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Abstract

Today, 3D human head models are widely used in fields such as computer vision, en-
tertainment, healthcare, and biometrics. Since a high-quality scan of a human head
is expensive and time-consuming to obtain, machine learning algorithms are used
to estimate the shape and texture of a 3D model from a single "in-the-wild" photo-
graph, often taken at extreme angles or with non-uniform illumination. However,
as a full head texture cannot be trivially inferred from a single photograph due to
self-occlusion, many only focus on modeling an incomplete and partially textured
model of the human head.

This work proposes a machine learning pipeline that reconstructs a fully tex-
tured 3D head model from a single photograph. We collect a novel dataset of 99.3
thousand high-resolution human head textures created from synthetic celebrity pho-
tographs. To the best of our knowledge, this is the first UV texture dataset of a sim-
ilar scale and fidelity. Using this dataset, we train a free-form inpainting GAN that
learns to recreate full head textures from partially obscured projections of the input
photograph.
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Chapter 1

Introduction

1.1 Motivation

In recent years, computer models of human heads have found widespread use in
many applications related to image processing. Among these uses are authentica-
tion methods based on 3D biometrics (Park and Jain, 2007), partial head prosthetics
sculpted to match a patient’s head shape (Guo et al., 2020), or realistic video game
avatars representing the user as a stylized character (Lin, Yuan, and Zou, 2021).

For these and many other applications, a single two-dimensional photograph is
often insufficient to capture the full range of information about a head. A picture
does not contain information about a single dimension of the original 3D object,
which needs to be computationally inferred. It is also heavily affected by variance
in pose, expression or illumination. On the other hand, a three-dimensional model
of a human head can represent it in a form invariant to these factors. Via 3D object
manipulation, this model can be projected onto different angles, re-textured, illumi-
nated, and, depending on its complexity, even fully animated. However, capturing a
high-quality 3D scan requires both expensive scanning equipment and heavily cali-
brated working conditions - while this may be acceptable in fields such as medicine,
setting up a 3D scanner is often a non-feasible approach.

In machine learning, head reconstruction algorithms aim to solve this problem,
combining the simplicity of taking a single photograph and the benefits gained from
a full 3D model. They accomplish this by recreating a three-dimensional model of
the human head from one or several images. Some head reconstruction algorithms
learn to map a photograph to a traditional 3D model: a polygon mesh alongside a
set of textures. However, these algorithms most often use a statistical model known
as a 3D Morphable Model (3DMM).

In essence, a 3DMM is both a data structure containing compressed, constrained
information about a human head, and a method for constructing this data structure
(Booth et al., 2018). A 3DMM is created from an extensive database of high-quality
facial scans, using dimensionality reduction to compress them into a small but rep-
resentative set of parameters. A single instance of a 3DMM is a parameter vector de-
noting face shape, texture, and sometimes optional parameters such as expression or
illumination. A head reconstruction algorithm will be trained to infer this set of pa-
rameters from a 2D photograph. During training, some models use a set of ground
truth 3D scans that are compared to the network’s output. Without access to such
scans, others opt for a more indirect approach. As an example, the 3DMM recon-
structed by the algorithm may be projected to a 2D image at the same angle as the
original "in-the-wild" photograph, then compared with the initial output through
pixel loss.

However, many machine learning pipelines in the field only focus on recon-
structing a partial version of the 3D model. Due to the issue of self-occlusion - that
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FIGURE 1.1: Face textures such as those in the 3DDFA pipeline (Zhu
et al., 2019) appear notably distorted in occluded face regions.

is, the fact that a human head can never be fully displayed on a single photograph,
as it is obscured by itself - such pipelines often output a partial texture limited by
the angles visible on the photograph. While sufficient for some applications, heavy
and naive interpolation is used to fill in the gaps on these textures, and the areas
of the head not visible on the photograph often appear strange and unrealistic. In
order to derive a full photorealistic head model, it is necessary to extend the head
reconstruction pipeline with a novel step which, given a partial head texture, infers
and inpaints its missing regions.

1.2 Goals

This thesis project focuses on extending a face reconstruction pipeline to recreate
fully textured 3D head models. Briefly, it consists of two main parts:

1. Creating a novel dataset of facial UV textures. Due to the sensitive nature of
biometric data, datasets containing high-resolution facial scans such as MeIn3D
(Booth et al., 2018) are only available for medical research purposes; to the best
of our knowledge, no publically accessible, anonymized datasets of this na-
ture are currently available. Therefore, we introduce our own dataset based on
high-quality synthetic data. Using the EigenGAN generative CNN (He, Kan,
and Shan, 2021), we create several photographs of a single fictional person at
different horizontal angles. We then convert these into high-quality yet in-
complete head textures using a head reconstruction pipeline. Knowing exactly
which regions of these textures are accurate and which are occluded, we com-
bine several textures of a single synthetic identity into one high-quality texture
through Poisson blending. 99.3 thousand of these ground truth textures are
used for model training.

