
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Improving Sequence Tagging for
Grammatical Error Correction

Author:
Maksym TARNAVSKYI

Supervisor:
Kostiantyn OMELIANCHUK

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://www.ucu.edu.ua
http://www.ucu.edu.ua

ii

Declaration of Authorship
I, Maksym TARNAVSKYI, declare that this thesis titled, “Improving Sequence Tag-
ging for Grammatical Error Correction” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Improving Sequence Tagging for Grammatical Error Correction

by Maksym TARNAVSKYI

Abstract

In this work, we investigated the recent sequence tagging approach for the Gram-
matical Error Correction task. We compared the impact of different transformer-
based encoders of base and large configurations and showed the influence of tags’
vocabulary size. Also, we discovered ensembling methods on data and model lev-
els. We proposed two methods for selecting better quality data and filtering noisy
data. We generated new training GEC data based on knowledge distillation from an
ensemble of models and discovered strategies for its usage. Our best ensemble with-
out pre-training on the synthetic data achieves a new SOTA result of an F0.5 76.05 on
BEA-2019 (test), in contrast, when the newest obtained results were achieved with
pre-training on synthetic data. Our best single model with pre-training on synthetic
data achieves F0.5 of 73.21 on BEA-2019 (test). Our investigation improved the pre-
vious results by 0.8/2.45 points for the single/ensemble sequence tagging models.
The code, generated datasets, and trained models are publicly available.

HTTP://WWW.UCU.EDU.UA
http://www.ucu.edu.ua

iv

Acknowledgements
First of all, I would like to thank my supervisor Kostiantyn Omelianchuk, who di-
rected me throughout this research, for his enthusiasm, encouragement, support,
patience, valuable ideas, and bits of advice.

Also, I would like to thank the company Grammarly for their financial assistance
in obtaining the computing resources, which helped a lot during the investigation.

I am grateful to Ukrainian Catholic University for the incredible master’s pro-
gram and Oleksiy Molchanovsky for coordinating it and providing valuable advice
during the whole education.

Finally, I would like to thank my group mates for the memorable moments and
time spent together.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Importance of Grammatical Error Correction 1
1.2 Motivation . 1
1.3 Goals of the master thesis . 2
1.4 Structure of the thesis . 3

2 Literature Review 4
2.1 Existing GEC approaches . 4

2.1.1 The first GEC models . 4
2.1.2 Recent sequence-to-sequence models 4
2.1.3 Recent sequence tagging models 5
2.1.4 Data augmentation techniques and pre-training strategies . . . 6

2.2 Analysis . 8

3 Datasets and evaluation 9
3.1 Public GEC datasets observation . 9

3.1.1 NUCLE . 9
3.1.2 CoNLL-2014 . 9
3.1.3 FCE . 9
3.1.4 Lang-8 . 9
3.1.5 JFLEG . 10
3.1.6 Write and Improve + LOCNESS 10

3.2 Monolingual datasets . 10
3.2.1 One Billion Word Benchmark . 10
3.2.2 The Blog Authorship Corpus . 11
3.2.3 Amazon reviews dataset . 11

3.3 Evaluation . 11
3.4 Conclusion . 12

4 Model observation 13
4.1 Baseline approach . 13
4.2 Comparison of transformer-based encoders 14

4.2.1 Transformer-based encoders . 14
4.2.2 Comparison of the transformer-based encoders on GEC 15

4.3 Tags vocabulary . 17
4.3.1 Vocabulary size . 17

4.4 Compare inference time . 20

vi

4.5 Ensembles . 21
4.6 Conclusion . 23

5 Data filtering 25
5.1 Basic data filtering . 25
5.2 Data selection based on clusters similarity 27
5.3 Influence of data samples between fine tuning 28
5.4 Conclusion . 29

6 Knowledge distilled data 30
6.1 Approach for data generation . 30
6.2 Generated datasets overview . 30
6.3 Pre-training using generated data . 31
6.4 Pre Training using synthetic public data 33
6.5 Combining distilled data with synthetic data 34
6.6 Training in one stage . 35
6.7 Conclusion . 36

7 Conclusions 37
7.1 Contribution . 37
7.2 Future work . 38

A Baseline approach 39

Bibliography 40

vii

List of Tables

2.1 The evaluation of models on GEC benchmarks 7

3.1 Statistics and properties of public GEC datasets. 10

4.1 Parameters of transformer-based models 15
4.2 Comparing transformer-based encoders trained on joined dataset (Lang-

8 + NUCLE + FCE + WI) . 15
4.3 Results for models trained on joined dataset (Omelianchuk et al., 2020)

. 16
4.4 Comparing transformer-based encoders fine-tuned on WI 16
4.5 Comparing transformer-based encoders after the selection of hyper-

parameters . 17
4.6 Comparing the impact of vocabulary size on models trained on the

joined dataset (Lang-8 + NUCLE + FCE + WI) 18
4.7 Comparing the impact of vocabulary size on models fine-tuned on the

WI dataset . 18
4.8 Comparing the impact of vocabulary size on models after the selec-

tion of hyperparameters . 19
4.9 Comparing the impact of 10k vocabulary size on models trained on

the joined dataset (Lang-8 + NUCLE + FCE + WI) 19
4.10 Comparing the impact of 10k vocabulary size on models fine-tuned

on the WI dataset . 19
4.11 Comparing the impact of 10k vocabulary size on models after the se-

lection of hyperparameters . 20
4.12 Comparing the impact of transformer-based encoders and vocabulary

size on the inference time . 20
4.13 Comparing model level ensembles based on models trained on the

joined dataset . 21
4.14 Comparing model and data level ensembles based on models trained

on the joined dataset . 22
4.15 Comparing model and data level ensembles based on models fine-

tuned on the WI dataset . 22
4.16 Comparing model and data level ensembles based on models after the

selection of hyperparameters . 23
4.17 Comparing data level ensembles based on best trained models 23
4.18 Comparing data level ensembles based on best trained models 23

5.1 An example of sentences for which cosine similarity between the source
and target sentences have less than 0.5. 25

5.2 Data cleaning for datasets . 26
5.3 Fine-tuning RoBERTa base model on basic and cleaned WI dataset . . 26
5.4 Comparing model training on basic and cleaned joined dataset 26
5.5 Comparing models after fine-tuning on basic and cleaned WI dataset . 27

viii

5.6 Fine-tuning RoBERTa base on the extended WI dataset. Additional
data were selected from the most similar clusters to WI data. 27

5.7 Fine-tuning RoBERTa large on the extended WI dataset. Additional
data were selected from the most similar clusters to WI data. 27

5.8 Fine-tuning RoBERTa base on the extended WI dataset. Additional
data were selected based on the cosine similarity of sentence embed-
dings, which was produced by two checkpoints of the model before
and after fine-tuning. 28

5.9 Fine-tuning RoBERTa large on the extended WI dataset. Additional
data were selected based on the cosine similarity of sentence embed-
dings, which was produced by two checkpoints of the model before
and after fine-tuning. 28

5.10 An example of sentences with a significant deviation of cosine sim-
ilarity between embeddings produced by model checkpoints before
and after fine-tuning. 29

6.1 Statistics on how many sentences were processed by ensemble and
rate of sentences with found grammatical errors 31

6.2 Comparison of model training on 1BW, Blogs, Amazon datasets (stage
1) based on RoBERTa base model . 31

6.3 Pre-training on 1BW dataset for RoBERTa base 32
6.4 Pre-training on Blogs dataset for RoBERTa base 32
6.5 Pre-training on 1BW dataset for RoBERTa large 32
6.6 Pre-training on Blogs dataset for RoBERTa large 33
6.7 Pre-training on PIE-synthetic data for RoBERTa base 33
6.8 Pre-training on PIE-synthetic data for RoBERTa large 33
6.9 Pre-training on PIE-synthetic data for RoBERTa base (Omelianchuk et

al., 2020) . 34
6.10 Pre-training on PIE+1BW data for RoBERTa base 34
6.11 Pre-training on PIE+1BW data for RoBERTa large 35
6.12 Pre-training on PIE+Blogs data for RoBERTa large 35
6.13 Pre-training on Blogs+WI data for RoBERTa base 35
6.14 Pre-training on Blogs+WI data for RoBERTa large 36
6.15 Pre-training on Blogs+WI data in one stage for large encoders 36

A.1 Training with and without 2 cold steps 39
A.2 Ablation study, when we trained model in two stages and when we

only trained the model on the WI dataset 39
A.3 A comparison of the training model with and without filtering sen-

tences in which all tags are only KEEP tag. 39

ix

List of Abbreviations

NLP Natural Language Processing
GEC Grammatical Error Correction
SOTA State-Of-The-Art
BERT Bidirectional Encoder Representations from Transformers
NMT Neural Machine Translation
WI Write Improve dataset
BEA-2019 Building Educational Applications 2019 shared task

1

Chapter 1

Introduction

1.1 Importance of Grammatical Error Correction

In today’s world, literacy is highly valued. Competent writing requires knowledge
of various language rules, exceptions, grammar constructions. Lack of this knowl-
edge or inattention can be the cause of making errors. People might have an un-
pleasant impression when they notice mistakes in the text. Therefore, it is neces-
sary to check it. However, proofreading is time-consuming, requires attention and
in-depth linguistic knowledge. That is why systems that can automatically correct
errors in the written text are beneficial and in demand.

With the advent and development of Grammatical Error Correction systems,
more and more people have the opportunity to check their texts and write more
competently. Such systems can be applied in many scenarios, such as writing es-
says, papers, reports, emails, messages. They significantly speed up checking, allow
to correct mistakes both visually and interactively, and at the same time, teach gram-
mar (Tajiri, Komachi, and Matsumoto, 2012).

GEC system receives a sentence with mistakes and outputs a corrected version.
This system should be able to cope with different types of errors. They can be mor-
phological, lexical, punctuation, and others. Both the quality of the corrections and
the performance speed of the system are important.

1.2 Motivation

We selected a Grammatical Error Correction topic as it has significant social value
and demand. Research on this topic is actively developing, and substantial progress
has already been achieved, as described in (Wang et al., 2020). However, there is
still a need to improve the accuracy, completeness, and speed of error correction
systems. Also, the speed of the model and the amount of memory it takes up are
essential, especially in cases when the model needs to be placed on-device (Kairouz
et al., 2019).

The Grammatical error correction task is complicated and has many challenges.
First of all, each language is rich, and its grammar contains many rules and excep-
tions. Professional linguists are needed to create high-quality annotated training
data (Dahlmeier, Ng, and Wu, 2013, Bryant et al., 2019). The amount of available
public GEC data is limited, and creating new data requires much effort. That is
why researchers have to develop and improve the architecture of models and create
methods for generating and augmenting training data and strategies for their usage
(Lichtarge et al., 2019, Stahlberg and Kumar, 2021).

2 Chapter 1. Introduction

Most grammatical error correction research is based on sequence-to-sequence
Neural Machine Translation when a new grammatically correct sentence is gener-
ated based on the erroneous sentence(Yuan and Briscoe, 2016, Kaneko et al., 2020).

The sequence tagging approach, which generates a sequence of operations (tags)
that must be performed on a sentence to make it grammatically correct, has recently
been proposed (Awasthi et al., 2019, Omelianchuk et al., 2020). Models based on this
approach also managed to achieve State-of-the-art results.

The sequence tagging approach is poorly studied, and its further research and
improvement can have a considerable impact on the development of the GEC in-
dustry.

In our study, we considered using English as the most significant progress has
been made for it. English has the most considerable amount of annotated training
data, and most existing GEC approaches report their results on English common
benchmarks (Ng et al., 2014,Bryant et al., 2019). However, it is essential to remember
that new things developed for English can eventually be applied to other languages.
In our work, we wanted to focus on improving the recent sequence tagging approach
and leaving its application to other languages for future work.

