
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Central pattern generator model
using spiking neural networks

Author:
Yuriy PRYYMA

Supervisor:
Sergiy YAKOVENKO

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Yuriy PRYYMA, declare that this thesis titled, “Central pattern generator
model using spiking neural networks” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Central pattern generator model using spiking neural networks

by Yuriy PRYYMA

Abstract

Locomotor control involves dynamic mechanical and neural interactions that
are essential for survival. The neural locomotor pathways contain the central
pattern generator (CPG), a network of neurons embedded into the spinal
cord and generating dynamic output for walking and running. Even though
there are multiple formulations of the CPG, from coupled oscillators to com-
plex networks of Hodgkin-Huxley neurons, the optimal choice of model im-
plementation depends on its application. The choice of a formulation is of-
ten described as the trade-off between complexity and the level of details in
the model’s function. However, the advantages between different formula-
tions have not been established. Recently, the spiking neural networks (SNN)
have gained popularity as a biological analog for neural dynamics that uses
methodology developed for artificial neural networks. This formulation uses
spiking frequency instead of rate signals to accomplish dynamic computa-
tions with the integrate-and-fire neurons.

In this study1, we aimed to create the framework for comparing a versa-
tile CPG rate model and its implementation with the model build with SNN.
We used a neuromorphic software package (Nengo) to develop and validate
a bilateral CPG model’s structural and functional details based on the half-
center oscillators. The spiking model shows similar precision for calculating
the empirical phase-duration characteristics of gait in cats as the rate model,
and it also reproduces the linear relationship between the CPG input and the
empirical limb speed of forward progression. While the phase characteris-
tic was used to optimize neural dynamics, the input relationship with the
limb speed is the product of the model structure. Furthermore, the spiking
model has increased tolerance to temporal noise, and it can withstand some
structural damage. The spiking and rate models require further compara-
tive analysis. Overall, the development of adaptable spiking models could
help integrate the biomimetic components within the control systems for as-
sistive robotics and electrical stimulation devices to rehabilitate locomotion
after central and peripheral injuries.

1https://github.com/YuriyPryyma/cpg_nengo

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I would like first to express my appreciation to Dr. Sergiy Yakovenko the
director of neural engineering laboratory at West Virginia University for pro-
viding supervision and consultations and for sharing his experience in the
domain. Without him, this work would be impossible. I would also like to
thank Ukrainian Catholic University and all teachers and lecturers for cre-
ating such a great Master’s program. Separately, I want to thank Oleksii
Molchanovskyi for the support in my two-year graduate studies. Addition-
ally, I give my gratitude to the Nengo community for providing helpful re-
sources and my friends how reviewed final work.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.0.1 Motivation . 1
1.0.2 Goals . 2
1.0.3 Thesis structure . 2

2 Related work 3
2.1 Central pattern generator (CPG) 3
2.2 Spiking neural networks (SNN) 4

3 Data description 6
3.1 Gait cycle . 6
3.2 Locomotion phases . 6

4 Methodology 9
4.1 Rate model of CPG . 9
4.2 Background information . 11

4.2.1 Nengo simulation environment 11
4.3 Model development . 13

4.3.1 Representing states . 13
4.3.2 Defining transitions . 13
4.3.3 State switching . 16
4.3.4 Input speed control . 17
4.3.5 Nengo parameters . 18

5 Solution 19
5.1 Error cost function . 19
5.2 Optimisation . 20

5.2.1 Nelder–Mead . 21
5.2.2 Hyperout . 21
5.2.3 HEBO . 21

5.3 Neurons count optimisation . 22
5.4 Validation . 23

5.4.1 Phase duration characteristics 24
5.4.2 Power law . 24

vi

5.4.3 Damage simulation . 24

6 Conclusions 29
6.0.1 Results Summary . 29
6.0.2 Future work . 29

Bibliography 30

vii

List of Figures

3.1 Simulated and experimental phase duration characteristics dur-
ing cat locomotion. Filled circles: flexor burst or swing-phase
durations, open circles: extensor burst or stance-phase dura-
tions. The straight line fitted to the data. Source: Yakovenko
et al., 2005 . 8

4.1 Schematic representation of CPG model. The model receives
low-dimensional input actuating two limbs (UL and UR). The
output pattern corresponds to the forward progressions with
turning. Source: Yakovenko, Sobinov, and Gritsenko, 2018a . . 10

4.2 Visualisation for classic control-theory integrator and NEF in-
tegrator implemented with 300 LIF neurons for intput signal
x(t) = sin(t) Source: Stewart, 2009 13

4.3 CPG for two limbs implemented using SNN. Visualized using
NengoGUI . 14

4.4 Step function implemented using oscillator 16
4.5 Step function implemented using inhibition 17

5.1 Error values for Hyperout optimisation sorted in descending
order . 23

5.2 Evaluation of best-fit parameters with different number of state
neurons . 23

5.3 Two numerical solutions . 25
5.4 The bilateral pattern of locomotor phase modulation with op-

timized CPG model parameters. The relationship between phase
and cycle duration for each integrator is plotted together with
the desired Halbertsma, 1983 best-fit linear model. 26

5.6 Progression of error in Nengo CPG model when we remove
neurons from state Ensemble 27

5.7 Progression of error in Nengo CPG model when we add noise
to state Ensemble . 28

viii

List of Abbreviations

CPG Central Pattern generator
SNN Spiking Neura Network
GC Gait cycle
NEF Neural Engineering Framework
HCO Half-center oscillators
ANN Artificial Neural Network
HR Hindmarsh-Rose
HH Hodgkin–Huxley

1

Chapter 1

Introduction

1.0.1 Motivation

One of the critical functions of animals is the ability to move in a variety
of environments. As a result, different types of CPGs have evolved to con-
trol rhythmic behaviors. Locomotion is an essential behavior that shaped
both neural pathways and animal morphologies. CPG is a neural structure
within the lumbar enlargement of mammals, e.g., cats and humans, consist-
ing mainly of interneurons; however, even alpha motoneurons were shown
to have intrinsic rhythmogenic properties indicating their contribution to the
CPG activity. The CPG is often modeled as a system of differential equa-
tions of Hodgkin–Huxley that describes ion flows inside a neuron. These
models are often difficult to validate due to high parametric space. Other
approaches focus on the formulation of state dynamics using generalizations
to reduce complexity. Both models can transform a low dimensional input
to generate a pattern of swing and stance phases to achieve locomotion. Al-
though biophysical models accurately describe neuron physics and dynam-
ics, it is hard to extend networks to more functions and structural elements
due to high parametric space. Modern approaches like Artificial Neural Net-
work (ANN) showed good performance on various cognitive tasks, yet the
formulations are only generally described by biological dynamics. A new
type of ANNs called spiking neural networks(SNNs) has been developed to
use the integrate-and-fire concept from computational neuroscience and im-
prove biological relevance. This work tries to explore neurological models
of animal CPGs using spiking neural networks. Neural Engineering Frame-
work(NEF) used to structure SNNs describes rules for information transi-
tion and representation allows organization of SNNs in a more abstract and
scalable way. NEF would help build an accurate and scalable CPG model,
preserving the benefits of underlying spiking neuron networks. Also, mod-
els build on top spiking neural networks produce similar biases as biological
systems do (Rasmussen and Eliasmith, 2014). Therefore, solving dynamical
tasks using SNNs could help us better understand the neural control of be-
haviors in humans. In this work, our task is to describe the rhythmogenesis
function using a theoretical model that could be further used in clinical ap-
plications, for example, for the control of intraspinal stimulation to restore
rhythmogenesis after a spinal cord injury. Like models of other neural struc-
tures, including single neurons, the mathematical formulation is typically
defined by the scientific question. In this study, we examined the findings

2 Chapter 1. Introduction

based on the dynamics of the rate model using the model with the formu-
lation based on the spiking dynamics. The variation of a mathematical for-
mulation is one of the requirements within the field of multi-scale modeling.
The new model that shows equivalent dynamic would allow us to examine
further costs and benefits of spiking and rate model formulations. One of the
possible motivations for CPG implementation using SNN could be its power
efficiency and performance.

1.0.2 Goals

• Provide an overview on work related to CPG model formulated with
spiking neuron networks.

• Implement a bilateral half-center oscillators model of a CPG using SNNs
in Nengo framework.

• Optimize model to tune to locomotion patterns and test the velocity
hypothesis supported by the rate models.

1.0.3 Thesis structure

The thesis presents related work in CPG and SNN domains in chapter 2.
In the next chapter 3 we describe the properties of locomotion data used in
the study. Then, chapter 4 focused on the baseline CPG model and how we
implemented it in Nengo. Next, the process of model optimization and later
its validation is described in chapter 5. Finally, in chapter 6 we summarize
our results and discuss model limitations and future work.

3

Chapter 2

Related work

In this chapter, we divide related work into two parts. In the first section,
we want to look at the current and common approaches for building CPG
models. Then, in the second section, we want to focus on the evolution of a
spiking neural network and its pros and cons.