2. Training a model that converts incomplete into complete textures. Filling miss-
ing pixels on an image is a well-defined problem in computer vision known as
"image inpainting," and several inpainting GANs have been designed to solve
it. We use a modified version of the deepfillv2 GAN Yu et al., 2019, based on
gated convolution - a partial convolution mechanism that takes image masks
into account. Rather than learning to fill in random brush strokes, we create a
large set of occlusion masks from natural partial head textures, then randomly
select one of these occlusions as a mask during training. The result is a model
which successfully inpaints a texture even on partial textures where only 40-
50% of the face is clearly visible.
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1.3 Thesis structure

The remaining portion of this thesis is structured as follows:

• In chapter 2 we provide a detailed overview of existing research related to our
project. In particular, we touch on 3D morphable models, face reconstruction,
and texture inpainting.

• In chapter 3 we define our machine learning pipeline. This includes the meth-
ods used to generate a dataset of completed face textures, and the model for
inpainting partially occluded textures.

• In chapter 4 we describe the pipeline’s training process, and showcase qualita-
tive evaluations of our pipeline used on real-world training data.

• Finally, chapter 5 draws conclusions about the completed work, and presents
some opportunities for future improvements in the area.
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Chapter 2

Related work

2.1 3D Morphable Models

In a 3D head reconstruction pipeline, a machine learning model is trained to learn
a mapping between an input 2D photograph and an output 3D model by minimiz-
ing the difference between its reconstructed output and some given ground truth.
Rather than 3D models, this fitting process most often produces statistical data struc-
tures known as 3D Morphable Models, or 3DMMs.

A 3DMM refers to a process used to parameterize a large dataset of head models
into a set of principal components,as well as the data structures produced by this
process. It consists of several high-dimensional spaces representing shape, texture
and optionally, more complex parameters such as illumination or expression. The
basis for this space is created by performing dimensionality reduction on a large set
of 3D models, optimizing the number of parameters needed to accurately represent
a model while maintaining as many distinguishing characteristics as possible.

This representation of a face model presents several advantages. First, it con-
strains a model’s outputs to viable human faces. In the worst-case scenario, a face
reconstruction model that outputs 3DMM parameters will produce an inaccurate
face, while a model trained to into a set of vertices and textures can generate arbi-
trarily inaccurate outlier outputs. Second, it allows a model to use loss functions
more complex than spatial distances between the generated and reference models.
Finally, by partially randomizing the parameters of a 3DMM, large numbers of con-
strained synthetic faces can be generated. One example of this use case in action is
the 300W-LP dataset (Zhu et al., 2019), where 3DMMs were projected onto in-the-
wild photos at uncommon angles to aid in training 2D facial processing algorithms.

3DMMs can be broadly separated into two subsets: models that use a single
linear space to model three-dimensional shapes and alternative, non-linear models.
The Surrey Face Model (Huber et al., 2016) is one example of a classic linear 3DMM.

FIGURE 2.1: Visualizations of principal component spaces for the
FLAME 3DMM (Sanyal et al., 2019a).
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This model defines two linear spaces - one to represent the shape of the face and
another for the color and texture. Both sub-models are built by running PCA on a
set of 169 high-resolution face scans, which outputs three components: a mean of
the recorded facial scans, a set of principal components, and standard deviations for
each component. A face under the 3DMM space is represented by a linear product of
relative coordinates and principal components, both in the shape and texture spaces.
The Large Scale Facial Model (LSFM) (Booth et al., 2018) uses a similar approach
on a far grander scale. This model is created from 9663 facial identities of various
ethnicities and genders; alongside a global PCA space, this quantity of data allows
it to be split into sub-models tailored to different ages, genders, and ethnicities.

Although morphable models based on a single linear space are still used in state-
of-the-art face reconstruction pipelines (e.g., Lattas et al., 2020a), alternatives have
been designed to address deficiencies in this approach. For instance, the GM-3DMM
Gaussian Mixture model (Koppen et al., 2018) uses a combination of Gaussian dis-
tributions with different means rather than a single distribution. While otherwise
people of different ethnicities would be merged into a single mean face, they can be
far more accurately represented by an approach such as this.