1.3 Goals of the master thesis

The main goal of our Master’s thesis is to explore and improve the sequence tag-
ging approach for Grammatical Error Correction and strengthen result on the newest
closed BEA-2019 shared task (Bryant et al., 2019).

We will first analyze existing GEC approaches, identify their advantages and
disadvantages, suggest methods for improving correction quality, and verify them.
The tasks we set before ourselves are the following:

1. We want to compare the impact of transformer-based encoders such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019), DeBERTa (He et al., 2020),
XLNet (Yang et al., 2019) of the base, and large configurations on grammatical
error correction.

2. We want to check if models with large encoder configurations perform better
than models with base configurations. Also, we plan to compare their infer-
ence time.

3. We want to discover if increasing/reducing the tags vocabulary size for models
improves the quality of corrections.

4. We plan to compare ensembling methods such as stacking on model and data
levels. We want to check whether both methods have the same results when
combining models with the same vocabulary. Furthermore, investigate whether
combining models with different vocabulary sizes will improve the quality of
correction.

5. We want to analyze the quality of existing training GEC datasets and propose
methods for filtering low-quality data samples. We plan to check how training
on the filtered dataset will influence the result. Furthermore, we plan to inves-
tigate the impact of the training model on the dataset extended with additional
potential good quality samples.

6. We want to investigate generating training data based on the distillation of
knowledge by an ensemble of models. We plan to compare pre-training on

1.4. Structure of the thesis 3

generated data by an ensemble of models, pre-training on publicly available
synthetic data, and pre-training on their combination. Also, we want to train
the models in one stage on joined corpora of generated data and the high-
quality Write Improve dataset (Bryant et al., 2019).

1.4 Structure of the thesis

In chapter 1, we make a brief overview of the GEC topic and define research goals.
Chapter 2 reviews the main existing GEC models, data augmentation techniques,

and strategies for their usage. This review allows us to substantiate our proposed
ideas for improvement.

In chapter 3, we discuss the main public English datasets that are available for
use. Also, we will talk about the main shared task benchmarks that are used to
validate models. We will also talk about the datasets we have chosen to generate
new distilled training data.

In chapter 4, we start with a more detailed overview of the chosen sequence tag-
ging approach. Next, we present a comparison of the usage of different transformer-
based encoders and the impact of different tag dictionary sizes. Also, in this section,
we compare methods of models ensembling.

In chapter 5, we present data filtering techniques. We will also discuss our pro-
posed approach for data selection based on data clustering and the approach based
on the similarity between text embeddings generated by model checkpoints before
and after fine-tuning.

Chapter 6 discusses the method of generating distilled training data and the ef-
fect of different datasets on training.

In section 7, we summarize the results and indicate the direction for further re-
search.

4

Chapter 2

Literature Review

A comprehensive overview of the GEC area was done in (Wang et al., 2020). It
contains an overview of the main public datasets, evaluation benchmarks, existing
approaches and their development.

2.1 Existing GEC approaches

2.1.1 The first GEC models

The initial GEC approaches were hand-crafted rule-based models developed by pro-
fessional linguists (similar to Naber, 2003). However, it was complicated to describe
so many rules and exceptions used in the language which would not contradict each
other.

The first data-driven approaches were based on Statistical Machine Translation
(SMT). An example of an application is described in (Yuan and Felice, 2013). This
work describes phrase-based statistical machine translation (PBSMT) for the auto-
matic correction of errors. This model produces conditional Bayesian probabilities
between transitions from erroneous phrases to grammatically correct phrases. It
doesn’t yield high performance on CoNLL-2013 shared task (Kao et al., 2013), which
is a common benchmark for English GEC, but reveals many problems that require
careful attention when building SMT systems for error correction.

The approach based on Neural Machine Translation (NMT) is first described in
the article (Yuan and Briscoe, 2016). It used the Encoder-Decoder method. The en-
coder encodes an erroneous sentence into a vector, and the decoder generates an
already corrected sentence based on this vector. Both the encoder and the decoder
were RNNs(Cho et al., 2014) composing of GRU or LSTM (Hochreiter and Schmid-
huber, 1997) units. The model achieved the new SOTA F0.5 39 on CoNLL-2014(Ng
et al., 2014) at that time.

The advent of the Transformer architecture (Vaswani et al., 2017) has made a
significant contribution to NLP development, and most modern GEC approaches
use BERT-based (Devlin et al., 2018) encoders and decoders.

2.1.2 Recent sequence-to-sequence models

The application of BERT as an encoder and decoder for the GEC task is investigated
in (Kaneko et al., 2020). Authors evaluated three methods:

(a) initializing an Encoder-Decoder GEC model using pre-trained BERT as BERT-
init (Lample and Conneau, 2019);

(b) passing the output of pre-trained BERT into the Encoder-Decoder GEC model
as additional features (BERTfuse) (Zhu et al., 2020);

2.1. Existing GEC approaches 5

(c) combining the best parts of (a) and (b) in their new method (c), when first
they fine-tune BERT with the GEC corpus and then use the output of the fine-tuned
BERT model as additional features in the GEC model. Their approach (c) had better
performance with results of F0.5 = 65.2 at CoNLL-2014 (Ng et al., 2014) and F0.5 = 69.8
at BEA-2019 (Bryant et al., 2019), which is a newer benchmark for English GEC.

Sequence-to-sequence NMT-based approaches give quite good results but also
have limitations. Their learning requires a lot of training data, and they are relatively
slow. Therefore, researchers are trying to find methods that would speed up the per-
formance of the models. One of them is the approach which improves GEC’s effi-
ciency by dividing the task into two subtasks: Erroneous Span Detection (ESD) and
Erroneous Span Correction (ESC)(Chen et al., 2020). ESD identifies grammatically
incorrect text spans with an efficient sequence tagging model. Then, ESC leverages
a sequence-to-sequence model to take the sentence with annotated erroneous spans
as input and only outputs the corrected text for these spans. Experiments show that
their approach performs comparably to conventional sequence-to-sequence models,
having F0.5 = 61.0 on CoNLL-14 (Ng et al., 2014) benchmark with less than 50% time
cost for inference.

2.1.3 Recent sequence tagging models

Most of what the sequence-to-sequence Encoder-Decoder models output is almost
the same sentence fed to the input. The Encoder-Decoder models autoregressively
capture full dependency among output tokens but are slow due to sequential de-
coding. A much more straightforward task is to predict the edit tags that need to be
applied to turn erroneous sentences into correct ones.

One of the recent attempts to apply a sequence tagging approach to GEC was
done in LaserTagger paper (Malmi et al., 2019). LaserTagger is a sequence tagging
model that casts text generation as a text editing task. Corrected texts are recon-
structed from the inputs using three main edit operations: keeping a token, deleting
it, and adding a phrase before the token. The model combines a BERT encoder with
an autoregressive Transformer decoder, which predicts edit operations. LaserTag-
ger had F0.5 = 40.5 on the BEA-19 (Bryant et al., 2019) test. However, it gave great
impetus to the development of sequence tagging models.

Another approach was proposed in the article (Awasthi et al., 2019). Their Par-
allel Iterative Edit (PIE) model does parallel decoding, giving competitive accuracy
with the Encoder-Decoder models. This is possible because model:

• Predicts edits instead of tokens.

• Labels sequences instead of generating sequences.

• Iteratively refines predictions to capture dependencies.

• Factorizes logits over edits and their token argument to harness pre-trained
language models like BERT.

This method achieves F0.5 = 59.7 on the CoNLL-14Ng et al., 2014 task and is a signif-
icantly faster alternative for local sequence transduction.

A similar approach, which currently has state-of-the-art results, is proposed in
the article (Omelianchuk et al., 2020). The authors present a simple and efficient GEC
sequence tagger using a Transformer as an encoder and linear layers with softmax
for tag prediction and error detection instead of a decoder. In their experiments, en-
coders from XLNet(Yang et al., 2019) and RoBERTa(Liu et al., 2019) outperform three

6 Chapter 2. Literature Review

other cutting-edge Transformer encoders (ALBERT(Lan et al., 2020), BERT(Devlin et
al., 2018), and GPT-2(Radford et al., 2018)).

The authors consistently used pre-trained transformers in their Base configura-
tions and the size of tag vocabulary was 5000. Their GEC system is pre-trained
on synthetic data and then fine-tuned in two stages: first on errorful synthetic cor-
pora and second on a combination of errorful and error-free parallel corpora. Also,
they designed custom token-level transformations to map input tokens to target cor-
rections. These transformations increase grammatical error correction coverage for
limited output vocabulary size for the most common grammatical errors, such as
Spelling, Noun Number, Subject-Verb Agreement, and Verb Form (Yuan and Briscoe,
2016).

Their best single-model, GECToR (XLNet) achieves F0.5 = 65.3 on CoNLL-2014(Ng
et al., 2014) (test) and F0.5 = 72.4 on BEA-2019(Bryant et al., 2019) (test). Best ensem-
ble model, GECToR (BERT + RoBERTa + XLNet) where they simply average output
probabilities from 3 single models achieves F0.5 = 66.5 on CoNLL-2014 (Ng et al.,
2014) and F0.5 = 73.6 on BEA-2019 (Bryant et al., 2019), correspondingly. Their in-
ference speed is up to 10 times as fast as a Transformer-based sequence-to-sequence
GEC system.

2.1.4 Data augmentation techniques and pre-training strategies

Encoder training requires as much quality data as possible. However, the most ex-
tensive set of publicly available parallel data (Lang-8, Tajiri, Komachi, and Mat-
sumoto, 2012) in GEC has only one million sentence pairs. Therefore, many re-
searchers are now actively exploring data augmentation methods and strategies for
their use.

For instance, in the investigation (Kiyono et al., 2019), the authors proposed two
approaches to error generation. In the first approach (a1), they set the probability
distributions of different types of errors, such as deleting, repeating, substituting
words in a sentence, and then directly added these errors to the correct sentences.
In the second approach (a2), they trained the Encoder-Decoder Transformer model
(Vaswani et al., 2017) in a reversed way, which received correct sentences as input
and returned sentences with errors at the output. As a result, the GEC model, which
trained on the data generated by approach (a1), had better results on the BEA-19 test
(Bryant et al., 2019).

Furthermore, they compared two strategies for model training on synthetic data.
In the first experiment, they trained the model on the joined synthetic and real data.
As a result, they got a slightly worse score than when they trained the model only
on real data. In the second experiment, they first pre-trained the model only on
synthetic data and then trained the model only on real data. The second approach
yielded significant improvements. This investigation demonstrated that training
strategy is essential for outcome. Their final best pre-trained models achieved F0.5 =
65.0 on CoNLL-14 (Ng et al., 2014) and F0.5 = 70.2 on BEA-19 (Bryant et al., 2019).

Another two approaches for generating large parallel corpora for Grammatical
Error Correction using publicly available Wikipedia data are described in (Lichtarge
et al., 2019). The first method extracts source-target pairs from Wikipedia edit his-
tories with minimal filtration heuristics. In contrast, the second method introduces
noise into Wikipedia sentences via round-trip translation through bridge languages.
The authors demonstrated that neural GEC models trained using either type of cor-
pora gave a similar performance. Fine-tuning models on the Lang-8 corpus and
ensembling allowed them to achieve F0.5 = 60.4 on CoNLL-14 (Ng et al., 2014) task.

