
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Automated Fact-checking for Wikipedia

Author:
Mykola TROKHYMOVYCH

Supervisor:
Diego SAEZ-TRUMPER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
mailto:trokhymovych@ucu.edu.ua
mailto:diego@wikimedia.org
http://researchgroup.university.com
http://department.university.com


ii

Declaration of Authorship
I, Mykola TROKHYMOVYCH, declare that this thesis titled, “Automated Fact-checking
for Wikipedia” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:



iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Automated Fact-checking for Wikipedia

by Mykola TROKHYMOVYCH

Abstract

The incoming flow of information is continuously increasing along with the dis-
information piece that can harm society. Filtering unreliable content helps keep
Wikipedia as free as possible of disinformation, making it one of the most significant
reliable information sources. Consequently, Wikipedia’s knowledge base is widely
used for facts verification academic research. The main goal of our work is to trans-
form recent academic achievements into a practical open-source Wikipedia-based
fact-checking application that is both accurate and efficient. We review the primary
NLI related datasets and study their relevant limitations. As a result, we propose the
data filtering method that improves the model’s performance and generalization.
We show that transfer learning for NLI models are not working well, and complete
model training is needed to achieve the best result on a specific dataset. We come up
with an unsupervised fine-tuning of the Masked Language model on field-specific
texts for model domain adaptation. Finally, we present the new fact-checking system
WikiCheck API that automatically performs a facts validation process based on the
Wikipedia knowledge base. It is comparable to SOTA solutions in terms of accuracy
and can be used on low memory CPU instances.

HTTP://WWW.UCU.EDU.UA
http://department.university.com


iv

Acknowledgements
First of all, I would like to thank my supervisor Diego Saez Trumper who helped me
during the whole research. That work would be impossible without his vision, sup-
port, and ardor. Also, I would like to thank my first mentor Alexander Kuzmenko
for sharing his production experience and knowledge at the very beginning of my
data science path. I would like to thank Jooble company for technical support in
my research. I gratefully thank the Ring company for partially supporting my stud-
ies at UCU with Teacher Assistance Stipend. Also, I am very grateful to Ukrainian
Catholic University and, personally, to Oleksii Molchanovskyi.



v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Importance of Fact Checking . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 4
2.1 Problem formulation and datasets review . . . . . . . . . . . . . . . . . 4
2.2 Masked language modeling . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 State of the art solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 End-to-end fact verification solutions . . . . . . . . . . . . . . . . . . . . 6

3 Data exploration 9
3.1 General purposes NLI datasets: SNLI and MNLI . . . . . . . . . . . . . 9
3.2 Wikipedia specific datasets: WIKIFACTCHECK-ENGLISH and FEVER 11
3.3 NLI datasets review summary . . . . . . . . . . . . . . . . . . . . . . . . 13

4 System architecture 14
4.1 Application design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Model level one. Wikipedia search API . . . . . . . . . . . . . . . . . . 15

4.2.1 Solution introduction. . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Candidates selection validation. . . . . . . . . . . . . . . . . . . 15

4.3 Model level two. Natural language inference model . . . . . . . . . . . 16
4.3.1 General model architecture . . . . . . . . . . . . . . . . . . . . . 16

5 Experiments and validation 18
5.1 Model level one. Improving the performance of search . . . . . . . . . 18

5.1.1 Improving performance of search . . . . . . . . . . . . . . . . . 18
5.1.2 Using NER models for performance tuning. . . . . . . . . . . . 19
5.1.3 NER experiments results . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.4 Limitations and alternatives . . . . . . . . . . . . . . . . . . . . . 21

5.2 Model level two. Building sentence-based NLI model. . . . . . . . . . . 21
5.2.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Masked language models. Efficiency testing . . . . . . . . . . . 21
5.2.3 Sentence embeddings creation . . . . . . . . . . . . . . . . . . . 22
5.2.4 Initial NLI models building. Comparing with SOTA . . . . . . . 23



vi

5.2.5 Masked language models unsupervised fine-tuning . . . . . . . 24
5.2.6 Performance on other datasets and transfer learning approach . 24

5.3 Building Wikipedia domain-specific NLI model . . . . . . . . . . . . . 26
5.3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 Model training and validation . . . . . . . . . . . . . . . . . . . 27

5.4 Analyzing models stability. Training on filtered data . . . . . . . . . . . 29
5.4.1 Training on filtered data. Experiments with FEVER . . . . . . . 29
5.4.2 Model performance depending on the length of text. FEVER

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 WikiCheck: A complete Fact-Checking system based on Wikipedia . . 31

5.5.1 Adapting model for production . . . . . . . . . . . . . . . . . . 31
5.5.2 Difference from SOTA solutions . . . . . . . . . . . . . . . . . . 32
5.5.3 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.4 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FEVER Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusions and Future Work 37
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39



vii

List of Figures

3.1 Distribution of length of hypothesis in training dataset of SNLI (left
picture) and MNLI (right picture) . . . . . . . . . . . . . . . . . . . . . . 10

3.2 SNLI dataset top-15 the most frequent hypothesis and their classes
counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Distribution of length of sentences across datasets (left picture), rate
of sentences with punctuation (right picture) . . . . . . . . . . . . . . . 13

4.1 Automated fact checking software architecture. . . . . . . . . . . . . . . 14
4.2 Model one validation process and example. . . . . . . . . . . . . . . . . 16
4.3 Sentence based Siamese classifier with BERT encoder. . . . . . . . . . . 17

5.1 BERT-like models encoding efficiency. . . . . . . . . . . . . . . . . . . . 22
5.2 Example of input and output for masked sentence. . . . . . . . . . . . . 24
5.3 Confusion matrix for bart-base model (cleaned hypothesis training and

validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Classes distributions before and after filtering. . . . . . . . . . . . . . . 29
5.5 Hypothesis length (FEVER) vs model’s accuracy. . . . . . . . . . . . . . 30
5.6 Fact Checking system flow. . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Fact Checking system flow for FEVER validation. . . . . . . . . . . . . 34
5.8 Confusion matrix for WikiCheck model . . . . . . . . . . . . . . . . . . . 35
5.9 Fact Checking system efficiency . . . . . . . . . . . . . . . . . . . . . . . 36



viii

List of Tables

2.1 Literature review, word-based solutions. . . . . . . . . . . . . . . . . . . 6
2.2 Literature review, sentence-based solutions. . . . . . . . . . . . . . . . . 7
2.3 Top FEVER task solutions review . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Samples from MNLI and SNLI datasets . . . . . . . . . . . . . . . . . . 9
3.2 Samples from WIKIFACTCHECK-ENGLISH dataset . . . . . . . . . . . 11
3.3 FEVER data sample. Article linking. . . . . . . . . . . . . . . . . . . . . 12
3.4 FEVER data sample. SNLI-style relation dataset. . . . . . . . . . . . . . 12
3.5 NLI datasets comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Comparing Model one configurations performance . . . . . . . . . . . 20
5.2 Experiments results on SNLI datasets . . . . . . . . . . . . . . . . . . . 24
5.3 Training on SNLI dataset and testing on SNLI and MNLI. . . . . . . . . 25
5.4 Training on MNLI dataset and testing on SNLI and MNLI. . . . . . . . 25
5.5 Full training on specific dataset vs. training on SNLI and classifier

fine tuning on FEVER and MNLI . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Training on original FEVER dataset . . . . . . . . . . . . . . . . . . . . . 27
5.7 Training on FEVER dataset with cleaned hypothesis . . . . . . . . . . . 28
5.8 Training model on filtered FEVER dataset . . . . . . . . . . . . . . . . . 30
5.9 Complete fact checking system FEVER accuracy . . . . . . . . . . . . . 34
5.10 Fact checking system efficiency, seconds . . . . . . . . . . . . . . . . . . 36



ix

List of Abbreviations

NLP Natural Language Processing
NLI Natural Language Inference
BERT Bidirectional Encoder Representations from Transformers
LSTM Long short-term memory
USE Universal Sentence Encoder
MLM Masked Language Model
MLP Multilayer Perceptron
SOTA State-of-the-Art
TF-IDF Term frequency–inverse document frequency
POS Part-of-speech
API Application Programming Interface
NSP Next Sentence Prediction
SRL Semantic Role Labelling
GLUE General Language Understanding Evaluation
SNLI Stanford Natural Language Inference (dataset)
MNLI MultiGenre NLI (dataset)
FEVER Fact Extraction and Verification (dataset)
CV Computer Vision
AR Average Recall
NER Named-entity recognition
CPU Central processing unit
GPU Graphics processing unit
NN Neural network
VPS Virtual private server
RAM Random-access memory
R REFUTES
S SUPPORTS
NEI NOT ENOUGH INFO



x

Dedicated to our bright future



1

Chapter 1

Introduction

1.1 Importance of Fact Checking

Disinformation can influence elections, stock prices, and even how we treat our-
selves for a virus. False facts are spreading faster than the truth and can negatively
impact society and business (Vosoughi, Roy, and Aral, 2018).

Social networks allow people to post information wherever and whenever they
want. (Bovet and Makse, 2019) showed that in 2016, Trump supporters’ activity in-
fluenced the dynamics of the top fake news spreaders, which impacted US presiden-
tial elections. In 2013, $130 billion in stock value were lost just because of one fake
tweet about an "explosion" that injured Barack Obama1.

Manual fact-checking is time-consuming and can come too late. Automation
reduces time to "stick" in the audience’s minds (Cazalens et al., 2018). It can prevent
propaganda by filtering manipulation and false facts in nearly real-time. That is the
reason why researchers are working on creating Automated Fact-Checking systems
using Wikipedia as a ground-truth knowledge base (Thorne et al., 2018c; Nie, Chen,
and Bansal, 2018; Yoneda et al., 2018; Hanselowski et al., 2018). However, most of
that work remains as academic research. That is why usually people proceed with
manual fact-checking and usually use Wikipedia as the initial source of open and
valid information (Heilman and West, 2015).

Wikipedia is the world’s largest repository of human knowledge. It makes this
website the most visited knowledge base on the planet according to Similarweb2.
Wikipedia became one of the resources in the global web dedicated to fighting
against fake news, developed numerous practices and policies for information vali-
dation and verification by an army of community fact-checkers (McDowell and Vet-
ter, 2020). Our work is developing an end-to-end fact-checking system that relies on
the Wikipedia knowledge base, so anyone can verify the fact by providing an initial
claim.

We are using best practices and results from the Natural Language Inference
(NLI) domain to automate the usual human fact verification process with the help
of Wikipedia encyclopedia articles. Natural Language Inference (NLI) model aims
to predict an entailment relation label given a claim-hypothesis pair. The goal is to
determine whether the truth of the hypothesis follows from the truth of the premise
(claim) (Dagan, Glickman, and Magnini, 2006). We consider the NLI model a core
block of an automated fact-checking system and set the goal of making it as accurate
as possible.

1Forbes, Can ’Fake News’ Impact The Stock Market? http://bit.ly/fake_news_impact.
2Similarweb. Top Dictionaries and Encyclopedias. http://bit.ly/wiki_similarweb.

http://bit.ly/fake_news_impact
http://bit.ly/wiki_similarweb


2 Chapter 1. Introduction

1.2 Motivation

Automated fact-checking and NLI has a significant social impact, and it is currently
developing very fast in academia. However, there is a gap between research achieve-
ments and applicability in real life. This project aims to review the state-of-the-art so-
lutions to the NLI problem, reproduce the results, and develop an end-to-end open-
source tool to perform automated fact-checking. An essential part of our research
is measuring the efficiency of models as a crucial part of real-life applications. We
intend to experiment with different model configurations to reveal their strengths
and weaknesses and select the best configuration for our specific case.

Finally, we want to contribute to the community with the open-source tool for
automated fact-checking based on open Wikipedia knowledge. We believe such an
accessible system will help to fight against disinformation and fake news.

1.3 Contributions

1.3.1 Open problems

Previous works in NLI field (Zhang et al., 2020; Liu et al., 2019a; Chen et al., 2016;
Kiela, Wang, and Cho, 2018; Talman, Yli-Jyrä, and Tiedemann, 2019) were more con-
centrated on accuracy of the models. However, the speed of the application is crucial
for its practical usage. Also, most SOTA solutions are implemented for GPU usage,
require significant computational resources, or do not have published code. It makes
it difficult to reproduce the results and use models in practice. The reproducibility,
efficiency, and accuracy of NLI models remain an open problem.

Transformer-based models made a big boost for all NLP tasks, including NLI.
SOTA results presented by Zhang et al., 2020; Liu et al., 2019a are based on Masked
Language Models (MLM). However, these solutions present a word-based approach,
when the most recent research for sentence-based NLI models like Chen et al., 2016;
Kiela, Wang, and Cho, 2018; Talman, Yli-Jyrä, and Tiedemann, 2019 are not using
MLM for modeling. Moreover, sentence-based models are less accurate compared
to word-based models on the SNLI dataset3. To sum up, one of the open challenges
is using transformers for sentence-based NLI models and improving their accuracy.
At the same time, using sentence-based models have crucial efficiency benefits for
general automated fact-checking application, that will be shown later in Sections 4.3
and 5.5.1

Another open problem is the scarcity of high-quality NLI datasets for model
training. Most of the real-world datasets for fact-checking are small or incomplete
to train machine learning models. Although there are relatively big (semi)synthetic
datasets, they reported having many artifacts left by crowd workers that were cre-
ating them (Gururangan et al., 2018). Creating a new dataset is costly as it requires
manual annotation.