3DDFA, the face recognition pipeline which serves as a basis for this project,
uses the Basel Face Model (Paysan et al., 2009) as a baseline 3DMM. The model has
been trained on 200 participants - 100 female and 100 male, most of them European.
After scanning by a low-latency coded light system, model smoothing, and texture
extraction, the model’s creators parameterize the faces as triangular meshes with
m = 53490 vertices. Each vertex is associated with an RGB color representing face
texture. Thus, a face under this model is initially represented by independent shape
and texture vectors of size 3m:

s = (x1, y1, z1, . . . , xm, ym, zm)
T (2.1)

t = (r1, g1, b1, . . . , rm, gm, bm)
T (2.2)

After PCA is applied to the dataset of 300 input models, the authors provide a
best-fit Gaussian distribution for each of the two spaces:

Ms = (µs, σs, us); Mt = (µt, σt, ut) (2.3)

Here, µs,t are the parameters of the mean faces, σs,t are the standard deviations
and us,t are the orthonormal basis of principal components. A 3D face within the
3DMM’s shapes is represented as a linear combination of the principal components
within the texture and shape spaces:

s(α) = µs + usdiag(σs)α (2.4)

t(β) = µt + utdiag(σt)β (2.5)

Other models enhance a linear shape and texture space with additional spaces
and parameters. For instance, the FLAME model (Sanyal et al., 2019a) includes an
articulated jaw, neck, and eyeballs, alongside a global "expression" space that en-
ables the model to reconstruct a set of standardized facial expressions. Formally, it
is described by the function

M(
−→
β ,
−→
θ ,−→ψ ) = W(TP(

−→
β ,
−→
θ ,−→ψ ), J(β), θ, ω) (2.6)
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which maps shape
−→
β , pose

−→
θ and expression−→ψ vectors into N three-dimensional

vertices. The template function T adds shape, pose, and expression offsets to a tem-
plate mesh T, which is learned from a set of three-dimensional scans when training
the model - shapes are then defined as displacements from this mean. The skinning
function W rotates the vertices of this template around joints J and smooths them by
the blendweights ω .

While much research has been focused on facial models, it should be noted that
comparatively fewer models have been designed to encompass full head anatomy.
One notable example of such a model is the Liverpool-York cranial model (Dai et al.,
2019), designed to be used as a reference tool by craniofacial surgeons to determine
whether a reconstructed head shape is considered ’normal’. Several recent papers
in the field have been based on extending this baseline model with additional shape
spaces, such as an ear space (Dai, Pears, and Smith, 2019) or face and eye space
(Ploumpis et al., 2020). However, most existing techniques and pipelines are still
limited to the reconstruction of the facial region.

2.2 Morphable model fitting methods

A 3D reconstruction pipeline trains a machine learning model to discover a linear
combination of 3D morphable model parameters that best fits a given input image.
This process involves defining a loss function that determines the difference between
two parameterized morphable models - either a general-purpose metric such as Eu-
clidean distance and cross-entropy loss; or a custom loss function. Models that have
been used to optimize this 3D model’s parameters range from simple regressors to
deep neural networks and CNNs.

Before the advent of deep learning in computer vision, classic regression algo-
rithms were a commonly used approach for training 3DMM reconstruction models.
As an example, Huber et al., 2015 propose a cascaded regression method based on
a series of manually selected local features, which finds the most likely vector of
PCA shape space coefficients. The landmark points used by this algorithm correlate
with distinct facial characteristics, like eyes or mouth corners, although they can be
equidistantly spaced on a 3D mesh or selected using other sampling methods. Xi-
angyu Zhu et al., 2015 use a similar set of fixed landmark features but project both
the ground truth and model-synthesized images into a new, transformed space to
smoothen the loss function and prevent it from converging on a suboptimal local
minimum.

A loss function based on the difference between reconstructed and ground-truth
3DMMs requires a set of ideal 3D scans, but these are difficult to obtain and cannot
be acquired for "in-the-wild" input images. This lack of data may lead to inaccu-
racies when trying to recreate a model from a low-quality image. Therefore, some
algorithms use a loss function based on a projected 2D image synthesized from the
regressed 3DMM, rather than differences between the model coefficients themselves.
As an example, Piotraschke et al. Piotraschke and Blanz, 2016 use a distance met-
ric based on the reconstructed image alongside an automatic landmark detector; an
improvement over previous models, where landmarks were based on fixed facial
features. A unique aspect of their approach is the ability to enhance a single-image
reconstruction with multiple images of the same person, which are merged into a
single weighted model.
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FIGURE 2.2: Fitting results of a regressor-based pipeline (Xiangyu
Zhu et al., 2015) on real-world data. This model accurately derives
a facial angle from an image, but does not yet represent finer details

or expressions.

2.3 Deep learning in 3DMM fitting methods

In the last few years, approaches based on deep neural networks have steadily
gained popularity in computer vision, and the facial reconstruction problem is no
exception. One major caveat of classical regressors is that some prior statistical
knowledge of the 3D morphable model, such as mean images and standard devi-
ation, must be built into the algorithm itself. If the input dataset of a 3DMM is
insufficiently robust, this may lead to subpar performance when working with un-
derrepresented ethnicities or groups. DNNs have no such constraints - an existing
network architecture can be used to regress any set of 3DMM parameters. Some
methods such as Jackson et al., 2017 avoid using a 3DMM entirely, directly regress-
ing the 3D facial geometry from a single image with the use of a generalized cross-
entropy loss function. While this allows DNNs to capture fine details that would
otherwise be lost due to a 3DMM’s reliance on dimensionality reduction, it leads to
subpar results when dealing with outlier inputs.