2.1. Existing GEC approaches 7

Further investigation about data-weighting strategies of using training data de-
scribed in (Lichtarge, Alberti, and Kumar, 2020). The authors proposed the met-
ric delta-log-perplexity (∆ppl), defined as the difference in negative log-probability
(log-perplexity) of an individual training example between two checkpoints in model
training. The first checkpoint corresponds to model (θ−), which is trained on a base
dataset D−, while the second checkpoint corresponds to the model (θ+) after further
fine-tuning on a second target dataset D+ (with trusted quality). ∆ppl between those
models for a given example (composed of input, output pair (i, o)) should suggest
which of the datasets the example is more similar to, from the successive models θ−

and θ+.

∆ppl(i, o; θ−, θ+) = log p(o|i; θ−)− log p(o|i; θ+)

When D+ is selected to be "higher quality" than D−, then the ∆ppl scores of ex-
amples drawn from D− provide a heuristic for assessing their quality. Having these
scores, the authors proposed a strategy for their use. First, they sorted the training
examples according to scores. Since the model can forget more what it learned before
and remember what it learned recently, the authors gave fewer quality examples at
the beginning of training and high-quality - at the end. Thus, the model was able
to study these more meaningful examples better and, as a result, achieved higher
results on benchmarks. Also, they down-weighted the loss of low-scoring examples
during training, which further improved the final result.

Using the weighting strategy, they increased F0.5 for their single / ensemble mod-
els from 61.1 to 62.1 / from 65.3 to 66.8 on CoNLL-14(Ng et al., 2014) and from 66.1
to 66.5 / from 71.9 to 73.0 on BEA-19 (Bryant et al., 2019) tests.

The recent work about synthetic data generation presented in (Stahlberg and Ku-
mar, 2021). In this work, the authors used error type tags from automatic annotation

CoNLL-2014. BEA-2019
Model F0.5 F0.5

Single systems
(Yuan and Briscoe, 2016) 39 -
(Kaneko et al., 2020) 62.6 65.6
(Chen et al., 2020) 61.0 -
(Malmi et al., 2019) - 40.5
(Awasthi et al., 2019) 59.7 -
(Omelianchuk et al., 2020) 65.3 72.4
(Kiyono et al., 2019) 65.0 72.0
(Lichtarge et al., 2019) 56.8 -
(Lichtarge, Alberti, and Kumar, 2020) 62.1 66.5
(Stahlberg and Kumar, 2021) 66.6 70.4
Ensembles
(Kaneko et al., 2020) 65.2 69.8
(Awasthi et al., 2019) 61.2 -
(Omelianchuk et al., 2020) 66.5 73.6
(Lichtarge et al., 2019) 60.4 -
(Lichtarge, Alberti, and Kumar, 2020) 66.8 73.0
(Stahlberg and Kumar, 2021) 68.3 74.9

TABLE 2.1: The evaluation of models on GEC benchmarks

8 Chapter 2. Literature Review

tools such as ERRANT to guide synthetic data generation. They used sequence-to-
edits tagging models (Stahlberg and Kumar, 2020) to build a new, large synthetic
pre-training data set with error tag frequency distributions matching a given devel-
opment set. Their synthetic data set yields large and consistent gains, surpass the
SOTA on the BEA-19 test with F0.5 = 74.9 and on CoNLL-14 test with F0.5 = 68.3.

To sum up, the articles in this section have shown that it is essential to choose
not only the model’s architecture but also its training strategy.

2.2 Analysis

The comparison of model’s performance is presented in Table 2.1.
Based on the newer closed benchmark BEA-19, the best result among single

models has sequence tagging GECToR (XLNet) model (Omelianchuk et al., 2020),
which has slightly better results than (Kiyono et al., 2019) and (Stahlberg and Kumar,
2021). Among the ensembles, the sequence-to-sequence models with pre-training
on recent generated data from (Stahlberg and Kumar, 2021) have significantly sur-
passed previous SOTA result of GECToR (BERT + RoBERTa + XLNet) models from
(Omelianchuk et al., 2020).

Most approaches use sequence-to-sequence models, while the use of sequence
tagging models is much less studied. In our research, we decided to focus on the
latest sequence tagging approach based on work (Omelianchuk et al., 2020) and ex-
plore its model architecture configurations and pre-training strategies.

9

Chapter 3

Datasets and evaluation

3.1 Public GEC datasets observation

The main public datasets used for supervised learning of GEC models are NUCLE
(Dahlmeier, Ng, and Wu, 2013), Lang-8 (Tajiri, Komachi, and Matsumoto, 2012),
FCE (Yannakoudakis, Briscoe, and Medlock, 2011), JFLEG (Napoles, Sakaguchi, and
Tetreault, 2017), WriteImprove+LOCNESS (Bryant et al., 2019). They consist of par-
allel pairs of erroneous and grammatically correct sentences. Statistical information
about them are given in Table 3.1 based on information from (Wang et al., 2020).

3.1.1 NUCLE

The NUS Corpus of Learner English (NUCLE) is the first GEC dataset freely avail-
able for research purposes. NUCLE consists of essays written by undergraduate
students at the National University of Singapore (NUS). The essays were written as
course assignments on different topics, like technology innovation or health care.
Dataset was annotated by NUS teachers.

3.1.2 CoNLL-2014

The CoNLL-2014 shared task is a grammatical error correction benchmark, which
tests models to cope with all types of errors. Its data is a deferred part of the NUCLE
corpus. Two professional annotators independently annotated test essays.

3.1.3 FCE

The First Certificate in English Corpus (FCE) is a public subset of the private Cam-
bridge Learner Corpus (CLC), and it is a collection of sentences written by English
language learners in response to FCE exam questions for upper-intermediate level.
FCE contains diverse sentence proficiency and wide topics.

3.1.4 Lang-8

The Lang-8 Corpus of Learner English is a dataset based on data from the Lang-8
online language learning website where native speakers correct grammar in essays
posted by language learners. This dataset has an immense amount of GEC train-
ing samples. However, sentences in this dataset were corrected by annotators with
different proficiency levels, which influenced data quality.

10 Chapter 3. Datasets and evaluation

Corpus Component Sentences Tokens Characters Rate of changed
sentences

NUCLE Train 57k 1.16M 115 38%
CoNLL-2014 Test 1.3k 30.1 k 23 89%

Train 28k 455k
FCE Dev 2.1k 35k 74 62%

Test 2.7k 42k
Lang-8 Train 1.04 11.86 56 42%

M M
JFLEG Dev 754 14k 94 86%

Test 747 13k
Train 34.3k 628.7k 60 67%

W&I Dev 3.4k 63.9k 94 69%
Test 3.5k 62.5k -

LOCNESS Dev 1k 23.1k 123 52%
Test 1k 23.1k -

TABLE 3.1: Statistics and properties of public GEC datasets.

3.1.5 JFLEG

JHU FLuency-Extended GUG corpus (JFLEG) is a parallel corpus for developing
and evaluating grammatical error correction. It represents a wide range of language
proficiency levels and uses edits to correct grammatical errors and make the original
text more native.

3.1.6 Write and Improve + LOCNESS

Write Improve Corpus (WI), and LOCNESS Corpus are newer datasets introduced
by The BEA-2019 Shared Task on Grammatical Error Correction.

WI consists of 3600 annotated essay submissions from Write Improve, an online
web platform that assists non-native English students with their writing. The essays
are split into train, development, and test sets with 3000, 300, and 300 samples.

LOCNESS Corpus is a collection of about 400 essays written by British and Amer-
ican undergraduates. It contains only the development and test sets.

3.2 Monolingual datasets

This section presents the datasets which we have chosen to generate new training
GEC data based on them. These datasets are One Billion Word Benchmark (Chelba
et al., 2013), The Blog Authorship Corpus (Schler et al., 2005), and Amazon reviews
dataset (Ni, Li, and McAuley, 2019). Our best ensemble of models will detect sen-
tences that have potential errors and try to correct them. The more data and the
more errors they have, the more we can generate training data.

3.2.1 One Billion Word Benchmark

The One Billion Word Benchmark is a corpus with more than one billion words of
training data. We chose this corpus as it is one of the well-known popular datasets
that are publicly available. It contains many texts so that it can generate a lot of

3.3. Evaluation 11

training data. However, it mainly consists of news data, so we did not expect a very
high rate of errors.

3.2.2 The Blog Authorship Corpus

The Blog Authorship Corpus consists of the collected posts of 19 320 bloggers gath-
ered from blogger.com in August 2004. The corpus incorporates a total of 681 288
posts and over 140 million words. Bloggers included in the corpus are of all ages
- from schoolchildren, students and more mature. Texts in this dataset are on var-
ious topics - traveling, cooking, movies, lifestyle. The amount of data is limited.
We selected this dataset because its texts were written by ordinary people without
correction by editors.

3.2.3 Amazon reviews dataset

The Amazon reviews dataset contains 82.83 million unique product reviews from
around 20 million users. There are about 30 different categories, such as (Books,
Clothing, Electronics, Sports, and others). In our investigation, we only used data
from the "Clothing, Shoes and Jewelry" category for annotation, but we want to try
to combine comments from different categories in the future. Ordinary users wrote
these reviews, and there are many possibilities for grammatical error correction.

3.3 Evaluation

The commonly accepted shared tasks CoNLL-2014(Ng et al., 2014) and BEA-2019(Bryant
et al., 2019) are used to check and compare existing GEC models’ quality.

These benchmarks test the ability of models to cope with all types of errors (punc-
tuation, spelling, and others), and the sentences for them were annotated by profes-
sional linguists.

The main metrics for evaluating GEC models are Precision, Recall, and F0.5,
which gives more weight to the Precision of the corrections than to Recall. Any
edits with the same span and correction in target and corrected sentences are true
positive (TP). In contrast, unmatched edits in the corrected and target sentences are
false positives (FP) and false negatives (FN), respectively.

F0.5 =
(1 + 0.5)2 ∗ Precision ∗ Recall
(0.5)2 ∗ Precision + Recall

Where

Precision =
TP

TP + FP

Recall =
TP

TP + FN
Tools M2Scorer (Dahlmeier and Ng, 2012) and ERRANT (Bryant, Felice, and

Briscoe, 2017) are most often used to assess text correction quality. Their main dif-
ference is how they extract edits from parallel original and corrected sentences and
compare their overlap with ground truth edits. M2Scorer is the official scorer for the
CoNLL-2014 task, and ERRANT is for the BEA-2019 shard task.

12 Chapter 3. Datasets and evaluation

3.4 Conclusion

In this section, we discussed the main public available GEC datasets for the English
language. We used sequentially joined datasets Lang-8 + NUCLE + FCE + WI for
training models in our investigation. For final fine-tuning, we used the WI dataset.
The metric that we tried to optimize was F0.5 score. All the experiments we evaluated
on the BEA-2019 dev part. We chose this benchmark as it is newer than CoNLL-
2014, and its target sentences are publicly unavailable, making the comparison of
the models fairer.

We decided to use One Billion Word Benchmark, The Blog Authorship Corpus,
and Amazon reviews dataset for generation new training data. We chose datasets
of different origins to discover the impact of initial data on the quality of generated
GEC training samples.

13

Chapter 4

Model observation

4.1 Baseline approach

The sequence tagging approach implemented in (Omelianchuk et al., 2020) was
taken as a basis. The architecture of their model consists of two main components.
They use a transformer-based encoder and two linear layers instead of a decoder.
The first linear layer detects whether it is necessary to make changes for a particu-
lar word. The second linear layer is responsible for selecting the tag, which will be
executed on the word. Then there is post-processing, during which operations are
performed depending on the predicted tags.

The primary tag operations are "KEEP" - leave the word unchanged, "DELETE"
- delete the word, "APPEND word" - add the new word after the current word, "RE-
PLACE word" - replace the current word with a new word. In addition to these tags,
their implementation included custom transformation tags, such as lead to upper-
case or lowercase, lead to 3rd forms of irregular verbs, add "s" endings, etc.