Moreover, most benchmark datasets are from the general knowledge domain.
There is an open question of practical usage of the models trained on that data for a
specific field like Wikipedia.

One more open problem is a software architecture for end-to-end fact-checking.
The general system and each independent stage need to deal with the trade-off
between speed and accuracy. At the same time, this process requires deep analy-
sis of vast amounts of data. Some possible approaches are described as a solution

3SNLI published results comparison. https://nlp.stanford.edu/projects/snli/.

https://nlp.stanford.edu/projects/snli/


1.4. Thesis structure 3

for the FEVER task presented by Nie, Chen, and Bansal, 2018; Yoneda et al., 2018;
Hanselowski et al., 2018. Although they show an end-to-end approach for fact veri-
fication problem solving, the efficiency and usability of such solutions for real-world
applications remain an open question.

1.3.2 Research goals

The main goal of the research is to transform academic research on Automated Fact-
Checking into a practical open-source application used for fact verification using the
Wikipedia knowledge base. We formalized and stated the following research tasks
that will help us to achieve our main goal:

1. Analyze previous works in the field of Automated Fact-Checking and Natural
Language Inference.

2. Review related datasets that can be used for model training. Define the spe-
cific features and limitations of NLI data, and design a methodology for data
quality improvement.

3. Develop sentence-based NLI models and compare their accuracy and effi-
ciency with SOTA models.

4. Test the NLI models generalization ability by training and testing models using
datasets from different domains.

5. Build domain-specific NLI model. Formulate unsupervised learning and
transfer learning solutions for models domain adaptation.

6. Implement an open-source fact-checking API based on the best NLI model.
Compare its performance with SOTA solutions. Measure and analyze its effi-
ciency.

In summary, this work contributes with an end-to-end open-source solution for
Automated Fact-Checking that builds on previous research but focusing on making
it usable in real-life scenarios, and more specifically, using Wikipedia as a knowledge
base for fact-checking.

1.4 Thesis structure

In this work, we start revising relevant research on the field of Automated Fact-
Checking. Next, we proceed with the exploratory data analysis, where we review
NLI problem-related datasets. In the next chapter, we present our solution architec-
ture describing their components and implementation details. Then, we describe our
experiments for all parts of the automated fact-checking system and general appli-
cation testing. All experiments are aimed to answer our research questions. Finally,
we summarize our results and present the main conclusions of this work.



4

Chapter 2

Related work

In this chapter, we organize related work in four major categories: (i) fact-checking
problem formulation and review; (ii) language modeling; (iii) NLI state of the art
solutions; (iv) End-to-end fact verification solutions. For each paper, we review the
main contribution and realization details. Such analysis allows us to have a general
overview of that topic and the most recent results.

2.1 Problem formulation and datasets review

The problem of fact-checking was initially used in journalism as an essential part of
news reporting. One of the first datasets published on this domain consisted of 221
labeled claims - related to politics - checked by Politifact1 and Channel4 with related
sources of evidence (Vlachos and Riedel, 2014). After that, similar data collection but
much more extensive, containing 12.8K labeled claims from Politifact, was released
by Wang, 2017. However, this can be considered a small collection of data to train
large deep-learning models.

In 2015 SNLI dataset was presented and became the primary benchmark dataset
used for the NLI problem (Bowman et al., 2015). Even though it is not specialized
in specific topics like politics, it is large enough (570K pairs of sentences) to train
large models. SNLI consists of pairs of sentences with relation labels: entailment,
contradiction, or neutral. It is created by crowd workers, showing them a sentence
and asking them to generate three new sentences (hypotheses) for each entailment
class (Bowman et al., 2015). In 2018 the MultiNLI dataset was released, which is
almost the same as SLNI(Bowman et al., 2015), but has improving topics coverage
and complexity of claims (Williams, Nangia, and Bowman, 2017).

As the primary benchmark dataset, SNLI has one crucial drawback: models that
did not even look at the evidence perform well on the NLI task. This behavior is
explicitly reviewed by (Gururangan et al., 2018), where authors reveal linguistic an-
notation artifacts in SNLI. They show specific words in texts which are highly corre-
lated with certain inference classes.

There are also alternatives for SNLI and MNLI. Sathe et al., 2020 release the
WIKIFACTCHECK-ENGLISH dataset (124K triplets of sentences), which consists
of real-world claims from Wikipedia. Similarly, the FEVER dataset presented by
(Thorne et al., 2018a) has a more complex structure based on the Wikipedia dump.
A more detailed description of these four datasets is presented in Chapter 3.

1https://www.politifact.com/

https://www.politifact.com/


2.2. Masked language modeling 5

2.2 Masked language modeling

The most crucial part of a modern NLI solution is language models. The recent
state-of-the-art solutions are built on top of them. Therefore, to create a valuable
NLI model, we also need to review the literature about language modeling. The
most recent language modeling results are based on transformers architecture.

One of the most valued recent contributions to NLP is the BERT architecture,
which stands for Bidirectional Encoder Representations from Transformers (Devlin
et al., 2018). BERT model made a revolution in the NLP field. It significantly moved
state-of-the-art scores for several NLP tasks by presenting new architecture for lan-
guage modeling. It showed point absolute improvement 7.7% on GLUE score (Wang
et al., 2018). The authors present a solution allowing it to be bidirectional and utilize
the masked language model (MLM) and next sentence prediction (NSP) as a pre-
training objective. The MLM training process is built on masking some of the tokens
and predicting them based only on their context (Devlin et al., 2018). Training us-
ing NSP loss is working by choosing the two sentences as training sample, 50% of
the time, one is following another one (labeled as IsNext), then another half repre-
sented by random sentences from the corpus (labeled as NotNext). Training models
with NSP loss is beneficial for NLI problem according to Devlin et al., 2018. Then
RoBERTa model was presented, which improved previous results of BERT. Liu et al.,
2019b introduce a replication study of BERT, their research is built on removing the
NSP loss, using a much bigger dataset for training that consists of 160GB of text, and
increasing the number of pretraining steps from 100K to 500K.

Another relevant work for our research is the Sentence-BERT. Authors present a
way to train sentence embeddings instead of word embeddings using the pretrained
transformer model and Siamese network (Reimers and Gurevych, 2019). This ap-
proach allows the dump of precalculated sentence embeddings, reusing them for
different tasks, improving the model’s efficiency, and making transformer models
like BERT and RoBERTa possible to use in high-load production tasks.

2.3 State of the art solution

We divided SOTA solutions in two groups: (i) sentence-based and (ii) word-based.
The difference is that in the case of a word-based solution, sentences are represented
as a set of word vectors, while in the sentence-based, a single vector is used as a
sentence representation and then used for building the model that will solve the
NLI task. Sentence-based solutions are usually faster, more applicable in real life as
vectors can be cached. However, word-based solutions are more precise. For each
paper, we defined the contribution along with the approach and SNLI score. We
structured this analysis in Table 2.1 and Table 2.2.

Gong, Luo, and Zhang, 2017; Chen et al., 2017 represent models that are not
based on BERT, as were created earlier. However, they present very different ap-
proaches along with good results. When Liu et al., 2019a; Zhang et al., 2020; Pilault,
Elhattami, and Pal, 2020 present results of models based on BERT architecture with
various modifications and learning strategies.

Most of the best sentence-based models are build using LSTM architecture. Also,
we see that scores for those types of models are lower than word-based. However,
such models can be used in production high-load tasks as they are lighter, faster.
Better efficiency of sentence-based models is caused by their ability to cache inter-
mediate results like sentence embeddings and lighter architecture.



6 Chapter 2. Related work

TABLE 2.1: Literature review, word-based solutions.

Name, source Description, contribution Explanation of approach SNLI
Score

Neural Natural
Language In-
ference Models
Enhanced with Ex-
ternal Knowledge
(Chen et al., 2017)

Use external knowledge
from words meaning.
State-of-the-art perfor-
mance with a relatively
small number of parame-
ters of ∼ 4M.

Use information about
synonymy, antonym, hy-
pernym and hyponymy
existance in attention
layer.

88.6

Natural Language
Inference over
Interaction Space
(Gong, Luo, and
Zhang, 2017)

Combines both NLP and
computer vision (CV) ap-
proaches. Based on a high-
level understanding of the
sentence pair relation.

Create a tensor represen-
tation of pairs of texts
using their word embed-
dings, manipulate it to
extract semantic features,
and do the classification.

88.9

Multi-Task Deep
Neural Networks
for Natural Lan-
guage Understand-
ing (Liu et al.,
2019a)

Training BERT model
on multiple natural lan-
guage understanding
(NLU) tasks simultane-
ously, benefiting from a
regularization.

Use BERT model along
with Lexicon encoder,
adding extra informa-
tion about position
and word’s segment.
Fine-tune the model
simultaneously for four
different NLP tasks

91.6

Semantics-aware
BERT for Language
Understanding
(Zhang et al., 2020)

Integrates contextualized
features into language
model. Extend the lan-
guage representation
model with semantics.
State-of-the-art result for
SNLI.

Use semantic role labeling
(SRL) model with BERT
to parse the predicate-
argument structure. Fine-
tune the model separately
for different tasks.

91.9

Conditionally
Adaptive Multi-
Task Learning:
Improving Trans-
fer Learning in
NLP Using Fewer
Parameters & Less
Data (Pilault, El-
hattami, and Pal,
2020)

The latest state-of-the-art
result, using idea and
results of (Liu et al., 2019a).
The current approach to
learning different sets of
parameters while fine-
tuning different NLP tasks.
Demonstrate faster fine-
tuning as most parameters
are frozen and dataset
balanced across different
tasks that reduce data to
around 60%.

Upgrade standard trans-
former architecture
with five additions:
conditional attention,
conditional alignment,
conditional layer nor-
malization, conditional
adapters, and multi-task
uncertainty sampling to
have a specific approach
to each NLP task-saving
unified architecture.

92.1

2.4 End-to-end fact verification solutions

In this section, we review the top solutions presented as the solution for FEVER
Shared Task presented by Thorne et al., 2018c along with end-to-end production
systems. The FEVER challenge was to implement an automated fact verification



2.4. End-to-end fact verification solutions 7

TABLE 2.2: Literature review, sentence-based solutions.

Name, source Description, contribu-
tion

Explanation of approach SNLI
Score

Sentence Em-
beddings in NLI
with Iterative
Refinement En-
coders (Talman,
Yli-Jyrä, and
Tiedemann,
2019)

Hierarchical BiLSTM
model with Max
Pooling for building
sentence embeddings
and further tuning for
NLI task. Present error
analysis.

Use advanced architecture
based on iterative refinement
strategy. Build sentence em-
beddings and then use the
MLP model to use those vec-
tors in NLI task

86.6

Dynamic Meta-
Embeddings
for Improved
Sentence Rep-
resentations
(Kiela, Wang,
and Cho, 2018)

Project utilize dynamic
meta-embeddings for
sentence embeddings
composition and build-
ing further model on
top of them.

Use composition of different
embeddings like Word2Vec
(Mikolov et al., 2013) or fast-
text (Bojanowski et al., 2017).
Learns the weights for the
composition of defined vec-
tors and uses BiLSTM to com-
pose the sentence embed-
dings used for the NLI task.

86.7

Enhanced
LSTM for Nat-
ural Language
Inference (Chen
et al., 2016)

Present carefully de-
signing sequential
inference that outper-
forms complicated
network architectures
and state new state-
of-the-art result for
sentence based models

Use the BiLSTM block to rep-
resent a word and its con-
text and inference compo-
sition before the final pre-
diction. Use Local Infer-
ence Modeling for determin-
ing the overall inference be-
tween these pair of texts.

88.6

system. It differs from standard NLI formulation, as here we need not just clas-
sify relation between two sentences but also pick the evidence (hypothesis) sentence
from a knowledge base. That makes this task more complicated and more close to
the real-world scenario at the same time. We will analyze the top solutions of that
task in this section. As a baseline system presented by Thorne et al., 2018b, most of
the solutions are multistage models that perform document retrieval, sentence se-
lection, and sentence classification. Baseline exploits TF-IDF-based retrieval to find
the relevant evidence and an NLI model to classify the relationship between the re-
turned evidence and the claim. The top scorers present their approach to solve the
problem and improve results. Main ideas of those works presented in comparison
Table 2.3. As we can see, all solutions are very similar but have specific features.

Also, we previously mentioned that there are production solutions that offer fact
validation services like Logically2 or Claimbuster (Hassan et al., 2017). However,
they have crucial drawbacks. For example, the knowledge bases used in these sys-
tems are usually proprietary or unknown. Also, the actual accuracy of systems is not
tested against benchmark datasets. The Logically service is offered as an "automated
fact-checking," but the service mixes manual fact-checkers and some automated pro-
cess.

