
(t) = −1

2

∫ ∞

x

q0(t) =: Q0(x),

and it remains to prove that Q0 coincides with Q.
We fix x ∈ R and, for every ε > 0 and n ∈ N, set

Qn(x; ε) := 〈(εPn + Ã2
ne

2xK + Γn)
−1
κκκn,κκκn〉Cn

=
〈(
εI + (γnI + A2)e2xK + PnΓPn

)−1
Pnκκκ, Pnκκκ

〉

and observe that Qn(x; ε) ≤ Qn(x). Since the operators εI + (γnI + A2)e2xK + PnΓPn

are uniformly positive and converge, as n→ ∞, in the operator norm to the uniformly
positive operator εI + A2e2xK + Γ, arguments similar to those of Case 1 give

lim
n→∞

Qn(x; ε) = Q0(x; ε) := 〈(εI + A2e2xK + Γ)−1
κκκ,κκκ〉.

Passing to the limit over the subsequence nk in the inequality Qn(x; ε) ≤ Qn(x), we
get that Q0(x; ε) ≤ Q0(x). By Proposition A.4,

lim
ε→0+

Q0(x; ε) = lim
ε→0+

〈(εI + A2e2xK + Γ)−1
κκκ,κκκ〉 = Q(x)

yielding the inequality Q(x) ≤ Q0(x).
To prove the reverse inequality, we again fix x ∈ R and observe that the operator e2xK

is uniformly positive. We denote by δ > 0 its lower bound; then by (3.11)

A2e2xK + Γ ≤ γ2nI + A2e2xK + PnΓPn ≤ γ2ne
2xK/δ + A2e2xK + PnΓPn

≤ (1 + γn/δ)
(
(γnI + A2)e2xK + PnΓPn

)
.
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Taking the inverses and recalling that

Qn(x) =
〈(
(γnI+A

2)e2xK+PnΓPn

)−1
Pnκκκ, Pnκκκ

〉
≤

〈(
(γnI+A

2)e2xK+PnΓPn

)−1
κκκ,κκκ

〉
,

we conclude by Proposition A.5 that

Qn(x) ≤ (1 + γn/δ)Q(x).

Passing to the limit over the subsequence nk results in the required inequality Q0(x) ≤
Q(x). The proof is complete.

Remark 3.5. In the proof of Theorem 3.1, we constructed a sequence of classical reflec-
tionless potentials in B(−κ2

1) converging to the potential q of (3.6)–(3.7) in the sense
of uniform convergence on compact subsets of R. Therefore, the potential q belongs to
the set B(−κ2

1) of generalised reflectionless potentials in the sense of Marchenko [20].

4. Reflectionless potentials: uniqueness from three spectra

In this section, we establish an analogue of the so-called inverse problem of re-
constructing the potential from three spectra. Namely, along with the whole line
Schrödinger operator Tq, we consider two half-line operators T+

q and T−
q on R+ and

R−, respectively, generated by the differential expression −d2/dx2 + q and the Dirich-
let boundary condition at x = 0. It turns out that, similarly to a finite-interval
case [8, 10, 24], the discrete spectra of these operators uniquely determine a generic
(in the sense of Subsection 4.1 below) reflectionless potential q. In addition of being of
independent interest, this result is essentially used to justify formula (5.8) for norming
constants. This formula, in turn, reduces the question on uniqueness of reflectionless
Schrödinger operators with given spectral data to that with the three spectra.

We start by explaining what a generic reflectionless potential is, then recall the
Marchenko characterization [12, 20] of the reflectionless potentials in terms of the cor-
responding Borel measures and, finally, show that the three negative spectra recover
uniquely the Weyl–Titchmarsh functions m± of Tq, and thus the potential q by the
classical Borg–Marchenko theorem [2, 21, 22].

4.1. Special vs generic potentials. We call a potential q ∈ Q1 special if the negative
spectra of Tq and T ′

q := T−
q ⊕ T+

q have nonvoid intersection. In other words, there is

−κ2
n that is also an eigenvalue of either T+

q or T−
q . Observe that e±(·,±iκn; q) are the

only (up to a multiplicative constant) solutions of the equation

−y′′ + qy = −κ
2
ny

that are integrable on R± and that e+(·, iκn; q) and e−(·,−iκn; q) are in fact propor-
tional. Therefore, we see that then e±(0,±iκn; q) = 0 and thus the number −κ2

n is an
eigenvalue of both T+

q and T−
q .

Potentials in Q1 that are not special are called generic. It follows from the above
considerations that q is generic if and only if the equality e+(0, λ; q) = 0 holds for no
λ = iκn.

For τ ∈ R, set qτ (x) := q(x+ τ) to be the left shift by τ of the potential q. The left
shift does not change the spectrum of the operator Tq but changes the spectrum of T ′

q.

Lemma 4.1. There is at most countable set of τ ∈ R for which qτ is special.

Proof. As was explained above, qτ is special if and only if e+(0, iκn; qτ ) = 0 for some
n ∈ N. It follows from uniqueness of the Jost solution that

e+(x, iκn; qτ ) = eκnτe+(x+ τ, iκn; q),
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so that e+(0, iκn; qτ ) = 0 is equivalent to e+(τ, iκn; q) = 0. As a result, qτ is special if
and only if τ is a real zero of at least one Jost solution e+(·, iκn; q). It follows from the
Sturm oscillation theorem that, for each n ∈ N, the Jost solution e+(·, iκn; q) has at
most n real zeros. Being the union of such zeros over all n ∈ N, the set of those τ ∈ R

for which qτ is special is at most countable. �

As a corollary, we see that for any countable set S of potentials there are infinitely
many τ ∈ R such that the left shift by τ makes all potentials in S generic. In particular,
there is no loss of generality to assume that the potential q is generic; indeed, otherwise
we just replace q by appropriate qτ . This will not change the discrete spectrum −κ2

n

of Tq, while the norming constant mn will get multiplied by e−κnτ (see the proof of the
above lemma).

4.2. m-functions and representation of reflectionless potentials. In this sub-
section, we discuss some particulars of the approach to reflectionless Schrödinger op-
erators originally due to Marchenko [19] and then elaborated by Hur, McBride, and
Remling [12].

According to the classical Weyl theory, if a real-valued potential q is locally integrable
and is in the limit point case at ±∞, then for every non-real z the equation

−y′′ + qy = zy

has unique (up to scalar factors) Weyl solutions ψ±(·; z) that are square integrable at
±∞. The functions

m±(z) := ±ψ
′
±(0, z)

ψ±(0, z)

are then called the Weyl–Titchmarsh m-functions of the operators T±
q . Since for

integrable q the Jost solutions have the required integrability properties, the Weyl–
Titchmarsh m-functions are then equal to

(4.1) m±(z) = ±e
′
±(0,±

√
z; q)

e±(0,±
√
z; q)

.

The m-functions m± are known to be analytic in C \ R; moreover, they are Herglotz
functions, i.e., map C± into C±.