FIGURE 4.1: GECToR model: iterative pipline.
Source: https://www.grammarly.com/blog/engineering/gec-tag-not-rewrite

The task we optimize is a multi-class classification of tags, which we assign se-
quentially for each word. Loss function is a multi-class categorical entropy. The
criterion for stopping learning was early stopping if the model did not improve the
loss function value for the dev train part during the following three epochs. This
way, we chose the best models and compared them on the deferred BEA-2019 dev
part. And only the models that had performed best on the dev part, we later tested
on the BEA-2019 test part.

Training a language model requires a lot of data. When the amount of data is
limited, it is often used to initialize the model with pre-trained weights and then
train the model on task-specific data, as investigated in (Kaneko et al., 2020). There-
fore, we initialized the encoder with pre-trained weights, and the linear layers were

14 Chapter 4. Model observation

initialized with random weights. As long as the linear layers are not trained not to
spoil the good initialized weights of the encoder, training with several cold steps is
used. For example, in the first two epochs, we train only linear layers, and then the
whole model and the encoder and linear layers are trained. Comparison of training
with two cold steps and without them can be seen in Table A.1

Model training occurs in several stages. The initial training takes place on the
following joined datasets: Lang8, FCE, NUCLE, WL. After that, we continue training
the model only on the WI dataset. It allows us to train a model on a large amount
of data of different quality and then fine-tune it on the highest quality data. The
ablation study, when we trained model in two stages and when we only trained the
model on the WI dataset, can be seen in Table A.2.

Usually, a small number of corrections need to be applied in a sentence. The
most common operation is not to change anything (use the KEEP tag). In section 3,
we showed that the Lang8, FCE, NUCLE, and WI datasets contain a high percent
of sentences without changes, increasing the share of KEEP tags. Training on many
unchanged sentences makes the model much harder to learn, as it is easier for a
model to recommend the KEEP tag than any other. Therefore, when the model is
trained on joined data, we filter out those sentences in which all tags are only KEEP.
A comparison of the training model with and without filtering can be seen in Table
A.3.

However, it is necessary to cover all possible sentences on the latest training stage
so that the model knows that there are sentences for which no changes need to be
made. Not filtering data during fine-tuning on the WI dataset gives much better
results than fine-tuning on filtered data.

Since Precision is more critical than Recall in the GEC task, we can find optimal
threshold confidence for correcting using hyperparameters. For example, it is possi-
ble to artificially increase the probability for a KEEP tag or set minimum confidence
of a correction. We selected these hyperparameters on the dev part. The results after
hyperparameter selection are shown in the following sections.

Sequence tagging GEC framework, developed in (Omelianchuk et al., 2020),
mainly based on libraries AllenNLP and transformers.

In the original GECToR framework, the authors used their implementation for
the BPE tokenizer. They used it to speed up tokenization. In our work, we moved
on to the recently implemented fast tokenizers from transformers. They are written
on Rust and are a quicker version of previous tokenizers. Such code migration al-
lowed encoders in the models to have the same tokenizer, which they used during
their initial pre-training. Usage of original tokenizers allowed the models to achieve
slightly better results after training.

4.2 Comparison of transformer-based encoders

4.2.1 Transformer-based encoders

The basis of sequence tagging models is the transformer-based tokenizers. In (Omelianchuk
et al., 2020), they tried to use the LSTM(Hochreiter and Schmidhuber, 1997) network
as an encoder, but such a model had a much worse result than transformer-based
encoders. They also found that the RoBERTa (Liu et al., 2019) and XLNet(Yang et
al., 2019) encoders performed better than BERT(Devlin et al., 2018), ALBERT(Lan et
al., 2020), and GPT-2(Radford et al., 2018) encoders. The authors studied the model
only with base configurations. In our study, we would like to compare the effect of

4.2. Comparison of transformer-based encoders 15

base and large configurations for the BERT, RoBERTa, XLNet models, and the recent
DeBERTa(He et al., 2020) encoder.

Information on the main configuration parameters of these encoders we pro-
vided in Table 4.1.

Encoder name Layers Hidden Heads Parameters
BERT base 12 768 12 109 M

RoBERTa base 12 768 12 125 M
DeBERTa base 12 768 12 140 M

XLNet base 12 768 12 110 M
BERT large 24 1024 16 335 M

RoBERTa large 24 1024 16 335 M
DeBERTa large 24 1024 16 400 M

XLNet large 24 1024 16 340 M

TABLE 4.1: Parameters of transformer-based models

Most encoders have a BERT-like architecture. However, each of the encoders has
its improvements and differences. Among the base models, BERT base and XLNet
base have the fewest parameters, RoBERTa base has slightly more parameters and
DeBERTa base has the broadest range of parameters. There are almost the same
number of parameters in the encoders BERT large, RoBERTa large, XLNet large, and
many more parameters in the model DeBERTa large. The number of parameters
affects the number of calculations, so models with more parameters will train longer
and take more time for predictions.

4.2.2 Comparison of the transformer-based encoders on GEC

In this experiment, we trained models that we will consider as a baseline for com-
parison with the following experiments. As justified in Section 4.1, we used two
cold steps, early stopping three, and a tag dictionary size of 5000. Usage of the same
dictionary with 5000 tags made it possible to compare our baseline with the results
obtained in (Omelianchuk et al., 2020). Initially, we trained base and large models
only on errorful sentences of the joined dataset (Lang-8, Nucle, FCE, WI connected
sequentially, without shuffling). The training results are presented in Table 4.2.

Encoder BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base 50.12 34.04 45.79
DeBERTa base 49.27 35.5 45.73
XLNet base 47.78 33.39 43.98
BERT base 48.6 28.95 42.79

RoBERTa large 52.11 37.34 48.29
DeBERTa large 48.62 41.16 46.92
XLNet large 48.46 39.57 46.37
BERT large 49.39 29.96 43.72

TABLE 4.2: Comparing transformer-based encoders trained on joined
dataset (Lang-8 + NUCLE + FCE + WI)

16 Chapter 4. Model observation

As we can see, the best results were achieved by the models with RoBERTa and
DeBERTa encoders for both configurations.

The dynamics for the models’ results remained the same, which means that those
models that performed better with base configurations performed better also with
large configurations and vice versa. All models with large encoders had a higher
Recall value than models with base encoders. For most larger models, the Precision
value became slightly better, and in general, according to the F0.5 metric, such models
had better results.

Encoder BEA-2019 (dev)

Precision Recall F0.5

ALBERT 43.8 22.3 36.7
BERT base 48.3 29.0 42.6
GPT-2 base 44.5 5.0 17.2
RoBERTa base 50.3 30.05 44.5
XLNet base 47.1 34.2 43.8

TABLE 4.3: Results for models trained on joined dataset
(Omelianchuk et al., 2020)

If we compare with the results given in (Omelianchuk et al., 2020), shown in
Table 4.3, our trained model RoBERTa base had a somewhat better Recall value and
almost the same Precision value. Such improvement in the result can be explained by
moving from a custom implementation of the BPE tokenizer to the original, which
we described in previous paragraphs. The results for the XLNet base models are
pretty similar, which can be explained by the fact that those models used the same
tokenizer.

After that, we fine-tuned our models only on the WI dataset, using errorful and
error-free sentences. A comparison of the results can be seen in Table 4.4.

Encoder BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base 53.77 39.23 50.06
DeBERTa base 53.02 39.54 49.63
XLNet base 50.87 39.43 48.08
BERT base 49.88 33.95 45.6

RoBERTa large 54.85 42.54 51.85
DeBERTa large 53.97 42.45 51.19
XLNet large 53.06 42.65 50.59
BERT large 51.96 37.93 48.38

TABLE 4.4: Comparing transformer-based encoders fine-tuned on WI

After fine-tuning, the RoBERTa base, DeBERTa base, and XLNet base models had
almost the same recall value. In contrast, the precision value for RoBERTa base was
the highest, DeBERTa base it was slightly lower, and for XLNet, it was much lower.
The model with the BERT base encoder had significantly worse results compared to
other models.

A similar case was for models with large encoder configurations. They had better
and almost identical Recall values for RoBERTa, DeBERTa, and XLNet encoders, and

4.3. Tags vocabulary 17

their Precision was better than results from the previous stage. The model with the
BERT-large encoder also had the worst results among large models, although its
results were better than for BERT large without fine-tuning.

Finally, we made a selection of hyperparameters. Based on the grid search on the
BEA-2019 dev part, a minimum error probability (mep) and additional confidence
(ac) for the KEEP token were selected to improve Precision reducing Recall. The
results can be seen in Table 4.5.

Encoder BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base 62.49 32.26 52.63
DeBERTa base 64.22 31.87 53.38
XLNet base 63.16 30.59 52.07
BERT base 57.21 29.93 48.39

RoBERTa large 65.76 33.86 55.33
DeBERTa large 66.35 32.77 55.07
XLNet large 64.27 35.17 55.14
BERT large 61.18 31.26 51.35

TABLE 4.5: Comparing transformer-based encoders after the selec-
tion of hyperparameters

As a result, the model with the RoBERTa large encoder had the highest value of
55.33 F0.5. For base configurations, the best value of 53.38 belonged to the DeBERTa
base.

In general, the RoBERTa and DeBERTa encoders have very similar results. For
a further, more detailed study of the models, we chose models with RoBERTa base
and RoBERTa large encoders. We selected them to compare our results for models
with synthetic data pre-training with the presented results in (Omelianchuk et al.,
2020). Also, the training time of RoBERTa is shorter than for DeBERTa (this is due
to the different number of parameters), which allowed us to do more experiments
faster.

4.3 Tags vocabulary

An essential component of the sequence tagging approach is the tags dictionary. It
determines which corrections the model will learn to make. We formed the dictio-
nary based on the most common correction operations encountered in the Lang-8 +
NUCLE + FCE + WI corpuses joined GEC dataset.

4.3.1 Vocabulary size

Since the tag space of operations is limited, the increase of tags vocabulary size
should increase Recall (more corrections can be covered) and potentially decrease
Precision (it is more challenging to choose the correct tag from available tags). And
vise versa, reducing the dictionary size should increase Precision and reduce Recall.

It’s also worth noting that expanding or cutting tags vocabulary size can affect
the amount of training data we use for basic training on a joined dataset. Since we
filter out sentences that contain only the KEEP tokens, increasing the number of tags
reduces the number of sentences we filter out. On the one hand, this can help to

18 Chapter 4. Model observation

use more training data, show more corrections during model training. On the other
hand, there may be a small number of training cases for rare tags, and the training
data may include more incorrect corrections.

To test our hypothesis, we chose vocabulary sizes of 1k, 5k, and 10k. Such values
allowed us to investigate cases that differ significantly from each other.

The training results on the Joined dataset can be seen in Table 4.6.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base + voc 5k 50.12 34.04 45.79
RoBERTa base + voc 10k 49.4 33.96 45.28

RoBERTa large + voc 1k 53.57 34.97 48.42
RoBERTa large + voc 5k 52.11 37.34 48.29
RoBERTa large + voc 10k 52.22 37.89 48.55

TABLE 4.6: Comparing the impact of vocabulary size on models
trained on the joined dataset (Lang-8 + NUCLE + FCE + WI)

As expected, using a 1k dictionary for RoBERTa large increased Precision and
reduced Recall, compared to the RoBERTa large model with a 5k vocabulary size.
However, the use of a more extensive 10k dictionary for RoBERTa large did not
change the learning outcome. Most likely, the model did not use new additional
operations from the dictionary. For RoBERTa base, usage of the 10k dictionary, on
the contrary, slightly worsened the result. Recall remained almost the same, but
Precision decreased.