2Logically AI https://www.logically.ai

https://www.logically.ai


8 Chapter 2. Related work

TABLE 2.3: Top FEVER task solutions review

Name, source Explanation of approach FEVER
Score

FEVER: a large-scale
dataset for Fact Extrac-
tion and Verification
(Thorne et al., 2018b)

Uses tf-idf based retrieval to find the
relevant evidence and an MLP based
NLI model to classify the relationship
between the returned evidence and the
claim.

0.28

UKP-Athene: Multi-
Sentence Textual Entail-
ment for Claim Verifica-
tion (Hanselowski et al.,
2018)

Uses entity linking and WikiMedia search
API for article search. Uses Glove and
FastText embeddings for the NLI model.
Make a detailed analysis of each stage of
the model.

0.61

UCL Machine Reading
Group: Four Factor
Framework For Fact-
Finding (HexaF) (Yoneda
et al., 2018)

Uses four stage architecture adding ag-
gregation logic on top. Uses logistic re-
gression for document and sentences re-
trieval stage.

0.62

Combining Fact Extrac-
tion and Verification
with Neural Semantic
Matching Networks
(Nie, Chen, and Bansal,
2018)

Implemented neural models to perform
deep semantic matching from raw tex-
tual input for document and sentence re-
trieval stages. Added WordNet features
in order to improve NLI model

0.64



9

Chapter 3

Data exploration

The most recent research in the NLP field is strongly bound to data. The SOTA
results are achieved not only because of innovative models but also because of sig-
nificant amounts of data, accurate filtering techniques, and understanding of data
nature. The next step in the research is review and analysis of data to get valuable
insights from them.

As for our research, we considered using multiple datasets for training and vali-
dation. This chapter will review and discuss the primary datasets used to solve the
NLI problem and their characteristics. We divided all datasets into two subgroups:
SNLI and MNLI, and another one are FEVER and WIKIFACTCHECK-ENGLISH.
The first group is standard datasets used as a benchmark for NLI tasks when datasets
from another group represent domain-specific data, which will be used for domain
adaptation. Also, the FEVER dataset has a more complex structure that allows us to
use it for more specific task formulation.

3.1 General purposes NLI datasets: SNLI and MNLI

SNLI and MNLI are the most used benchmark datasets. They allow us to compare
results with the most recent SOTA results, as most recent papers validate them. SNLI
and MNLI datasets consist of claim, related hypothesis, and label, which is either
neutral, contradiction, or entailment (Table 3.1).

TABLE 3.1: Samples from MNLI and SNLI datasets

Dataset Claim Hypothesis Label
MNLI The Old One always com-

forted Ca’daan, except today.
Ca’daan knew the Old
One very well.

neutral

MNLI At the other end of Pennsyl-
vania Avenue, people began
to line up for a White House
tour.

People formed a line at
the end of Pennsylva-
nia Avenue.

entailment

SNLI A man inspects the uniform
of a figure in some East
Asian country.

The man is sleeping contradiction

SNLI An older and younger man
smiling.

Two men are smiling
and laughing at the cats
playing on the floor.

neutral

It is important to mention that all classes are well balanced and have almost the
same amount of samples. We analyzed distributions of the length of three classes’



10 Chapter 3. Data exploration

claims and hypotheses and found that the claims’ length is equally distributed. At
the same time length of the hypothesis are different within different classes. Figure
3.1 shows that the entailment class hypothesis is usually shorter than others. It can
influence the model that could learn the length of a sentence instead of its meaning.
The MNLI dataset situation is much better as distributions of the length of texts
are more balanced than in SNLI, but the neutral class sentences are usually longer.
Moreover, we see that the MNLI hypotheses are larger than SNLI, making it closer
to the real world. We should also mention that MNLI sentences come from different
semantic domains, so this dataset is more generalized than SNLI, which is made of
only image captions (Williams, Nangia, and Bowman, 2017).

In our exploration, we found out the reason why certain words in the hypothesis
are highly correlated with specific classes, as was discussed by Gururangan et al.,
2018. We defined top-15 the most frequent hypothesis used by annotators and ana-
lyzed the classes to which they correspond. We found out that frequent hypotheses
are usually used in either entailment or contradiction class, represented in Figure 3.2.
It is also not natural behavior as the model will learn only the sense of hypothesis in-
stead of the desired relation between claim and hypothesis. In Chapter 5 we analyze
how filtering out such patterns from training will influence the models’ validation
results.

FIGURE 3.1: Distribution of length of hypothesis in training dataset
of SNLI (left picture) and MNLI (right picture)

FIGURE 3.2: SNLI dataset top-15 the most frequent hypothesis and
their classes counts



3.2. Wikipedia specific datasets: WIKIFACTCHECK-ENGLISH and FEVER 11

3.2 Wikipedia specific datasets: WIKIFACTCHECK-
ENGLISH and FEVER

In this section, we review Wikipedia domain-specific datasets. Wikipedia text is cre-
ated in real-life scenarios differing from the artificially created ones mentioned above.
Later, in Chapter 5 we compare the performance of models trained on SNLI and
MNLI applied on the Wikipedia-related ones.

WIKIFACTCHECK-ENGLISH was presented as a large-scale dataset of factual
claims, context, and evidence documents extracted from the English Wikipedia,
along with manually written claims refuted by the evidence documents (Sathe et
al., 2020). The most relevant part for our research are triplets of context, the refuted
claim and valid claim as they will allow us to use it in classical formulation when
we have to classify relation. However, after initial investigation, we found out that
most of the sentences are either unrelated or too easy to classify, having only one
token changed. Also, we revealed that such cases are not minor and could not be
automatically filtered out. Such examples are presented in Table 3.2. We link each
example with an ID that corresponds to the line number in the training file, which
can be found in the official Github repo1. As a result of the initial analysis of the
WIKIFACTCHECK-ENGLISH dataset, we decided not to proceed with it for our
further research.

TABLE 3.2: Samples from WIKIFACTCHECK-ENGLISH dataset

ID Context True claim Refuted claim
0 A lunar sortie (or lunar sortie

mission ) is a human space-
flight mission to the Moon.

In contrast with lunar
outpost missions, lunar
sorties will be of rela-
tively brief duration.

In contrast with lunar
outpost missions, lunar
sorties will be of rela-
tively long duration.

5 Richard M. Dick Bond (April
23, 1921 – March 25, 2015)
was an American politician
from Washington State.

He served the 6th dis-
trict from 1975 to 1987.

He served the 7th dis-
trict from 1975 to 1987.

13 Liometopum venerarium is
an extinct species of Miocene
ants in the genus Liome-
topum.

Described by Heer
in 1864, fossils of the
species were found in
Switzerland.

Described by Heer
in 1864, fossils of the
species were brought
to Switzerland.

FEVER dataset consists of 185,445 claims generated by altering sentences ex-
tracted from Wikipedia and subsequently verified without knowing the sentence
they were derived from. The claims are classified as SUPPORTED, REFUTED, or
NOT-ENOUGH-INFO by annotators (Thorne et al., 2018a). This dataset differs from
other previously discussed, as it represents another problem formulation because it
not only implies classifying the relation between two pieces of text but also linking
the given claim with corresponding evidence in a knowledge base. That knowl-
edge base is a Wikipedia dump. This is a more generalized problem setting that is
very close to the real-life scenario, simulating what humans could do to fact-check
a given claim. This dataset is the main validation for our research as it is of good
quality, represents written speech, and Wikipedia domain-specific.

1WIKIFACTCHECK-ENGLISH Github repo https://github.com/wikifactcheck-english/
wikifactcheck-english.

https://github.com/wikifactcheck-english/wikifactcheck-english
https://github.com/wikifactcheck-english/wikifactcheck-english


12 Chapter 3. Data exploration

TABLE 3.3: FEVER data sample. Article linking.

Claim
Evidence Articles

Nikolaj Coster-Waldau worked with
the Fox Broadcasting Company.

Fox_Broadcasting_Company,
Nikolaj_Coster-Waldau

Hermit crabs are arachnids. Arachnid, Hermit_crab, Decapoda
There is a capital called Mogadishu. Mogadishu

TABLE 3.4: FEVER data sample. SNLI-style relation dataset.

Claim
Hypothesis Label

Roman Atwood is a
content creator.

He is best known for his vlogs, where he
posts updates about his life daily.

SUPPORTS

Adrienne Bailon is an
accountant.

Adrienne Eliza Houghton (née Bailon; born
October 24, 1983) is an American singer-
songwriter, recording artist, actress, dancer,
and television personality. née name at birth
singer-songwriter

REFUTES

Selena recorded music. Selena began recording professionally in
1982. Selena Selena (film)

SUPPORTS

The original dataset consists of a claim, label, and evidence link. In case the label
is NOT ENOUGH INFO, there is no corresponding link. The evidence link is the
name of the Wikipedia article with the number of the sentence in that article. Also,
we have the actual Wikipedia dump that allows us to find out the evidence sentence.
In our case, we used the FEVER dataset to build two types of datasets: The first one
consists of a claim and article link as in Table 3.3. The second one contains a claim,
corresponding evidence sentence from Wikipedia dump and label. That is the SNLI
style of the dataset with only one difference that we have two classes: REFUTES and
SUPPORTS—the sample of such data presented in Table 3.4.

Also, we review FEVER dataset characteristics and got some insights that dif-
ferentiate it from SNLI and MNLI. First of all, the FEVER dataset has a different
distribution of sentence length. It can be found in Figure 3.3 (left part) that claims
are usually short when the evidence sentences are longer than in MNLI and SNLI.

FEVER hypotheses are sentences from the summary section of related articles
taken from the Wikipedia dump. Usually, these texts include most of the main infor-
mation about a related topic that explains their big irregular length. Also, Wikipedia
dump sentences include tags to related named entities at the end of a sentence. For
example, the sentence "Selena began recording professionally in 1982.\tSelena\tSelena
(film)" includes tags Selena and Selena (film). These tags directly influence the length
of the sentence and potentially add extra noise to it. We consider filtering these arti-
facts in Section 5.3.2.

Also, an interesting pattern found that the dataset has a different rate of punctua-
tion signs in sentences. In the Figure 3.3 (right part) we showed the ratio of sentences
that include punctuation (not including "." and ","). This also differentiates FEVER,
as almost 65% of its hypothesis include punctuation. Interesting that SNLI is almost
free of punctuation at all.



3.3. NLI datasets review summary 13

FIGURE 3.3: Distribution of length of sentences across datasets (left
picture), rate of sentences with punctuation (right picture)

3.3 NLI datasets review summary

In order to summarise our analysis, we made a comparison table 3.5 that contains a
brief summary of datasets reviewed in this section.

TABLE 3.5: NLI datasets comparison

Dataset
name

Domain Number of
samples

Classes Description

SNLI Image
captions.
(general
domain)

570K sen-
tence pairs

entailment,
contradic-
tion, and
neutral

One of the first good quality
NLI datasets widely used for
benchmarking solutions.

MNLI Wide range
of styles,
degrees of
formality,
and topics.
(general
domain)

433K sen-
tence pairs

entailment,
contradic-
tion, and
neutral

Data are formatted in the
same way and comparable in
size with SNLI. It includes
a more diverse range of text
domains (Williams, Nangia,
and Bowman, 2017).

WIKI
FACT
CHECK
ENGLISH

Wikipedia
texts.
(specific
domain)

124K
triplets +
34K manu-
ally refuted
claims

True, Re-
futed

The dataset presented as
a set of actual claims and
evidence, that differ from
synthetic SNLI and FEVER
(Sathe et al., 2020).

FEVER Wikipedia
texts.
(specific
domain)

145,449 of
train and
19,998 of
test

not enough
info, sup-
port, refute

It is generated by altering
sentences from Wikipedia.
It stimulates claim verifica-
tion against textual sources
(Thorne et al., 2018a).



14

Chapter 4

System architecture

One of our goals is to implement an open API that will automatically perform the
fact validation process. In this chapter, we propose our fact-checking system ar-
chitecture. We decompose the application into two major parts of the candidates
selection model (Model level one) and NLI classification model (Model level two).
We present a possible approach to building and validating each of the models.

4.1 Application design

The main idea of our approach is to reproduce the human way to do the fact-
checking process. In such formulation, the initial input is usually a claim, which
is the piece of text, that should be checked.

FIGURE 4.1: Automated fact checking software architecture.

Firstly, we try to find related facts, evidence of correctness, or wrongness of such
a claim using trusted sources. Having found hypothetical evidence related to our
claim, we compare these two pieces of text to decide if they demonstrate the same
fact or not. At this stage, we can conclude that the found hypothesis either supports



4.2. Model level one. Wikipedia search API 15

the initial claim, refutes it, or does not relate to it. Having that vision, we propose a
possible architecture of automated fact-checking software (Figure 4.1).