Further, properties of the Jost solutions e+(·, z; q) established in Section 2 guarantee
that m+ has a meromorphic extension into the domain C \ R+. The points −κ2 < 0
for which e+(0, iκ; q) = 0 are the poles of this extension; clearly, such points are the
eigenvalues of the operator T+

q . Also, m+ possesses finite limit values on R+ from
above and from below that are equal to

m+(k
2 ± i0) = lim

ε→0+
m+(k

2 ± iε) =
e′+(0,±k; q)
e+(0,±k; q)

.

Likewise, m− can be extended meromorphically into the domain C \R+, with poles at
the points −κ2 < 0 that are eigenvalues of the operator T−

q ; m− also possesses limit
values on R+ from above and from below equal to

m−(k
2 ± i0) = lim

ε→0+
m−(k

2 ± iε) = −e
′
−(0,∓k; q)
e−(0,∓k; q)

.

As Tq is reflectionless, the scattering coefficient b vanishes for all real non-zero k, whence

e+(x, k; q) = a(k)e−(x, k; q)
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for such k in view of (2.3). Taking logarithmic derivatives of the above functions at
x = 0, we conclude that the m-functions m± of reflectionless Schrödinger operator Tq
satisfy the relation

(4.2) m+(k ± i0) = −m−(k ± i0), k ∈ R+.

We note that the authors of [12] take relation (4.2) as their starting point: they say
that a real-valued function q is a (generalized) reflectionless potential on a set S ⊂ R+

if q is locally integrable, the corresponding Schrödinger operator Tq is in the limit point
case at ±∞ and the m-functions m± satisfy (4.2) almost everywhere on S.

Using the Schwarz reflection principle, one can combine m+ and m− into single-
valued functions M± that are defined on C+ ∪ R+ ∪ C−, are analytic there, and take
values in C±; for non-real z, M± are defined via

M+(z) =

{
m+(z), z ∈ C+;

−m−(z), z ∈ C−;
M−(z) =

{
−m−(z), z ∈ C+;

m+(z), z ∈ C−.

Sincem± can be extended to meromorphic functions over C\R+, we see that in factM±

are just two univalent branches of a meromorphic functionM defined on a Riemannian
two-sheeted manifold of

√
z. The change of variables z 7→ −z2 defines now a univalent

function

nq(z) := −M(−z2)
fixed by the condition that nq(k) = −m+(−k2) for large positive k; moreover, nq is a
Herglotz function that is meromorphic in the whole complex plane outside the origin.
The poles of nq are all real; more precisely, its positive poles ξ come from the poles −ξ2
of m+, while its negative poles ξ correspond to the poles −ξ2 of m−. In particular, nq

is analytic outside a circle of radius κ1.
Being a Herglotz function, nq possesses a special integral representation; using the

known asymptotics of nq, this can be specified as

(4.3) nq(z) = z +

∫
dν(t)

t− z
, z ∈ C \ supp(ν),

for some discrete Borel measure ν = νq of compact support.
It turns out [12,19] that (4.3) can be used to characterize all generalized reflectionless

potentials. Namely, denote by M the set of all finite non-negative Borel measures
on R of compact support. If a potential q is reflectionless in the sense of (4.2), then
(cf. [12, 15, 19]) there exists a unique measure ν ∈ M such that the induced Herglotz
function nq of (4.3) is related to the Weyl–Titchmarsh functions m± of Tq via

(4.4) −m+(−z2; q) = nq(z), m−(−z2; q) = nq(−z), 0 < arg z < π/2.

Vice versa, for any measure ν ∈ M, one introduces a Herglotz function nq via (4.3)
and defines the functions m± via (4.4); then [12] these are the m-function for some
reflectionless Schrödinger operator Tq. Since Tq is uniquely reconstructed from its
Weyl–Titchmarsh m-functions by the classical Borg–Marchenko uniqueness theorem [2,
21, 22], it follows that the mapping

(4.5) Q1 ∋ q 7→ ν ∈ M
is bijective [12,19]. In the next subsection, we show that ν for reflectionless q ∈ Q1 is,
in turn, uniquely determined by the discrete spectra of Tq, T

+
q , and T−

q .
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4.3. Reconstruction of nq from three spectra. We now turn to the question how
the Herglotz function nq is related to the discrete spectra of the operators Tq and T

±
q .

Assume therefore that q ∈ Q1 is a reflectionless potential and that −κ2
n and −µ2

n are
eigenvalues of the operators Tq and T ′

q respectively. We assume that the potential q is
generic in the sense of Subsection 4.1; by the minmax principle [26], the two sequences
then strictly interlace, viz.

(4.6) − κ
2
1 < −µ2

1 < −κ
2
2 < −µ2

2 < . . .

We recall that ±µj > 0 if −µ2
j is an eigenvalue of the operator T±

q . Next, the corre-
sponding measure ν is discrete and bears point masses at the points µn constructed
from the eigenvalues of the operators T+

q and T−
q and, possibly, at the point k = 0.

Denoting these masses by dn, we see that

ν =

∞∑

j=0

djδµj
, nq(z) = z − d0

z
+

∞∑

j=1

dj
µj − z

with d0 = 0 if ν({0}) = 0 and dn > 0 for n > 0; here δµ is the Dirac point measure at
a point µ.

We next consider the auxiliary Herglotz function

(4.7) Rν(z) := 1 +

∫
dν(t)

t2 − z
= 1− d0

z
+

∞∑

j=1

dj
µ2
j − z

and observe that for every z ∈ C+ the following relation holds:

(4.8) 2zRν(z
2) = nq(z)− nq(−z) = −m+(−z2; q)−m−(−z2; q).

Lemma 4.2. Assume that q ∈ Q1 corresponds to the measure ν ∈ M and that ξ ∈ R+

is such that ±ξ /∈ supp ν. Then the number λ = −ξ2 is an eigenvalue of the operator Tq
if and only if ξ2 is a zero of the function Rν .

Proof. As ±ξ /∈ supp ν, we find that

e+(0, iξ; q) 6= 0, e−(0,−iξ; q) 6= 0

and thus by (4.8)

−e
′
+(0, iξ; q)

e+(0, iξ; q)
+
e′−(0,−iξ; q)
e−(0,−iξ; q)

= 2ξRν(ξ
2).

We next note that a number −ξ2 < 0 is an eigenvalue of the operator Tq if and
only if the Jost solutions e+(·, iξ; q) and e−(·,−iξ; q) are linearly dependent, i.e., when
Rν(ξ

2) = 0. The proof is complete. �

Combining the above results, we can justify the uniqueness in the problem of recon-
structing a reflectionless q ∈ Q1 from three spectra.

Theorem 4.3. Assume that q is a generic generalized reflectionless potential in Q1.
Then the negative eigenvalues of the operators Tq, T

+
q , and T−

q uniquely determine q.

Proof. Given such a q ∈ Q1, we denote by −κ
2
1 < −κ

2
2 < . . . the negative eigenvalues

of the operator Tq and by −µ2
1 < −µ2

2 < . . . the negative eigenvalues of T ′
q = T+

q ⊕T−
q .

