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Abstract

The ability to navigate in complex environments is a fundamental skill of a home
robot. Despite extensive study, indoor navigation in unseen environments under
noisy actuation and sensing and without access to precise localization continues
to be an open frontier for research in Embodied AI. In this work, we focus on de-
signing a visual odometry module for robust egomotion estimation and it’s integra-
tion with navigation policy for efficient navigation under noisy actuation and sens-
ing. Specifically, we study how the observations transformations and incorporating
meta-information available to the navigation agent impacts visual odometry model
generalization performance. We present a set of regularization techniques that can
be implemented as train- and test-time augmentations to increase the robustness to
noise.

Navigation agent, equipped with our visual odometry module, reaches the goal
in 86% of episodes and scores 0.66 SPL in Habitat Challenge 2021 benchmark.
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Chapter 1

Introduction

1.1 Motivation

With advances in science and engineering, technologies that were expensive and
used only by large corporations or government departments (in most cases Depart-
ment of Defense) became cheaper and "more affordable" and move from laboratories
to our houses. Even though current progress in autonomous robotics is distant from
how it is described in science fiction, Embodied AI is already being used in many dif-
ferent applications. In particular, the latest versions of the Roomba 1 robot vacuum
cleaner use suite of sensors and visual localization system to learn and remember
where objects are in a room, so that the robot knows exactly where it is, where it
has been and where it needs to go next. But Embodied AI tasks extend far beyond
exploration 2, for instance, gripping and moving objects to specified locations or nat-
ural language instructions following. The potential benefits of AI assistants of the
future range from conveniences, such as asking a robot to get a set of keys from
the kitchen to helping the visually impaired navigate unfamiliar environments or
perform complex tasks in dangerous or difficult situations.

As a result, the study of intelligent systems with a physical or virtual embodi-
ment (Embodied AI) is getting more and more attention from the research commu-
nity nowadays.

Growing number of scientific papers published and competitions/workshops
held at top Computer Vision / Machine Learning conferences (Wijmans et al., 2020;
Chaplot et al., 2020; Ramakrishnan, Al-Halah, and Grauman, 2020; Datta et al., 2020)
indicate the interest in the Embodied AI domain.

Research community has introduced wide range of navigation tasks (Anderson
et al., 2018) so far. Proposed tasks can be distinguished by the type of goal:

• PointGoal - the agent must navigate to a specific location;

• ObjectGoal - the agent must navigate to a given object class;

• AreaGoal - the agent must navigate to an area of a specified category.

PointGoal navigation is considered to be investigated the most. It serves as
a starting point in the Embodied AI navigation research and the developed ap-
proaches can be transferred to other navigation tasks.

The important question that is raised in recent publications is the ability of intel-
ligent system to efficiently navigate in real-world environments (Kadian et al., 2019;
Datta et al., 2020). Since launched in the house robot has to avoid/step over stairs,

1Roomba is a series of autonomous robotic vacuum cleaners sold by iRobot.
2Exploration is an Embodied AI task where the objective is to maximize the coverage in a fixed time

budget.
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deal with obstacles/clutter and different types of surface properties and lightning
conditions. The focus is on increased realism i.e. experimental setups are designed
to match the real world environment as close as possible (Kadian et al., 2019). That
is achieved by incorporating actuation and sensing noise models.

Among the different sensor modalities, cameras are cheap and provide rich in-
formation of the environment that allows for robust and accurate place recognition.
Moreover, compass and GPS data can be too noisy or simply unavailable in indoor
spaces. Therefore, visual navigation solutions where the main sensor is a RGB-D
camera are of major interest nowadays.

Significant progress in the visual navigation has been made by the researchers
so far. Learning based approaches, consisting of Reinforcement Learning (RL) nav-
igation policy and visual odometry module that is used for online pose estimation
can learn the navigation system directly from perceptual input and are dominating
in the field (Ramakrishnan, Al-Halah, and Grauman, 2020; Datta et al., 2020). Ac-
cording to the Habitat Challenge 2020 3 PointGoal navigation benchmark, operating
in the noisy environments state-of-the-art approaches can reach the destination in
71.7% of cases. But on the other hand, due to noisy environment and collisions,
current agents still experience drifts over a long trajectories and could potentially
benefit from robust visual odometry module.

1.2 Research Objective

In this master thesis, we outline the ideas to improve the efficiency and success rate
of the navigation agents.