The critical point of our architecture is splitting it into two logical parts. Firstly,
having a claim, we use it to extract related articles that possibly include desired
evidence. We exploit open search API, which copies human behavior of looking for
related information using Wikipedia. Note that we are aware of Wikipedia’s credibil-
ity issues (Saez-Trumper, 2019). However, given its size and openness, Wikipedia is
still one of the most used sources for (pre)research and fact-checking (Tomaszewski
and MacDonald, 2016; Back et al., 2016; Heilman and West, 2015). Here we experi-
ment with query enhancing techniques to improve the search quality. After the first
stage, we have a set of articles that possibly include desired evidence of correctness
or wrongness of the initial claim. We split each article into sentences and pass each
of them to the second stage model. In that phase, having claim and hypothesis sen-
tences, we exploit the NLI classification model to define their relationship and, as a
result, say if our initial claim is correct, incorrect, or we have no related information
in our knowledge base regarding it.

4.2 Model level one. Wikipedia search API

In this section, we discuss the usage of a combination of open-source models. It
is essential to mention that we did not intend to contribute to the domains of full-
text search, named entities recognition, or query enhancing. We reviewed and used
previous research works that helped us achieve our goal to implement an automated
fact-checking system.

4.2.1 Solution introduction.

As it was discussed before, we decided to use Wikimedia API1 as the first level
model used for candidates selection. It allows us to look for up-to-date articles
related to our claim using the official search engine. In 2014 Wikipedia started to
use Elasticsearch as a base of new search infrastructure to all of the wikis2. So, the
first level model performs a full-text search through the whole Wikipedia index.
Although we cannot influence the Wikipedia search engine, which is a significant
limitation of our approach, but we can improve the query itself, which showed an
excellent boost for our task.

4.2.2 Candidates selection validation.

On this stage we used aforementioned FEVER dataset to validate our solution.At
this stage, we are not training an NLI model yet, and we do not risk overfitting;
we use the whole joined FEVER dataset for validation. We use a claim column that
corresponds to the model’s input and an evidence column containing information
about the ground truth Wikipedia page link we desire to get as an output.

That is important to mention that samples with the class NOT ENOUGH INFO
do not include Wikipedia page link, so they were filtered out for this experiment
leaving 123142 rows from joined FEVER dataset. One more important thing is that
the FEVER dataset was collected regarding Wikipedia pages dumped in June 2017.

1WikiMedia API https://www.mediawiki.org/wiki/API:Search.
2Wikimedia moving to Elasticsearch https://diff.wikimedia.org/2014/01/06/

wikimedia-moving-to-elasticsearch/.

https://www.mediawiki.org/wiki/API:Search
https://diff.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://diff.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/


16 Chapter 4. System architecture

At the same time, Wikimedia API returns results from an up-to-date index. It means
that some links could be changed. We ran a script that went through FEVER evi-
dence links and validated their existence to detect such cases. After that process, we
filtered out 5312 (4.3%) more rows with changed or deleted links that we cannot val-
idate. Finally, we obtained 117830 rows of fine-grained test datasets used to evaluate
Model-level one.

The validation process itself is represented in Figure 4.2 with corresponding ex-
ample. The general idea is given a claim we pick up a set of candidate articles using
Wikimedia API. Then we compare the obtained set with ground truth items pro-
vided in the FEVER dataset. We use the Average Recall (AR) metric for results vali-
dation and comparison. The recall for one specific search is calculating as following:

Recall =
true positives

(true positives) + ( f alse negatives)

The AR is just the average of recall metrics for each search. This metric does not con-
sider the negative samples retrieved, but we are interested in all relevant candidates
finding, so the recall works perfectly for our purposes.

FIGURE 4.2: Model one validation process and example.

4.3 Model level two. Natural language inference model

4.3.1 General model architecture

Model level two is the Natural language inference model that is making three classes
classification. It aimed to define exact sentences in predefined candidates’ articles
that are evidence of correctness or wrongness of a given claim. It has three possible
outputs: SUPPORTS, REFUTES, and NEI. We are using the sentence-based model to
have crucial benefits for real-world usage and general solution performance. In this
subsection, we present a general idea of our solution and justify our choices.

The general idea of the presented NLI model is a Siamese network using a BERT-
like model as a trainable encoder for sentences. The model architecture is presented
in Figure 4.3. The idea goes from Conneau et al., 2017a, with the difference that
we are not using multiplication of sentence vectors in concatenation layer, but using



4.3. Model level two. Natural language inference model 17

only original vectors and their absolute difference. The approach is not new, that was
used by Reimers and Gurevych, 2019 for training sentence embeddings, but it was
not presented as an efficient solution for the NLI problem. In our work, we enhance
that approach and use it to build end-to-end fact-checking API for Wikipedia.

FIGURE 4.3: Sentence based Siamese classifier with BERT encoder.

In our problem formulation, we need to compare one claim with multiple hy-
pothesis sentences. The sentence-based model approach enables to calculate claim
embedding only once and reuse it for every hypothesis. Also, embeddings for the
hypothesis can be batch processed and precalculated in advance. The presented ar-
chitecture enables to cache intermediate results of embeddings and reuse them for
online prediction. In the following sections, we present the results of our experi-
ments with different BERT-like encoders and training strategies.



18

Chapter 5

Experiments and validation

This Chapter describes the experiments done for different configurations of models
at all levels along with general architecture performance. Here we present results
of experiments using Named entity recognition (NER) models for search improve-
ment, different approaches to building sentence-based models, training and validat-
ing models using different datasets, and comparing results with SOTA solutions.
As for our architecture, we use the model represented in Figure 4.3. We will also
experiment on how different masked language models influence the accuracy and
efficiency of the solution. Finally, we will test our approach on the FEVER shared
task and compare results with top solutions.

5.1 Model level one. Improving the performance of search

Model level one goal is selecting candidates for further analysis. It is a crucial build-
ing block of the final solution as, without well-picked candidates, we will not get
good enough results. In this section, we review our experiments aimed to improve
the basic approach to candidate selection. The detailed validation process, including
data and metrics used, was reviewed in Section 4.2.2. So in the following sections,
we concentrate on experiments and results discussion.

5.1.1 Improving performance of search

The first important hyperparameter that we can control for model level one is N, the
number of candidates to extract. The bigger is N, the higher probability of finding
the desired candidate in the obtained set. At the same time, the number of candi-
dates selected on the first stage influences the general model efficiency, as the more
candidates we select on the first stage, the more time we need to process them on the
second stage. So our further investigation aimed to find an approach that maximizes
the first-stage model, Average Recall (AR), with the tricky parameter N that aims to
minimize computations on the second stage.

The initial experiment of passing the raw query to the search API and extracting
the top ten candidates showed an AR of about 0.628. Increasing the number of can-
didates to thirty and fifty resulted in the 2-3% boost of AR. So, we concluded that
increasing the number of candidates is not a solution in our case.

After the initial experiment, we performed an error analysis of the initial
model and found insights that helped us to increase the model’s AR. FEVER is
the Wikipedia-based dataset, and, logically, it usually contains claims about some
named entities that have been mentioned in some article within Wikipedia. We
found the pattern that claims usually contains the named entity and desired evi-
dence (hypothesis) is inside the corresponding Wikipedia article during error anal-
ysis. However, provided API could not find the correct link to that entity in top N



5.1. Model level one. Improving the performance of search 19

suggestions. So, we decided to proceed with query modification in order to help the
Wikipedia API.

5.1.2 Using NER models for performance tuning.

The initial modification we have done is performing named entities recognition with
the given claim. We used several strategies of using obtained information. Firstly,
we performed an extra API call with only all joined named entities in the query if
found. For example, if we claim "Ryan Gosling has been to a country in Africa", we do
an extra query of "Ryan Gosling Africa" using Wikipedia API. One more strategy is
making separate API calls for each entity found. We have a merged set of candidates
obtained from all queries for a specific claim as a final result. Another improvement
was to add related words to named entities for some experiments (query augmen-
tation). We detected them using patterns found in the dataset when related words
stand just after named entity in brackets, such as "The Chaperone (film)". In summary,
we used two major strategies:

1. Extra query with only all joined named entities. It was named NER_merged.

2. Extra queries for each entity found in the claim. We named it NER_separate.

We did not train any NER models but used pretrained ones. For our experi-
ments we used models "en_core_web_sm" and "en_core_web_trf" from spaCy tool1

framework and "ner-fast" model from Flair2. Given that we are designing a solution
for real-life scenarios - our approach must provide answers as fast as possible. It
means that models may not have SOTA performance, but they have an optimal ratio
between AR and efficiency. When spaCy models they were reported to have 0.84
and 0.898 F-score (Honnibal et al., 2020) comparing to 0.892 F-score of Flair model
on Ontonotes dataset (Akbik et al., 2019). We have done a set of experiments mea-
suring the efficiency of each model and the AR performance of the whole Model one
solution using a specific NER model. Also, we have done experiments for different
modifications discussed before. We have got the result presented in Table 5.1.

One more important metric we wanted to evaluate is efficiency in time. Although
we cannot influence Wikipedia API time of response, we are modifying a query. It
takes time and computational resources, so we need to measure it. In this experi-
ment, we measure only the time used to modify a query without an actual API call,
which helps to compare approaches fairly.

The same computational resources are used for all experiments. We are using
a CPU-only 2,4 GHz Quad-Core Intel Core i5 instance with 8Gb RAM. The critical
metric for efficiency is time - seconds per 1000 queries. The result we got is presented
in Table 5.1. Also, the number of candidates picked by Model level one can be differ-
ent from parameter N, as we are doing a different number of additional queries that
return a different number of results for different configurations. So we also mea-
sure the N_returned metric. That is the average number of candidates returned after
Model level one. It influences the accuracy and efficiency of Model level two. Based
on the three described metrics, we will select the best configuration for our specific
case.

1spaCy https://spacy.io.
2Flair https://github.com/flairNLP/flair.

https://spacy.io
https://github.com/flairNLP/flair


20 Chapter 5. Experiments and validation

TABLE 5.1: Comparing Model one configurations performance

Configuration AR
(higher
is better)

sec per
1000
queries
(lower is
better)

N re-
turned,
(lower is
better)

No NER model N=10 0.628 0 9.11
No NER model N=30 0.645 0 25.02
No NER model N=50 0.649 0 39.16
SpaCy en_core_web_sm NER_merged N=10 0.810 5.01 15.33
SpaCy en_core_web_sm NER_merged N=30 0.833 5.01 44.02
SpaCy en_core_web_sm NER_merged N=50 0.840 5.01 70.67
SpaCy en_core_web_sm NER_separate
N=10

0.834 5.01 10.12

SpaCy en_core_web_sm NER_separate + re-
lated N=10

0.839 5.01 10.11

SpaCy en_core_web_trf NER_merged N=10 0.827 82.5 15.09
SpaCy en_core_web_trf NER_separate N=3 0.874 82.5 6.93
SpaCy en_core_web_trf NER_separate N=5 0.892 82.5 11.68
SpaCy en_core_web_trf NER_separate
N=10

0.911 82.5 23.47

SpaCy en_core_web_trf NER_separate + re-
lated N=10

0.913 82.5 23.44

Flair ner-fast NER_merged N=10 0.861 86.2 15.54
Flair ner-fast NER_separate N=3 0.879 86.2 6.27
Flair ner-fast NER_separate N=5 0.895 86.2 10.58
Flair ner-fast NER_separate N=10 0.914 86.2 21.30
Flair ner-fast NER_separate + related N=10 0.915 86.2 21.28

5.1.3 NER experiments results

As we can see in Table 5.1, usage of NER models dramatically increased the perfor-
mance of candidate selection. An increasing number of N did not show a significant
impact. Also, a big N for the first stage can be harmful to the second stage, where we
should compare each sentence of picked articles with the given claim. We found out
that the NER_separate strategy gives better results than NER_merged. Also, non-
NN based model en_core_web_sm is much faster than other models, but it provides
a lower accuracy. However, it can be used when efficiency is such crucial that we
can sacrifice accuracy.

We should mention here that these results may be improved by fine-tuning cor-
responding models for our specific Wikipedia data but left this for future research.

As for our needs, we decided to use the "Flair ner-fast NER_separate N=3" con-
figuration for further experiments and API development. It provides a relatively
high accuracy of 0.879 AR with only 6.27 candidates returned. The main reason for
such a decision is relatively high AR with the lowest number of candidates returned.
According to our experiments with a complete fact-checking system presented in
Section 5.5.4, the most time-consuming part is a sentence-embeddings calculation
used in the NLI model. The number of returned articles from Model one directly



5.2. Model level two. Building sentence-based NLI model. 21

influences the time for embeddings calculation. So, we sacrifice 4% of AR to in-
crease the efficiency of sentence embeddings by almost three times, compared with
the configuration with the highest AR.

5.1.4 Limitations and alternatives

As we concluded in Section 5.1.3, query modification with extracted named entities
improves the quality of the information retrieval stage. However, this part of the
system still has room for improvement, which was not covered in our research.

In our experiments, we are using all possible types of entities extracted by the
NER model. However, some of them can be useless and even bring unnecessary
noise to the article retrieval. Filtering inappropriate entity types like numbers or
money can increase the system’s efficiency and reduce the number of returned can-
didates, which is beneficial for the speed of the second stage.