2.1 Central pattern generator (CPG)

Central Pattern Generator (CPG) controls vertebrate locomotion (Dimitrije-
vic, Gerasimenko, and Pinter, 1998), and it can automatically generate com-
plex control signals to coordinate muscles during rhythmic movements, such
as walking, running, swimming, and flying. CPGs are neural networks capa-
ble of producing coordinated rhythmic activity patterns without any rhyth-
mic inputs from sensory feedback or higher control centers. In general, lo-
comotion is organized such that CPGs are responsible for converting com-
mands from the descending and sensory feedback pathway to low-level pat-
terns of flexor and extensor movements (Ijspeert, 2008).

The coordination of locomotion is one of the main challenges in moving
robots. There are two main approaches for the design of locomotion control
systems, such as kinematic and dynamic mathematical models and biologi-
cally inspired approaches (Ijspeert, 2008). The first one uses joint speed and
positions in advance, based on a mathematical model using observation for
the environment and robot dynamics (Fukuoka, Kimura, and Cohen, 2003).
The second approach mimics the center of animals’ locomotion with a CPG
model to produce walking patterns. The first approach relies on a complex
model and hard to adapt. Since biologists have made significant advances in
understanding animal locomotion, recent robotics models showed promis-
ing results with different leg configurations (Espinal et al., 2016, Endo et al.,
2008)

There are several approaches to model CPG. The first one is detailed bio-
physical models, which are usually based on a system of differential equa-
tions that describe how ion channels influence membrane potentials and the
generation of action potentials (Hellgren, Grillner, and Lansner, 1992, Tra-
ven et al., 1993). One of the most popular is Hodgkin–Huxley model (also
termed H–H model) developed by Hodgkin and Huxley, 1952. However, it is
very complicated and computationally expensive for computer simulations

4 Chapter 2. Related work

involving large populations of neurons. Because of it, most models concen-
trate on the detailed dynamics of small circuits. The second one uses more
abstracted versions of neurons. One of the earliest models of an abstracted
neuron is the integrate-and-fire model (Ijspeert, 2001, Williams, 1992). These
models exploring how a rhythmic activity is generated by network proper-
ties (e.g., half-center networks) and how interneuron connections synchro-
nize different oscillatory neural circuits. The disadvantage of this model is
that it does not implement time-dependent memory present in natural neu-
ron systems. The other approach is to represent CPG as a dynamical system
of coupled, nonlinear oscillators (Yu et al., 2014, Collins and Richmond, 1994,
Wang et al., 2019). As opposite to neural oscillators, nonlinear oscillators do
not have clear biological meanings. Another option for big networks would
be to use relatively simple phenomenological rate models of a neuron (Ster-
ratt et al., 2009) where specifics of neural spiking approximated using the
discharge rate of neural spiking.

The Hindmarsh-Rose (HR) neuron model, which simulates spike bursting
of the membrane potential observed in experiments, is often used in spiking
CPG models. The modified Hindmarsh-Rose model created by Selverston
et al., 2000 was able to capture dynamics of lobster stomatogastric ganglion
neurons from a central pattern generator. The authors also conclude that
their model could be used to construct an analog electronic system that could
work in real-time.

2.2 Spiking neural networks (SNN)

The human brain has remarkable properties such as analog computation, low
power consumption, fast inference, event-driven processing, online learning,
and massive parallelism. SNNs model architecture tries to mimic these prop-
erties. Because spike events are sparse and have high information content,
we could significantly reduce the power consumption of parts of networks
that do not receive signals (Stone, 2018). Similarly, human brains do not use
all neurons simultaneously, but only regions needed for current tasks. This
same advantage is maintained in hardware (Rueckauer et al., 2017, Pande
et al., 2013). Thus, it is possible to create low-energy hardware based on the
property that information is sparse in time and concentrated in spikes. It is
one of the biggest advantages of SNNs.

Several models of spiking neurons and SNN have developed so far, e.g.:
Spike Response Models (Gerstner and Kistler, 2002, Gerstner, 2001); models
with simulated Hodgkin–Huxley formulations (Izhikevich, 2004). However,
a lot of studies in a field of SNNs has been limited to very simple and shal-
low network architectures on relatively simple digit recognition datasets like
MNIST (LeCun and Cortes, 2010), while only a few works report their perfor-
mance on more complex standard vision datasets like CIFAR-10 (Krizhevsky,
2009). The multi-layer neural architecture in the primate’s brain has inspired
researchers to concentrate on the depth of ANNs instead of using shallow
networks with many neurons. Theoretical and experimental results show

2.2. Spiking neural networks (SNN) 5

better performance of deep rather than wide structures, which inspired pro-
gressions in the direction of deep SNNs. Despite their recent success in ap-
plying SNNs to image processing tasks, the resulting accuracy is still lower
than state-of-the-art DNNs models using similar CNN architecture. One
could argue that datasets used for evaluation are more suitable for the DNNs
model that work on frame-level, unlike the SNNs model that requires prepro-
cessing frames to spike data.

Nevertheless, the biggest problem of deep SNNs is the training process.
Because spikes signals are sparse and not differentiable, we can not apply
backpropagation to train this model. There exist three ways for SNN learn-
ing: 1) unsupervised learning such as spike timing-dependent plasticity (STDP);
2) indirect supervised learning such as ANNs-to-SNNs conversion; 3) direct
supervised learning such as gradient descent-based backpropagation. But
right now most of them limited to very shallow structures (amount of net-
work layer less than 4) or toy small datasets (e.g., MNIST, Iris). Only a small
number of works tries direct training of deep SNNs due to their challenges.
There is work in progress to develop practical learning algorithms and effi-
cient programming frameworks (Wu et al., 2018).

Research of CPG models implemented as spiking neural networks(SNNs)
in Nengo mainly focused on the robotics domain to create a locomotion model
for different robots. The primary motivation for using SNNs is to reduce em-
bedded devices’ power consumption to run the robot. Some approaches use
Christiansen Grammar Evolution to estimate the spiking neural network’s
weights and synaptic connections and deploy the FPGA model (Field Pro-
grammable Gate Array), which shows excellent performance gains (Rostro-
Gonzalez et al., 2015). Reinforcement-based stochastic weight update could
also be used to train SNNs that run on a lightweight raspberry pi (Lele et
al., 2020). The authors’ model converges to the desired bio-observed tripod
in 70% of the cases, while in other cases, it converges to suboptimal gaits
that can still enable the locomotion. However, some of the research focuses
more on engendering and deployment of SNNs on specific hardware, for
example SpiNNaker boards, and does not describe the model learning pro-
cess (Cuevas-Arteaga et al., 2017, Gutierrez-Galan et al., 2020).

6

Chapter 3

Data description

In this chapter, we describe the nature of the locomotion data and its main
characteristics. We are using these characteristics to generate synthetic data
for training and validation. Below we provide a description of CPG data
properties that helps to understand the main research questions.

3.1 Gait cycle

Animal locomotion is often described in terms of the gait cycle (Winter, 1984).
A gait cycle starts when a limb contacts the ground and ends when the same
limb touches the ground next time and involves driving the center of mass in
the direction of motion. A single gait cycle is also known as a stride. The gait
cycle is usually broken into two phases: stance and swing. During the stance
phase a limb is in contact with ground, and during the swing phase it is in
air. The swing to stance transition happens when a last limb part contacts
ground. Running is when both limbs are in swing, which happens when
swing phase is longer than stance phase. Also, the stance phase(support)
could be father divided into:

• Single stance: only one foot is in contact with the ground.

• Double stance: both limbs are in contact with the ground.

3.2 Locomotion phases

Halbertsma, 1983 study analyzed different patterns of gait cycles of the in-
tact cat. Nine adult male and female cats with varying weights were used
to conduct experiments. The motion capture system and electromyograms
were utilized to record cat locomotion on a treadmill. There were two belts
on a treadmill to impose different speeds on left and right legs. The speed
of a treadmill was changing to record locomotion with different speeds and
cycle durations to derive statistical analysis of gait phases. The excitation of
different muscles correlated with the movement in different joints. Here we
present the insights from Halbertsma, 1983 study related to this work:

• All cycle durations and joint angles are adapted to different speeds to
maintain coordination and no element from gait cycles remains con-
stant.

3.2. Locomotion phases 7

• As we increase the speed of a treadmill, stride cycle duration decreases.
The duration of a stance phase decreases proportionally more than the
swing phase duration in the same stride. There is a linear relationship
stance, swing and stride duration.

• During different types of locomotion from a cat’s experiments like walk-
ing and trotting, strides from opposite limbs appears to be shifted by
approximately half of a cycle. Even when two belts of a treadmill were
moving with mismatched speed, the limbs still maintained coordina-
tion.

• Cats experiments reveal some of the properties of locomotion system
which neuron networks and feedback mechanisms must have.