Next, we fine-tuned models on the WI dataset. The 10k model managed to get a
bit more Recall and more Precision values than the model with the 5k dictionary.

The model with the 1k dictionary, on the other hand, had a smaller Recall and the
highest Precision among all models. However, a smaller Recall value did not allow
for it to obtain a high metric F0.5, and it has almost the same result as the model with
a 5k vocabulary size.

The results after fine-tuning can be seen in Table 4.7.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base + voc 5k 53.77 39.23 50.06
RoBERTa base + voc 10k – – –

RoBERTa large + voc 1k 56.12 39.87 51.89
RoBERTa large + voc 5k 54.85 42.54 51.85
RoBERTa large + voc 10k 55.34 43.05 52.35

TABLE 4.7: Comparing the impact of vocabulary size on models fine-
tuned on the WI dataset

Next, we selected the hyperparameters for the model RoBERTa large with a vo-
cabulary size of 10k, which allowed us to obtain the highest F0.5 score among all
models trained with such a training strategy. We did not select hyperparameters for
the model with the RoBERTa large encoder and the 1k dictionary size as it had a
much smaller Recall than the model with the 10k dictionary. We expected a further

4.3. Tags vocabulary 19

reduction in Recall would not allow achieving a much better F0.5 metric than for the
model with size 10k.

The results after the selection of hyperparameters can be seen in Table 4.8.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa large + voc 1k – – –
RoBERTa large + voc 5k 65.76 33.86 55.33
RoBERTa large + voc 10k 64.72 36.04 55.83

TABLE 4.8: Comparing the impact of vocabulary size on models after
the selection of hyperparameters

Since the 10k dictionary for RoBERTa large made it possible to improve the re-
sult, we decided to train the models XLNet large and DeBERTa large also with this
dictionary.

Comparisons of large model training at different stages of training can be seen
in Tables 4.9, 4.10, and 4.11.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa large + voc 5k 52.11 37.34 48.29
DeBERTa large + voc 5k 48.62 41.16 46.92
XLNet large + voc 5k 48.46 39.57 46.37

RoBERTa large + voc 10k 52.22 37.89 48.55
DeBERTa large + voc 10k 51.27 39.32 48.33
XLNet large + voc 10k 50.03 38.16 47.1

TABLE 4.9: Comparing the impact of 10k vocabulary size on models
trained on the joined dataset (Lang-8 + NUCLE + FCE + WI)

In contrast to RoBERTa large, for which the increase in vocabulary in the first
stage had almost no effect, for both DeBERTa and XLNet the Recall values decreased
slightly, and the Precision increased.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa large + voc 5k 54.85 42.54 51.85
DeBERTa large + voc 5k 53.97 42.45 51.19
XLNet large + voc 5k 53.06 42.65 50.59

RoBERTa large + voc 10k 55.34 43.05 52.35
DeBERTa large + voc 10k 54.36 43.31 51.72
XLNet large + voc 10k 53.11 42.76 50.66

TABLE 4.10: Comparing the impact of 10k vocabulary size on models
fine-tuned on the WI dataset

20 Chapter 4. Model observation

After fine-tuning on the WI dataset, the DeBERTa model with a 10k dictionary
had better Precision and Recall values than the DeBERTa model with a 5k dictionary.
Models with an XLNet encoder had almost exactly the same metrics.

After selecting the hyperparameters, DeBERTa large with voc of 10k was also
able to improve the results compared to the DeBERTa model with the 5k dictionary,
and the XLNet model was not. For the model with an XLNet encoder from 10k
dictionaries, all metrics deteriorated after selecting hyperparameters.

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa large + voc 5k 65.76 33.86 55.33
DeBERTa large + voc 5k 66.35 32.77 55.07
XLNet large + voc 5k 64.27 35.17 55.14

RoBERTa large + voc 10k 64.72 36.04 55.83
DeBERTa large + voc 10k 65.46 34.59 55.55
XLNet large + voc 10k 64.12 34.02 54.48

TABLE 4.11: Comparing the impact of 10k vocabulary size on models
after the selection of hyperparameters

Therefore, increasing the dictionary size to 10k for large encoders can help im-
prove the result, as it happened for models with RoBERTa large and DeBERTa large,
but there are cases when this leads to deterioration, as for the model with XLNet
large.

4.4 Compare inference time

In addition to the quality of grammatical error corrections, we also decided to com-
pare the running time of the models on the BEA-2019 dev part, which is presented in
Table 4.12. Each time value is the arithmetic mean of the time of 5 model inferences.

Encoder Vocabulary size Time

RoBERTa base 5k 19.05 s
BERT base 5k 19.28 s
DeBERTa base 5k 23.75 s
XLNet base 5k 30.46 s
RoBERTa base 10k 20.46 s

RoBERTa large 1k 45.66 s
RoBERTa large 5k 47.23 s
BERT large 5k 49.17 s
DeBERTa large 5k 58.32 s
XLNet large 5k 71.19 s
RoBERTa large 10k 48.06 s

TABLE 4.12: Comparing the impact of transformer-based encoders
and vocabulary size on the inference time

4.5. Ensembles 21

Absolute time values may differ on different computers, but the order should be
the same. We did not use any optimizations for inference, like weights quantization
for exmaple, so this time can be improved.

Among the base models with the 5k dictionary, the fastest was the RoBERTa base
model. The BERT base model had almost the same speed, the DeBERTa base model
was a bit slower, and the XLNet base model was the slowest.

A similar case was for large models with a 5k dictionary. The fastest was RoBERTa
large, the slowest was the XLNet large model.

If we talk about the size of the dictionary, then, as expected, for a smaller dictio-
nary - the prediction time is shorter, while for a larger dictionary, the prediction time
is longer.

It is worth noting that although large models have better results, they are much
slower. The prediction time for large models is twice as long as for base models. This
is because large models have twice as many parameters as base models.

4.5 Ensembles

As already shown in the literature review, many studies show the final result ob-
tained with a single model and an ensemble of models. Combining the results of
models that differ from each other helps to improve the quality of corrections.

There are two main ensembling methods, such as stacking on model and data
levels.

The first approach averages the probabilities which produce models during the
prediction. In the case of the sequence tagging models, it averages the probabili-
ties of tag assignment. All models must have the same size and order of tags in
the dictionary to perform this averaging. Such an ensemble method was used in
(Omelianchuk et al., 2020).

Ensemble BEA-2019 (dev)

Precision Recall F0.5

Base RoBERTa + XLNet 53.45 34.3 48.08
Base RoBERTa + DeBERTa 53.44 34.91 48.31
Base RoBERTa + XLNet + DeBERTa 54.78 34.87 49.17
Base RoBERTa + XLNet + DeBERTa +BERT 56.34 33.76 49.69

Large RoBERTa + XLNet 53.83 38.65 49.91
Large RoBERTa + DeBERTa 54.12 39.77 50.48
Large RoBERTa + XLNet + DeBERTa 54.3 39.95 50.66
Large RoBERTa + DeBERTa + BERT 57.31 37.41 51.8
Large RoBERTa + XLNet + DeBERTa +BERT 56.97 38.52 51.99

Base RoBERTa + lage RoBERTa 54.83 35.93 49.61
Base and large RoBERTa + XLNet + DeBERTa
+BERT

58.69 36.12 52.17

TABLE 4.13: Comparing model level ensembles based on models
trained on the joined dataset

The second approach combines the corrections in the post-processing phase.
First, each model outputs corrected sentences individually. Then, we take the cor-
rected sentences and compare which corrections they had in common. For example,

22 Chapter 4. Model observation

if at least two of the three models have made the same correction, we can make this
correction.

A somewhat similar approach was used in (Liang et al., 2020), in which the au-
thors combined sequence tagging and sequence-to-sequence models for the Chinese
language. The advantage of this ensemble method is that we can combine the re-
sults of models with different architectures. In our work, this allowed, for example,
to combine the results of models with different vocabulary sizes, which was impos-
sible with ensembling at the model level.

First, we explored a model-level ensembling approach. We took models with
the same 5k dictionary, which were trained on the Joined dataset. The results of
combining different combinations of models can be seen in Table 4.13.

As we can see, the ensemble improves the quality of corrections, and the more
models we combine, the better the result we have.

Another interesting fact was that if we combine models with large and base con-
figurations of the same encoder, as was done for RoBERTa, we can get a slightly
better result than we got for the base and large models separately.

Although the ensemble RoBERTa + DeBERTa + XLNet + BERT gave the best re-
sult, we decided not to use it. This ensemble had a much smaller Recall than the en-
semble RoBERTa + DeBERTa + XLNet, which would not allow a further increase F0.5
due to hyperparameter optimization that would further reduce the Recall. There-
fore, we used an ensemble of models with RoBERTa + DeBERTa + XLNet encoders
for further research.

Next, we compared the ensembles at the model and data level for trained models
on the Joined dataset. A comparison of the results can be seen in Table 4.14.

Ensemble BEA-2019 (dev)

Precision Recall F0.5

base RoBERTa + XLNet + DeBERTa (model) 54.78 34.87 49.17
base RoBERTa + XLNet + DeBERTa (data) 56.44 33.24 49.53

large RoBERTa + XLNet + DeBERTa (model) 54.3 39.95 50.66
large RoBERTa + XLNet + DeBERTa (data) 56.74 38.53 51.84

TABLE 4.14: Comparing model and data level ensembles based on
models trained on the joined dataset

The ensemble, based on post-processing, gave the better result on F0.5 metrics as
Precision became larger and Recall - smaller.

Next, we compared the results of large models that were fine-tuned on the WI
dataset. The results can be seen in Table 4.15.

Ensemble BEA-2019 (dev)

Precision Recall F0.5

large RoBERTa + XLNet + DeBERTa (model) 58.08 43.17 54.33
large RoBERTa + XLNet + DeBERTa (data) 60.58 41.92 55.63

TABLE 4.15: Comparing model and data level ensembles based on
models fine-tuned on the WI dataset

The ensemble based on the data level had the better result of the F0.5 metric.

4.6. Conclusion 23

Finally, we selected the additional confidence for the KEEP token and minimal
error probability based on the grid search for both ensembles on model and date
levels. The comparison is shown in Table 4.16.

Ensemble BEA-2019 (dev)

Precision Recall F0.5

large RoBERTa + XLNet + DeBERTa (model) 68.45 35.56 57.76
large RoBERTa + XLNet + DeBERTa (data) 69.67 34.51 57.88

TABLE 4.16: Comparing model and data level ensembles based on
models after the selection of hyperparameters

In the final result, both ensemble approaches had almost the same value of the
F.05 metric.

Since the method based on post-processing may combine any models, we de-
cided to test the ensemble of the best models that we trained. The results of this
comparison are shown in Table 4.18.

Ensemble BEA-2019 (dev)

Precision Recall F0.5

large RoBERTa 5k + XLNet 5k + DeBERTa 5k (data) 69.67 34.51 57.88
large RoBERTa 10k + XLNet 10k + DeBERTa 10k (data) 70.13 34.23 57.97
large RoBERTa 10k + XLNet 5k + DeBERTa 5k (data) 70.71 33.78 58.02
large RoBERTa 10k + XLNet 5k + DeBERTa 10k (data) 70.32 34.62 58.3

TABLE 4.17: Comparing data level ensembles based on best trained
models

The ensemble, based on the model with large encoder Roberta + vocabulary size
10k, the model with large XLNet encoder + vocabulary size 5k, and the model with
DeBERTa + vocabulary size 10k, achieved the highest result, 58.3 at BEA-2019 dev
part.