Assume also that there is another generic reflectionless potential q̃ ∈ Q1 such that
the corresponding Schrödinger operators Tq̃, T

+
q̃ , and T−

q̃ have the same negative eigen-
values as Tq, T

+
q , and T−

q , respectively. We denote by ν and ν̃ the measures constructed

as explained in Subsection 4.2 and by R and R̃ the corresponding functions of (4.8).
19



By Lemma 4.2, the numbers κ2
j are all the non-zero real zeros of both R and R̃, while

µ2
j are their poles. Applying Theorem A.2, we conclude that

R(z) =

∞∏

j=1

z2 − κ
2
j

z2 − µ2
j

= R̃(z);

the same theorem now implies that the masses dj and d̃j of ν and ν̃ at the points ξj ,
j ≥ 0, coincide and thus the measures ν and ν̃ coincide as well.

As a result, the Weyl–Titchmarsh m-functions for the operators T±
q and T±

q̃ coin-
cide. Since by the Borg–Marchenko uniqueness theorem [2, 21, 22] the potential of the
Schrödinger operator is determined uniquely by the corresponding Weyl–Titchmarsh
m-functions, we conclude that q = q̃. The proof is complete. �

5. Uniqueness theorem from spectral data

In this section, we shall prove that every integrable reflectionless potentials is
uniquely determined by its spectral data, i.e., the following uniqueness theorem:

Theorem 5.1. There is at most one reflectionless potential q in Q1 for which Tq has
prescribed spectral data (κκκ,m).

Recalling the existence result of Theorem 3.1, we arrive at the following corollary:

Corollary 5.2. Denote by ℓ1,+(N) the set of all positive and strictly decreasing se-
quences in ℓ1(N) and by R1 the set of all reflectionless potentials in Q1 that are not
classical. Then the scattering mapping

R1 ∋ q 7→ (κκκ,m) ∈ ℓ1,+(N)× R
N

+

is one-to-one and onto.

In view of Remark 3.5, we also conclude that

Corollary 5.3. R1 ⊂ B̃ := ∪µ>0B(−µ2), i.e., every integrable reflectionless potential
is a generalized reflectionless potential in the sense of Marchenko [20].

Certainly, only the case of infinitely many negative eigenvalues is of interest, as oth-
erwise such a q is a classical Bargmann potential. Our approach consists in justifying
first the three spectra formula (5.8) that relates the norming constants of Tq and nega-
tive eigenvalues of Tq, T

+
q , and T−

q . Using this formula, we next show that the spectral
data uniquely determine these three negative spectra, and then apply Theorem 4.3.

5.1. Three spectra formula. As usual, for a potential q ∈ Q1, we denote by

−κ
2
1 < −κ

2
2 < . . .

the finite or infinite sequence of negative eigenvalues of the operator Tq and by

−µ2
1 < −µ2

2 < . . .

the corresponding eigenvalue sequence for the operator T ′
q. Without loss of generality,

we assume that q is generic, so that the negative spectra of Tq and T ′
q have void

intersection. Then the two sequences strictly interlace, viz.

−κ
2
1 < −µ2

1 < −κ
2
2 < −µ2

2 < . . .

and each −µ2
n is an eigenvalue of either T+

q or T−
q but not both; in the former case we

take µn > 0 and in the latter case µn < 0.
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Next, we have the following formula for the norming constants mn corresponding to
the eigenvalues −κ2

n of Tq:

(5.1) m−2
n :=

∫

R

|e+(x, iκn; q)|2dx = iȧ(iκn; q)
e+(0, iκn; q)

e−(0,−iκn; q)
;

here a is the standard scattering coefficient. Formally speaking, (5.1) was derived
in [19] for q in the Marchenko class, but the arguments only used existence of Jost
solutions and thus can be applied to q ∈ Q1 as well.

If q = qN is a classical reflectionless potential with N negative eigenvalues, then the
corresponding half-line Jost functions are equal to [20]

(5.2) e±(0, λ; qN) =

N∏

n=1

λ− iµn

λ± iκn
,

and (5.1) can be recast as

(5.3) m−2
n = iȧ(iκn; qN)

N∏

l=1

κn − µl

κn + µl
.

Recall also that the scattering coefficient a(·; qN) is then a Blaschke product

(5.4) a(z; qN ) =
N∏

n=1

z − iκn

z + iκn
,

and thus formula (5.3) relates the spectra of Tq, T
+
q , T−

q , and the norming constants
for Tq.

Our aim in this subsection is to prove that formula (5.3) is valid also for reflectionless
potentials q ∈ Q1 with infinitely many negative eigenvalues. To this end, we first
observe that a(·; q) is then given by the infinite Blaschke product

(5.5) a(z; q) =

∞∏

n=1

z − iκn

z + iκn
;

this follows e.g. from the continuity result of [9]. Next, with the sequence (µn)n∈N
constructed as explained above, we introduce the function

(5.6) B(z) =
∞∏

n=1

z − iµn

z + iµn

.

The above product converges uniformly on compact subsets of C \ {−µn}n∈N and can
be written as the ratio B+(z)/B−(z) of two Blaschke products B+ and B−, with

(5.7) B±(z) :=
∏

n:±µn>0

z − i|µn|
z + i|µn|

.

Theorem 5.4 (Three spectra formula). Assume that q is a generic potential in R1 and
that Tq has spectral data (κκκ,m) ∈ ℓ1,+ × RN

+. Construct the sequence (µn)n∈N related
to the negative spectrum of the operator T ′

q and form the product B as in (5.6). Then
for each n ∈ N, the right norming constant mn for the eigenvalue −κ2

n of Tq satisfies
the relation

(5.8) m−2
n = iȧ(iκn)B(iκn).
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As in Section 3, we start by constructing a sequence of classical reflectionless po-
tentials converging to q. Namely, for each N ∈ N, we denote by qN the classical
reflectionless potential associated with the sequences (κn)

N
n=1 and (µn)

N
n=1. We write

aN for a(·; qN) for short and also introduce the finite Blaschke products BN,+ and BN,−

as in (5.7) but using the first N values, i.e.,

(5.9) BN,±(z) :=

N∏

n:±µn>0

z − i|µn|
z + i|µn|

,

and set BN := BN,+/BN,−. Then equation (5.3) for the right norming constant mn,N,+

of the operator TqN corresponding to the eigenvalue −κ2
n takes the form

(5.10) m−2
n,N,+ = iȧN(iκn)

BN,+(iκn)

BN,−(iκn)
.

Application of Lemma A.3 immediately gives the following result.

Lemma 5.5. As N → ∞ and n is fixed, the sequences ȧN(iκn) and BN,±(iκn) converge
respectively to ȧ(iκn) and B±(iκn).