Another problem is that pretrained NER models cannot extract valuable key-
words like diseases, animals, or food names. As a result, we observe ∼ 6% of sam-
ples where we could not extract any named entities. For that case, a part-of-speech
(POS) tagger can be used for noun extraction, which is an alternative for the NER
model.

In summary, more experiments are needed to confirm all mentioned hypotheses.
We leave that for future research.

5.2 Model level two. Building sentence-based NLI model.

5.2.1 Experiment setup

We considered using three datasets for our further experiments: MNLI, SNLI, and
FEVER. SNLI and MNLI are benchmark datasets used for initial training and com-
paring our approach with SOTA results. FEVER dataset is used as a domain-specific
one and used for final fine-tuning (training) and validation. Each dataset used has
its predefined train and test parts that were also used for our experiment evaluation.
All training procedures were done using the RTX2070 GPU instance.

5.2.2 Masked language models. Efficiency testing

It is costly to train a masked language model from scratch. Only big companies and
wealthy organizations can afford it. However, usually, they open the trained models
for the community that allows reusing them. A great example of a platform for
sharing pretrained models is the Hugging Face platform3, which is an open-source
solution, which we used to get pretrained models. As for our further experiments,
we used three different language models.

The first one is bert-base-uncased. This model is uncased, so it does not differ-
entiate between "NLP" and "nlp" words. The model was pretrained on BookCorpus
dataset (Zhu et al., 2015) and English Wikipedia (excluding lists, tables, and headers)
(Devlin et al., 2018). That is a basic lightweight masked language model.

The second one is the bart-base model presented by Facebook. Bart uses a bidi-
rectional encoder (like BERT) and a left-to-right decoder (like GPT). BART is partic-
ularly effective when fine-tuned for text generation and works well for comprehen-
sion tasks (Lewis et al., 2019). This model was reported to work well for summariz-
ing tasks when training on semantic similarity (Yoon et al., 2020). We hypothesize

3Hugging Face. Models https://huggingface.co/models.

https://huggingface.co/models


22 Chapter 5. Experiments and validation

that this is related to models’ ability to detect text meaning, which can also be used
on NLI problems.

Finally, we also use another model in our experiments: ALBERT, one of the top-
performing models based on the GLUE score. It is also reported to be more memory
efficient, so we experimented with it.

Previously, we mentioned that we are going to use "base" models. Although we
sacrifice the quality of embeddings, we want our solution to be as fast as possible,
and that decision provides about three times a boost in time according to our in-
vestigation. We tested the efficiency of each model by measuring the average time
for one sentence encoding. We used all unique claims from the SNLI test dataset
that is 3,323 sentences, for testing data. Also, we measured time in two modes. The
first is processing using a batch of 32 items, and the second is one-by-one process-
ing. We used CPU instance in order to reproduce the inference environment. The
results of this experiment are presented in Figure 5.1. We find out that "base" models
are much faster than "large" ones. Also, as was expected, batch processing is more
efficient and should be used if possible. As for further experiments, we will concen-
trate on classical BERT and BART models as they have different natures that can be
beneficial.

FIGURE 5.1: BERT-like models encoding efficiency.

5.2.3 Sentence embeddings creation

There are several methods for sentence embeddings creation out of masked lan-
guage models. The main approaches are described as pooling methods by Reimers
and Gurevych, 2019. The first method is using embedding got from [CLS] token



5.2. Model level two. Building sentence-based NLI model. 23

from the BERT model. That is a special tag initially designed to represent the entire
sentence, used for sentence classification tasks. Another method is taking an average
of all word-level tokens, which is a relatively straightforward approach previously
used, for example, in Word2Vec models sentence embeddings creation. Another ap-
proach is computing a max-over-time of the output vectors, which performed well
in the case of the BiLSTM encoder of InferSent (Conneau et al., 2017b). It is essen-
tial to mention that to get relevant results on the NLI downstream task, it is neces-
sary to fine-tune the whole model, including MLM for each approach (Reimers and
Gurevych, 2019). As a basic approach for our models, we will use the average of
word embeddings as it is reported as best performing by (Reimers and Gurevych,
2019), comparable to other architectures and the most intuitive.

5.2.4 Initial NLI models building. Comparing with SOTA

The initial experiment was to reproduce the results of the SOTA models and also
measure their efficiency. In order to have a general overview, we decided to pick
both word and sentence-based models. For the first iteration we picked Sem-
BERT (Zhang et al., 2020) and HBMP (Talman, Yli-Jyrä, and Tiedemann, 2019) mod-
els. Those models represent single model architecture without an ensemble, have
top-performing results, and have official repositories with code45.

The experiment of reproducing results is computationally expensive, so we used
Microsoft Azure NC6 Promo virtual machine with six cores, 56 GiB RAM, and one
K80 GPU. For consistency, we used the same configuration for all further experi-
ments. Here, we measure the accuracy and computation speed on inference using
the SNLI test set. By computation speed on inference, we mean time needed to clas-
sify relations between pairs of sentences. We measure the speed of the model on
both GPU and CPU instances. Using CPU instance simulates the actual scenario for
our API, which is running on a small instance on the Wikimedia Cloud6.

The code for SOTA results from official repositories is implemented to work on
GPU only, so we could not fairly compare performance on that code on CPU. We
compared the performance of all models on GPU instance, which allows us to com-
pare them.

We evaluated models on 9,824 samples from the SNLI testset. The results are
presented in the comparison Table 5.2. We also included the results for our custom
BERT-based models in the comparison table. By custom architecture, we mean the
siamese model presented in subsection 4.3 with different MLM encoders.

As we can see, the word-based model SemBert has the best accuracy results.
However, it is 25x times slower on inference than sentence-based model HBMP. It
does not allow caching, saving intermediate results. Although it is very accurate,
it is difficult to use in real-world scenarios. Sentence-based models have worse ac-
curacy than word-based, but they are significantly faster. In this experiment, we
also tested the Universal sentence encoder, which can be substituted by the BERT
encoder. Although it is the most efficient model among the testing set, USE has the
lowest accuracy in the NLI task, and it was decided not to use it for further experi-
ments.

4Github repository for SemBERT model https://github.com/cooelf/SemBERT.
5Github repository for HBMP model https://github.com/Helsinki-NLP/HBMP.
6https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS

https://github.com/cooelf/SemBERT
https://github.com/Helsinki-NLP/HBMP
https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS


24 Chapter 5. Experiments and validation

TABLE 5.2: Experiments results on SNLI datasets

Model
Accuracy on
SNLI dataset

Efficiency
on inference
CPU

Efficiency
on inference
GPU

SemBERT 91.9% - 0.51 s
sample

HBMP 86.6% - 0.02 s
sample

Siamese + bert-base-uncased 85.2% 0.1 s
sample 0.006 s

sample
Siamese + bart-base 86.9% 0.12 s

sample 0.006 s
sample

Siamese + albert-base 84.98% 0.08 s
sample 0.006 s

sample
Universal sentence encoder 78.7% 0.036 s

sample 0.004 s
sample

5.2.5 Masked language models unsupervised fine-tuning

Supervised fine-tuning has a significant improvement in accuracy. However, usu-
ally, data collection for such training is expensive as manual annotators are required.
We decided to use an unsupervised fine-tuning of language model that can poten-
tially help us improve the domain-specific model and not require annotated data.
As part of this experiment, we fine-tuned bert-base-uncased and bart-base on the Wiki-
Text dataset (Merity et al., 2016). That is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on Wikipedia that aims
to provide domain adaptation for our models. It is important to mention that the
following dataset is much bigger than the most popular usual NLI datasets, such
as SNLI or MNLI. The unsupervised fine-tuning was done on the RTX2070 GPU in-
stance. To fine-tune, we followed the experiment setup by (Devlin et al., 2018) but
trained only for masked LM problem formulation and only for one epoch. Repro-
ducing the original setup, we selected 15% of tokens at random. Then 80% of tokens
selected were changed to [MASK] special tag, 10% were switched to another token,
and 10% remained original. Example of input and output such strategy is presented
in Figure 5.2. As a result of such an experiment, we got two fine-tuned models that
we will use in further experiments. We expect these models will perform better on
the Wikipedia-specific FEVER dataset.

FIGURE 5.2: Example of input and output for masked sentence.

5.2.6 Performance on other datasets and transfer learning approach

This section will review the performance of trained models for different datasets,
including domain-specific dataset FEVER. That experiments are done to test models’



5.2. Model level two. Building sentence-based NLI model. 25

TABLE 5.3: Training on SNLI dataset and testing on SNLI and MNLI.

Model
Accuracy on
SNLI dataset

Accuracy on
MNLI dataset

Siamese + bert-base-uncased 85.2% 59.16%
Siamese + bart-base 86.9% 63.19%
Siamese + albert-base 84.98% 58.58%

TABLE 5.4: Training on MNLI dataset and testing on SNLI and MNLI.

Model
Accuracy on
SNLI dataset

Accuracy on
MNLI dataset

Siamese + bert-base-uncased 65.33% 76.1%
Siamese + bart-base 66.93% 77.85%
Siamese + albert-base 66.33% 80.65%

TABLE 5.5: Full training on specific dataset vs. training on SNLI and
classifier fine tuning on FEVER and MNLI

Model
MNLI classifier fine
tuned vs. full train

FEVER classifier fine
tuned vs. full train

bert-base-uncased 64.8% / 76.1% 70.1% / 79.81%
bart-base 67.6% / 77.85% 74.4% / 85.24%
bert-base-uncased + fine tuned 65.4% / 76.29% 69.7% / 82.45%
bart-base + fine tuned 68.1% / 77.35% 73.0% / 85.62%

ability to generalize knowledge and work on different texts. The initial experiment
was straightforward; we were training models on one SNLI or MNLI and validated
on test sets of both datasets.

In such problem formulation, we could not directly use FEVER as it has only two
classes with provided evidence sentences if transformed to SNLI style (Table 3.4),
because the NOT ENOUGH INFO class is not supported by any sentence. Therefore,
for the current experiments, we decided to drop all examples of NOT ENOUGH
INFO class and use only the other two classes for that experiment. In Section 5.3.2
we propose and implement a solution to overcome this problem.

The results we got are presented in Table 5.3 and Table 5.4. As we can see, models
trained on one dataset have poor performance on another data, which is a general
trend for all models. However, we want to single out BART models, which have
better generalization power as we see a significantly lower drop in accuracy than
other models.

One more experiment was to train the whole model on one dataset and then
fine-tune only the last dense layer (Figure 4.3), which is responsible for classification
specifically for the target dataset. Using such a strategy is computationally efficient
as the heavy MLM remains frozen but pre-trained on NLI tasks. Also, in such prob-
lem formulation, we can compare SNLI, MNLI, and FEVER, as we can set a different
number of classes in the final layer without losing problem generalization. We ex-
pected to get good results for such a training strategy. In our experiment, we trained
models on SNLI, then fine-tuned the last layer on MNLI or FEVER train set and
tested on the corresponding test set. We also trained individual models for each



26 Chapter 5. Experiments and validation

dataset with all layers unfrozen and compared performance with the transfer learn-
ing approach. The results of this investigation are presented in Table 5.5.

We can see that the transfer learning approach of fine-tuning classifier slightly
improves models’ performance. However, they are still much lower than the results
of fully trained models on specific datasets. It reveals that language models take a
significant role in classification models and should be fine-tuned for domain-specific
texts.

An important finding from results presented in Table 5.5 is that unsupervised
fine-tuning of language model can be even more advantageous than a supervised
pre-fine tune on another dataset. We see that in the case of full training of model
on FEVER dataset, the performance of unsupervised fine-tuned models is higher
comparing to raw ones, especially for a bert-base-uncased model.

5.3 Building Wikipedia domain-specific NLI model

As we showed in previous experiments, NLI models fully trained on a specific
dataset perform much better than fine-tuned models. So we decided to train the
FEVER-specific NLI model that will be the primary building block of a fact-checking
system for Wikipedia. In this section, we review our training approach and valida-
tion results.

5.3.1 Experiment setup

All the experiments conducted in this section are done on the RTX2070 GPU in-
stance. We are using original FEVER data for all experiments adapting it for our
particular needs. Also, we are using a predefined train/dev split for all experiments.
As for training parameters, we are using a batch size of ten and default parameters
provided in Sentence-Transformers framework7.

5.3.2 Data preparation

For previous experiments, we used a model trained only for predicting two classes
REFUTES (R) and SUPPORTS (S), as there is no hypothesis presented for all samples
of NOT ENOUGH INFO (NEI) class. That is an important difference between the
FEVER dataset comparing to SNLI and MNLI (see section 5.2.6). Therefore, we need
to generate samples for NEI class. We use a negative sampling strategy inspired by
the approach followed by Hanselowski et al., 2018.

For all training samples of R or S classes, we generate samples of the NEI class.
We take the original claim as used in the R or S class example and change a hy-
pothesis for such samples. As a new hypothesis for the NEI class sample, we use a
randomly chosen sentence from the same article, which corresponds to the original
hypothesis. We limit the pool of sentences with those that were not previously used
in another sample. This approach is a heuristic, aiming to pick such pairs of claims
and hypotheses, which are related by topic but not support or refute each other.