Ensemble BEA-2019 (test)

Precision Recall F0.5

large RoBERTa 10k + XLNet 5k + DeBERTa 10k (data) 84.44 54.42 76.05

TABLE 4.18: Comparing data level ensembles based on best trained
models

We also evaluated this ensemble on the BEA-2019 test part, where it reached
76.05 of F0.5 score. This result is much higher than those we have met in the existing
GEC papers.

4.6 Conclusion

We have shown that models with large encoder configurations had better error cor-
rection quality than models with basic encoder configurations. However, improving

24 Chapter 4. Model observation

the quality slows down the inference time of the models. Models with large encoder
configurations are more than twice as slow as models with basic configurations.

We have also shown that models based on the RoBERTa, DeBERTa, and XLNet
encoders perform better than models based on the BERT encoder for both configu-
rations.

We have discovered that increasing the vocabulary size for models with RoBERTa
and DeBERTa large encoders improves the quality of corrections. In contrast, for the
model with XLNet large encoder, the quality has deteriorated.

Finally, we showed that ensembling approaches on model and date levels have
the same result when combining models with the same vocabulary size. However,
the post-processing ensemble approach has the advantage that we can combine any
models, regardless of their structure.

Our ensemble based on the model with large encoder Roberta + vocabulary size
10k, the model with large XLNet encoder + vocabulary size 5k, and the model with
DeBERTa + vocabulary size 10k reached a value 76.05 for the metric F0.5 on the
BEA-2019 test part. This result is a significant improvement over 73.7, which was
previously achieved in (Omelianchuk et al., 2020). It is worth noting that this result
was obtained without pre-training on synthetic data.

25

Chapter 5

Data filtering

The quantity and quality of training data play an essential role in training models:
the more quality training data, the better the results. This section would first ex-
plore the quality of existing GEC training data and suggest methods for cleaning
and filtering noisy data.

5.1 Basic data filtering

We started with a simple data cleanup that could potentially filter out sentences that
most likely are not grammatically correct. We decided to remove the repetition of
identical sentences. Also, to filter out those sentences for which:

1. The target sentences were empty, containing less than five letters, or only one
token.

2. The target sentences started with a lowercase word (assumption - that these
were fragments of sentences)

3. The target sentences contained all words in uppercase (also anomalous sen-
tences).

We also decided to filter sentences for which the cosine similarity between the
source and target sentences was less than 0.5. We expected that their source sen-
tences could be significantly damaged or semantically different from the target sen-
tence.

cos(a, b) =
ab

‖a‖‖b‖ =
∑n

i=1 aibi√
∑n

i=1 (ai)2
√

∑n
i=1 (bi)2

(5.1)

An example of several training sentences for which the cosine similarity was less
than 0.5 can be seen in Table 5.2.

Source sentence Target sentence Cosine similarity
So I do easy to the society ’s
exchange .

I do n’t understand this
phrase .

-0.1298

I am stydying envaerman-
tal saents .

I am studying environmen-
tal science .

0.0576

Good Morning : Dear Sir / Madam 0.1863

TABLE 5.1: An example of sentences for which cosine similarity be-
tween the source and target sentences have less than 0.5.

We decided to choose the pre-trained sentence RoBERTa base (Reimers and Gurevych,
2019) model from the Sentence Transformers 1 library to vectorize the sentences. This

1https://github.com/UKPLab/sentence-transformers

https://github.com/UKPLab/sentence-transformers

26 Chapter 5. Data filtering

model is trained to help distinguish the semantic similarity of sentences. The results
of sentence filtering for Lang-8, NUCLE, FCE, and WI datasets are presented in Table
5.

Lang-8 NUCLE FCE WI
Initial total size 1037561 57151 28350 34308
Drop duplicates 86675 3470 2643 815
Filter minimal length 9502 406 157 291
Drop start from non-capital 55162 462 124 291
Drop all capital 3609 263 393 98
Cosine similarity less than 0.5 6407 62 156 82
Size after filtering 876206 52488 24877 32731
Rate of filtered data 16% 8% 12% 5%

TABLE 5.2: Data cleaning for datasets

It is worth noting that the table shows the number of all sentences in the datasets,
regardless of whether they differ between source and target sentences or not.

First, we took the RoBERTa base model, which trained on an uncleaned joined
dataset, and tried to fine-tune it on a cleaned WI dataset. This fine-tuning gave a
slight increase in quality, which is presented in Table 5.3.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Fine-tune on WI 53.77 39.23 50.06
Fine-tune on cleaned WI 53.86 39.43 50.19

TABLE 5.3: Fine-tuning RoBERTa base model on basic and cleaned
WI dataset

Next, we decided to train the model with the encoder RoBERTa base and vocabu-
lary size 5k on the filtered data of the joined dataset. We compared it with the model,
which trained on the data without any cleaning. The results are shown in Table 5.4.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Train on basic joined dataset 50.1 34.22 45.84
Train on cleaned joined dataset 51.74 35.0 47.22

TABLE 5.4: Comparing model training on basic and cleaned joined
dataset

It can be seen that the model trained on cleaned data had a slightly better value
of metrics Precision, Recall, and F0.5.

However, after fine-tuning on the WI dataset, the final result was almost the same
for both models trained with and without data cleaning. These results presented in
Table 5.5.

5.2. Data selection based on clusters similarity 27

Dataset BEA-2019 (dev)

Precision Recall F0.5

Without filtering 53.77 39.23 50.06
With filtering 53.44 39.78 50.01

TABLE 5.5: Comparing models after fine-tuning on basic and cleaned
WI dataset

5.2 Data selection based on clusters similarity

In the following method, we decided to expand the WI dataset with the most simi-
lar sentences from the Lang-8, NUCLE, and FCE datasets and compare fine-tuning
models on such data with baseline results. To select the most similar sentences, we
first grouped the sentences into clusters using hierarchical clustering based on the
cosine similarity of the sentence vectors.

To obtain the vectors of target sentences, we again used the sentence base RoBERTa
model mentioned in Section 5.1.

Next, for each cluster, we calculated the averaged centroid vectors. We compared
the cluster centroids’ similarity between the WI dataset and Lang-8, NUCLE, and
FCE datasets. We selected the closest clusters to WI based on cosine similarity, and
from these clusters, we finally selected sentences for the extension WI dataset.

Then, we compared how the number of sentences that we add to WI influences
model fine-tuning. The results for models RoBERTa base and RoBERTa large pre-
sented in Tables 5.6 and 5.7.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Train on WI 53.77 39.23 50.06
Train on WI + 5k (clustering) 55.03 37.9 50.47
Train on WI + 10k (clustering) 54.63 37.61 50.1
Train on WI + 15k (clustering) 54.6 36.98 49.85

TABLE 5.6: Fine-tuning RoBERTa base on the extended WI dataset.
Additional data were selected from the most similar clusters to WI

data.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Train on WI 54.85 42.54 51.85
Train on WI + 5k (clustering) 55.91 41.67 52.33
Train on WI + 10k (clustering) 55.18 42.02 51.93
Train on WI + 15k (clustering) 55.21 41.55 51.8

TABLE 5.7: Fine-tuning RoBERTa large on the extended WI dataset.
Additional data were selected from the most similar clusters to WI

data.

28 Chapter 5. Data filtering

As we can see, adding 5k close sentences based on clustering allowed to increase
Precision but significantly reduced Recall. Further expansion of training data, on the
contrary, only worsened the result.

Although training on such data did not significantly improve results, it allowed
identifying clusters of sentences with poor quality data, such as clusters that consist
only of punctuation or clusters that contain only URL links or date of annotation and
others.

We planned to discover the impact of such data cleaning in future works.

5.3 Influence of data samples between fine tuning

We also tried another approach to extend WI with training sentences. It is based on
comparing the model’s sentence embeddings obtained before and after fine-tuning
on the WI dataset.

For this experiment, we used embeddings from our trained GEC model with
base RoBERTa encoder and vocabulary size 5k.

For those sentences for which the similarity between embeddings has slightly
changed, we expected that they should be of better quality than sentences with sig-
nificant deviation in similarity. Then we took the sentences with the slightest change
in cosine similarity and expanded with them the WI dataset. The results can be seen
in Tables 5.8 and 5.9.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Train on WI 53.77 39.23 50.06
Train on WI + 5k (checkpoints) 54.26 38.06 50.01
Train on WI + 10k (checkpoints) 53.5 37.68 49.36

TABLE 5.8: Fine-tuning RoBERTa base on the extended WI dataset.
Additional data were selected based on the cosine similarity of sen-
tence embeddings, which was produced by two checkpoints of the

model before and after fine-tuning.

Experiment BEA-2019 (dev)

Precision Recall F0.5

Train on WI 54.85 42.54 51.85
Train on WI + 5k (checkpoints) 55.93 41.23 52.2
Train on WI + 10k (checkpoints) 55.31 40.77 51.63

TABLE 5.9: Fine-tuning RoBERTa large on the extended WI dataset.
Additional data were selected based on the cosine similarity of sen-
tence embeddings, which was produced by two checkpoints of the

model before and after fine-tuning.

As we can see, adding 5k sentences to WI also helped increase Precision and
reduce Recall. Adding more sentences worsened the results.

This method also helped to identify noisy sentences in training data, for which
we had the most significant deviation in similarity. An example of such sentences

5.4. Conclusion 29

can be seen in Table 5.10. We want to discover the impact of such data cleaning also
in future works.

Source sentence Target sentence Cosine similarity
SLUNG SLUNG Slang 0.8814
CONCEIVE ONCEIVE v . ENVISION 0.8875
(Khalik , S. (2009 , August
17)

(Khalik , 2009) . 0.934

" CITATION Tan00 l 1033 (
Tanzi .

" (Tanzi . 0.9346

TABLE 5.10: An example of sentences with a significant deviation
of cosine similarity between embeddings produced by model check-

points before and after fine-tuning.

5.4 Conclusion

This section analyzed the quality of existing GEC datasets and proved that the WI
dataset has the highest quality. Although the proposed methods of extending the WI
dataset with additional data did not significantly improve the result, these methods
helped reveal low-quality training data samples.

30

Chapter 6

Knowledge distilled data

In this chapter, we would like to discover an approach to mark a new GEC training
data based on the knowledge distillation from an ensemble of models.

6.1 Approach for data generation

The idea of the approach was to first train the models on existing GEC data, then
combine them into an ensemble of models that would provide a better quality of
grammar correction. The next step is to take texts that may contain grammatical
errors and annotate them with an ensemble of models. In this way, we could obtain
new synthetic data on which the student GEC model could then be trained.

The advantage of this approach is that it is quite simple and versatile. You do not
need to invent logic on how to make synthetic corrections, because the corrections
will be taken from real human texts.

The drawback is that we can only detect a limited number of corrections, only
those that the model ensemble can correct. Additional types of corrections in this
way will not be possible to learn during training.

The second disadvantage is that the model ensemble is imperfect and can make
false positive corrections. And during the training, the student model will also be
studied on false-positive corrections, which is not good.

Despite the shortcomings, this method still generates new training data, and in
the following paragraphs we want to test the strategies for their use. We expect that
training on such data will allow the model to quickly learn to correct common errors,
and during training on high-quality annotated data - to focus on those corrections
that previously could not be studied.

6.2 Generated datasets overview

In section 3.3, we discussed the nature of the data we chose for data markup.
The first dataset is One Billion Words Benchmark (1BW), which consists mainly

of the news.
The second dataset is The Blog Authorship Corpus (Blogs), which consists of

blog texts on various topics, and the authors are of different ages.
And the third dataset is Amazon reviews, in which customers gave feedback on

the goods they bought.
Each dataset contained a different rate of grammatical errors. The percentage of

sentences in which the ensemble found changes presented in Table 6.1.
It is also worth noting that the 1BW and Amazon datasets contain a huge amount

of text, while the Blogs dataset contains a much smaller amount. It can be a limita-
tion if we consider generating more data.