The example of the linear relationship of phase duration is visualized in
Figure 3.1. Circles represent duration of stance and swing phases. The swing
phase duration does not change much during cycle duration changes, and
the most significant portion of change is in the stance phase meaning that
animals move faster by mainly decreasing their contact with the ground.

The resulting linear relationship is used to generate synthetic data for
phase duration where Tsu represents the duration of a stance cycle duration,
Tsw for swing, and Tc for stride cycle duration.

Tsu = −0.168 + 0.9062 ∗ Tc (3.1)

Tsw = 0.168 + 0.0938 ∗ Tc (3.2)

Valid stride cycle duration ranges from empirical data is [.57, 1.91] sec-
onds

There is also a relationship between cycle duration and animal velocity
from Goslow, Reinking, and Stuart, 1973. Again, we could represent it as an
as power function:

Tc = 0.5445 ∗V−0.5925

Where V is animal velocity, and Tc is stride duration.

8 Chapter 3. Data description

FIGURE 3.1: Simulated and experimental phase duration char-
acteristics during cat locomotion. Filled circles: flexor burst or
swing-phase durations, open circles: extensor burst or stance-
phase durations. The straight line fitted to the data. Source:

Yakovenko et al., 2005

9

Chapter 4

Methodology

The project goal is to formulate two limb phase transitions during locomo-
tion using SNNs. One of the widely used approaches (Schlichter et al., 2010)
is to model this CPG as a coupled half-center oscillators (HCO). HCO usu-
ally consists of two neurons or two groups of neurons with strong mutual
inhibit connections. These neuron groups are phase-locked, meaning that
only one group is active while the other is suppressed. Each group of neu-
rons has no rhythmogenic ability individually, but when combined, could
produce rhythmic output patterns. For two limbs dynamics formulation, we
then need two coupled half-center oscillators. Studying how coupled half-
center oscillators produces coordinated locomotion is an important issue in
neuroscience.

For two limbs CPG with spiking neurons, we use dynamics formulated
for rate model of CPG with HCOs described in subsection 4.1. The goal of
this section is to implement CPG rate model states transitions using SNNs.
In subsection 4.2.1 we describe the main model development approaches in
Nengo simulation environment. The last subsection describes details of os-
cillators state representation and transitions in Nengo.

4.1 Rate model of CPG

The reciprocal half-center oscillator(HCO) model implemented by (Yakovenko,
2011, Yakovenko, Sobinov, and Gritsenko, 2018b) is a baseline CPG imple-
mentation for this project, and it uses a firing-rate neuron model. The firing-
rate model allows the construction of neuron-like network units with outputs
consisting of firing rates rather than action potentials. This approach helps
with computational and interpretational challenges but lacks biological de-
tails. Because we model two limbs, there two pairs of single oscillator mod-
els (Prochazka and Yakovenko, 2007) for phase dominance consisting of two
firing-rate neurons model. Each group of neurons represents spiking rates
of presumed neuron populations and has a single scalar value. Four scalar
values x1, x2, x3, x4 represent our model state(see Fig. 4.1). States values do
not represent muscle activities or have any physical meaning but represent
leaky integrator saturation value. For each limb, only one integrator is active,
and the second one is suppressed. When the value of an integrator reaches
the threshold, it resets, and model switches activate integrator. This process

10 Chapter 4. Methodology

happens independently for each limb. Switching of activate integrator repre-
sents locomotion phase transition. The swing phase for the first limb is active
when x1 > 0 and similarly for the second limb if x3 > 0. In the same way,
x2, x4 represents stance phases.

FIGURE 4.1: Schematic representation of CPG model. The
model receives low-dimensional input actuating two limbs (UL
and UR). The output pattern corresponds to the forward pro-
gressions with turning. Source: Yakovenko, Sobinov, and Grit-

senko, 2018a

The dynamics of integrator values are represented as a system of differ-
ential equations shown below.

ẋ = x0 + Guu + GUL
x x + GBL

x (1− x)
∣∣∣
x>0

(4.1)

GUL
x = Irleak (4.2)

GBL
x =

0 0 r13 r14
0 0 r23 r44

r13 r14 0 0
r23 r24 0 0

 (4.3)

u is a model input parameter for desired limb speed. Gu matrix rep-
resent influence of the u parameter on neuron exitation, Gx matrix shows
strength of connection between neurons with respect to neuron state x and
bias x0, I is the identity matrix, rleak is the constant that determines intrin-
sic state-dependent feedback. x represent two pairs of integrators for swing
and stance phases (x1, x2, x3, x4)

T. [x1, x3] responsible for swing phase and
[x2, x4] for stance. Neurons’ states could take positive values starting from 0
and going to 1, at which it resents back to 0. As a result, the model has nine
parameters describing dynamics.

4.2. Background information 11

The model of a CPG was simulated for 80 seconds, and its state update
was approximated using Runge–Kutta (fourth-order) method. Error function
consists of 3 parts: phase-duration loss, cycle ranges loss and limb symmetry
loss. Phase-duration loss compute duration for swing and stance phase for
two limbs for different speeds and then calculated how close it is to empirical
data (Halbertsma, 1983). Cycle ranges loss checks that minimum and max-
imum stride cycle duration are in the range of empirical data (Halbertsma,
1983). Finally, we compute the activation peaks of model spikes by measur-
ing the distance between the maximum excitement of neurons. Root mean
square value (RMS) was calculated for distances between ground truth phase
duration characteristic and received from the model. Limbs symmetry loss
checks that swing phases are not intersecting, and the stance phase of one
limb fully contains the swing phase of the opposite leg. Error minimization
was treated as backbox optimization, and model parameters searched using
Nelder–Mead nonlinear error minimization.

Resulting model could accurately reproduce experimental results (R2
swing

and R2
stance are 0.915 and 0.999, respectively).

4.2 Background information

4.2.1 Nengo simulation environment

There are many approaches for implementing cognitive processes like vision,
speech generation, including cognitive architectures (Anderson et al., 2004)
and machine learning (Hinton, 2006). Nengo relies on a Neural Engineering
Framework(NEF) proposed by Eliasmith, 2005. The NEF is the approach of
building large-scale artificial neuro networks with cognitive behavior that
utilize single neuron models. There are several successful implementations
using NEF and Nengo of complex cognitive systems like memory, decision
making, and list memory. The most prominent model based on NEF and
Nengo called spawn (Eliasmith, 2013) could perform up to eight cognitive
tasks without any retraining. For example, it could memorize a list of input
numbers and then use its motor system to draw them. Fascinatingly models
based on NEF produce results that well align with experimental data like
behavioral errors, age-related cognitive decline (Rasmussen and Eliasmith,
2014), and single-cell activity (Stewart, Bekolay, and Eliasmith, 2012)

Neural Engineering Framework principles:

• Representation: Vector of real values is represented by the population
of neurons using encoding to and decoding from inner population spik-
ing patterns. Manipulation neurons in terms of number vectors allow
convenient use of mathematics to solve problems. During encoding,
the input signal excites neurons based on their threshold value and then
fires at a rate proportional to the input signal. The neuron threshold
value and fire pattern represent the neuron tuning curve. The combi-
nation of many tuning curves allows an accurate approximation of the
input signal. During the decoding process, neurons’ fire pattern first

12 Chapter 4. Methodology

filtered using an exponentially decaying filter due to the postsynaptic
current of neurons. Then the weighted sum of the neuron’s activation
is minimized to match the desired output, and spikes decoding weights
are calculated by solving a least-squares minimization problem.

• Transformation: Biological neurons communicate current thought synapses
using neurotransmitters. Many factors influence the power of connec-
tion. Nengo neurons communicate information from source to target
neurons using decoding and encoding weights from respecting popu-
lation and controlling the power of a connection using scalar factor. As
mentioned in the representation part, least-squares minimization used
to compute decoding weights. By default, each connection learns an
identity function, meaning that it reconstructs the input signal. How-
ever, decoding weights could be trained to represent any function. For
example, let us take input signal sin(x) for a group of neurons of 100
neurons. The first signal will be encoded using 100 tuning curves and
represented as spikes of neurons for function sin(x). Then if we want to
learn function x2, we sample points from a range of values representing
the neurons population and evaluate the function x2. The model uses
resulting points to train decoding weights. As a result, we trained the
output ensemble to represent function sin(x)2

• Dynamics: Dynamics could play a fundamental role in human-like cog-
nitive behaviors as humans work with the stream of input information
and changing states. Vector of real values described in representation
principle could be thought of as state variables in a dynamical system.
Nengo recurrent connection based on principle two could implement
dynamics. One of the building blocks for a dynamical system is an
integrator. An integrator in control applications is a component that
integrates input signals over time and outputs its current value. The
basic need for this element is to accumulate input signals. In applica-
tions, we could use this property as a memory. NEF implementation of
integrator requires the population of neurons and recurrent connection.
Integrator update equation(see 4.4) for classic control-theory integrator.