The networks and architectures used in 3D reconstruction are often quite sim-
ilar to computer vision’s state-of-the-art. Savov et al., 2019 use an AlexNet-based
CNN model to fit an image into a low-dimensional shape space. Unlike tradi-
tional 3DMMs, their representation includes separate feature vectors for face shape,
expression, skin reflection, and illumination. Aside from face reconstruction, the
model is trained to predict age from the input image; the network used for this
auxiliary task shares the weights of the main CNN. The generative nature of facial
reconstruction models also makes them a good fit for GAN-based models. GANFIT
(Gecer et al., 2019) is an example of a generative adversarial network fitted for fa-
cial reconstruction, using several variations of content loss between the input image
and a projected rendered image as cost functions to regress a 3D face model. One
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FIGURE 2.3: An example of the pipeline defined in Piotraschke and
Blanz, 2016, which combines multiple facial reconstructions based on

their accuracy while rejecting poor-quality samples.

of the most recent models in the field, AvatarMe (Lattas et al., 2020b), builds upon
GANFIT to reconstruct initial shape texture models, then extends its output texture
with a super-resolution network and de-lights the texture to mitigate the effects of
uneven illumination.

2.4 Deep learning for image inpainting

Textures produced by traditional head reconstruction pipelines often ignore or naively
interpolate areas that cannot be derived from the original photograph. Indeed, one
of the weak points of a loss function based on the difference between an input im-
age and interpolated projection is that it does not consider obscured areas at all. To
recreate a full face texture, a reconstruction pipeline must utilize models for image
inpainting - the task of recreating mission regions in a 2D image while maintaining
visual fidelity and scene correctness. The most common use for image inpainting
is removing some unwanted objects from a photo and filling the remaining space
in with a plausible background. However, the technique can be extended to many
other tasks such as image stitching, background harmonization, and text removal.

Early image inpainting algorithms have exploited PatchMatch’s (Barnes et al.,
2009) ability to establish correspondence between small image regions, or "patches",
by iteratively filling in the missing region of an image with patches taken from the
surrounding background. However, this approach is limited by visible areas of the
image itself and cannot inpaint very large patches, nor does it learn a high-level
visual understanding of an image. On the other hand, methods based on DNNs
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FIGURE 2.4: An overview of the image inpainting network defined
by Yu et al., 2018, based on a coarse-to-refined architecture and using

novel "gated" convolution in place of regular image convolutions.

typically use image convolutions to fill in the missing regions, sometimes after they
are pre-filled with some placeholder values (e.g., the image’s mean value).

Unlike regular convolution, the masked areas of an image should not be factored
into the model’s output - thus, a modified convolution operator is typically used
by the models. For instance, Liu et al., 2018 define a custom convolution referred
to as partial convolution: given a set of pixel values X, a feature mask M, and a
convolution filter with weights W and a bias b, they first calculate a convolution
which does not factor in the masked values:

X′ =

{
WT(X ·M) sum(1)

sum(M)
+ b if sum(M) > 0

0 otherwise
(2.7)

Afterwards, the mask is updated in locations where the convolution has suc-
cessfully conditioned its input on some valid value. In an iterative process, this
eventually ends with the entire mask being filled in:

M′ =
{

1 if sum(M) > 0
0 otherwise

(2.8)

Yu et al., 2019 propose a further extension referred to as "gated convolution" -
rather than classifying all locations in an image to be either valid (unmasked) or
invalid (masked) through a rule-based approach, it learns a partial mask based on
two different convolutional filters Wg and W f :

M = φ(WT
f · X) · σ(WT

g · X) (2.9)

Here, φ is any activation function and σ is a sigmoid function - which constrains
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the overall inputs of the mask to values between 0 and 1. The authors use this pro-
posed convolution, alongside a custom SN-PatchGAN loss, to create a generative
model with coarse and refinement networks (largely based on Yu et al., 2018). The
generative network takes in an image with an arbitrarily shaped missing region,
alongside a mask specifying the location of the region, and outputs a completed im-
age. An initial coarse network is trained with reconstruction loss only and makes a
first rough prediction, while the refinement network, using both reconstruction and
GAN losses, improves the model’s results. During training, random masks are gen-
erated by applying a series of random brush strokes to the image. (However, our
pipeline uses an alternative, semi-random set of image masks as described in the
following chapter.)
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Chapter 3

Proposed method

A notable omission in many 2D-photograph-to-3D-model reconstruction pipelines
is the ability to create a fully textured model of a human head. In these pipelines, tex-
tures of the ear, neck, and hair that cannot be directly derived from the photograph
are replaced by a generic placeholder or, in some cases, omitted entirely. Research
related to deriving complete models of the human head such as (e.g., Dai, Pears,
and Smith, 2019, Ploumpis et al., 2020) has so far primarily focused on defining an
alternative 3D morphable model of the human head rather than reconstruction from
in-the-wild images.