Since q is generic, the sets {κn}n≥1 and {|µn|}n≥1 do not intersect; therefore,
B−(iκn) 6= 0 and the right-hand side of (5.10) has a finite non-zero limit as N → ∞,
so that

(5.11) lim
N→∞

m−2
n,N,+ = lim

N→∞
iȧN (iκn)

BN,+(iκn)

BN,−(iκn)
= iȧ(iκn)

B+(iκn)

B−(iκn)
6= 0.

Therefore, the sequence qN satisfies assumption A(κκκ) of Definition 2.6 and thus by
Lemma 2.7 there is a subsequence qNk

converging in L1(R) to a reflectionless poten-
tial q0.

Lemma 5.6. The above limit q0 coincides with q.

Proof. By eigenvalue continuity, the negative eigenvalues of the operator Tq0 coincide
with the set {−κ2

n}n∈N.
We next show that the sequence (µn(q0))n≥1 constructed for the operator Tq0 coin-

cides with the sequence (µn)n≥1 for Tq. Recall that those µn that are positive (resp.,
negative) correspond to the zeros iµn of the right Jost function e+(0, λ; q) (resp. of
the left Jost function e−(0, λ; q)). As we already know, e±(0, λ; qN) converge locally
uniformly in λ ∈ C± to e±(0, λ; q0); therefore, by the Rouché theorem the zeros of
e±(0, λ; qN) in C± converge to those of e±(0, λ; q0). The construction of the potentials
qN now guarantees that µn(q0) = µn for every n ∈ N.

To sum up, the operators Tq0 , T
+
q0

and T−
q0

have the same negative eigenvalues as
the operators Tq, T

+
q and T−

q respectively. By Theorem 4.3, q0 = q, and the proof is
complete. �

Proof of Theorem 5.4. As the subsequence qNk
constructed above converges to q in

the topology of L1(R), by Lemma 2.4 the norming constants corresponsign to the
eigenvalue −κ2

n of the Schrödinger operator with potential qNk
converge to those of the

operator Tq. Therefore, limk→∞mn,Nk,+ = mn for every fixed n ∈ N, which in view
of (5.11) completes the proof. �
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5.2. Interpolation of ratios of Blaschke products. Before continuing with the
proof of Theorem 5.1, we establish one auxiliary interpolation result needed also for
the existence of Theorem 5.8.

Recall that ℓ1,+(N) stands for the set of all real sequences κκκ = (κj)j∈N in ℓ1(N) such
that κj > κj+1 > 0 for all j ∈ N. For a fixed κκκ ∈ ℓ1,+(N), we denote by Λ(κκκ) the set
of real sequences λ = (λj) such that

κj > |λj| > κj+1, j ∈ N.

Next, given a sequence λ ∈ Λ(κκκ), we set

gλ(z) :=
∞∏

j=1

z − λj
z + λj

.

The function gλ is holomorphic on the set C \
(
{0} ∪ {−λj}j∈N

)
and has simple poles

at the points of −λ.

Theorem 5.7. Assume that κκκ ∈ ℓ1,+(N) is fixed. Then λ ∈ Λ(κκκ) is uniquely deter-
mined by the values of the function gλ at the points κj, j ∈ N.

We reformulate this theorem in a more convenient language of entire functions and
make repeated use of the fact that a canonical product of genus zero is of exponential
type zero; see Theorem 7 in Sec. 4, Part 1 of Ch. 2 in [30]. We recall that P being of
exponential type zero means that log+ |P (z)| = o(|z|) as |z| → ∞; in particular, the
sum and the product of two functions of exponential type zero are of exponential type
zero as well. The same is true of the ratio of two such functions whenever this ratio is
an entire function.

Proof of Theorem 5.7. For a sequence λ ∈ Λ(κκκ), we introduce the canonical product

hλ(w) :=

∞∏

j=1

(
1− wλj

)
;

then by [30, Thm 7, Ch. II, Pt. I, Sec.4] hλ is an entire function of exponential type 0
and

gλ(z) = hλ(1/z)/hλ(−1/z).

Next assume that sequences λ = (λj)j∈N and λ̃ = (λ̃j)j∈N in Λ(κκκ) are such that
gλ(κj) = g

λ̃
(κj) for all j ∈ N; then one gets the equality

hλ(w)hλ̃(−w) = h
λ̃
(w)hλ(−w)

for w = 1/κj, j ∈ N. Introduce the entire function

f(w) := hλ(w)hλ̃(−w)− h
λ̃
(w)hλ(−w);

then f is an odd function that vanishes at the points w = ±1/κj and w = 0. We shall

prove that f ≡ 0; then {λj}j∈N ∪ {−λ̃j}j∈N = {−λj}j∈N ∪ {λ̃j}j∈N and thus λ = λ̃.
The function

G(w) :=
f(w)

hκκκ(w)hκκκ(−w)
is entire, of exponential type zero, and vanishes at w = 0. On the imaginary axis
w = iy, one gets the bound

∣∣∣ (1± iyλj)(1∓ iyλ̃j)

(1− iyκj)(1 + iyκj)

∣∣∣ ≤ 1,
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so that |G(iy)| ≤ 2. By corollary to Theorem 22 in [16], the function G is constant,
and as G(0) = 0, this constant is zero. The proof is complete. �

5.3. Proof of Theorem 5.1. Given any element (κκκ,m) ∈ ℓ1,+ × R∞
+ , we showed in

Section 3 that there exists a reflectionless potential q ∈ Q1 whose spectral data coincide
with that element; this q is actually given explicitly by formulae (3.6) and (3.7).

We now prove that such a q is unique. For any reflectionless q ∈ Q1 with the
given spectral data (κκκ,m), we construct the sequence µn generated by the negative
eigenvalues of the operator T ′

q. As the scattering coefficient a(·; q) is given by the
Blaschke product (5.5) with iκn, the three spectra formula (5.8) shows that the product
B of (5.6) assumes known values at the points iκn:

B(iκn) = −i/ȧ(iκn)m
−2
n .

The interpolation theorem (Theorem 5.7) then implies that these values uniquely de-
termine the sequence (µn)n∈N. By the three spectra uniqueness theorem (Theorem 4.3),
the potential q is uniquely determined by the sequences (κn)n∈N and (µn)n∈N, and the
proof is complete.

5.4. Characterization of three spectra. As another application of the interpolation
Theorem 5.7, we can augment three spectra uniqueness Theorem 4.3 with the existence
result, thus giving a complete characterization of possible three spectra of integrable
reflectionless potentials.

Theorem 5.8. Assume that two real sequences (κn)n∈N and (µn)n∈N belong to ℓ1(N)
and satisfy the relations

(5.12) κ1 > |µ1| > κ2 > |µ2| > . . . .

Then there is a unique reflectionless potential q in Q1 such that the sets {−κ2
n}n∈N and

{−µ2
n | ±µn > 0} coincide with negative spectra of operators Tq and T±

q respectively.