ẋ = f (x) + g(u) (4.4)

would translate to two NEF transforms(see 4.5, 4.6) implemented as
separate connections. NEF integrator example for input signal sin(t)
see Figure 4.2 in relationship to classical implementation.

f ′ = τ f (x) + x (4.5)

g′ = τg(u) (4.6)

Where τ is is target ensemble synapse value. Synapse applies filter and
time delay to input current across the synapse, and the output is the
current that will be induced in the postsynaptic neuron.

4.3. Model development 13

FIGURE 4.2: Visualisation for classic control-theory integrator
and NEF integrator implemented with 300 LIF neurons for int-

put signal x(t) = sin(t) Source: Stewart, 2009

4.3 Model development

4.3.1 Representing states

Rate CPG model described in section 4.1, consists of two oscillators, and
each has two states. In total we have 4 states x1, x2, x3, x4. Similarly to the rate
model, states do not have physical meaning but represent a saturation value
of leaky integrator, which should reset after threshold. Our first task is to rep-
resent the state using SNNs and work on dynamics later. According to the
Nengo representation principle (see 4.2.1), we could use population-based
encoding and transform real values vector to spikes of neurons. This formu-
lation uses spiking frequency instead of rate signals to accomplish dynamic
computations with the integrate-and-fire neurons Nengo ensemble class im-
plements this functionality. An ensemble is a building block in Nengo as it
could represent any real vector using a population of neurons. Theoretically,
one ensemble could represent all four values, and it would help us limit du-
plication of state, but one ensemble would also reduce the ability to manipu-
late individual state variables. Furthermore, because we do not know which
neurons in the ensemble represent specific scalar in multi-dimensional vec-
tor, we can not reset it without changing all other vector values. A better
approach would be to split each of the state values into different neuron en-
sembles. Because each pair represent a different locomotion phase, we call
them swing1, stance1, swing2, stance2(see 4.3). Each half-center represented
by 2 neuron ensembles, each representing neuron integrator.

4.3.2 Defining transitions

SNNs CPG model implements the same dynamics as rate CPG defined by
differential equations (see equation 4.1). Because state variables are repre-
sented as separate ensembles, and we can only build connections between

14 Chapter 4. Methodology

FIGURE 4.3: CPG for two limbs implemented using SNN. Visu-
alized using NengoGUI

two ensembles, it is impossible to access all state values in one place. There-
fore, we need to decouple dynamics equations into separate connections ap-
plied only to ensemble pairs. Resulting equations:

swing′1,2 = init_swing + speed_swing ∗ u1,2 + inner_inhibit ∗ swing1,2 (4.7)

˙stance′1,2 = init_stance + speed_stance ∗ u1,2 + inner_inhibit ∗ stance1,2 (4.8)

˙swing′1,2 = (1− swing2,1) ∗ swing_swing (4.9)

˙swing′1,2 = (1− stance2,1) ∗ swing_stance (4.10)

˙stance′1,2 = (1− swing2,1) ∗ stance_swing (4.11)

4.3. Model development 15

˙stance′1,2 = (1− stance2,1) ∗ stance_stance (4.12)

Baseline model (x1, x2, x3, x4) values correspond to (swing1, stance1, swing2, stance2).
Equations 4.9 and 4.7 controls integration speed of a population based on
current integrated value and system desired speed of locomotion. Parame-
ters init_swing and init_stance represent base speed of integration for swing
and stance for two limbs. speed_swing and speed_swing controls influence of
input speed on integration. inner_inhibit is the same for swing and stance,
and control influence of a state variable on itself. Equations 4.9, 4.10, 4.11,
4.12 connects integrators with each other and mainly responsible for sym-
metry and system self-regulation. Parameters swing_swing, swing_stance,
stance_stance, stance_swing controls how different phases for opposite limbs
influence each other. In total, there are 9 parameters that formulate dynam-
ics.

Each update rule could then be translated to NEF neuron connections
using dynamics principles(see 4.2.1) by multiplying function updates by re-
quired synapse value. In addition, if there are multiple connections to one
ensemble, Nengo will automatically sum up their stimulus. The combina-
tion of all connections implements the same dynamics as in equation 4.1.
Example of the Nengo implementation for swing phase dynamics.

tau = 0 . 1
speed = 1
def swing_feedback (x) :

dX = ini t_swing + speed_swing * speed + i n n e r _ i n h i b i t * x
return dX * tau + x

swing = nengo . Ensemble (5 0 0)
nengo . Connection (swing , swing ,

funct ion=swing_feedback ,
synapse=tau)

Each of the Nengo connections could be represented as a python function.
Above there is an example of such function "swing_feedback" that uses dy-
namics parameters from equasion 4.7. While building the network, Nengo
sample points from the ensemble input dimension and propagate them through
each connection function. The resulting points would be used for decoding
weights optimization. Connection function used only during network cre-
ation and later only learned encoding and decoding weights used. So high-
level dynamics parameters only take part in connection building.

By default, all initial values of an ensemble are zero, but the phase for two
limbs should be shifted already from the stater. For this reason, we added ini-
tialization for the second limb stance. Its value controlled by "init_stance_position"
parameter.

Visualization of all neurons connections could be found on final model
visualization (see Figure 4.3).

16 Chapter 4. Methodology

4.3.3 State switching

In section 4.3.2 we defined all integrators and their interconnections, but we
still lack switching of state. In baseline model(see 4.1) each "phase" neuron
resets it’s value when achieve threshold. After reset to 0, limbs switched to
opposite phase. This functionality allows for periodic switching of swing and
stance phases. However, the state represented by the population of spikes
cannot instantly change and can only gradually update its value. There are
three different ways to implement this functionality:

• First approach is to incorporate reset functionality into state recurrent
update(see equation 4.7). We need to set a huge negative update for
the neuron state if its value reaches 1. Example of implementation for
transition function.

tau = 0 . 1
speed = 1
def swing_feedback (x) :

i f x >= 1 :
dX = ini t_swing + speed_swing * speed + \\

i n n e r _ i n h i b i t * x
e lse :

dx = −100
return dX * tau + x

Unfortunately, this function is too challenging to implement in one sin-
gle neural ensemble. Furthermore, because the differential of a function
at value 1 is undefined, points for training decoders evaluated using
our function will be hugely different for two sides of 1, and the result-
ing function would be smoothed out.

(A) Points on unit circle of a neural oscillator (B) Output of arctan2 function for unit circle
points

FIGURE 4.4: Step function implemented using oscillator

4.3. Model development 17

• The second option is to start from a self-sustaining neural oscillator1.
Use the output of the neural oscillator(see Figure 4.4a), and compute
the transition function from that. For example, if the oscillator provides
the x, y coordinates of a point moving around a unit circle, we can use
the arctan2 function to convert the point to an angle and later use it as
output for the step signal(Figure 4.4b). However, this approach makes
controlling speed integration much more complicated.

• The last option is to use a separate element that resets the NEF integra-
tor. The idea is to turn off the neuron ensemble when it is not in the
active phase. Turn off functionality implemented in nengo using inhi-
bition procedure. It works by setting encoding weights of an ensemble
to zero by connecting off signal to population encoding weights. Zero-
ing weights will automatically stop all spikes and therefore stop inte-
gration of input signal. Finally, we need an element that could detect
integrator threshold. For this, we could rely on ensemble tuning curves
that control when neurons start spiking. We set neuron intercepts pa-
rameter to our target threshold and when threshold ensemble spikes
inhibit target integrator(figure 4.5a). Visualization of integrator output
on figure 4.5b, the red line represents the time of threshold activation.

(A) Visualization of step function implemen-
tation using neuron inhibition.

(B) Output of neuron integrator and threshold
neuron

FIGURE 4.5: Step function implemented using inhibition

Because the third option of step function implementation allows simple
control of phase changes, we chose this option. So for each "phase" neu-
ron, we need one step threshold and one state ensemble to remember the
current phase. Visualisation for full model implementation with step ensem-
bles("thresh_pos1", "thresh_neg1", ...) in Figure 4.3.

4.3.4 Input speed control

Our model input parameter is desired speed of locomotion. For each speed
value, we should produce a swing and stance phase pattern that would be

1https://www.nengo.ai/nengo/examples/dynamics/oscillator.html

18 Chapter 4. Methodology

similar to the pattern in actual data. For evaluation and training, we need to
change input speed during model simulation. We created a distinct ensemble
for "Speed" representation that implements NEF integrator and constantly
increment speed value. Then speed value is copied to each "phase" neuron
that is used in recurrent connection. For this, we need to extend the "phase"
neuron vector to two values to include speed value. For training, we use the
speed for two limbs and will test different speeds during evaluation. In our
simulation, speed would change its value from 0 to 1 that should correspond
to stride cycle ranges [.57, 1.91] seconds from empirical data.