The main objective of our pipeline is specifically designed to reconstruct fully
textured 3D head models, narrowing this research gap.

3.1 Dataset collection

The first step of our work was to review existing datasets of 2D face images and 3D
head models in order to find a large set of "ground truth" textures usable for large-
scale GAN training. To the best of our knowledge, no publicly available dataset
with identities numbering in the tens of thousands exists. Some relevant datasets
contain a very small number of test subjects - 938 for FaceScape (Yang et al., 2020),
100 for "Not quite in-the-Wild" (Sanyal et al., 2019b), while others have only been
made available for medical research purposes (e.g. the "MeIn3D" dataset used for
training LSFM by Booth et al., 2018).

An alternative solution was to create a synthetic dataset containing a sufficient
number of ground truth textures. From several different images of the same person
at different angles, but ideally, under the same lighting conditions and the same ex-
pression, we can create a single high-quality UV texture through Poisson blending.

We start this process by generating a large number of synthesized face images
via the EigenGAN generative CNN (He, Kan, and Shan, 2021), using a version of
the model pre-trained on the Celeb Face A dataset. Studies aiming to analyze and
understand GAN learning (Bau et al., 2018) have shown that different layers within
a GAN generator are responsible for different attributes and properties of the syn-
thetic images; generally, deeper layers relate to the spatial layout of the image, while
shallower layers - to the color. EigenGAN’s most notable feature is the ability to con-
trol these attributes. Alongside a chain of convolutional blocks, the model embeds a
linear subspace with an orthonormal basis U = [ui1, . . . , uiq] into the pipeline; each
of the basis vectors uiq aims to discover an interpretable dimension that relates to
some attribute of the image.

EigenGAN’s pre-trained pipeline generates 256× 256 images and features 36 di-
mensions that can be used to alter their attributes while maintaining the same over-
all synthetic identity. To obtain a wide range of photographs for the same person,
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FIGURE 3.1: A sample from our initial photo dataset, with five syn-
thetic identities generated by EigenGAN at 11 different angles.

we manipulate an EigenGAN dimension which is used to alter the generated photo-
graph’s horizontal angle or yaw pose (the first dimension of the fourth layer - L4D1).
Our pipeline generates 11 different angles of 100,000 synthetic identities - one image
with an angle pre-selected by the model and 10 variations in yaw pose between−2σ
and 2σ, where σ is the model’s standard deviation.

3.2 UV texture generation

The next step of our pipeline is to convert the synthetic images into high-quality,
yet incomplete, PAFs, or Pose-Adaptive Features. To achieve this, we turned to the
3DDFA implementation of Zhu et al., 2019. Given an in-the-wild input image, the
pipeline can derive and render an instance of the 2017 Basel Face Model 3DMM as a
set of .ply and .obj files, which can be rendered by an open-source mesh processing
application such as MeshLab. Additionally, several auxiliary outputs can be ob-
tained from the pipeline: an estimation of the image’s depth, 2D projections referred
to as PNCCs (Projected Normalized Coordinate Code), and 2D UV textures as PAFs
(Pose-Adaptive Features).

In our pipeline, we limit the 3DDFA code to outputting 3D face estimations as
a set of 68 points projected onto the original image and, most notably, the UV tex-
tures projected from the input photograph. Using our synthetic dataset, we generate
high-quality - yet incomplete - PAFs for each of the 1.1 million photographs. This
generation process also serves as an initial quality gate: if the model is unable to de-
tect a face on one of the 11 generated photographs, the entire identity is discarded, as
it is likely to be poorly generated. 725 photos, or 0.06% of the original input dataset,
are rejected at this step. We also modify the model training script to function in batch
mode, significantly speeding up the training process; batches of sizes 5-6 were used
during initial experimentation, and 50 for large-scale training.

3.3 UV texture blending

The partial texture generation step of the pipeline leaves us with a set of similar UV
textures for each synthetic identity, each with some degree of artifacting caused by
self-occlusion. However, the areas of the image containing poor-quality texturing
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FIGURE 3.2: A sample from the incomplete UV texture dataset, with
all faces from Figure 3.1 converted to PAFs by 3DDFA.

are generally well-known - images angled to the right will display a high-quality
texture on the left and vice versa. Therefore, the good-quality areas of the textures
can be merged into a single cohesive texture.

To generate complete UV textures, we select the second, sixth, and eighth images
- roughly corresponding to horizontal angles at -35°, 0°and 35°- and combined into
a single UV texture as follows:

• Select the left horizontal third of the first image, the central third of the second
image, and the right third of the final image. Separate them into three partial
images.

• Calculate the center point of the left and right images, to be used later on.