6.3. Pre-training using generated data 31

Dataset Processed sentences Sentences with changes Rate of changes
1BW 23 156 858 1 196 622 5.16 %
Blogs 6 191 342 1 704 229 27.52 %

Amazon 5 236 480 1 469 285 28.06 %

TABLE 6.1: Statistics on how many sentences were processed by en-
semble and rate of sentences with found grammatical errors

For markup, we used a model level ensemble of sequence tagging GEC models
with encoders RoBERTa large, DeBERTa large, XLNet large, and a 5k dictionary size.

As for marking the ensemble based on post-processing by models with a larger
size of the dictionary, we left it for future research.

It is also worth noting that before the markup, the data had to be tokenized
(punctuated by spaces) and blocks of sentences had to be divided into separate sen-
tences. For preprocessing, we used a tokenizer from Spacy1.

After generating the data, we trimmed each dataset to 1.2 M sentences so that
the dimensions of the generated datasets were the same and the model quality com-
parison did not affect the amount of training data.

6.3 Pre-training using generated data

First, we tested the quality of the training on the generated data using the RoBERTa
base model. In all subsequent experiments, we used a 5k dictionary, which was also
used by the ensemble to mark the data.

Dataset BEA-2019 (dev)

Precision Recall F0.5

1BW 49.88 35.37 46.1
Blogs 49.59 39.14 47.08
Amazon 52.6 32.26 46.75

TABLE 6.2: Comparison of model training on 1BW, Blogs, Amazon
datasets (stage 1) based on RoBERTa base model

During the pre-training, it was important that the model studied as many cor-
rections as possible (i.e. had a larger Recall), so that in the end we could increase the
accuracy by selecting hyperparameters.

The model received the largest Recall from training on the Blogs dataset, a slightly
smaller one on the 1BW dataset, and the smallest on the Amazon dataset.

This can be explained by the fact that the Blogs dataset consists of texts on differ-
ent topics, different data quality, and as a result, contains a greater variety of types
of errors.

Although the texts in the 1BW dataset are also of various topics, they follow the
same information and journalistic style.

As for the Amazon reviews dataset, its full version contains reviews on various
product categories. However, we only used the subcategory “Clothing, shoes and
jewelry” to mark the training data, and it is possible that the use of only one cate-
gory resulted in the same type of text and less variety of errors. In further research,

1https://spacy.io/

https://spacy.io/

32 Chapter 6. Knowledge distilled data

we could generate a dataset based on different product categories, and test this as-
sumption.

For further experiments, we decided to compare the results of the training on
1BW and Blogs datasets.

First, we decided to test the training scheme used in (Omelianchuk et al., 2020).
They first trained their models on synthetically generated data (stage 1), then trained
on the joined dataset (stage 2), then trained only on the high-quality WI (stage 3)
dataset, and finally made a selection of hyperparameters to increase Precision by
reducing Recall during model interference (Inf).

Instead of PIE synthetic data(Awasthi et al., 2019), we used datasets that were
generated by ensembles. The results of training at different stages for models with
RoBERTa base and RoBERTa large encoders can be seen in Tables 6.3, 6.4, 6.5, 6.6.

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 49.88 35.37 46.1
Stage 2 50.34 37.19 47.02
Stage 3 55.16 39.32 51.05
Inf – – –

TABLE 6.3: Pre-training on 1BW dataset for RoBERTa base

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 49.59 39.14 47.08
Stage 2 51.77 35.99 47.6
Stage 3 54.53 40.54 51.01
Inf 67.51 30.97 54.63

TABLE 6.4: Pre-training on Blogs dataset for RoBERTa base

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 51.18 39.24 48.25
Stage 2 52.01 39.45 48.89
Stage 3 55.91 42.27 52.52
Inf 67.05 32.42 55.25

TABLE 6.5: Pre-training on 1BW dataset for RoBERTa large

Training at different stages had a very interesting behavior. Pre-training on stage
1 on both datasets allowed us to achieve a slightly higher result in just two epochs
than if we simply trained models on the joined dataset without pre-training.

However, when we started training on stage 2, there was a sharp deterioration in
results, and it seemed that the model made almost no use of the information it had
learned on stage 1. This is especially true for models trained on the Blogs dataset,
which significantly dropped Recall during training.

6.4. Pre Training using synthetic public data 33

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 50.36 40.97 48.16
Stage 2 52.8 39.28 49.4
Stage 3 55.98 41.31 52.26
Inf 66.22 34.26 55.81

TABLE 6.6: Pre-training on Blogs dataset for RoBERTa large

But still, with using pre-training, on stage 2 the F0.5 metric was better than with-
out using pre-training, and the models learned much faster, they needed fewer
epochs.

After pre-training on stage 3, the result was also slightly better than for models
without pre-training. However, when we tried to select the hyperparameters for the
pre-trained model with the RoBERTa large encoder, we obtained almost the same
result as for the model with RoBERTa large encoder, for which no pre-training was
performed.

It is also worth noting that on stage 3 there were almost no differences in the
result of the models, depending on which dataset we pre-trained them, whether on
Blogs or 1BW datasets.

6.4 Pre Training using synthetic public data

Next, we pre-trained models based on a RoBERTa base and large encoders using
synthetic training data proposed in (Awasthi et al., 2019), which were also used to
train the GECToR model (Omelianchuk et al., 2020).

Our results for the RoBERTa base and RoBERTa large models are shown in Tables
6.7 and 6.8, respectively.

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 40.88 22.66 35.22
Stage 2 49.86 36.93 46.59
Stage 3 54.32 42.25 51.38
Inf 65.48 33.66 55.06

TABLE 6.7: Pre-training on PIE-synthetic data for RoBERTa base

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 43.79 20.94 35.94
Stage 2 46.71 43.24 45.97
Stage 3 53.22 45.25 51.41
Inf 66.47 34.0 55.81

TABLE 6.8: Pre-training on PIE-synthetic data for RoBERTa large

34 Chapter 6. Knowledge distilled data

Pre-training on such synthetic data had a completely different behavior com-
pared to the results obtained in paragraph 6.4.

On stage 1, the models trained very slowly and had a much lower F0.5 metric
than our pre-training models. However, during training on stage 2, the models con-
tinued to train slowly with growing Recall, albeit with less Precision. On stage 3, the
models had a smaller metric of F0.5, compared to the models in paragraph 6.4, but
a significantly bigger value of Recall. After selecting the hyperparameters for such
models, we could obtain a higher value of F0.5 compared to models pre-trained on
1BW dataset and almost the same value for large model pre-trained on Blogs dataset.

It is also worth noting that the results our obtained results for RoBERTa base are
quite similar and slightly better than those obtained in (Omelianchuk et al., 2020),
which are shown in Table 6.9.

The difference can be explained by the use of the original tokenizer, which was
explained in paragraph 4.2.

Training stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 40.8 22.1 34.9
Stage 2 51.6 33.8 46.7
Stage 3 54.2 41.0 50.9
Inf 62.3 35.1 54.0

TABLE 6.9: Pre-training on PIE-synthetic data for RoBERTa base
(Omelianchuk et al., 2020)

6.5 Combining distilled data with synthetic data

As the next step, we decided to combine the synthetic data from paragraph 6.5 with
our generated data from paragraph 6.4 and train according to the same scheme as
described earlier in this section.

To the 1.2 M data that we generated, we added 1.2 M synthetic data to have an
equal proportion of training samples.

The results of such training are shown in Tables 6.10, 6.11, 6.12.

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 43.64 40.21 42.9
Stage 2 51.23 37.42 47.71
Stage 3 54.08 41.91 51.11
Inf 65.38 33.41 54.88

TABLE 6.10: Pre-training on PIE+1BW data for RoBERTa base

The behavior of the models during training is very similar to the behavior of the
models from paragraph 6.4.

However, with this pre-training, we managed to get the best result of the F0.5
metric on the BEA-2019 dev part for the single model roberta-large with a dictionary
size of 5k, which we trained on the combined 1BW and PIE synthetic data.

6.6. Training in one stage 35

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 47.57 40.91 46.07
Stage 2 50.8 41.29 48.56
Stage 3 55.22 43.63 52.43
Inf 67.53 33.59 56.18

TABLE 6.11: Pre-training on PIE+1BW data for RoBERTa large

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 51.5 40.49 48.84
Stage 2 52.46 39.75 49.31
Stage 3 55.66 42.7 52.48
Inf 65.78 35.32 56.1

TABLE 6.12: Pre-training on PIE+Blogs data for RoBERTa large

At the BEA-2019 test, this model reached a value of 73.21 in F0.5 metric, which
significantly improved the result for the single model.

6.6 Training in one stage

During the experiments in section 6.4, we noticed that models with pre-training on
the Blogs dataset train fairly quickly and have good results on stage 1, but lose this
advantage after training on stage 2.

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 53.98 40.28 50.54
Inf 64.6 32.74 54.07

TABLE 6.13: Pre-training on Blogs+WI data for RoBERTa base

We decided to combine the data generated from the Blogs dataset with the high-
quality data of the WI dataset. The results of such training are shown for models
with roberta-base and roberta-large encoders in Tables 6.13 and 6.14, respectively.

Thus, we were able to significantly simplify the training scheme, replacing it with
only one stage, and achieve even better results, compared to the baseline models that
we trained in section 4.2.

However, when we tried to fine-tune these models on the WI dataset, further
training only worsened the F0.5 metric on the BEA-2019 dev part.

Seeing improvements for the RoBERTa large model, we also tried to train the
DeBERTa large and XLNet large models. The results can be seen in Table 6.15.

For models with DeBERTa large and XLNet large encoders, the results were al-
most the same or slightly worse compared to the baseline models in section 4.2. This
shows that the distilled data generated by us are of fairly high quality, and further
their research and use can help to improve existing GEC models.

36 Chapter 6. Knowledge distilled data

Stage BEA-2019 (dev)

Precision Recall F0.5

Stage 1 55.98 42.21 52.55
Inf 67.06 33.4 55.81

TABLE 6.14: Pre-training on Blogs+WI data for RoBERTa large

Model BEA-2019 (dev)

Precision Recall F0.5

RoBERTa 55.98 42.21 52.55
DeBERTa 54.05 41.95 51.15
XLNet 53.01 41.66 50.27

TABLE 6.15: Pre-training on Blogs+WI data in one stage for large en-
coders

6.7 Conclusion

In this chapter, we explained how to generate new high-quality training data based
on an ensemble of models. We investigated and compared different strategies for
using this generated data, as well as comparing them with existing synthetic data.
Pre-training with the distilled data generated by us improved the result, compared
to baseline models for which we did not perform pre-training.

Pre-training with the distilled data generated by ensemble improved the result,
compared to baseline models for which we did not perform pre-training. However,
pre-training with public synthetic data had a better effect on the final result than
pre-training with the data generated by ensemble. The combination of synthetic PIE
data with the data generated by ensemble allowed to get our best result so far for
the single model on the BEA-2019 dev part. At the BEA-2019 test part, this model
reached 73.21, which is an improvement for the single model, compared to the previ-
ous result of the best GECToR model. Finally, we showed that the data generated by
the ensemble allowed us to get good results in only one stage, proving the excellent
quality of our data and significantly reduce training time and simplify the training
schema.

37

Chapter 7

Conclusions

7.1 Contribution

In our work, we explored the sequence tagging approach.

1. We compared the impact of transformer-based encoders BERT, RoBERTa, De-
BERTa, XLNet of base and large configurations on grammatical error correc-
tion. Models based on RoBERTa and DeBERTa encoders achieved the best re-
sults, in both base and large configurations.

2. We have shown that models with large encoder configurations perform bet-
ter than models with base configurations, but their interference time is almost
twice as slow.