4.3.5 Nengo parameters

The biggest question is deciding model parameters like the number of neu-
rons to represent the state, radius of a representation, value of synapse fil-
ter. For deciding the number of neurons, we need to balance the accuracy of
trained transition and simulation time. We will use 4000 neurons to repre-
sent the state and later run experiments to find an optimal number. Nengo
ensemble could represent values in a unit cycle scaled by radius factor. So,
for example, some huge number equal to radius are going to be "saved" as
one on the unit circle and later scaled by radius. Because of this, we lose pre-
cision by increasing radius and having the same number of neurons. For our
case phases, threshold values are one and speed range is [0, 1], but because
we need to represent a vector with two values, they will not fit the unit cycle,
so we should increase the radius to

√
12 + 12.

Synapse controls the size of a filter for spikes post-processing and decod-
ing back to the numerical value. So basically influence how fast the system
could react to changes, but there is a drawback with small window size, there
will be much variance in output signals due to the stochastic nature of under-
lining spikes. So because of the fast nature of the motor control system and
the instantaneous phase transition requirements, we chose a 0.01 synapse
value.

19

Chapter 5

Solution

We implemented dynamics of a rate CPG model with SNNs, and the last
problem is to find parameters that satisfy the properties of empirical data.
Our dynamics parameters are init_swing , init_stance, speed_swing, speed_swing,
inner_inhibit, swing_swing, swing_stance, stance_stance, stance_swing and
"init_stance_position". In total there are 10 parameters. They are used to
initialize ensemble connections. This section aims to define the error cost
function based on locomotion characteristics of cats that evaluates the per-
formance of simulated CPG created using dynamics parameters that should
show the same characteristics. Similarly to the robotic problems, we also
want to learn the dynamics of a CPG, but in our case, we already have pre-
defined dynamics that we want to learn instead of robotics, where learning
dynamics require exploration. Therefore, we consider this optimization task
as a supervised learning problem. Our next step will be decisions on the op-
timization algorithm. After we find the parameter for the model, we should
check its validity.

5.1 Error cost function

For error function creation we are guided by empirical data properties pre-
sented in chapter 3 derived from study by Halbertsma, 1983 and Goslow,
Reinking, and Stuart, 1973. Because we want simultaneously optimize for
different properties or error function consist if several parts:

• Phase duration error: calculates how model swing and stance phases
are close to cats swing and stance for the same speed. We calculated
error at the end of simulation when state changes recorded all range
of input speeds. We split all time ranges into (swing, stance) pairs and
calculated their combined stride duration. Then using equations 3.1
and 3.2 we compute expected swing, stance duration. These data points
then used to calculate the root-mean-square error, which is our phase
duration error

• Cycle ranges error: restrains stride duration from going out of range of
cats data cycle duration. We do not directly optimize for power law for
speed and cycle duration because we want to test it later. Instead, we
calculate the root-mean-square error for the first stride and maximum
range for stride duration and the last stride(recorded for max speed)

20 Chapter 5. Solution

and minimum stride duration. This error will ensure that all cycle du-
ration is in one range. We do the same calculation for two limbs and
average result.

• Balance error: forces model to synchronize two limbs and balance lo-
comotion. This error focused on interconnections between limbs. For
balanced locomotion, double and single support for two limbs should
go one after each other, and swing phases should not intersect as this
would result in running, which we do not consider in this study. We
compute the intersection of the swing phase of a limb and the stance
phase of an opposite limb for balance error calculation and normal-
ize by swing phase duration. This number shows what percentage of
swing phase contained in the stance phase of the opposite limb. We
compute this value for two limbs, and ideally, we want this percentage
to be 100. For control of phase synchronization, we added the addi-
tional parameter "init_stance_position".

• Symmetry error: tries to position swing phase in the center of opposite
limb stance phase. This error was added later in the study to overcome
some cases when the swing phase starts simultaneously as the oppo-
site leg’s stance phase, which does not correspond to empirical data.
However, the swing phase should not be strictly in the middle but lean
towards it.

The final error is a sum of the above errors with coefficients.

error = 1.5 ∗ phase_error + balance_error
+0.5 ∗ range_error + 0.2 ∗ symmetry_error

Coefficients represent the importance of each error for the final solution.

5.2 Optimisation

Due to the stochasticity of a simulation and the nature of the Nengo frame-
work, we can not directly calculate gradient for underlying parameters. One
of the reasons is that we use model parameters to train spiking neuron net-
work transitions during the building procedure and later in simulation rely
only on learned connections. Another reason is that we calculate error at the
end of a simulation, accumulated across all phase periods. For this reason,
we treat this problem as black-box optimization of a function that receives pa-
rameters, builds models, simulates it for 95 seconds, and compute the error.
The time duration of a simulation was based on experiments in the baseline
model. We used several algorithms for model optimization.

5.2. Optimisation 21

5.2.1 Nelder–Mead

Nelder–Mead(Gao and Han, 2010) widely popular numerical optimisation
method used by default for function optimisation in MATLAB1 and python
SciPy2 library. It could search for the minimum or maximum of a function
in a multidimensional space. This method is often applied to nonlinear op-
timization problems for which we cannot calculate derivatives. Also, this al-
gorithm showed good results in the baseline model, so we started from it. As
starting parameters for an algorithm, we used parameters from the baseline
model. However, this approach did not bring us good results. We think one
reason is that Nelder–Mead converged to local optimum due to its heuristic
search method. Starting parameters could be optimal to the baseline model
but lead to the not optimal solution for Nengo port of CPG model. Another
big problem is training duration. Nelder–Mead implementations in python
do not utilize a multi-core system and run only in one thread.

5.2.2 Hyperout

For the next step, we wanted to scale the optimization procedure to mul-
tiple nodes and take into account long simulation time. The Nengo model
optimization is a very similar problem to hyper-parameters searching for
deep neural networks, as they also take a long time to evaluate. One of the
frameworks to solve this problem is Hyperout 3. It implements "Tree-Parzen
Estimators"(Bergstra et al., 2011) algorithm. We also used "Tune: Scalable
Hyperparameter Tuning"4 framework to paralyze hyper-parameters search.
One of the benefits of using this type of algorithm that we do not need to
supply initial parameters for optimization. However, we should provide
ranges in which to search for optimal parameters. We could estimate pa-
rameters ranges knowing locomotion properties of cats movements. Search
space: [ht] The first optimization jobs archived a small error, but there was
a problem with the symmetry of swing phases, so we decided to add a new
error term that tries to account for this(see Chapter 5.1). The most success-
ful optimization routine converged to a combined error value 0.17 with 500
simulations. For best params see Table 5.2. For visualization of training error
check Figure 5.1. Hyperout trials are stochastic in time, so we sorted errors
for better visualization.

5.2.3 HEBO

The third algorithm we tried is Heteroscedastic Evolutionary Bayesian Op-
timisation(HEBO)5 created by Cowen-Rivers et al., 2020. It is Bayesian op-
timization family of algorithm which also adds evolutionary optimizers. It

1https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html
2https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
3http://hyperopt.github.io/hyperopt
4https://docs.ray.io/en/master/tune/index.html
5https://github.com/huawei-noah/noah-research/tree/master/HEBO

22 Chapter 5. Solution

TABLE 5.1: Search space

Param min max

init_stance 0 2
init_stance_position 0 1

init_swing 3 6
speed_stance 2 4
speed_swing 2 5
inner_inhibit -1 1
swing_swing -1 1
stance_swing -1 1
swing_stance -1 1
stance_stance -1 1

TABLE 5.2: Best params

init_stance init_stance_position init_swing speed_stance speed_swing
0.54503 0.63792 5.0592 3.6923 3.2043

inner_inhibit stance_stance stance_swing swing_stance swing_swing
-0.45334 0.80108 -0.85135 -0.64631 0.10515

won black-box optimizers challenge6 for hyperparameters search for deep
learning. We used the same parameters space from table 5.1. Although we
could achieve comparable results as with Hyperout, HEBO takes more func-
tion evaluation in our case to coverage to a meaningful result.

5.3 Neurons count optimisation

As mentioned in section 4.3.5 we used 4000 neurons to represent state val-
ues during training. However, it is possibly not the optimal number, so we
could run several experiments to test this. In the first experiment, we evalu-
ated model phase characteristics five times for different neuron numbers and
recorded deviations in phase parameters. Recorded standard deviations of
phases [0.5, 0.8, 0.02, 0.03, 0.04, 0.04, 0.001] for [1000, 1500, 2000, 2500, 3000, 3500, 4000]
of neurons. From this data, we could see a big gap in std from 1500 and 2000
neurons. For the next experiment, we evaluated best-tuned parameters from
table 5.2 with a different number of neurons, and the resulted plot in Fig-
ure 5.2. The final experiment also shows that 2000 neurons have the same er-
ror as the model with 4000, but it stops working when it goes below 2000. We

6https://bbochallenge.com/leaderboard

5.4. Validation 23

FIGURE 5.1: Error values for Hyperout optimisation sorted in
descending order

could conclude that 2000 is an optimal number for integrator value represen-
tation using a Nengo ensemble from these two experiments. Father research
is needed to investigate why the model disintegrates with values below 2000.