As for validation, we are using a predefined testing set. We are using another
strategy for filling NEI class samples for the testing set. In this case, we are taking
the original claim for NEI samples, using model level one (see Figure 4.1) to pick
article candidates for such sample and then randomly select one sentence from such
articles. These samples might be more accessible for models to predict than those

7Sentence-Transformers framework https://www.sbert.net.

https://www.sbert.net


5.3. Building Wikipedia domain-specific NLI model 27

built for the training set. However, that approach seems to be better for validation
as we are not biasing to specific claims and have the original distribution of classes.

In addition, we estimate the quality of filling NEI class samples strategy. For
that experiment, we randomly pick 200 generated samples and manually annotate
them. As a result, we found only one example where the hypothesis refutes the
given claim. It means that the proposed filling strategy has an estimated error rate
of 0.5%, which is acceptable. However, as all NEI samples are artificially constructed,
we consider validating the model with and without such samples just using S and
R labeled samples.

Another important thing to highlight is that the original sentences from the
Wikipedia dump include some tags at the end of the sentence, separated by tabu-
lation symbol. We consider building models with and without them. Such filtering
decreased the average number of symbols in the hypothesis from 212 to 136 charac-
ters. We will experiment with how such filtering influences the accuracy results of
our models.

5.3.3 Model training and validation

As mentioned in the previous section, we use two types of oversampled train
datasets: reduced and original hypothesis sentences. So we consider a training set
of models for each case. As for validation scores, we also compare results on the
reduced and original test sets and include performance on only S and R classes as
they are not synthetic. Results of our experiments are presented in Table 5.6 and
Table 5.7.

TABLE 5.6: Training on original FEVER dataset

Model
FEVER
original

FEVER
clean

FEVER orig-
inal only R
and S classes

FEVER clean
only R and S
classes

Siamese + albert-base 71.92% 70.93% 66.22% 63.38%
Siamese + bert-base-
uncased

72.16% 71.14% 66.93% 63.83%

Siamese + bart-base 74.25% 73.28% 68.25% 65.70%
Siamese + bert-base-
uncased + unsupervised
fine tuned

71.91% 70.95% 65.99% 63.14%

Siamese + bart-base
+ unsupervised fine
tuned

74.60% 73.60% 68.57% 66.24%

We can conclude that cleaning FEVER tags leads to a drop in accuracy for all
models from obtained results. However, these tags are specific for the FEVER dump
and are not usable in real scenarios when we would have plain text. Also, we con-
cluded that in case we train on cleaned texts, we are getting 1% boost on clean texts
validation comparing to model trained using original texts. If we want to use the
model in a real scenario, we should consider training the final model using samples
with the cleaned hypotheses.

As we see, unsupervised fine-tuning of models using domain-specific data made
a boost for bart-base model. It is the best-performing model for all cases. Also, we



28 Chapter 5. Experiments and validation

TABLE 5.7: Training on FEVER dataset with cleaned hypothesis

Model
FEVER
original

FEVER
clean

FEVER orig-
inal only R
and S classes

FEVER clean
only R and S
classes

Siamese + albert-base 72.40% 71.85% 67.11% 65.50%
Siamese + bert-base-
uncased

71.97% 71.67% 67.17% 66.13%

Siamese + bart-base 74.20% 74.72% 68.11% 68.76%
Siamese + bert-base-
uncased + unsupervised
fine tuned

72.02% 71.76% 67.01% 66.19%

Siamese + bart-base
+ unsupervised fine
tuned

74.18% 74.82% 68.34% 69.33%

should mention that the best performing model is the fine-tuned bart-base model
trained on clean text, which achieved 74.82% accuracy.

We noticed a tendency that accuracy only considering the R and S classes is usu-
ally much lower than for all classes. In order to understand the reasons behind that,
we looked into the confusion matrix (Figure 5.3). We found out that the model has
difficulties predicting the R class as there are many false negatives for that sam-
ple. Approximately more than 13% of accuracy we are losing just on REFUTES (R)
class. It is important to mention that models trained on the cleaned dataset generally
perform much better when we consider only the R and S classes, which is another
benefit of such pre-processing technique. We assume that the filtered tags do not
include a valuable signal of the relation between claim and hypothesis but add ad-
ditional noise, reducing performance. Data preparation and model stability should
be reviewed in more detail. We go deeper on this problem in the following section.

FIGURE 5.3: Confusion matrix for bart-base model (cleaned hypothe-
sis training and validation).



5.4. Analyzing models stability. Training on filtered data 29

5.4 Analyzing models stability. Training on filtered data

It is important to understand how models perform in different conditions. Stability
of model performance (a.k.a generalization) is a crucial characteristic that determine
usability in a production environment. This section will experiment with filtering
the training dataset and how it is related to model performance. Also, we will ex-
plore how the length of texts relates to accuracy.

5.4.1 Training on filtered data. Experiments with FEVER

As it was shown in Figure 3.2, some hypotheses are duplicated multiple times and
correspond only to one class, which can lead to model overfitting. As it was dis-
cussed by (Gururangan et al., 2018), such annotation artifacts have a significant
impact on model accuracy. FEVER dataset has the same issue. So we considered
filtering and balancing dataset and experiment with how it influences model perfor-
mance. As a base dataset for filtering, we took the cleaned training dataset used in
section 5.3.3, also the same training procedure was done in order to get comparable
results.

We used three main steps during data filtering. Firstly, we filtered out absolute
duplicates by fields ’claim’ and ’hypothesis’. That reduced number of samples by
8.8% concerning the original size. Interestingly, some samples were absolute du-
plicates by ’claim’ and ’hypothesis’ but contradicted labels. For example, pair of
claim "Meryl Streep is an award losing actress." with corresponding hypothesis "Streep
has also received 30 Golden Globe nominations, winning eight more nominations, and more
competitive wins than any other actor." has both SUPPORTS and REFUTES labeled
samples.

After that, we proceed to filter samples with the duplicated hypothesis. For
that, we selected the set of all samples with the same hypothesis sentence. Then
we found the difference Ndi f f in number of samples of SUPPORTS and REFUTES
classes. Next, we picked the random number Ndrop from 0 to Ndi f f , which corre-
sponds to the number of samples to drop. Then we randomly picked Ndrop samples
to drop from major class in order to equalize the distribution of contradicting classes
among one hypothesis. Such operation was done only for those hypotheses that
correspond to at least ten samples. After applying such filtering methodology, the
dataset reduced by an additional 6.9% compared to the original FEVER size.

Finally, we randomly undersampled the number of NOT ENOUGH INFO cases,
equalizing it to the size of the SUPPORTS class which is the second largest one. This

FIGURE 5.4: Classes distributions before and after filtering.



30 Chapter 5. Experiments and validation

action additionally decreased the filtered training dataset by 12.2% with respect to
the original size. However, it is important to add here that all NEI samples are ar-
tificially created by the heuristic described in section 5.3.2, so they are less informa-
tive for model comparing manually created samples coming in the original FEVER
dataset. The distribution of labels of a filtered dataset compared to the initial one is
shown in Figure 5.4. As a result, we got the filtered dataset with the total number of
samples reduced by 27.9% concerning the original size.

After that we proceed with training model on filtered data. We compared 3 main
models results in Table 5.8

TABLE 5.8: Training model on filtered FEVER dataset

Model
FEVER
clean

FEVER
clean fil-
tered

FEVER clean
only R and S
classes

FEVER clean
filtered only R
and S classes

Siamese + albert-base 72.73% 72.40% 71.04% 68.46%
Siamese + bert-base-
uncased

73.39% 73.04% 71.85% 70.49%

Siamese + bart-base 74.84% 75.53% 70.68% 71.47%
Siamese + bert-base-
uncased + unsupervised
fine tuned

73.48% 73.38% 71.11% 70.44%

Siamese + bart-base
+ unsupervised fine
tuned

75.42% 75.91% 71.32% 71.91%

5.4.2 Model performance depending on the length of text. FEVER dataset

During the FEVER data exploration (Chapter 3, Figure 3.3), we found out an im-
portant variation on hypothesis length, measured as the number of characters. To
understand the impact of hypothesis length on the NLI task performance, we took
results of bart-base model on the FEVER test set and plotted accuracy for different
hypothesis lengths. Here, we consider only those length values corresponding to at
least 1% of samples from the test set. Also, for each value, we plotted a 95% confi-
dence interval. The results of that experiment are presented in Figure 5.5.

FIGURE 5.5: Hypothesis length (FEVER) vs model’s accuracy.



5.5. WikiCheck: A complete Fact-Checking system based on Wikipedia 31

As we can see from Figure 5.5, there is no obvious dependency between the
length of the hypothesis and accuracy, but still, there is a tendency for a more
extended hypothesis to have a worse accuracy. However, more experiments are
needed to confirm this relationship. We leave that for future research.

5.5 WikiCheck: A complete Fact-Checking system based on
Wikipedia

In previous sections, we were analyzing each block separately. However, it is im-
portant to understand the performance of our end-to-end system. By end-to-end,
we mean a system that can receive a sentence (claim), query Wikipedia looking for
evidence to contrast with (hypothesis), and then apply the NLI model on that pair
(claim, hypothesis), returning whether the claim is SUPPORT, REFUTED or if there is
NOT ENOUGH INFO on Wikipedia about it.

In this section, we provide details of WikiCheck, our proposed system architec-
ture. Also, we provide key characteristics of time efficiency and accuracy, compare
our model performance on the FEVER dataset with other SOTA solutions.

5.5.1 Adapting model for production

After performing numerous experiments with models, we designed heuristics that
can be used in real scenarios to make it work faster and more accurately. In this sub-
section, we describe the data processing pipeline using the flow presented in Sec-
tion 4.1 and present the implementation solutions we implemented (or discarded).

There are several steps that the model passes before the final prediction. The
general flow is presented in Figure 5.6. Each step should be as fast and accurate
as possible to deliver good results for the user. This trade-off between time and
accuracy is one of the main challenges we are dealing with, and here describe and
justify our choices.

The model starts with passing claims to the NER model, which detects named
entities and forms a set of queries to pass to the Wikipedia search API. At the step
of article search, we have had the I/O bound as the instance is not loaded, but we
are waiting for the search service answer. We consider using paralleling or asyn-
chronous processing on this step, which can improve general application timing.
Also, we are using machine that has a fast connection with the search API to re-
duce response time. The same problem applies to the next step when we retrieve
the Wikipedia articles. Those two steps are highly dependant on network condi-
tions, and we did not optimize them in this research. However, we made all the
experiments on the same machine to make results comparable.

After Wikipedia articles texts are collected, we continue with the NLI model.
From the very beginning, we decided to use a sentence-based model as it has obvi-
ous benefits. First of all, using such an approach, we can calculate embeddings for
claim and hypothesis separately. Consequently, we can calculate embedding for the
claim only once as it is the same for all pairs. Also, considering results from Fig-
ure 5.1, we are using batch processing for hypothesis calculation which decreases
the amount of time needed for this step by three times comparing to one-by-one
processing.

Also, it is important to mention that it is possible to pre-compute and cache vec-
tors for all Wikipedia articles and extract them instead of texts. It moves sentence



32 Chapter 5. Experiments and validation

embeddings calculation to offline, so we do not spend time for it on inference. The
main drawback is that such a solution requires many storage resources.

Having embeddings for the claim and hypotheses, we apply a classification
model, a simple MLP model, and get results for each claim-hypothesis pair. We
consider all pairs as output as it gives more interpretability and generalization.

FIGURE 5.6: Fact Checking system flow.

5.5.2 Difference from SOTA solutions

Most of the SOTA solutions were created during the FEVER competition, where the
main criterion for model comparison is an accuracy. Our research orientation is
shifted towards usability. It means that the model should be not only accurate but
also fast and interpretable.

All top solutions Nie, Chen, and Bansal, 2018; Yoneda et al., 2018 and
Hanselowski et al., 2018 are following the baseline presented by Thorne et al., 2018b
and build three-staged models. These stages are article selection, sentence selection,
NLI classification. We present a two-staged solution with ML-based aggregation on
top. We consider using only document retrieval and NLI models for fact verifica-
tion. We do not apply sentence selection logic in order to avoid missing important
information.

Our documents retrieval process is very similar to the one presented
by Hanselowski et al., 2018. However, we are using pretrained NER models for
query extending. According to our experiments (see Section 5.1.2), such an approach
showed a significant boost (over 30%) on recall comparing to basic querying.

Also, as for the NLI model, we are using a sentence-based approach. It signif-
icantly improves the speed of the NLI model on inference, sacrificing a little the
accuracy of the results.

Moreover, our simple NLI model achieves almost SOTA result for sentence-
based models, being more efficient (Section 5.2).

5.5.3 Experiment setup

There are two main characteristics of fact-checking applications that we want to mea-
sure: accuracy and efficiency. In this subsection, we are reviewing the experiment
setup for measuring each of them.