Proof. We first construct functions a of (5.5) and B of (5.6) for the given sequences
(κn)n∈N and (µn)n∈N and then use the three spectra formula (5.8) to determine a se-
quence m = (mn)n∈N. The interlacing property (5.12) guarantees that all the numbers
mn are positive. By Theorem 5.1, there is a unique reflectionless potential q ∈ Q1 with
the spectral data (κκκ,m) ∈ ℓ1,+ × R∞

+ .
Now, we use the sequence (µn(q)) generated by the operators T+

q and T−
q to construct

the Blaschke product (5.6),

B(z; q) =

∞∏

n=1

z − iµn(q)

z + iµn(q)
.

The three spectra formula (5.8) for the operator Tq shows that, for every κn, we
have B(iκn) = B(iκn; q), and then the interpolation Theorem 5.7 yields the equali-
ties µn(q) = µn for every n ∈ N. Therefore, the potential q ∈ Q1 is such that the
corresponding Schrödinger operators possess the required negative spectra.

Uniqueness of such a q follows again from the interpolation Theorem 5.7 and the
uniqueness Theorem 5.1. The proof is complete. �
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5.5. Some further remarks. Here we give a few relations that are well known for the
classical reflectionless potentials and justify their extension to the more general class
of potentials in R1.

As a first example, the Jost functions e±(0, λ; q) for a classical reflectionless poten-
tial q is given by (5.2). Assume now that q ∈ Q1 is a (generic) generalized reflectionless
potential with negative spectrum −κ2

1 < −κ2
2 < . . . , and let −µ2

1 < −µ2
2 < . . . be neg-

ative eigenvalues of the operator T ′
q, with the standard convention on the signs of µk. In

the proof of Theorem 5.1, we constructed a sequence qn of classical reflectionless poten-
tials such that Tqn has negative eigenvalues {−κ2

1 ,−κ2
2 , . . . ,−κ2

n} and T ′
qn has negative

eigenvalues {−µ2
1,−µ2

2, . . . ,−µ2
n} and such that a subsequence (qnk

)k∈N of (qn)n∈N con-
verges to q in the topology of the space L1(R). Passing to the limit in (5.2) over that
subsequence and recalling continuity of the Jost solutions (Lemma 2.1), we get

e±(0, λ; q) =

∞∏

n=1

λ− iµn

λ± iκn
.

Observe that if q is not generic, then ±µn = κn for some n ∈ N, and some extra
information is needed to compensate those missing terms in the above product, cf. [20].

In the same manner, for every τ ∈ R, for which the shifted potential qτ is generic,
we get

e±(τ, λ; q) =

∞∏

n=1

λ− iµn(τ)

λ± iκn
,

where µn(τ) are constructed as before but for the splitting of the operator Tq by the
Dirichlet boundary condition at the point x = τ .

As a third example, we take the logarithmic derivative in τ at τ = 0 of the above
expression for e+(τ, λ; q) to get the formula for the Weyl–Titchmarsh m-function in the
upper half-plane (cf. (4.1)),

m+(λ) =
d

dτ
log e+(τ, λ; q)

∣∣∣
τ=0

=

∞∑

n=1

−iµ′
n(0)

λ− iµn
,

which is an analogue of the known formula in the classical reflectionless case [20].

6. Integrable soliton solutions of the KdV equation

In this section, we justify the formula for the generalized soliton solution of the
Korteweg–de Vries equation

(6.1) ut − 6uxu+ uxxx = 0,

whose value at t = 0 is the given integrable reflectionless potential q(x) = u(x, 0),
x ∈ R. That formula is suggested by the inverse scattering transform approach to the
KdV equation [4]; namely, if we regard qt := u(·, t) as the potential of the Schrödinger
operator Tqt, then the scattering data (the reflection coefficient r(·, t), the negative
eigenvalues −κ2

n(t), and the corresponding norming constants mn(t)) satisfy the fol-
lowing relations:

r(k, t) = e8ik
3tr(k, 0), −κ

2
n(t) = −κ

2
n(0), mn(t) = e8κntmn(0).

Therefore, if we denote by K(t) and A(t) the diagonal operators in ℓ2(N) constructed
for the Schrödinger operator Tqt as explained in Subsection 3.2, then K(t) ≡ K(0) and
A(t) = A(0) exp{−8tK(0)3}. This motivates the following statement.
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Theorem 6.1. Assume that q ∈ R1 is a generalized reflectionless potential and denote
by −κ2

1 < −κ2
2 < . . . and m1, m2, . . . respectively the negative eigenvalues and the

norming constants of the corresponding Schrödinger operator Tq. Further, introduce
in the Hilbert space H = ℓ2(N) the diagonal operators K = diag{κ1,κ2, . . . } and
A = diag{α1, α2, . . . }, with αn := κn/mn, the trace class operator Γ via (3.11) and a
vector κκκ := (κ1,κ2, . . . ). Then the function

(6.2) u(x, t) = 2
d

dx
‖(A2e2xK−8tK3

+ Γ)−1/2
κκκ‖2

is well defined and gives a classical solution of the Korteweg–de Vries equation (6.1)
with initial data u(x, 0) = q(x).

To simplify the calculations, we introduce an auxiliary function

(6.3) ϕ(x, t) := ‖(A2exK−tK3

+ Γ)−1/2
κκκ‖2, x, t ∈ R,

which is related to u(x, t) by the formula u(x, t) = 2 d
dx
ϕ(2x, 8t). Denote also by Ων the

cylindrical domain of C2 of the form

Ων := {(z, ζ) ∈ C
2 | | Im z| < ν/(2κ1), | Im ζ | < ν/(2κ31)}.

Lemma 6.2. The function ϕ is a solution of the nonlinear equation

(6.4) vt − 3(vx)
2 + vxxx = 0.

Moreover, it admits a holomorphic continuation in the cylindrical domain Ωπ/2 and
satisfies there the bounds

(6.5) |ϕ(z, ζ)| ≤ |ϕ(Re z,Re ζ)|
cos ν

≤ 2

cos ν

∑

j≥1

κj

whenever (z, ζ) ∈ Ων for some ν ∈ (0, π/2).

We start with the following elementary observation that will allow us to consider only
some special cases. Let B+(H) and S+(H) denote the sets of all bounded positive
operators and self-adjoint positive operators in the Hilbert space H , respectively. As-
sume that the operator A can be written as A = A1A2, where the factors A1 ∈ B+(H)
and A2 ∈ S+(H) commute with K and with each other. If the operator A2 is also
uniformly positive, then

ϕ(x, t) = ‖(A2
1e

xK−tK3

+ Γ̃)−1/2
κ̃κκ‖2,

with Γ̃ := A−1
2 ΓA−1

2 and κ̃κκ := A−1
2 κκκ. Since the operators K and A−1

2 commute, we get

KΓ̃ + Γ̃K = 〈 · , κ̃κκ〉κ̃κκ.
Therefore, the case A ∈ S+(H) can be reduced to that of A ∈ B+(H), and the case
of a uniformly positive A to that of A = I.