FIGURE 5.2: Evaluation of best-fit parameters with different
number of state neurons

5.4 Validation

For validation, we would use the best-trained parameters from Table 5.2.
This section will check how the model behaviors at different speeds and if
it satisfies power low for cycle duration and checks if it is stable to damage.

24 Chapter 5. Solution

5.4.1 Phase duration characteristics

First, we want to check how the model perforce at different speeds(Figure
5.3a and 5.3b). The swing and stance phases go one after the other, and the
two limbs are half-cycle apart. Swing phases(red line) are in the center of
stance phases(blue line). At high speeds model also stays stable with a much-
shorted cycle duration. In this section, we want to estimate how generated
cycles are close to empirical data and calculate R2 metric. For this, we merge
cycle duration for two limbs and, using equations 3.1 and 3.2 get ground
truth data. The final relationship for one of the limbs on Figure 5.4, dotted
blue line, and dotted red line show expected linear relation. Calculated met-
ric R2

swing1
and R2

stance1
for one limb are 0.903 and 0.998. These results are a bit

worse but comparable with the baseline model.

5.4.2 Power law

One of the biggest questions in motor control is to identify what input sig-
nal drive CPG output. It could be range from high-order variables like po-
sition, velocity, force, or some low-level features. If low-level features are
represented at high levels of the neural hierarchy, then the musculoskeletal
motor organization’s complexity and interactions with the environment are
not solved in the low-level neural hierarchy. This the statement is unlikely in
absolute terms; therefore, the modality of inputs converging on the rhythm
generating networks has a global context, for example, the speed of forward
progression(Yakovenko, 2011). For testing this idea, we could represent the
output of a CPG model in terms of its input and check their relationship. So
we chose forward progressions velocity as an output of our model. For calcu-
lation of velocity, we could rely on the empirical power relationship between
stride cycle duration and velocity(Goslow, Reinking, and Stuart, 1973). The
first step would be to calculate the relationship of our input parameters to cy-
cle duration(see Figure 5.5a), and they do represent the power relationship.
The next step would be to transform cycle duration(Tc) using reversed equa-
tion V = (Tc/0.5445)1/−0.592. Final relationship between input CPG speed
and output forward progressions velocity is presented in Figure 5.5b and as
it turns out this relationship is highly linear(R2 = 0.990). It shows that input
of the CPG model represented as a desired speed of locomotion adjusts out-
put phases, so they correspond to target velocity. Results support the idea of
speed input as a modality of rhythm generating networks.

5.4.3 Damage simulation

One of the possible benefits of stochastic spiking models is bigger tolerance
for noise and damage to elements. Nengo represents its values and computes
transitions using a population of neurons, so losing some neurons should
not play a significant role in some expend. In this section, we want to test

5.4. Validation 25

(A) Simulation from 0 to 5 seconds

(B) Simulation from 90 to 95 seconds

FIGURE 5.3: Plots of swing/stance phase changes for two limbs
and within different time periods

26 Chapter 5. Solution

FIGURE 5.4: The bilateral pattern of locomotor phase modula-
tion with optimized CPG model parameters. The relationship
between phase and cycle duration for each integrator is plot-
ted together with the desired Halbertsma, 1983 best-fit linear

model.

with how much-damaged neurons CPG model could still function. We ap-
ply damage to the system by turning off some of the neurons during stimu-
lation. We evaluate the functionality of a model by calculating its error in the
same way we did for optimization. If error increase significantly, we could
conclude that model is no longer functional. We simulate the model for the
same 95 seconds and test for 0 to 900 damaged neurons out of 5000. Simula-
tion results are in Figure 5.6. Model maintained moderately good error(0.69)
up to 150 damaged neurons and remained functional up to 600 damaged
neurons. These results prove that model could withstand some damage.

Another test we would do is tolerance to noise. Ensemble class in Nengo
supports additional noise parameter which alters the output of a neuron pop-
ulation. For this experiment, we would use white noise with a mean 0 and
standard deviation from 0 to 0.15. In the same way, as with damage experi-
ments, we would run simulations for 95 seconds with a different number of
noise parameters and investigate resulted error curve. Resulted plot in Fig-
ure 5.7. The system is stable up to 0.06 standard deviation Gaussian noise.

5.4. Validation 27

(A) Power relationship between CPG in-
put speed parameter and model cycle du-

rations

(B) Relationship of input CPG speed
and locomotion velocity produced from
model stride cycle duration. Relationship

is highly linear(R2 = 0.990).

FIGURE 5.6: Progression of error in Nengo CPG model when
we remove neurons from state Ensemble

28 Chapter 5. Solution

FIGURE 5.7: Progression of error in Nengo CPG model when
we add noise to state Ensemble

29

Chapter 6

Conclusions

6.0.1 Results Summary

Overall results of the project are successful as we answered original research
questions. First of all, we implemented a bilateral half-center oscillators CPG
model using SNNs, and it proved the validity of the Nengo framework for
solving these types of problems. The resulted spiking model has similar be-
havior at different speeds as the rate model. Also, it reproduces a linear
relationship between model speed parameter and velocity of forward pro-
gression. The resulting accuracy for phase characteristics is close to the rate
model. Transitioning model to Nengo allows to run it on SpiNNaker hard-
ware which is real-time by design and save energy due to sparse signals
which could be essential for embedded system. In addition, we showed some
noise and damage tolerance present in our CPG model.

6.0.2 Future work

One of the most significant limitations of an existing model is the tedious
learning procedure. Error function consists of many moving parts, and black-
box optimization may not be the best choice. The better option would be to
unitize Nengo learning tools 1 and transform the problem into a reinforce-
ment learning task. The use of build in learning methods would benefit con-
stant learning and error adjustment during the simulation and not limit con-
nections to the base set of differential equations used during model building.
Another possible area of research is to check for similar patterns of the Nengo
CPG model and biological CPGs.

1https://www.nengo.ai/nengo/examples/learning/learn-communication-
channel.html

30

Bibliography

Anderson, John R. et al. (2004). “An Integrated Theory of the Mind.” In: Psy-
chological Review 111.4, pp. 1036–1060. DOI: 10.1037/0033-295x.111.4.
1036. URL: https://doi.org/10.1037/0033-295x.111.4.1036.

Bergstra, James et al. (2011). “Algorithms for Hyper-Parameter Optimiza-
tion”. In: Proceedings of the 24th International Conference on Neural Informa-
tion Processing Systems. NIPS’11. Granada, Spain: Curran Associates Inc.,
2546–2554. ISBN: 9781618395993.

Collins, J. J. and S. A. Richmond (Sept. 1994). “Hard-wired central pattern
generators for quadrupedal locomotion”. In: Biological Cybernetics 71.5,
pp. 375–385. DOI: 10.1007/bf00198915. URL: https://doi.org/10.
1007/bf00198915.

Cowen-Rivers, Alexander I et al. (2020). “HEBO: Heteroscedastic Evolution-
ary Bayesian Optimisation”. In: arXiv preprint arXiv:2012.03826. winning
submission to the NeurIPS 2020 Black Box Optimisation Challenge.

Cuevas-Arteaga, Brayan et al. (2017). “A SpiNNaker Application: Design,
Implementation and Validation of SCPGs”. In: Advances in Computational
Intelligence. Springer International Publishing, pp. 548–559. DOI: 10.1007/
978-3-319-59153-7_47. URL: https://doi.org/10.1007/978-3-319-
59153-7_47.

Dimitrijevic, Milan R., Yuri Gerasimenko, and Michaela M. Pinter (Nov. 1998).
“Evidence for a Spinal Central Pattern Generator in Humansa”. In: Annals
of the New York Academy of Sciences 860.1 NEURONAL MECH, pp. 360–
376. DOI: 10.1111/j.1749-6632.1998.tb09062.x. URL: https://doi.
org/10.1111/j.1749-6632.1998.tb09062.x.

Eliasmith, C. (2013). How to build a brain: a neural architecture for biological cog-
nition. Oxford University Press.

Eliasmith, Chris (June 2005). “A Unified Approach to Building and Control-
ling Spiking Attractor Networks”. In: Neural Computation 17.6, pp. 1276–
1314. DOI: 10.1162/0899766053630332. URL: https://doi.org/10.1162/
0899766053630332.

Endo, Gen et al. (Feb. 2008). “Learning CPG-based Biped Locomotion with
a Policy Gradient Method: Application to a Humanoid Robot”. In: The
International Journal of Robotics Research 27.2, pp. 213–228. DOI: 10.1177/
0278364907084980. URL: https://doi.org/10.1177/0278364907084980.

Espinal, A. et al. (2016). “Quadrupedal Robot Locomotion: A Biologically In-
spired Approach and Its Hardware Implementation”. In: Computational
Intelligence and Neuroscience 2016, pp. 1–13. DOI: 10.1155/2016/5615618.
URL: https://doi.org/10.1155/2016/5615618.