• Overlay the central image onto the center of the left image; then, overlay the
central image onto the center of the right image. OpenCV’s seamlessClone
function, a Poisson blending algorithm (Pérez, Gangnet, and Blake, 2003), is
used to seamlessly combine the images.

• Combine the left and right images into a single texture, once again using Pois-
son blending to smooth out any possible edges.

• Overlay the central image onto the texture through a final iteration of Poisson
blending. This removes any vertical seams or variations in lighting found in
the first two blending rounds.

• Serialize and save the final result.

Full source code for this algorithm is provided in Appendix A. 521 poor-quality
textures are manually discarded at this stage, usually due to GAN artifacts being
overlaid onto the leftmost or rightmost images. The result is a final dataset of 99381
UV textures at 192× 192 resolution.

3.4 UV texture completion

Once our dataset of ground truth UV textures is available, we move on to the second
phase of our work - training an inpainting GAN that, given a partially completed
texture and a UV mask, fills in the occluded regions with a best possible estimation.
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FIGURE 3.3: Several real-world occlusion masks used during model
training.

As the basis for this inpainting GAN, we have used deepfillv2, an implementa-
tion of the gated convolution-based pipeline created by Yu et al., 2019. The most
notable feature of this model is gated convolution: a convolution function that takes
into account both masked and unmasked areas of an image as described in chap-
ter 2. Rather than the SN-PatchGAN loss used by the original paper, the authors
opt to use a modified WGAN-GP, or Wasserstein GAN loss (Arjovsky, Chintala, and
Bottou, 2017). Normally, Wasserstein distance measures the difference between two
probability distributions, being interpreted as the minimal amount of ’effort’ needed
to convert one distribution to another. Within the context of a GAN, it tries to min-
imize the distance between the distributions of real and fake samples. The authors
have shown this loss to result in more stable training than Kullback–Leibler and
Jensen–Shannon divergence as described in the original implementation of a GAN
(Weng, 2019).

One notable modification to the initial pipeline is the algorithm used for gener-
ating masks. In order to properly adapt to real-world data, masks used while train-
ing the model should be, to some extent, randomized to avoid overfitting but also
sufficiently similar to those found in real-world use-cases. The free-form inpaint-
ing paper and its implementation introduce an algorithm that randomly generates
masks during training by drawing several random straight lines and smoothing out
their intersections. However, occlusions on a real-world UV texture are likely to be
concentrated on one side of the image and feature much sharper edges than masks
produced by the randomization algorithm.

To mitigate this issue, we first introduce an algorithm to convert incomplete UV
textures generated by 3DDFA to masked images rather than interpolated projec-
tions. We achieve this by masking parts of the original photograph that are not
considered part of a face and, as such, are likely projected to background noise. Af-
terwards, we generate 1000 partially textured UV textures that are not used during
the main training loop and extract their masked regions as 192x192 images, where
white pixels denote unmasked areas, and black pixels signify masked areas. During
training, we modify the random mask generation function to set an 80% chance of se-
lecting a real-world mask and a 20% chance of falling back to the original inpainting
generation function. Additionally, a set of hyperparameters found in Appendix B is
used, with alterations to the number of epochs, GAN loss and loss weights.

3.5 End-to-end 3D model reconstruction

After the GAN is trained and evaluated, we modify the 3DDFA face reconstruction
pipeline to output full 3D head textures. To do this, we introduce two custom steps
into the facial reconstruction pipeline as follows:

• A single in-the-wild image is received as an input for the timeline.
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FIGURE 3.4: A sample from the complete UV texture dataset, contain-
ing merged textures from three angles of Figure 3.2.

• The dlib (King, 2009) face reconstruction library is used to detect a face on the
image and output a bounding box, defined as a four-point rectangle. Based on
this bounding box, the photograph is cropped to the face only.

• Using the pre-trained MobileNetV1 model, 3DDFA outputs a set of parameters
for the Basel Face Model 3DMM. Based on these, we predict 68 landmarks
defined by the 3DMM (denoting the face, eyes, and ears) and project them
onto the image.

• Rather than outputting a partially interpolated UV texture, we use the 68-landmark
projection to crop out the photograph to only those points found on the 3D face mesh
directly. This is used to output a UV texture where the facial regions that would
otherwise be interpolated are instead left masked.

• Both the masked UV texture and the mask itself are passed to the deepfillv2 GAN model
as inputs. Using the model, we predict a complete UV texture (defined as the output of
the model’s rough layer) and save it as an image of the same resolution as the inputs.