Accuracy

As for general fact-checking system accuracy validation, we used the original FEVER
1.0 dataset. All experiments were done using the RTX2070 GPU instance. In order to
measure application accuracy, we decided to use the official FEVER validation tool
8, which allows us to compare our solution with FEVER competitors.

It gives several metrics used for validation:

8Github. Fever-scorer https://github.com/sheffieldnlp/fever-scorer.

https://github.com/sheffieldnlp/fever-scorer


5.5. WikiCheck: A complete Fact-Checking system based on Wikipedia 33

1. FEVER score: That is a more strict accuracy score. In order to consider the sam-
ple correctly classified, it requires the correct label along with the full match of
true evidence with predicted. It was the main metric for the FEVER compe-
tition, but we will not use it as the primary one. The main reason is that this
score is highly biased to NEI class, as in case the correct match we do not need
the match of evidence.

2. Accuracy: Standard accuracy score that requires only label match to consider
sample correctly classified.

3. Evidence F1@k score: The score that evaluates the correctness of picked evi-
dence and does not take into account NEI class samples. It calculates as fol-
lowing:

F1@k = 2 · (Precision@k) · (Recall@k)
(Precision@k) + (Recall@k)

Precision@k =
true positives @k

(true positives @k) + ( f alse positives @k)

Recall@k =
true positives @k

(true positives @k) + ( f alse negatives @k)

The pipeline for FEVER validation differs from the presented fact-checking system
flow and has some crucial limitations. The changes are shown in Figure 5.7 and
marked with red. As for the validation process, we are not querying Wikipedia texts
from MediaWiki API. We are taking the actual texts from the Wikipedia dump dated
2017, provided along with the FEVER dataset. We can find the text by the article
name found in the previous step. It allows matching the sentences’ ids for validation
correctly. However, this approach also has an important limitation. The Search API
is looking for articles in the up-to-date version of the Wikipedia database since there
are changes from the 2017 year dump. The same document retrieval approach was
used by Hanselowski et al., 2018, and the same problem was reported. However, in
our case, the time lag is bigger, and as a result, we have 11.51% of articles found by
MediaWiki API that do not have a matched text in the dump provided.

As for the aggregation block, we are using two stacked CatBoost models9, trained
on a sample of probability outputs from the NLI model. We are using stacked prob-
ability outputs from the NLI model and similarity scores of the top 10 closest hy-
potheses for label classification. We are using cosine similarity between sentence
embeddings from the NLI model to define the relationship between hypothesis and
claim. Finally, for each sample, we have a vector of 40 features used to classify the
claim. We use padding by zeros in case of a lack of sentences after the article selec-
tion phase.

We used CatBoost learning-to-rank model for evidence picking, where each hy-
pothesis was represented by its class probabilities from the NLI model and cosine
similarity to the claim. The training loss used is YetiRankPairwise presented by Gulin,
Kuralenok, and Pavlov, 2011. We do not include aggregation logic for efficiency test-
ing explained in the next section, as it was not included in our final API.

Efficiency

We define efficiency as the speed of the entire system, which means that the faster
is the most efficient. For the experiment, we measured the total time and time taken

9CatBoost framework https://catboost.ai.

https://catboost.ai


34 Chapter 5. Experiments and validation

FIGURE 5.7: Fact Checking system flow for FEVER validation.

for each step from the Figure 5.6. We used a random set of one thousand unique
claims from the FEVER testing part as a test set. We tested the system using three
configurations with different sentence encoders models. For each model, we used
a different random set of claims to avoid API caching influence. The system was
running on CPU-only 2,0 GHz Intel processor instance with 8Gb RAM provided
hosted on the Wikimedia VPS Cloud10.

5.5.4 Experiment results

This section presents the results of measuring the efficiency and accuracy of the gen-
eral fact-checking model.

FEVER Accuracy

We compared our fact verification system (WikiCheck) with the best performing solu-
tions of FEVER competition. In comparison, we used our final model with a BART-
based NLI classifier.

The final results are presented in Table 5.9. As a result, we got a 0.43 Fever score
and 0.57 of general accuracy for our WikiCheck model.

Also, we analyzed the errors of our models and found out that most of our mis-
takes are made for NEI class. The confusion matrix for both of our models can be
found in Figure 5.8. That also explains the relatively low FEVER score. Correctly
classified NEI class sample does not require evidence match, which is a limitation of
the FEVER score.

TABLE 5.9: Complete fact checking system FEVER accuracy

Team/Name FEVER rank Evidence F1 FEVER score Accuracy

UNC-NLP 1 0.5322 0.6398 0.6798
UCL MRG 2 0.3521 0.6234 0.6744
Athene 3 0.3733 0.6132 0.6522
The Ohio St. Uni 7 0.5854 0.4322 0.4989
GESIS Cologne 8 0.1981 0.4058 0.5395
WikiCheck - 0.3587 0.4307 0.5753

Efficiency

The results for the system efficiency experiment can be found in Figure 5.9 and also
can be learned with more details using Table 5.10.

We split the whole application into the logical part and tested each separately.
NER_model part correspond to using the NER model for named entities extraction,

10This is a free service offered by the Wikimedia Foundation to host Wikipedia-related tools: https:
//wikitech.wikimedia.org/wiki/Portal:Cloud_VPS

https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS
https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS


5.5. WikiCheck: A complete Fact-Checking system based on Wikipedia 35

FIGURE 5.8: Confusion matrix for WikiCheck model

used for article selection improvement, as reviewed in Section 5.1.2. Wikimedia API
usage is represented by two parts: wiki_search, responsible for article search, and
wiki_text corresponding to loading the texts for selected articles. Then we have two
stages that represent embeddings calculation. We calculate embeddings for claim
and hypothesis separately. The last step is classification that in charge of using NLI
classifier given the sentence embeddings. Also, we include the total_time, which
shows the general system efficiency.

As we can see, the most time-consuming parts are text extraction (wiki_text) using
Wikimedia API and hypothesis embeddings calculation. All the other parts have no
significant impact on the model’s speed comparing with the two parts mentioned
before (Figure 5.9). Loading the text takes about 40% of total application time, and
calculation embeddings for the hypothesis take 50%. It was expected that all system
parts except embedding calculation have approximately similar timing for different
configurations. The approximate time needed for fact-checking process about six
seconds. As for the final model used for the system, we will use bart-base model,
even though it is the slowest one. That is because the difference between models
is not significant in terms of general system time efficiency (see Figure 5.9). Future
work to improve the system efficiency, should focus on improving text extraction
and embedding calculation that uses around 90% of application time.



36 Chapter 5. Experiments and validation

FIGURE 5.9: Fact Checking system efficiency

TABLE 5.10: Fact checking system efficiency, seconds

system parts model albert bart bert

NER_model mean 0.059532 0.061278 0.062362
std 0.016586 0.017219 0.019037

wiki_search mean 0.388099 0.399130 0.390143
std 0.204878 0.201289 0.212448

wiki_texts mean 2.401416 2.372876 2.296560
std 1.137427 1.063903 1.097486

embedding_claim mean 0.068034 0.082378 0.074696
std 0.011248 0.015822 0.014462

embedding_hypothesis mean 3.048855 3.181426 2.568341
std 1.355213 1.589718 1.281055

classification mean 0.009174 0.009596 0.009061
std 0.005151 0.005550 0.005580

total_time mean 5.975197 6.106762 5.407904
std 2.355858 2.473450 2.245171



37

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main goal of the thesis is to transform academic research on Natural Language
Inference and Automated Fact-Checking into a usable tool that can be used for fact
verification using the Wikipedia knowledge base.

We analyzed related research and defined open problems that should be solved
in order to achieve our goal. Previous works have not paid attention to the efficiency
of their solution but concentrate on accuracy instead when the speed of the models
is a crucial characteristic of practical application. Moreover, most SOTA solutions
are implemented for GPU usage with batch processing and require code refactoring
to use CPU instances on inference. Also, most organizations have limited resources
that make it impossible to use SOTA solutions for their needs. The last but not the
minor problem is the lack of NLI datasets to train models. The presented datasets
have their specific limitations when creating a new dataset is expensive as it requires
manual annotation.

During our research, we performed advanced data analysis, tried different mod-
eling methods, and discovered the following insights:

1. FEVER dataset has its limitations and annotation artifacts that can influence
the NLI model’s performance. We proposed the heuristic filtering technique
that led to the model’s accuracy increase.

2. We showed that usage of NER models for search increases the quality of re-
sults, in case there are named entities in queries, as in the FEVER dataset.

3. We discovered that NLI models lack generalization. Full model training is
required to get the best results for a specific dataset. The only classification
layer fine-tuning transfer learning does not work well.

4. We proposed using unsupervised fine-tuning of Masked Language Models
with domain-specific texts that further increased accuracy on the downstream
NLI task.

5. We showed that batch processing is faster than one-by-one. Also, we provided
reasoning why sentence-based NLI models are faster than word-based for real-
world applications. The proposed possible architecture of sentence-based NLI
model that shows comparable to SOTA results, being more efficient.

Finally, we present a new fact-checking system WikiCheck1, that can receive a
sentence (claim), query Wikipedia looking for evidence, and then apply the NLI
model on that pair (claim, hypothesis), returning the relation of each corresponding

1Fact checking API WikiCheck https://nli.wmcloud.org.

https://nli.wmcloud.org


38 Chapter 6. Conclusions and Future Work

pair, which is one of SUPPORT, REFUTED or NOT ENOUGH INFO. The presented
system has comparable to SOTA results, being in the top-10 solutions of FEVER
competition. It can be used on CPU, low memory devices, which makes it more
applied. We make all the code for WikiCheck API available on the github2.

However, the system has its limitations. It needs to be faster, as six seconds on
average for one claim is far from desired real-time processing. We should research
more on the aggregation stage. We have problems with NEI labeled samples, which
is a limitation for real-life scenarios. More research should be done for this part of
the application. Moreover, WikiCheck API depends on the MediaWiki Search API
that we do not have control over.

6.2 Future Work

Many experiments can potentially improve the NLI model. As for future work, we
consider experimenting with different methods for sentence-embeddings creation
explained in Section 5.2.3. We plan to experiment with full training the NLI models
on more than one dataset, where the last one would be the domain-specific dataset.
That experiment is similar to the transfer learning experiment but is more computa-
tionally expensive. That is why it was not done in this work. Also, we want to ex-
periment with different classifier models applied as the last layer of the NLI model.
Our research uses the simple MLP layer, but using more advanced architectures can
improve accuracy results. Also, the relation between the length of the hypothesis
and the NLI model needs additional research.

The aggregation phase also needs additional research. The possible steps are
additional features of claim-hypothesis relation generation, as using only the NLI
model’s probabilities is not enough to achieve SOTA results.

We consider optimizing the text extraction process for future efficiency improve-
ments, especially recalculating and caching the sentence embeddings for texts. By
caching the sentence embeddings, we understand storing them along with the text
or in the mirrored database. When text changes, it also goes to the process of recal-
culating the corresponding embedding. Such a hypothetical approach can be used
in high-load systems when the model’s efficiency is crucial and does not allow the
calculation of text embeddings on inference. Even though it is inefficient in stor-
age, caching will make both the most time-consuming parts useless for the model
and make the fact verification process almost instantly. Also, improvements in the
network conditions (beyond the scope of this study) might significantly impact effi-
ciency.

There are possible techniques that can be applied for MLM to tune the efficiency
of embeddings calculation. Additional research is needed for model size reduction,
model distillation, float parameters quantization that can possibly improve perfor-
mance.

2WikiCheck Github repository https://github.com/trokhymovych/WikiCheck.

https://github.com/trokhymovych/WikiCheck


39

Bibliography

Akbik, Alan et al. (2019). “FLAIR: An easy-to-use framework for state-of-the-art
NLP”. In: NAACL 2019, 2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (Demonstrations), pp. 54–59.

Back, David A et al. (2016). “Learning management system and e-learning tools: an
experience of medical students’ usage and expectations”. In: International journal
of medical education 7, p. 267.

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Information”.
In: Transactions of the Association for Computational Linguistics 5, pp. 135–146. DOI:
10.1162/tacl_a_00051. URL: https://www.aclweb.org/anthology/Q17-1010.

Bovet, Alexandre and Hernán Makse (Jan. 2019). “Influence of fake news in Twitter
during the 2016 US presidential election”. In: Nature Communications 10. DOI: 10.
1038/s41467-018-07761-2.

Bowman, Samuel R. et al. (2015). “A large annotated corpus for learning natural
language inference”. In: CoRR abs/1508.05326. arXiv: 1508.05326. URL: http:
//arxiv.org/abs/1508.05326.

Cazalens, Sylvie et al. (2018). “A Content Management Perspective on Fact-
Checking”. In: Companion Proceedings of the The Web Conference 2018. WWW ’18.
Lyon, France: International World Wide Web Conferences Steering Committee,
565–574. ISBN: 9781450356404. DOI: 10.1145/3184558.3188727. URL: https:
//doi.org/10.1145/3184558.3188727.

Chen, Qian et al. (2016). “Enhancing and Combining Sequential and Tree LSTM for
Natural Language Inference”. In: CoRR abs/1609.06038. arXiv: 1609.06038. URL:
http://arxiv.org/abs/1609.06038.