Fukuoka, Yasuhiro, Hiroshi Kimura, and Avis H. Cohen (Mar. 2003). “Adap-
tive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based

https://doi.org/10.1037/0033-295x.111.4.1036
https://doi.org/10.1037/0033-295x.111.4.1036
https://doi.org/10.1037/0033-295x.111.4.1036
https://doi.org/10.1007/bf00198915
https://doi.org/10.1007/bf00198915
https://doi.org/10.1007/bf00198915
https://doi.org/10.1007/978-3-319-59153-7_47
https://doi.org/10.1007/978-3-319-59153-7_47
https://doi.org/10.1007/978-3-319-59153-7_47
https://doi.org/10.1007/978-3-319-59153-7_47
https://doi.org/10.1111/j.1749-6632.1998.tb09062.x
https://doi.org/10.1111/j.1749-6632.1998.tb09062.x
https://doi.org/10.1111/j.1749-6632.1998.tb09062.x
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1177/0278364907084980
https://doi.org/10.1177/0278364907084980
https://doi.org/10.1177/0278364907084980
https://doi.org/10.1155/2016/5615618
https://doi.org/10.1155/2016/5615618

Bibliography 31

on Biological Concepts”. In: The International Journal of Robotics Research
22.3-4, pp. 187–202. DOI: 10.1177/0278364903022003004. URL: https:
//doi.org/10.1177/0278364903022003004.

Gao, Fuchang and Lixing Han (May 2010). “Implementing the Nelder-Mead
simplex algorithm with adaptive parameters”. In: Computational Optimiza-
tion and Applications 51.1, pp. 259–277. DOI: 10.1007/s10589-010-9329-3.
URL: https://doi.org/10.1007/s10589-010-9329-3.

Gerstner, W. (2001). “Chapter 12 A framework for spiking neuron models:
The spike response model”. In: Neuro-Informatics and Neural Modelling. El-
sevier, pp. 469–516. DOI: 10.1016/s1383-8121(01)80015-4. URL: https:
//doi.org/10.1016/s1383-8121(01)80015-4.

Gerstner, Wulfram and Werner M. Kistler (Aug. 2002). Spiking Neuron Mod-
els. Cambridge University Press. DOI: 10.1017/cbo9780511815706. URL:
https://doi.org/10.1017/cbo9780511815706.

Goslow, George E., Robert M. Reinking, and Douglas G. Stuart (Sept. 1973).
“The cat step cycle: Hind limb joint angles and muscle lengths during
unrestrained locomotion”. In: Journal of Morphology 141.1, pp. 1–41. DOI:
10.1002/jmor.1051410102. URL: https://doi.org/10.1002/jmor.
1051410102.

Gutierrez-Galan, Daniel et al. (Mar. 2020). “Neuropod: A real-time neuromor-
phic spiking CPG applied to robotics”. In: Neurocomputing 381, pp. 10–19.
DOI: 10.1016/j.neucom.2019.11.007. URL: https://doi.org/10.1016/
j.neucom.2019.11.007.

Halbertsma, J. M. (1983). “The stride cycle of the cat: the modelling of loco-
motion by computerized analysis of automatic recordings”. In: Acta Phys-
iol Scand Suppl 521, pp. 1–75.

Hellgren, J., S. Grillner, and A. Lansner (Nov. 1992). “Computer simulation
of the segmental neural network generating locomotion in lamprey by
using populations of network interneurons”. In: Biological Cybernetics 68.1,
pp. 1–13. DOI: 10.1007/bf00203132. URL: https://doi.org/10.1007/
bf00203132.

Hinton, G. E. (July 2006). “Reducing the Dimensionality of Data with Neural
Networks”. In: Science 313.5786, pp. 504–507. DOI: 10 . 1126 / science .
1127647. URL: https://doi.org/10.1126/science.1127647.

Hodgkin, A. L. and A. F. Huxley (Aug. 1952). “A quantitative description
of membrane current and its application to conduction and excitation in
nerve”. In: The Journal of Physiology 117.4, pp. 500–544. DOI: 10 . 1113 /
jphysiol.1952.sp004764. URL: https://doi.org/10.1113/jphysiol.
1952.sp004764.

Ijspeert, Auke Jan (Apr. 2001). “A connectionist central pattern generator for
the aquatic and terrestrial gaits of a simulated salamander”. In: Biological
Cybernetics 84.5, pp. 331–348. DOI: 10.1007/s004220000211. URL: https:
//doi.org/10.1007/s004220000211.

— (May 2008). “Central pattern generators for locomotion control in animals
and robots: A review”. In: Neural Networks 21.4, pp. 642–653. DOI: 10.
1016/j.neunet.2008.03.014. URL: https://doi.org/10.1016/j.
neunet.2008.03.014.

https://doi.org/10.1177/0278364903022003004
https://doi.org/10.1177/0278364903022003004
https://doi.org/10.1177/0278364903022003004
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1016/s1383-8121(01)80015-4
https://doi.org/10.1016/s1383-8121(01)80015-4
https://doi.org/10.1016/s1383-8121(01)80015-4
https://doi.org/10.1017/cbo9780511815706
https://doi.org/10.1017/cbo9780511815706
https://doi.org/10.1002/jmor.1051410102
https://doi.org/10.1002/jmor.1051410102
https://doi.org/10.1002/jmor.1051410102
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1007/bf00203132
https://doi.org/10.1007/bf00203132
https://doi.org/10.1007/bf00203132
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1007/s004220000211
https://doi.org/10.1007/s004220000211
https://doi.org/10.1007/s004220000211
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1016/j.neunet.2008.03.014

32 Bibliography

Izhikevich, E.M. (Sept. 2004). “Which Model to Use for Cortical Spiking Neu-
rons?” In: IEEE Transactions on Neural Networks 15.5, pp. 1063–1070. DOI:
10.1109/tnn.2004.832719. URL: https://doi.org/10.1109/tnn.2004.
832719.

Krizhevsky, Alex (2009). Learning multiple layers of features from tiny images.
Tech. rep.

LeCun, Yann and Corinna Cortes (2010). “MNIST handwritten digit database”.
In: URL: http://yann.lecun.com/exdb/mnist/.

Lele, Ashwin Sanjay et al. (2020). Learning to Walk: Spike Based Reinforcement
Learning for Hexapod Robot Central Pattern Generation. arXiv: 2003.10026
[cs.NE].

Pande, Sandeep et al. (Jan. 2013). “Modular Neural Tile Architecture for Com-
pact Embedded Hardware Spiking Neural Network”. In: Neural Process-
ing Letters 38.2, pp. 131–153. DOI: 10.1007/s11063- 012- 9274- 5. URL:
https://doi.org/10.1007/s11063-012-9274-5.

Prochazka, Arthur and Sergiy Yakovenko (2007). “The neuromechanical tun-
ing hypothesis”. In: Progress in Brain Research. Elsevier, pp. 255–265. DOI:
10.1016/s0079-6123(06)65016-4. URL: https://doi.org/10.1016/
s0079-6123(06)65016-4.

Rasmussen, Daniel and Chris Eliasmith (Jan. 2014). “A spiking neural model
applied to the study of human performance and cognitive decline on
Raven's Advanced Progressive Matrices”. In: Intelligence 42, pp. 53–82.
DOI: 10.1016/j.intell.2013.10.003. URL: https://doi.org/10.
1016/j.intell.2013.10.003.

Rostro-Gonzalez, H. et al. (Dec. 2015). “A CPG system based on spiking neu-
rons for hexapod robot locomotion”. In: Neurocomputing 170, pp. 47–54.
DOI: 10.1016/j.neucom.2015.03.090. URL: https://doi.org/10.1016/
j.neucom.2015.03.090.

Rueckauer, Bodo et al. (Dec. 2017). “Conversion of Continuous-Valued Deep
Networks to Efficient Event-Driven Networks for Image Classification”.
In: Frontiers in Neuroscience 11. DOI: 10.3389/fnins.2017.00682. URL:
https://doi.org/10.3389/fnins.2017.00682.

Schlichter, Tamara J et al. (July 2010). “Phase response properties of an ide-
alized half-center oscillator”. In: BMC Neuroscience 11.S1. DOI: 10.1186/
1471-2202-11-s1-p3. URL: https://doi.org/10.1186/1471-2202-11-
s1-p3.

Selverston, Allen I. et al. (Dec. 2000). “Reliable circuits from irregular neu-
rons: A dynamical approach to understanding central pattern genera-
tors”. In: Journal of Physiology-Paris 94.5-6, pp. 357–374. DOI: 10.1016/
s0928- 4257(00)01101- 3. URL: https://doi.org/10.1016/s0928-
4257(00)01101-3.

Sterratt, David et al. (2009). Principles of Computational Modelling in Neuro-
science. Cambridge University Press. DOI: 10.1017/cbo9780511975899.
URL: https://doi.org/10.1017/cbo9780511975899.