Proof of Lemma 6.2: Step 1. Consider first the simpler case of a uniformly positive
operator A. As explained above, this can be reduced to A = I, which we assume for
what follows. For convenience, we introduce auxiliary functions

E(x, t) := exK−tK3

, V (x, t) := (E(x, t) + Γ)−1, B(x, t) := −V (x, t)E(x, t)K.

Observe that the operator exK−tK3

+ Γ is then uniformly positive, so that ϕ can be
written as

ϕ(x, t) :=
〈
(exK−tK3

+ Γ)−1
κκκ,κκκ

〉
= 〈V κκκ,κκκ〉.
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Direct differentiation produces

Ex =EK, Et = −EK3,

Vx =BV, Vt = −BK2V,
(6.6)

and

(6.7) Bx = −VxEK − V ExK = −BV EK − V EK2 = B2 +BK.

Using (6.6) and (6.7), we next find that

Vxx = (BV )x = BxV +BVx = (B2 +BK)V +B2V = B(2B +K)V

and, differentiating once again, that

(6.8) Vxxx = Bx(2B +K)V + 2BBxV +B(2B +K)Vx =

= (B2 +BK)(2B +K)V + 2B(B2 +BK)V +B(2B +K)BV =

= B[6B2 + 3(KB +BK) +K2)]V.

Denote by R the linear functional R : H → C defined via

R := 〈 · ,κκκ〉;
then KΓ + ΓK = R∗R and ϕ = RV R∗. Using equalities (6.8) and (6.6), we arrive at
the relation

(6.9) ϕt + ϕxxx = R(Vt + Vxxx)R
∗ = 3RB[2B2 +KB +BK)]V R∗.

Observe that

KV + V K = V (E + Γ)KV + V K(E + Γ)V = −2BV + V R∗RV

and, further, that

KB +BK = −(KV + V K)EK = 2BV EK − V R∗RV EK = −2B2 + V R∗RB.

Combining this with (6.9), we conclude that

ϕt + ϕxxx = R(Vt + Vxxx)R
∗ = 3RBV R∗RBV R∗ = 3(RVxR

∗)2 = 3(ϕx)
2,

i.e., that
ϕt − 3(ϕx)

2 + ϕxxx = 0.

We next prove that the formula

ϕ(z, ζ) :=
〈
(ezK−ζK3

+ Γ)−1
κκκ,κκκ

〉

defines a function that is holomorphic in the domain Ωπ/2. To this end, it suffices to

show that, for every (z, ζ) ∈ Ωπ/2(K), the operator ezK−ζK3

+Γ is boundedly invertible.
We fix an arbitrary (z, ζ) ∈ Ωπ/2(K) with z = x+ iy, ζ = t + is, set

L := yK − sK3, M =
1

2
(xK − tK3),

and note that the operators L and M are self-adjoint and commuting. Direct calcula-
tions show that

ezK−ζK3

+ Γ = eMeiLeM + Γ = eM(cosL)eM + Γ + ieM (sinL)eM ;

since ‖L‖ < π/2 by the definition of the set Ωπ/2, we conclude that the operators
cosL and C := eM(cosL)eM +Γ are positive and invertible in the algebra B(H) of all
bounded operators in H . Therefore,

ezK−ζK3

+ Γ = C1/2(I + iF )C1/2
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with bounded self-adjoint F := C−1/2eM(sinL)eMC−1/2; as the operator (I + iF ) is

invertible and ‖(I+ iF )−1‖ ≤ 1, we see that the operator ezK−ζK3

+Γ is also invertible
and

(ezK−ζK3

+ Γ)−1 = C−1/2(I + iF )−1C−1/2.

As a result, the function ϕ is proved to be holomorphic in the domain Ωπ/2 and satisfies
there the bound

|ϕ(z, ζ)| ≤ ‖RC−1/2‖‖C−1/2R∗‖ = ‖RC−1R∗‖.
To refine the above bound, we first observe that, by the spectral theorem, (cosL) ≥

(cos ‖L‖)I, so that

C = eM (cosL)eM + Γ ≥ (cos ‖L‖)(e2M + Γ)

and, consequently,

RC−1R∗ ≤ (cos ‖L‖)−1R(e2M + Γ)−1R∗ = (cos ‖L‖)−1ϕ(x, t).

Recalling that

ϕ(x, t) := ‖(exK−tK3

+ Γ)−1/2
κκκ‖2 ≤ ‖Γ−1/2

κκκ‖2,
we derive the required bound

|ϕ(z, ζ)| ≤ |ϕ(x, t)|
cos ‖L‖ ≤ ‖Γ−1/2κκκ‖2

cos ‖L‖ ≤ ‖Γ−1/2κκκ‖2
cos ν

whenever (z, ζ) ∈ Ων(K). �

Proof of Lemma 6.2: Step 2. We discuss now the case of a general A ∈ S+(H). As
explained above, without loss of generality the operator A can be considered bounded.
For an arbitrary ε > 0, we set Aε := (A2 + εI)1/2, Bε := (A2 + Γ + εI)1/2 and

ϕε(z, ζ) :=
〈
(A2

εe
zK−ζK3

+ Γ)−1
κκκ,κκκ

〉
, (z, ζ) ∈ Ωπ/2.

By Step 1 of the proof, for every ε > 0 the function ϕε is holomorphic in Ωπ/2 and
satisfies there (6.5) for all (z, ζ) ∈ Ων with ν ∈ (0, π/2). Moreover, its restriction
onto R2 is a solution of equation (6.4). To complete the proof, it suffices to show that,
as ε→ +0, the functions ϕε converge to ϕ uniformly on compact sets of Ωπ/2.

By virtue of (6.5), the partial derivatives (ϕε)z and (ϕε)ζ are uniformly bounded on
every compact set of Ωπ/2, so that it remains to prove that, as ε → +0, the functions
ϕε converge pointwise in Ωπ/2, i.e., that for every (z, ζ) ∈ Ωπ/2, there exists a finite
limit

lim
ε→+0

〈
(A2

εe
zK−ζK3

+ Γ)−1
κκκ,κκκ

〉
.

Fix an arbitrary (z, ζ) ∈ Ωπ/2. Using the notations of Step 1 of the proof, we see
that

A2
εe

zK−ζK3

+ Γ = Aεe
MeiLeMAε + Γ = Aεe

M(cosL)eMAε + Γ+ iAεe
M(sinL)eMAε

and, therefore, that
〈
(A2

εe
zK−ζK3

+ Γ)−1
κκκ,κκκ

〉
=

〈
(Wε + iVε)

−1B−1
ε κκκ, B−1

ε κκκ
〉
,

where

Wε = B−1
ε Aεe

M(cosL)eMAεB
−1
ε +B−1

ε ΓB−1
ε ,

Vε = B−1
ε Aεe

M(sinL)eMAεB
−1
ε .
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Since κκκ ∈ domΓ−1/2 = ran(Γ1/2) and A2+Γ ≥ Γ, in view of Proposition A.5 we get
κκκ ∈ dom(A2 + Γ)−1/2; thus, according to Proposition A.4,

lim
ε→+0

B−1
ε κκκ = (A2 + Γ)−1/2

κκκ.