• The 3D model and UV textures are returned as joint outputs of 3DDFA and
deepfillv2. Additional visualization-related information such as predicted pose,
image depth, and PNCC are saved as needed. The combination of the 3D
model and textures can be visualized in Meshlab or similar 3D modelling soft-
ware.
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Chapter 4

Training and Evaluation

4.1 Training and computational details

To generate the dataset used for the inpainting network, we have first generated 1.1
million images, then converted them to partial UV textures based on the 3DDFA
pipeline. On a GTX 1070 GPU, the image generation step took 6.5 hours of training,
while the combination of UV texture generation and Poisson blending has been a 36-
hour-long process. Our version of the 3DDFA pipeline has been modified to enable
batch training - as such, we were able to process the images in batches of size 8,
notably speeding up the process.

The modified version of the deepfillv2 image inpainting pipeline has been trained
for 20 epochs on a single RTX A6000 GPU, using 99,368 images of size 192× 192 as
a training set. We have opted to use WGAN as the baseline architecture for train-
ing, setting a generator learning rate of 10−4 for the generator and 4× 10−4 for the
discriminator; this learning rate has been decayed by a factor of 2 on the 10th epoch.

4.2 Quantitative results

The evaluation of our model is primarily focused on qualitative results. To the best
of our knowledge, no inpainting GAN similar to ours is publically available for com-
parison purposes and, as such, we cannot compare our inpainted textures with those
generated by other pipelines. However, we do measure GAN losses on a test set of
500 images. The results below are interpreted as follows:

1. Mask L1 loss - in accordance with the original paper, the deepfillv2 imple-
mentation features a coarse-to-refined architecture, where an initial first result
is further refined by a second refinement layer and returned as the final input.
First mask L1 loss denotes the loss of the coarse layer mask, while the second
mask L1 loss - that of the refined layer. Interestingly, the refinement layer did
not lead to significant improvements on the resulting textures and, in fact, in-
creased the number of visual artifacts on many results; as such, the ’rough’ first
layer results are used further in this section and in the final pipeline.

2. D loss - The overall loss between the real and fake scalar images generated by
the GAN.

3. GAN loss - The GAN loss between the real and fake probability distributions.
In our pipeline, the 1-Wasserstein distance is used as a probability distribution
difference measure.
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TABLE 4.1: Quantitative results of our final model (20 epochs, batch
size 50).

Metric Value
First mask L1 loss 1.36%
Second mask L1 loss 2.02%
D Loss 2.17%
GAN Loss 0.8474
Perceptual loss 7.09%

4. Perceptual loss - The L1 loss between deep semantic feature maps of the VGG-
16 network; essentially, a patch-level L1 loss rather than a function pertaining
to the entire image.

4.3 Qualitative results

The results of our network, tested on a set of synthetic UV textures that were not
used for training, are presented below. The first part of each image represents the
ground truth UV texture, the second - a masked texture, and the third displays the
generator’s "rough layer" output, which is also used as our final result.

From these, we can observe the following patterns:

• On results with relatively small masks, the model inputs are close to indistin-
guishable from the ground truth textures: skin color, texture, and lighting are
all successfully extended by the model. Ear textures are successfully generated
from scratch, and despite the jagged artifact-like appearance of the masks, no
trace of their rectangular patterns is left on the final image.

• With medium-sized masks, the model still performs well with certain caveats.
If a large portion of the face is missing, a "mean face" that does not preserve as
many details as the original texture yet accurately mirrors the visible portion
of the texture. If some part of the hair is unmasked, the overall hairstyle is
generally preserved; otherwise, it is interpreted as a more simple, diagonal
"mean hair." However, there are few to no instances where the model generates
an inappropriate or unrealistic face inpainting.

• Perhaps most surprisingly, the model is capable of generalizing well on images
where 40− 50% of the image is occluded - this is common if a photograph is
taken at an extreme side angle. It successfully reconstructs entire eye details,
ears and hair with no prior reference largely by mirroring the visible texture.
However, at this stage of occlusion, face color is somewhat distorted into a
common beige mean and does not always match the original.
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FIGURE 4.1: A sample of results on the test set that were recon-
structed from small masks (those obscuring < 20% of an image)
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FIGURE 4.2: A sample of results on the test set that were recon-
structed from medium-sized masks (those obscuring between 20%

and 40% of an image)
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FIGURE 4.3: A sample of results on the test set that were recon-
structed from large masks (those obscuring > 50% of an image)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The main goal of this thesis project was to enhance a typical 3D head reconstruction
pipeline to be able to recreate a fully textured head model. To that end, the main
steps that had to be undertaken were to create a large-scale database of UV textures
of a size suitable for training GANs and other DNNs and train an inpainting network
based on this database to be able to convert incomplete textures into complete ones.

During the dataset generation step, we have found that only a tiny percentage
(<0.8%) of all generated images had to be rejected due to visual artifacts or missing
facial detection, and the UV textures look overall natural and seamless despite the
use of Poisson blending. The inpainting network itself has successfully managed to
recreate facial details, including the finer details of the eyes and lips, even on masks
as large as 40-50% of an image. The benchmark results for most inpainting networks
use masks totaling 10-20% of the image, making this a surprisingly good result.