We aim to validate whether it is possible to achieve as good results in visual
navigation under noisy conditions as they were achieved in environments without
noise. For that, we formulate the set of research questions that we will investigate in
experimental part of our work:

• incorporating meta-information available to the agent improves visual odom-
etry model accuracy;

• removing redundant information by cropping out regions of visual observa-
tions that don’t intersect may increase the visual odometry model robustnes;

• increasing the dataset size and diversity makes visual odometry model less
sensitive to noise;

• visual odometry module can better generalize to noise distribution if separate
model is used for estimating egomotion for particular action type.

1.3 Thesis Structure

The remainder of the thesis is structured as follows. In Chapter 2, we review the ex-
isting related work on PointGoal navigation. In Chapter 3, we present our approach,
including the experiment setup and evaluation details. Our experiments results are
discussed in Chapter 4. Finally, we make conclusive remarks in Chapter 5.

3https://aihabitat.org/challenge/2020

https://aihabitat.org/challenge/2020
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Chapter 2

Related Work

Autonomous navigation has been a subject of research in Robotics and Computer
Vision for a long time (Moravec, 1984; Durrant-Whyte, Rye, and Nebot, 1996). With
advances in Computer Vision and Deep Learning, there has been a renewed inter-
est in the use of learning to derive navigation policies for a variety of tasks (such as
rearrangement, visual navigation, and vision-and-language, and audio-visual nav-
igation). PointGoal navigation (Chaplot et al., 2020; Ramakrishnan, Al-Halah, and
Grauman, 2020; Datta et al., 2020), being one of the most fundamental among these
task, has also been the subject of several prior works. We survey related works be-
low.

2.1 Virtualization

Training and evaluating mobile robots in the real world environment is slow, re-
source intensive, hard to control and reproduce. For these reasons, such work has
commonly been carried out in simulators (Savva et al., 2017; Xia et al., 2018; Savva
et al., 2019). It allows researchers to tackle the Embodied AI tasks being equipped
just with their own computer. Modern simulation environments provide a flexible
APIs for experiment setup configuration and are optimized for speed. For example,
the Habitat platform (Savva et al., 2019) - simulator that we used in our research,
achieves several thousand frames per second (fps) running single-threaded, and can
reach over 10,000 fps multi-process on a single GPU.

2.2 Classical vs Learned

Classical approaches decompose the problem into a sequence of sub-tasks, such as
localization, mapping, planning, and control. Each of the sub-tasks is addressed
separately and corresponding solutions are then composed into one pipeline. When
properly tuned, such methods can perform well in cluttered environments, but are
sensitive to noisy sensory input and fail to generalize to unseen environments.

Large and diverse photorealistic RGB-D datasets (Xia et al., 2018; Chang et al.,
2017) together with simulators (Savva et al., 2017; Xia et al., 2018; Savva et al., 2019)
that can run orders of magnitude faster than real time enable decades of agent expe-
rience to be collected in days. As a result, complementary to the classical approaches,
the variety of methods that can learn the full navigation system directly from data
appeared. Wijmans et al., 2020 showed that trained with sufficient amount of data
and computational resources, learned approaches can significantly outperform their
classical counterparts.
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2.3 Visual Odometry

Our work is related to the prior work on localization and visual odometry (Kendall,
Grimes, and Cipolla, 2015; Wang et al., 2017). Similar to our approach for visual
odometry estimation is (Wang et al., 2017) that uses Recurrent Convolutional Neural
Networks (RCNN) (Donahue et al., 2015) to directly estimate pose from raw RGB
image sequences. In contrast, our visual odometry model estimates pose change
between two consecutive observations and is used in conjunction with navigation
policy. At every time step t the relative pose is computed as the aggregation of pose
changes up to time step t.

2.4 Noiseless Setting [Solved]

Initial formulation of PointGoal navigation (as in Habitat Challenge 2019 1) assumes
agents to have access to an egocentric RGB (or RGB-D) sensor and accurate oracle
localization via a GPS+Compass sensor 2. Moreover the action space is considered
deterministic i.e. when the agent executes TURN_LEFT 30°, it turns exactly 30°, and
MOVE_FORWARD 0.25m moves the agent exactly 0.25 meters forward. An episode
is considered successful if the agent issues the STOP command within 0.2 meters of
the goal.

Combination of recent advances in Deep Reinforcement Learning and distributed
multi GPU parallelization set the state-of-the-art in above mentioned setting, essen-
tially solving the task – near-perfect autonomous navigation in an unseen environ-
ment without access to a map, directly from an RGB-D camera and a GPS+Compass
sensor, achieving 0.95 Success weighted by Path Length (SPL) 3.1 score with success
rate 99.6% (Wijmans et al., 2020). Hence, so called noiseless setting of PointGoal
navigation task is considered solved.