Therefore, it suffices to show that there exists the strong limit s-lim
ε→+0

(Wε+iVε)
−1. Taking

into account Lemma A.6, we derive existence of the limits

s-lim
ε→+0

B−1
ε Aε, s-lim

ε→+0
AεB

−1
ε ,

s-lim
ε→+0

B−1
ε Γ1/2, s-lim

ε→+0
Γ1/2B−1

ε .

so that the limit s-lim
ε→+0

(Wε + iVε) exists as well.

Since the operators eM and cosL are uniformly positive, for some c ∈ (0, 1) we have

eM(cosL)eM ≥ cI,

so that

Wε = B−1
ε (Aεe

M (cosL)eMAε + Γ)B−1
ε ≥ cB−1

ε (A2
ε + Γ)B−1

ε = cI.

Since the operator Vε is self-adjoint, we see that

Re(Wε + iVε) ≥ cI

so that
‖(Wε + iVε)

−1‖ ≤ c−1, ε > 0.

Applying now Lemma A.7, we conclude that the limit

s-lim
ε→+0

(Wε + iVε)
−1

exists, and this finishes the proof. �

Proof of Theorem 6.1 Setting u(x, t) = 4ϕ′
x(2x, 8t) and differentiating, we find that,

indeed,

ut − 6utu+ uxxx = [32ϕxt − 96ϕxxϕx + 32ϕxxx](2x, 8t)

= 32
∂

∂x
[ϕt − 3(ϕx)

2 + ϕxxx](2x, 8t) = 0

as required. The fact that u is a classical solution follows from the properties of the
function ϕ. �

Remark 6.3. Along with ϕ, the solution u of the KdV equation allows ananlytic con-
tinuation in the cylindrical domain Ωπ/2; moreover, it satisfies the bound

|u(z, ζ)| ≤ 2

cos ν

∑

j≥1

κj

whenever (z, ζ) ∈ Ων with ν ∈ (0, π/2).
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Appendix A. Some auxiliary results

A.1. The auxiliary result on one class of meromorphic functions.

Definition A.1. Assume that a function ϕ : Ω → C is analytic in a domain Ω ⊂ C

containing the upper half-plane C+ := {z ∈ C | | Im z > 0}. We say ϕ is a Herglotz
function in C+ if Imϕ(z) ≥ 0 for z ∈ C+.

Herglotz functions are also called Nevanlinna functions. Every Herglotz function can
be represented in C+ as (cf. [23])

(A.1) ϕ(z) = az + b+

∫

R

(
1

t− z
− t

1 + t2

)
dν(t), z ∈ C+,

where a ≥ 0, b ∈ R, and ν is a non-negative Borel measure on R that is bounded on
compact subsets of R and satisfies the condition

∫

R

dν(t)

1 + t2
<∞.

We denote by M the set of all Borel measures ν of the form

ν =
∞∑

j=0

djδξj ,

where δξ denotes the Dirac delta-function centred at ξ ∈ R, (ξj)
∞
j=1 is a strictly de-

creasing sequence of positive numbers converging to 0, (dj)
∞
j=1 is a summable sequence

of positive numbers, ξ0 = 0, and d0 ≥ 0.
With every ν ∈ M, we associate the Herglotz function

φν(z) = 1 +

∫

R

dν

t− z
= 1 +

∞∑

j=0

dj
ξj − z

.

The sum on the right-hand side converges uniformly on compact subsets of C\{supp ν}
and defines a meromorphic function on the set C\{0} with poles at the points ξk, k ∈ N.
Being a Herglotz function, φν does not vanish on C± and strictly increases on each real
interval not containing any pole. As a result, φν possesses a single zero ηk in every
interval (ξk, ξk−1), k = 2, 3, . . . . Also, there is a single zero η1 in the interval (ξ1,∞).
Observe also that dj with j > 0 is the residue of the function φν at the pole z = ξj and
thus is uniquely determined by φν.

Next, we denote by Λ the set of all strictly decreasing sequences λ = (λn)n∈N of
positive numbers converging to zero. With every λ ∈ Λ, we associate the product

(A.2) ψλ(z) :=

∞∏

n=1

z − λ2n−1

z − λ2n
.

In view of the relation
z − λ2n−1

z − λ2n
= 1 +

λ2n − λ2n−1

z − λ2n
and convergence of the series ∑

n≥1

|λ2n − λ2n−1|,

the above product converges uniformly on compact subsets of C not intersecting with
the set {λ2n | n ∈ N}∪{0} and thus defines a function that is meromorphic in C \ {0}.
The points λ2n are the poles of ψλ, while λ2n−1 are its zeros.
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The main result of this subsection is that the set of functions φν and ψλ of the above
form coincide. Namely, the following statements hold true.

Theorem A.2. For every λ ∈ Λ, there exists a unique measure ν ∈ M such that
ψλ = φν. Conversely, for every ν ∈ M, there exists a unique sequence λ ∈ Λ such that
φν = ψλ.

Proof. Uniqueness in both parts is straightforward, so that only existence need to be
justified. We observe that a similar statement for meromorphic functions is proved
in [16, p. 399] and is based on Krein’s idea; see also [8]. We slightly modify the
arguments for the current setting.

Take an arbitrary sequence λ ∈ Λ. Observe that the argument

αn := arg

(
z − λ2n−1

z − λ2n

)
= arg (z − λ2n−1)− arg (z − λ2n)

is equal to the angle at which the interval [λ2n−1, λ2n] is seen from the point z ∈ C+,
so that

argψλ(z) =

∞∑

n=1

αn < π.

Therefore, the function ψλ maps C+ into C+ and thus is a Herglotz function. Since

ψλ(z) = 1 + o(1), z → ∞,

and since ψλ assumes real values for x ∈ R \ ({0} ∪ {λ2n}∞n=1), we conclude that

ψλ(z) = 1 +

∫

R

dν(t)

t− z

for some non-negative Borel measure ν with supp ν ⊂ {0} ∪ {λ2n}∞n=1, i.e., ν ∈ M.
Conversely, consider an arbitrary ν ∈ M and denote by ηk, k ∈ N, the positive

zeros of φν as explained above. Set λ2n = ξn and λ2n−1 = ηn; then λ := (λn)n∈N is an
element of Λ, and we next prove that φν = ψλ.

As φν(η1) = 0, we see that

φν(z)

η1 − z
=
φν(z)− φν(η1)

η1 − z
=

∞∑

j=0

d′j
ξj − z

,

with d′j = dj/(η1 − ξj). Therefore,

ξ1 − z

η1 − z
φν(z) =

∞∑

j=0

d′n
ξ1 − z

ξj − z
=

∞∑

j=0

d′j

(
1 +

ξ1 − ξj
ξj − z

)
= c+

∞∑

j=0

d′′j
ξj − z

where

c =

∞∑

j=0

d′j = −
∞∑

j=0

dj
ξj − η1

= 1

and

d′′j = dj
ξ1 − ξj
η1 − ξj

with d′′1 = 0 and d′′j > 0 for j > 0. Therefore,

φ1,ν(z) :=
ξ1 − z

η1 − z
φν(z)

is a Herglotz function.
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In the same manner we show that the functions

φn,ν(z) := φν(z)
n∏

k=1

ξk − z

ηk − z

are Herglotz, and, passing to the limit, we see that the function

h(z) := φν(z)/ψλ(z)

is Herglotz. The function h is analytic in C \ {0}, assumes real values on R \ {0}, and
h(z) = 1 + o(1) z → ∞.