Stewart, Terrence (2009). Python scripting in the Nengo simulator. DOI: 10 .
3389/neuro.11.007.2009. URL: https://www.frontiersin.org/files/
Articles/359/fninf-03-007/image_n/fninf-03-007-g003.gif.

https://doi.org/10.1109/tnn.2004.832719
https://doi.org/10.1109/tnn.2004.832719
https://doi.org/10.1109/tnn.2004.832719
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2003.10026
https://arxiv.org/abs/2003.10026
https://doi.org/10.1007/s11063-012-9274-5
https://doi.org/10.1007/s11063-012-9274-5
https://doi.org/10.1016/s0079-6123(06)65016-4
https://doi.org/10.1016/s0079-6123(06)65016-4
https://doi.org/10.1016/s0079-6123(06)65016-4
https://doi.org/10.1016/j.intell.2013.10.003
https://doi.org/10.1016/j.intell.2013.10.003
https://doi.org/10.1016/j.intell.2013.10.003
https://doi.org/10.1016/j.neucom.2015.03.090
https://doi.org/10.1016/j.neucom.2015.03.090
https://doi.org/10.1016/j.neucom.2015.03.090
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1186/1471-2202-11-s1-p3
https://doi.org/10.1186/1471-2202-11-s1-p3
https://doi.org/10.1186/1471-2202-11-s1-p3
https://doi.org/10.1186/1471-2202-11-s1-p3
https://doi.org/10.1016/s0928-4257(00)01101-3
https://doi.org/10.1016/s0928-4257(00)01101-3
https://doi.org/10.1016/s0928-4257(00)01101-3
https://doi.org/10.1016/s0928-4257(00)01101-3
https://doi.org/10.1017/cbo9780511975899
https://doi.org/10.1017/cbo9780511975899
https://doi.org/10.3389/neuro.11.007.2009
https://doi.org/10.3389/neuro.11.007.2009
https://www.frontiersin.org/files/Articles/359/fninf-03-007/image_n/fninf-03-007-g003.gif
https://www.frontiersin.org/files/Articles/359/fninf-03-007/image_n/fninf-03-007-g003.gif

Bibliography 33

Stewart, Terrence C., Trevor Bekolay, and Chris Eliasmith (2012). “Learning
to Select Actions with Spiking Neurons in the Basal Ganglia”. In: Frontiers
in Neuroscience 6. DOI: 10.3389/fnins.2012.00002. URL: https://doi.
org/10.3389/fnins.2012.00002.

Stone, James V. (2018). Principles of Neural Information Theory: Computational
Neuroscience and Metabolic Efficiency. 1st. Sebtel Press. ISBN: 0993367925.

Traven, H. G. et al. (Aug. 1993). “Computer simulations of NMDA and non-
NMDA receptor-mediated synaptic drive: sensory and supraspinal mod-
ulation of neurons and small networks”. In: Journal of Neurophysiology
70.2, pp. 695–709. DOI: 10.1152/jn.1993.70.2.695. URL: https://
doi.org/10.1152/jn.1993.70.2.695.

Wang, Wei et al. (Oct. 2019). “Voltage-control oscillator based on Pt/C/N-
bOx/TiN device with highly improved threshold switching performances”.
In: Science China Physics, Mechanics & Astronomy 62.12. DOI: 10 . 1007 /
s11433-019-1463-y. URL: https://doi.org/10.1007/s11433-019-
1463-y.

Williams, T. (Oct. 1992). “Phase coupling by synaptic spread in chains of
coupled neuronal oscillators”. In: Science 258.5082, pp. 662–665. DOI: 10.
1126/science.1411575. URL: https://doi.org/10.1126/science.
1411575.

Winter, David A. (Mar. 1984). “Kinematic and kinetic patterns in human gait:
Variability and compensating effects”. In: Human Movement Science 3.1-2,
pp. 51–76. DOI: 10.1016/0167-9457(84)90005-8. URL: https://doi.
org/10.1016/0167-9457(84)90005-8.

Wu, Yujie et al. (2018). Direct Training for Spiking Neural Networks: Faster, Larger,
Better. arXiv: 1809.05793 [cs.NE].

Yakovenko, S. et al. (Aug. 2005). Control of Locomotor Cycle Durations. DOI:
10.1152/jn.00991.2004. URL: https://journals.physiology.org/
na101 / home / literatum / publisher / physio / journals / content / jn /
2005/jn.2005.94.issue-2/jn.00991.2004/production/images/large/
z9k0080547710008.jpeg.

Yakovenko, Sergiy (2011). “A hierarchical perspective on rhythm generation
for locomotor control”. In: Progress in Brain Research. Elsevier, pp. 151–166.
DOI: 10.1016/b978-0-444-53825-3.00015-2. URL: https://doi.org/
10.1016/b978-0-444-53825-3.00015-2.

Yakovenko, Sergiy, Anton Sobinov, and Valeriya Gritsenko (Oct. 2018a). An-
alytical CPG model driven by limb velocity input generates accurate temporal
locomotor dynamics. DOI: 10.7717/peerj.5849. URL: https://pubmed.
ncbi.nlm.nih.gov/30425886/#&gid=article-figures&pid=figure-1-
uid-0.

— (Aug. 2018b). “Analytical CPG model driven by single-limb velocity in-
put generates accurate temporal locomotor dynamics”. In: DOI: 10.7287/
peerj.preprints.26734v2. URL: https://doi.org/10.7287/peerj.
preprints.26734v2.

Yu, Junzhi et al. (Mar. 2014). “A Survey on CPG-Inspired Control Models
and System Implementation”. In: IEEE Transactions on Neural Networks and

https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.1152/jn.1993.70.2.695
https://doi.org/10.1152/jn.1993.70.2.695
https://doi.org/10.1152/jn.1993.70.2.695
https://doi.org/10.1007/s11433-019-1463-y
https://doi.org/10.1007/s11433-019-1463-y
https://doi.org/10.1007/s11433-019-1463-y
https://doi.org/10.1007/s11433-019-1463-y
https://doi.org/10.1126/science.1411575
https://doi.org/10.1126/science.1411575
https://doi.org/10.1126/science.1411575
https://doi.org/10.1126/science.1411575
https://doi.org/10.1016/0167-9457(84)90005-8
https://doi.org/10.1016/0167-9457(84)90005-8
https://doi.org/10.1016/0167-9457(84)90005-8
https://arxiv.org/abs/1809.05793
https://doi.org/10.1152/jn.00991.2004
https://journals.physiology.org/na101/home/literatum/publisher/physio/journals/content/jn/2005/jn.2005.94.issue-2/jn.00991.2004/production/images/large/z9k0080547710008.jpeg
https://journals.physiology.org/na101/home/literatum/publisher/physio/journals/content/jn/2005/jn.2005.94.issue-2/jn.00991.2004/production/images/large/z9k0080547710008.jpeg
https://journals.physiology.org/na101/home/literatum/publisher/physio/journals/content/jn/2005/jn.2005.94.issue-2/jn.00991.2004/production/images/large/z9k0080547710008.jpeg
https://journals.physiology.org/na101/home/literatum/publisher/physio/journals/content/jn/2005/jn.2005.94.issue-2/jn.00991.2004/production/images/large/z9k0080547710008.jpeg
https://doi.org/10.1016/b978-0-444-53825-3.00015-2
https://doi.org/10.1016/b978-0-444-53825-3.00015-2
https://doi.org/10.1016/b978-0-444-53825-3.00015-2
https://doi.org/10.7717/peerj.5849
https://pubmed.ncbi.nlm.nih.gov/30425886/#&gid=article-figures&pid=figure-1-uid-0
https://pubmed.ncbi.nlm.nih.gov/30425886/#&gid=article-figures&pid=figure-1-uid-0
https://pubmed.ncbi.nlm.nih.gov/30425886/#&gid=article-figures&pid=figure-1-uid-0
https://doi.org/10.7287/peerj.preprints.26734v2
https://doi.org/10.7287/peerj.preprints.26734v2
https://doi.org/10.7287/peerj.preprints.26734v2
https://doi.org/10.7287/peerj.preprints.26734v2

34 Bibliography

Learning Systems 25.3, pp. 441–456. DOI: 10.1109/tnnls.2013.2280596.
URL: https://doi.org/10.1109/tnnls.2013.2280596.

https://doi.org/10.1109/tnnls.2013.2280596
https://doi.org/10.1109/tnnls.2013.2280596

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals
	Thesis structure

	Related work
	Central pattern generator (CPG)
	Spiking neural networks (SNN)

	Data description
	Gait cycle
	Locomotion phases

	Methodology
	Rate model of CPG
	Background information
	Nengo simulation environment

	Model development
	Representing states
	Defining transitions
	State switching
	Input speed control
	Nengo parameters

	Solution
	Error cost function
	Optimisation
	Nelder–Mead
	Hyperout
	HEBO

	Neurons count optimisation
	Validation
	Phase duration characteristics
	Power law
	Damage simulation

	Conclusions
	Results Summary
	Future work

	Bibliography