One notable limitation of our dataset is its tendency to generate generally attrac-
tive, "celebrity-looking" adult faces, as it has used a generative network pre-trained
to on the Celeb Face A dataset. If tested on data with people of uncommon eth-
nicities or ages, the model may not successfully recreate finer facial details such as
wrinkles or multicolored hair. Given additional "in-the-wild" photo sets a generative
GAN can be trained on, it is possible to pass them the ’multiple images - multiple
UV textures - single UV texture’ generation pipeline and increase the overall repre-
sentativeness of our model.

Overall, we have shown that our approach to face texture recreation can be suc-
cessfully used as part of a face reconstruction pipeline. Both our collected dataset
and the pre-trained model can be used as a baseline for further research in this sub-
ject area.

5.2 Future work

Given time and opportunity for additional improvement, there are several potential
improvements and directions for further work on this project:

1. Additional datasets and data sources. While the EigenGAN network used as
a base for our synthetic data was pre-trained on the Celeb Face A dataset, it is
not limited to this dataset alone - an alternative model for the Danbooru2019
anime dataset is provided by the researchers, though its subject matter is out-
side the scope of in-the-wild photography. Nevertheless, other large-scale face
datasets such as Flickr-Faces-HQ (Karras, Laine, and Aila, 2019) or UMD Faces
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(Bansal et al., 2017) can be used as a seed for the generative network to gen-
erate, for instance, non-"celebrity" photographs at a variety of different angles
and increase the overall robustness of our model.

2. Alternative face reconstruction pipeline. The 3DDFA pipeline has been cho-
sen largely for the quality of its partially generated UV texture, as well as ease
of implementation and publically released network weights. Other face recon-
struction pipelines meeting these criteria can be considered in its place - these
include 3DDFA v2 (Guo et al., 2021), RingNet (Sanyal et al., 2019c) and DECA
(Feng et al., 2020). However, all of these pipelines will need to be extended
with a method of extracting UV textures from the input image, as this capabil-
ity is not provided out of the box.

3. Experiments with different inpainting networks. Alternatives to the deep-
fillv2 pipeline such as the High-Resolution Image Inpainting GAN (Yi et al.,
2020) may be used to improve the quality of the generated textures, and quan-
titative comparisons can be made between several different networks working
on the same images and masks after a similar training time.
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Appendix A

Partial texture blending algorithm

import numpy as np
import cv2 as cv

def blend_textures(left, center, right):
# Take the middle third part from the central image
center_mid = np.array_split(center, 3, axis=1)[1]

# Define mask & center point for seamlessClone
black = np.full(center_mid.shape, 0, dtype = np.uint8)
white = np.full(center_mid.shape, 255, dtype = np.uint8)
mask = np.concatenate([black, white, black], axis=1)
center_point = (left.shape[1]//2, left.shape[0]//2)
center_masked = np.concatenate([black, center_mid, black], axis=1)

# Overlay center middle onto left image, then right image
im_clone1 = cv.seamlessClone(center_masked, left, mask,

center_point, cv.NORMAL_CLONE)
im_clone2 = cv.seamlessClone(center_masked, right, mask,

center_point, cv.NORMAL_CLONE)

# Merge left & right halves of the results
clones_with_seam = np.concatenate([

np.array_split(im_clone1, 2, axis=1)[0],
np.array_split(im_clone2, 2, axis=1)[1]

],axis=1)

# Overlay center middle again to correct the seam in the middle
clones_without_seam = cv.seamlessClone(center_masked,

clones_with_seam,
mask,
center_point,
cv.NORMAL_CLONE)

# Get final result
stitched_imgs.append(clones_without_seam)
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Appendix B

DeepFill GAN Training
Hyperparameters

TABLE B.1: Hyperparameters used to train the deepfillv2 model.

Metric Description Value
epochs Number of epochs the model is trained for 40
batch_size The number of images processed in a single batch 50
lr_g Generator learning rate 1× 10−4

lr_d Discriminator learning rate 4× 10−4

b1 First decay parameter β1 used in the Adam optimizer 0.5
b2 Second decay parameter β2 used in the Adam optimizer 0.999
weight_decay Weight decay in the Adam optimizer; left unused 0
lr_decrease_epoch The epoch at which learning rate will be decreased 10
lr_decrease_factor The factor to decrease learning rate by 0.5
lambda_l1 The relative weight of L1 loss 100
lambda_perceptual The relative weight of perceptual loss 10
lambda_gan The relative weight of WGAN loss 10
in_channels The number of input network channels (3ximage + 1xmask) 4
out_channels The number of output network channels (3ximage) 3
latent_channels The number of latent network channels 64
pad_type The padding to be used in tensors zero
activation The activation function used by the network relu
init_type The function to be used for initializing network weights xavier
init_gain The base gain parameter of the initialization function 0.02
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