Chen, Qian et al. (2017). “Natural Language Inference with External Knowledge”.
In: CoRR abs/1711.04289. arXiv: 1711.04289. URL: http://arxiv.org/abs/
1711.04289.

Conneau, Alexis et al. (Sept. 2017a). “Supervised Learning of Universal Sentence
Representations from Natural Language Inference Data”. In: pp. 670–680. DOI:
10.18653/v1/D17-1070.

Conneau, Alexis et al. (Sept. 2017b). “Supervised Learning of Universal Sentence
Representations from Natural Language Inference Data”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics, pp. 670–680. DOI: 10 .
18653/v1/D17-1070. URL: https://www.aclweb.org/anthology/D17-1070.

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2006). “The PASCAL Recog-
nising Textual Entailment Challenge”. In: Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classification, and Recognising Tectual En-
tailment. Ed. by Joaquin Quiñonero-Candela et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 177–190. ISBN: 978-3-540-33428-6.

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: CoRR abs/1810.04805. arXiv: 1810 . 04805.
URL: http://arxiv.org/abs/1810.04805.

https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/Q17-1010
https://doi.org/10.1038/s41467-018-07761-2
https://doi.org/10.1038/s41467-018-07761-2
https://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
https://doi.org/10.1145/3184558.3188727
https://doi.org/10.1145/3184558.3188727
https://doi.org/10.1145/3184558.3188727
https://arxiv.org/abs/1609.06038
http://arxiv.org/abs/1609.06038
https://arxiv.org/abs/1711.04289
http://arxiv.org/abs/1711.04289
http://arxiv.org/abs/1711.04289
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


40 Bibliography

Gong, Yichen, Heng Luo, and Jian Zhang (2017). “Natural Language Inference over
Interaction Space”. In: CoRR abs/1709.04348. arXiv: 1709.04348. URL: http://
arxiv.org/abs/1709.04348.

Gulin, Andrey, Igor Kuralenok, and Dimitry Pavlov (2011). “Winning The Transfer
Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank”. In: Pro-
ceedings of the Learning to Rank Challenge. Ed. by Olivier Chapelle, Yi Chang, and
Tie-Yan Liu. Vol. 14. Proceedings of Machine Learning Research. Haifa, Israel:
PMLR, pp. 63–76. URL: http://proceedings.mlr.press/v14/gulin11a.html.

Gururangan, Suchin et al. (2018). “Annotation Artifacts in Natural Language Infer-
ence Data”. In: CoRR abs/1803.02324. arXiv: 1803.02324. URL: http://arxiv.
org/abs/1803.02324.

Hanselowski, Andreas et al. (Nov. 2018). “UKP-Athene: Multi-Sentence Textual En-
tailment for Claim Verification”. In: Proceedings of the First Workshop on Fact Ex-
traction and VERification (FEVER). Brussels, Belgium: Association for Computa-
tional Linguistics, pp. 103–108. DOI: 10.18653/v1/W18-5516. URL: https://www.
aclweb.org/anthology/W18-5516.

Hassan, Naeemul et al. (Aug. 2017). “ClaimBuster: The First-Ever End-to-End Fact-
Checking System”. In: Proc. VLDB Endow. 10.12, 1945–1948. ISSN: 2150-8097. DOI:
10.14778/3137765.3137815. URL: https://doi.org/10.14778/3137765.
3137815.

Heilman, James M and Andrew G West (2015). “Wikipedia and medicine: quantify-
ing readership, editors, and the significance of natural language”. In: Journal of
medical Internet research 17.3, e62.

Honnibal, Matthew et al. (2020). spaCy: Industrial-strength Natural Language Process-
ing in Python. DOI: 10.5281/zenodo.1212303. URL: https://doi.org/10.5281/
zenodo.1212303.

Kiela, Douwe, Changhan Wang, and Kyunghyun Cho (2018). “Dynamic Meta-
Embeddings for Improved Sentence Representations”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, pp. 1466–1477. DOI: 10.18653/v1/
D18-1176. URL: https://www.aclweb.org/anthology/D18-1176.

Lewis, Mike et al. (2019). “BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension”. In: CoRR
abs/1910.13461. arXiv: 1910.13461. URL: http://arxiv.org/abs/1910.13461.

Liu, Xiaodong et al. (July 2019a). “Multi-Task Deep Neural Networks for Natural
Language Understanding”. In: Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, pp. 4487–4496. DOI: 10.18653/v1/P19- 1441. URL: https:
//www.aclweb.org/anthology/P19-1441.

Liu, Yinhan et al. (2019b). “RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach”. In: CoRR abs/1907.11692. arXiv: 1907.11692. URL: http://arxiv.org/
abs/1907.11692.

McDowell, Zachary and Matthew Vetter (July 2020). “It Takes a Village to Com-
bat a Fake News Army: Wikipedia’s Community and Policies for Informa-
tion Literacy”. In: Social Media + Society 6, p. 205630512093730. DOI: 10.1177/
2056305120937309.

Merity, Stephen et al. (2016). “Pointer Sentinel Mixture Models”. In: CoRR
abs/1609.07843. arXiv: 1609.07843. URL: http://arxiv.org/abs/1609.07843.

Mikolov, Tomas et al. (2013). “Efficient Estimation of Word Representations in Vector
Space”. In: CoRR abs/1301.3781.

https://arxiv.org/abs/1709.04348
http://arxiv.org/abs/1709.04348
http://arxiv.org/abs/1709.04348
http://proceedings.mlr.press/v14/gulin11a.html
https://arxiv.org/abs/1803.02324
http://arxiv.org/abs/1803.02324
http://arxiv.org/abs/1803.02324
https://doi.org/10.18653/v1/W18-5516
https://www.aclweb.org/anthology/W18-5516
https://www.aclweb.org/anthology/W18-5516
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/D18-1176
https://www.aclweb.org/anthology/D18-1176
https://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/P19-1441
https://www.aclweb.org/anthology/P19-1441
https://www.aclweb.org/anthology/P19-1441
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1177/2056305120937309
https://doi.org/10.1177/2056305120937309
https://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843


Bibliography 41

Nie, Yixin, Haonan Chen, and Mohit Bansal (2018). Combining Fact Extraction and
Verification with Neural Semantic Matching Networks. arXiv: 1811.07039 [cs.CL].

Pilault, Jonathan, Amine Elhattami, and Christopher Pal (2020). Conditionally Adap-
tive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parame-
ters Less Data. arXiv: 2009.09139 [cs.LG].

Reimers, Nils and Iryna Gurevych (2019). “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. In: CoRR abs/1908.10084. arXiv: 1908.10084.
URL: http://arxiv.org/abs/1908.10084.

Saez-Trumper, Diego (2019). “Online disinformation and the role of wikipedia”. In:
arXiv preprint arXiv:1910.12596.

Sathe, Aalok et al. (May 2020). “Automated Fact-Checking of Claims from
Wikipedia”. English. In: Proceedings of the 12th Language Resources and Evalua-
tion Conference. Marseille, France: European Language Resources Association,
pp. 6874–6882. ISBN: 979-10-95546-34-4. URL: https : / / www . aclweb . org /
anthology/2020.lrec-1.849.

Talman, Aarne, Anssi Yli-Jyrä, and Jörg Tiedemann (2019). “Sentence embeddings
in NLI with iterative refinement encoders”. In: Natural Language Engineering 25.4,
467–482. ISSN: 1469-8110. DOI: 10.1017/s1351324919000202. URL: http://dx.
doi.org/10.1017/S1351324919000202.

Thorne, James et al. (2018b). FEVER: a large-scale dataset for Fact Extraction and VERi-
fication. arXiv: 1803.05355 [cs.CL].

— (2018a). “FEVER: a large-scale dataset for Fact Extraction and VERification”. In:
CoRR abs/1803.05355. arXiv: 1803.05355. URL: http://arxiv.org/abs/1803.
05355.

Thorne, James et al. (Nov. 2018c). “The Fact Extraction and VERification (FEVER)
Shared Task”. In: Proceedings of the First Workshop on Fact Extraction and VERifi-
cation (FEVER). Brussels, Belgium: Association for Computational Linguistics,
pp. 1–9. DOI: 10 . 18653 / v1 / W18 - 5501. URL: https : / / www . aclweb . org /
anthology/W18-5501.

Tomaszewski, Robert and Karen I MacDonald (2016). “A study of citations to
Wikipedia in scholarly publications”. In: Science & Technology Libraries 35.3,
pp. 246–261.

Vlachos, Andreas and S. Riedel (2014). “Fact Checking: Task definition and dataset
construction”. In: LTCSS@ACL.

Vosoughi, Soroush, Deb Roy, and Sinan Aral (2018). “The spread of true and false
news online”. In: Science 359.6380, pp. 1146–1151. ISSN: 0036-8075. DOI: 10.1126/
science.aap9559. eprint: https://science.sciencemag.org/content/359/
6380/1146.full.pdf. URL: https://science.sciencemag.org/content/359/
6380/1146.

Wang, Alex et al. (2018). “GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding”. In: CoRR abs/1804.07461. arXiv: 1804.
07461. URL: http://arxiv.org/abs/1804.07461.

Wang, William Yang (2017). “"Liar, Liar Pants on Fire": A New Benchmark Dataset
for Fake News Detection”. In: CoRR abs/1705.00648. arXiv: 1705.00648. URL:
http://arxiv.org/abs/1705.00648.

Williams, Adina, Nikita Nangia, and Samuel R. Bowman (2017). “A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference”. In: CoRR
abs/1704.05426. arXiv: 1704.05426. URL: http://arxiv.org/abs/1704.05426.

Yoneda, Takuma et al. (Nov. 2018). “UCL Machine Reading Group: Four Factor
Framework For Fact Finding (HexaF)”. In: Proceedings of the First Workshop on Fact

https://arxiv.org/abs/1811.07039
https://arxiv.org/abs/2009.09139
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/2020.lrec-1.849
https://www.aclweb.org/anthology/2020.lrec-1.849
https://doi.org/10.1017/s1351324919000202
http://dx.doi.org/10.1017/S1351324919000202
http://dx.doi.org/10.1017/S1351324919000202
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/1803.05355
http://arxiv.org/abs/1803.05355
http://arxiv.org/abs/1803.05355
https://doi.org/10.18653/v1/W18-5501
https://www.aclweb.org/anthology/W18-5501
https://www.aclweb.org/anthology/W18-5501
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1126/science.aap9559
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146
https://science.sciencemag.org/content/359/6380/1146
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1705.00648
http://arxiv.org/abs/1705.00648
https://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426


42 Bibliography

Extraction and VERification (FEVER). Brussels, Belgium: Association for Compu-
tational Linguistics, pp. 97–102. DOI: 10.18653/v1/W18-5515. URL: https://
www.aclweb.org/anthology/W18-5515.

Yoon, Wonjin et al. (2020). Learning by Semantic Similarity Makes Abstractive Summa-
rization Better. arXiv: 2002.07767 [cs.CL].

Zhang, Zhuosheng et al. (2020). Semantics-aware BERT for Language Understanding.
arXiv: 1909.02209 [cs.CL].

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-like Vi-
sual Explanations by Watching Movies and Reading Books”. In: arXiv preprint
arXiv:1506.06724.

https://doi.org/10.18653/v1/W18-5515
https://www.aclweb.org/anthology/W18-5515
https://www.aclweb.org/anthology/W18-5515
https://arxiv.org/abs/2002.07767
https://arxiv.org/abs/1909.02209

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Importance of Fact Checking
	Motivation
	Contributions
	Open problems
	Research goals

	Thesis structure

	Related work
	Problem formulation and datasets review
	Masked language modeling
	State of the art solution
	End-to-end fact verification solutions

	Data exploration
	General purposes NLI datasets: SNLI and MNLI
	Wikipedia specific datasets: WIKIFACTCHECK-ENGLISH and FEVER
	NLI datasets review summary

	System architecture
	Application design
	Model level one. Wikipedia search API
	Solution introduction.
	Candidates selection validation.

	Model level two. Natural language inference model
	General model architecture


	Experiments and validation
	Model level one. Improving the performance of search
	Improving performance of search
	Using NER models for performance tuning.
	NER experiments results
	Limitations and alternatives

	Model level two. Building sentence-based NLI model.
	Experiment setup
	Masked language models. Efficiency testing
	Sentence embeddings creation
	Initial NLI models building. Comparing with SOTA
	Masked language models unsupervised fine-tuning
	Performance on other datasets and transfer learning approach

	Building Wikipedia domain-specific NLI model
	Experiment setup
	Data preparation
	Model training and validation

	Analyzing models stability. Training on filtered data
	Training on filtered data. Experiments with FEVER
	Model performance depending on the length of text. FEVER dataset

	WikiCheck: A complete Fact-Checking system based on Wikipedia
	Adapting model for production
	Difference from SOTA solutions
	Experiment setup
	Accuracy
	Efficiency

	Experiment results
	FEVER Accuracy
	Efficiency



	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