3. We have discovered that increasing the vocabulary size for models with RoBERTa
and DeBERTa large encoders improves the quality of corrections. In contrast,
for the model with XLNet large encoder, the quality has deteriorated.

4. We showed that ensembling models on model and data levels have almost the
same result when combining models with the same vocabulary size. However,
the ensemble on the data level has the advantage that we can combine the
output of any models, regardless of their structure.

5. Our best ensemble without pre-training on the synthetic data achieves a new
SOTA result of an F0.5 76.05 on BEA-2019 (test), in contrast, when the newest
obtained results were achieved with pre-training on synthetic data.

6. We analyzed the quality of existing training data, proposed methods for iden-
tifying low quality data and filtering them.

7. We investigated the approach of generating training data based on the distil-
lation of knowledge by an ensemble of models. It was shown that such data
are of high quality, and combining them with a WI dataset allows to achieve in
one step the same results as training on the joined dataset. The further research
and usage of such generated data might help to improve existing GEC models.

8. We have shown that pre-training on combined data generated by an ensemble
of models and existing public synthetic data allowed to improve the result of
the models. Our best single model (RoBERTa large) with pre-training on this
combined synthetic data achieved a value of 73.21 of an F0.5 metric on the BEA-
2019 test part.

9. Our code, generated datasets, and trained models are publicly available1.
1https://github.com/MaksTarnavskyi/gector-large

https://github.com/MaksTarnavskyi/gector-large

38 Chapter 7. Conclusions

7.2 Future work

1. To investigate the impact of even larger transformer configurations. In partic-
ular, for the DeBERTa encoder, explore the xlarge and xxlarge configurations.
These experiments were not performed due to the RAM size limitations of our
GPU.

2. To generate data with a better ensemble of models and explore their impact.
In particular, use models with a larger vocabulary size and pre-trained on syn-
thetic data.

3. We also want to explore more strategies for using the data we generate. For
example, combine the generated data with clean joined datasets and see how
this will affect model training.

4. To explore different ensemble strategies on a data level. In particular, what will
happen if we apply all the changes that do not contradict each other.

5. Try to combine sequence tagging with the sequence-to-sequence GEC model
by the ensemble on the data level.

6. To explore how to improve the tagging space of vocabulary. In particular, think
about adding additional custom transformation tags.

7. To experiment on the model’s architecture, try to increase the number of linear
layers and explore different ways to combine token level embeddings with the
word level embeddings.

8. Try to train the sequence tagging GEC model for low-resource languages, in
particular, for Ukrainian. To do that, we plan to use the Ukrainian Roberta2

and the Ukrainian GEC corpus (Syvokon and Nahorna, 2021).

2https://github.com/youscan/language-models

https://github.com/youscan/language-models

39

Appendix A

Baseline approach

Experiment BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base without 2 cold steps 44.34 34.73 42.02
RoBERTa base with 2 cold steps 50.12 34.04 45.79

RoBERTa large without 2 cold steps 46.33 36.84 44.06
RoBERTa large with 2 cold steps 52.11 37.34 48.29

TABLE A.1: Training with and without 2 cold steps

Experiment BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base trained in 2 stages (Joined => WI) 53.77 39.23 50.06
RoBERTa base trained only on WI 11.69 5.4 9.48

TABLE A.2: Ablation study, when we trained model in two stages
and when we only trained the model on the WI dataset

Experiment BEA-2019 (dev)

Precision Recall F0.5

RoBERTa base trained with filtering dataset 50.12 34.04 45.79
RoBERTa base trained without filtering dataset 51.93 28.7 44.69

TABLE A.3: A comparison of the training model with and without
filtering sentences in which all tags are only KEEP tag.

40

Bibliography

Awasthi, Abhijeet et al. (2019). “Parallel Iterative Edit Models for Local Sequence
Transduction”. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 4259–4269.

Bryant, Christopher, Mariano Felice, and Ted Briscoe (2017). “Automatic Annotation
and Evaluation of Error Types for Grammatical Error Correction”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Vol. 1, pp. 793–805.

Bryant, Christopher et al. (2019). “The BEA-2019 Shared Task on Grammatical Error
Correction.” In: Proceedings of the Fourteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pp. 52–75.

Chelba, Ciprian et al. (2013). “One Billion Word Benchmark for Measuring Progress
in Statistical Language Modeling”. In: CoRR abs/1312.3005. arXiv: 1312.3005.
URL: http://arxiv.org/abs/1312.3005.

Chen, Mengyun et al. (2020). “Improving the Efficiency of Grammatical Error Cor-
rection with Erroneous Span Detection and Correction”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 7162–7169.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.

Dahlmeier, Daniel and Hwee Tou Ng (2012). “Better Evaluation for Grammatical Er-
ror Correction”. In: Proceedings of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pp. 568–572.

Dahlmeier, Daniel, Hwee Tou Ng, and Siew Mei Wu (2013). “Building a Large An-
notated Corpus of Learner English: The NUS Corpus of Learner English”. In:
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational
Applications, pp. 22–31.

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186.

He, Pengcheng et al. (2020). “DeBERTa: Decoding-enhanced BERT with Disentan-
gled Attention”. In: arXiv preprint arXiv:2006.03654.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural Computation 9.8, pp. 1735–1780.

Kairouz, Peter et al. (2019). “Advances and Open Problems in Federated Learning”.
In: arXiv: Learning.

Kaneko, Masahiro et al. (2020). “Encoder-Decoder Models Can Benefit from Pre-
trained Masked Language Models in Grammatical Error Correction”. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 4248–4254.

https://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005

Bibliography 41

Kao, Ting hui et al. (2013). “CoNLL-2013 Shared Task: Grammatical Error Correc-
tion NTHU System Description”. In: Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared Task, pp. 20–25.

Kiyono, Shun et al. (2019). “An Empirical Study of Incorporating Pseudo Data into
Grammatical Error Correction”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1236–1242.

Lample, Guillaume and Alexis Conneau (2019). “Cross-lingual Language Model
Pretraining.” In: arXiv preprint arXiv:1901.07291.

Lan, Zhenzhong et al. (2020). “ALBERT: A Lite BERT for Self-supervised Learning
of Language Representations”. In: ICLR 2020 : Eighth International Conference on
Learning Representations.

Liang, Deng et al. (2020). “BERT Enhanced Neural Machine Translation and Se-
quence Tagging Model for Chinese Grammatical Error Diagnosis”. In: Proceed-
ings of the 6th Workshop on Natural Language Processing Techniques for Educational
Applications, pp. 57–66.

Lichtarge, Jared, Chris Alberti, and Shankar Kumar (2020). “Data Weighted Training
Strategies for Grammatical Error Correction.” In: Trans. Assoc. Comput. Linguistics
8, pp. 634–646.

Lichtarge, Jared et al. (2019). “Corpora Generation for Grammatical Error Correc-
tion”. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 3291–3301.

Liu, Yinhan et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach”. In: arXiv preprint arXiv:1907.11692.

Malmi, Eric et al. (2019). “Encode, Tag, Realize: High-Precision Text Editing”. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 5053–5064.

Naber, Daniel (Jan. 2003). “A Rule-Based Style and Grammar Checker”. In:
Napoles, Courtney, Keisuke Sakaguchi, and Joel R. Tetreault (2017). “JFLEG: A Flu-

ency Corpus and Benchmark for Grammatical Error Correction”. In: Proceedings
of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pp. 229–234.

Ng, Hwee Tou et al. (2014). “The CoNLL-2014 Shared Task on Grammatical Error
Correction”. In: Proceedings of the Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pp. 1–14.

Ni, Jianmo, Jiacheng Li, and Julian J. McAuley (2019). “Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects.” In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 188–197.

Omelianchuk, Kostiantyn et al. (2020). “GECToR – Grammatical Error Correction:
Tag, Not Rewrite”. In: Proceedings of the Fifteenth Workshop on Innovative Use of
NLP for Building Educational Applications, pp. 163–170.

Radford, Alec et al. (2018). “Language Models are Unsupervised Multitask Learn-
ers”. In: URL: https://d4mucfpksywv.cloudfront.net/better- language-
models/language-models.pdf.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

42 Bibliography

Empirical Methods in Natural Language Processing. Association for Computational
Linguistics. URL: https://arxiv.org/abs/1908.10084.

Schler, Jonathan et al. (2005). “Effects of Age and Gender on Blogging”. In: AAAI
Spring Symposium: Computational Approaches to Analyzing Weblogs, pp. 199–205.

Stahlberg, Felix and Shankar Kumar (2020). “Seq2Edits: Sequence Transduction Us-
ing Span-level Edit Operations”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 5147–5159.

— (2021). “Synthetic Data Generation for Grammatical Error Correction with Tagged
Corruption Models”. In: Proceedings of the 16th Workshop on Innovative Use of NLP
for Building Educational Applications, pp. 37–47.

Syvokon, Oleksiy and Olena Nahorna (2021). UA-GEC: Grammatical Error Correction
and Fluency Corpus for the Ukrainian Language. arXiv: 2103.16997 [cs.CL].

Tajiri, Toshikazu, Mamoru Komachi, and Yuji Matsumoto (2012). “Tense and Aspect
Error Correction for ESL Learners Using Global Context”. In: Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Vol. 2, pp. 198–202.

Vaswani, Ashish et al. (2017). “Attention is All You Need”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. Vol. 30, pp. 5998–
6008.

Wang, Yu et al. (2020). “A Comprehensive Survey of Grammar Error Correction.” In:
arXiv preprint arXiv:2005.06600.

Yang, Zhilin et al. (2019). “XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding”. In: Advances in Neural Information Processing Systems. Vol. 32,
pp. 5753–5763.

Yannakoudakis, Helen, Ted Briscoe, and Ben Medlock (2011). “A New Dataset and
Method for Automatically Grading ESOL Texts”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 180–189.

Yuan, Zheng and Ted Briscoe (2016). “Grammatical error correction using neural
machine translation”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 380–386.

Yuan, Zheng and Mariano Felice (2013). “Constrained Grammatical Error Correction
using Statistical Machine Translation”. In: Proceedings of the Seventeenth Conference
on Computational Natural Language Learning: Shared Task, pp. 52–61.

Zhu, Jinhua et al. (2020). “Incorporating BERT into Neural Machine Translation”. In:
ICLR 2020 : Eighth International Conference on Learning Representations.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2103.16997

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Importance of Grammatical Error Correction
	Motivation
	Goals of the master thesis
	Structure of the thesis

	Literature Review
	Existing GEC approaches
	The first GEC models
	Recent sequence-to-sequence models
	Recent sequence tagging models
	Data augmentation techniques and pre-training strategies

	Analysis

	Datasets and evaluation
	Public GEC datasets observation
	NUCLE
	CoNLL-2014
	FCE
	Lang-8
	JFLEG
	Write and Improve + LOCNESS

	Monolingual datasets
	One Billion Word Benchmark
	The Blog Authorship Corpus
	Amazon reviews dataset

	Evaluation
	Conclusion

	Model observation
	Baseline approach
	Comparison of transformer-based encoders
	Transformer-based encoders
	Comparison of the transformer-based encoders on GEC

	Tags vocabulary
	Vocabulary size

	Compare inference time
	Ensembles
	Conclusion

	Data filtering
	Basic data filtering
	Data selection based on clusters similarity
	Influence of data samples between fine tuning
	Conclusion

	Knowledge distilled data
	Approach for data generation
	Generated datasets overview
	Pre-training using generated data
	Pre Training using synthetic public data
	Combining distilled data with synthetic data
	Training in one stage
	Conclusion

	Conclusions
	Contribution
	Future work

	Baseline approach
	Bibliography