As a result, it assumes the form h(z) = 1 − α/z with α ≥ 0. By construction, h has
no zeros in the domain C \ {0}, whence α = 0, i.e., φν = ψλ. �

A.2. Blaschke products. Denote by Λ a subset of the space ℓ1(N) consisting of all
its sequences λ = (λn)n∈N with the property that λn ∈ C+ ∪ {0} for every n ∈ N. The
set Λ becomes a topological space with inherited topology of ℓ1(N). For every λ ∈ Λ,
the corresponding Blaschke product

(A.3) B(z,λ) :=

∞∏

n=1

z − λn

z − λn
, z ∈ C+,

converges absolutely in C+ in view of the inequality
∣∣∣z − λn

z − λn
− 1

∣∣∣ ≤ 2|λn|
| Im z|

and defines there a holomorphic function. Observe also that |B(z,λ)| ≤ 1 on C+ due
to the inequality |z − λn| ≤ |z − λn| holding for all n ∈ N and all z ∈ C+. Lemma 3.2
of [9] implies the following convergence result.

Lemma A.3. For every fixed z0 ∈ C+, the mapping

Λ ∋ λ 7→ B(z0,λ) ∈ C

is continuous.

A.3. Auxiliary facts on self-adjoint operators. In this appendix, we collect several
auxiliary facts on self-adjoint operators. They are well known but we are at a loss on
precise references. Assume that H is a Hilbert space with scalar product 〈 · , · 〉 and
denote by B(H) the algebra of all bounded operators in H and by B+(H) its subset
set of all self-adjoint positive operators.

Spectral theorem for self-adjoint operators along with the Lebesque dominated con-
vergence theorem produce the following result.

Proposition A.4. Assume that A is a positive operator in a Hilbert space H and
f ∈ H is such that

(A.4) lim
t→+0

〈(tI + A)−1f, f〉 =: α <∞.

Then f belongs to the domain of A−1/2 and ‖A−1/2f‖2 = α. Conversely, if f ∈
domA−1/2, then

(A.5) lim
t→+0

〈(tI + A)−1f, f〉 = lim
t→+0

‖(tI + A)−1/2f‖2 = ‖A−1/2f‖2.
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Proposition A.5 ([13, Sect. VI.2.6]). Assume that A and B are positive operators
and A ≤ B; then dom(A−1/2) ⊂ dom(B−1/2) and ‖B−1/2f‖ ≤ ‖A−1/2f‖ for all f ∈
dom(A−1/2). In particular, the operators B−1/2A1/2 and A1/2B−1/2 can be extended by
continuity to elements of B(H) of norm at most 1.

Lemma A.6. Assume that A,B ∈ B+(H), A ≤ B and Aε := A + εI, Bε := B +
εI (ε > 0). Then there exist the strong limits

(A.6) s-lim
ε→+0

A1/2B−1/2
ε = s-lim

ε→+0
A1/2

ε B−1/2
ε = (B−1/2A1/2)∗,

(A.7) s-lim
ε→+0

B−1/2
ε A1/2 = s-lim

ε→+0
B−1/2

ε A1/2
ε = B−1/2A1/2.

Proof. We start by observing that, due to the Banach–Steinhaus theorem, the product
of two strongly convergent operator families is strongly convergent. Applying the
Lebesque dominated convergence theorem to the spectral representation of B, we find
that

(A.8) s-lim
ε→+0

B−1/2
ε B1/2 = I, s-lim

ε→+0
ε1/2B−1/2

ε = 0,

so that, for all f ∈ H , we get

lim
ε→+0

A1/2B−1/2
ε B1/2f = A1/2f, lim

ε→+0
A1/2

ε B−1/2
ε B1/2f = A1/2f.

Since by Proposition A.5 the operatorsA1/2B
−1/2
ε andA

1/2
ε B

−1/2
ε are uniformly bounded

and since the range of the operator B1/2 is everywhere dense in H , the above rela-
tions imply that the limits in (A.6) exist and are equal to the closure of the operator
A1/2B−1/2, which is equal to (B−1/2A1/2)∗.

We next prove (A.7). It follows from Proposition A.5 that the operator B−1/2A1/2

is bounded; taking into account (A.8) and the equality

B−1/2
ε A1/2 = (B−1/2

ε B1/2)(B−1/2A1/2),

we conclude that s-limε→+0B
−1/2
ε A1/2 = B−1/2A1/2, i.e., get the first limit of (A.7).

Next, denote by Pε the spectral projector for A corresponding to the interval [ε,∞)
and set P ′

A(ε) = I − Pε. Applying the Lebesque dominated convergence theorem to
the spectral representation of A, we find that

s-lim
ε→+0

A−1/2PεA
1/2
ε = I, s-lim

ε→+0
ε−1/2P ′

εA
1/2
ε = 0.

Using the first limit of (A.7), the second limit of (A.8), and the equality

B−1/2
ε A1/2

ε = (B−1/2
ε A1/2)(A−1/2PεA

1/2
ε ) + (ε1/2B−1/2

ε )(ε−1/2P ′
εA

1/2
ε ),

we conclude that s-limε→+0B
−1/2
ε A

1/2
ε = B−1/2A1/2. The proof is complete. �

Lemma A.7. Assume that (An)n∈N is a sequence of bounded and boundedly invertible
operators in a Hilbert space H converging to an operator A ∈ B(H) in the strong
operator topology. If supn∈N ‖A−1

n ‖ < ∞ and s-lim
n→∞

A∗
n = A∗, then A is boundedly

invertible and s-lim
n→∞

A−1
n = A−1.

Proof. Under the assumptions of the lemma, set α := supn∈N ‖A−1
n ‖. Since for every

f ∈ H and n ∈ N we have

‖f‖ ≤ ‖A−1
n ‖‖Anf‖ ≤ α‖Anf‖
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and

‖f‖ ≤ ‖(A∗
n)

−1‖‖A∗
nf‖ ≤ α‖A∗

nf‖,
we see that

‖Af‖, ‖A∗f‖ ≥ α−1‖f‖, f ∈ H,

i.e., the operators A and A∗ have the trivial nullspace, so that the operator A is
invertible. Now it follows that, for every f ∈ H ,

‖(A−1
n − A−1)f‖ = ‖A−1

n (A− An)A
−1f‖ ≤ α‖(A−An)A

−1f‖ → 0

as n→ ∞, and the proof is complete. �
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