2.5 Noisy Setting

But no robot moves deterministically. Actuation error, surface properties such as
friction, and a myriad of other sources of error introduce significant drift over a long
trajectory. This poses a problem of PointGoal navigation under noisy actuation and
without oracle localization (no GPS+Compass sensor). Nowadays the main empha-
sis is on increased realism and on sim2real predictivity (the ability to predict perfor-
mance on a real robot from its performance in simulation) to close the gap between
simulation and real world (Kadian et al., 2019).

Hence, in 2020’s challenge benchmark the agent does not have a GPS+Compass
sensor and must navigate solely using an egocentric RGB-D camera. This change
elevates the need to perform RGB-D-based online localization.

Despite extensive research, navigation with noisy actuation and sensing contin-
ues to be an open frontier for research in Embodied AI.

State-of-the-art approaches in noiseless setting perform poorly under noisy con-
ditions. Therefore the new approaches designed to cope with actuation and sensing
noise appeared and set the highest scores in PointGoal navigation under noisy actu-
ation and sensing.

1https://aihabitat.org/challenge/2019
2Habitat simulator sensor that provides access to compass and GPS data.

https://aihabitat.org/challenge/2019/
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The Neural SLAM by Chaplot et al., 2020 is the first approach that integrated
learning into classical modular SLAM components. More specifically, the architec-
ture comprises of a learned Neural SLAM module, a global policy, and a local pol-
icy. The learned Neural SLAM module uses RGB observations and motion sensor
readings to produce free-space maps and agent pose estimates. On top of this, the
global policy produces long-term goals. The long-term goals are then consumed
by the geometric path-planner to generate short-term goals for the local policy. In
the end, the local policy maps RGB observations to actions that the agent should
execute to reach the short-term goal. Designed for exploration it has shown state-
of-the-art performance when transferred to the PointGoal task in Habitat Challenge
2019 benchmark. But in contrast to our problem setting, the Neural SLAM relies on
motion sensor which estimates the robot pose as the agent moves.

Built on top of Neural SLAM architecture, Occupancy Anticipation by Ramakr-
ishnan, Al-Halah, and Grauman, 2020 uses its egocentric RGB-D observations to
infer the occupancy state beyond the visible regions. Method leverages context in
both the egocentric views and top-down maps as well as a pose estimator trained to
predict the change in agents location and orientation under noisy conditions. In do-
ing so, the agent builds its spatial awareness more rapidly, which facilitates efficient
exploration and navigation in 3D environments.

Integrating Egocentric Localization by Datta et al., 2020 conceptually divides
learning agent dynamics or odometry from task-specific navigation policy. Devel-
oped model had an internal visual odometry module that estimates changes in po-
sition and heading from consecutive visual observations. This allows the agent to
maintain a noisy, but up-to-date estimate of pose by integrating the per-action ego-
motion estimates along its trajectory. Proposed method showed that it’s possible to
effectively navigate in previously unseen environments without explicitly building a
map. It was shown that being equipped with ego-localization module, agent is able
to make progress towards the goal by a degree that reasonably matches that of the
“oracle” agent (SoftSPL=0.813 vs SoftSPL=0.865). Moreover, with access to ground-
truth localization agent reaches the goal in 94.8% of episodes achieving 0.866 SPL
score compared to agent with ego-localization module scoring 53.5% Success and
0.508 SPL. Meaning that accurate visual odometry estimation is crucial for agent to
navigate successfully. Complementary to previous research we focus on designing
visual odometry model robust to noise and collisions to alleviate trajectory drifts
caused by incorrect pose estimation.
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Chapter 3

Approach

We further investigate the idea suggested by Datta et al., 2020 to use the visual
odometry module as a drop-in replacement of ground-truth localization sensor. Our
pipeline consists of two components: navigation policy that given observations at
time step t decides which action to take to reach the goal and visual odometry
module that estimates the change in location and orientation between two consec-
utive observations. We train policy and odometry separately and then replace the
ground-truth localization signal with odometry module estimates without further
fine-tuning.

Detailed experiment setup, model architectures along with training and evalua-
tion details are described in the subsequent sections.

3.1 Experiment Setup

To simulate navigation experiments we use the Habitat platform (Savva et al., 2019).
The results of Habitat Challenge 2020 indicate that the benchmark is far from be-
ing solved. Thus, the PointGoal navigation task specifications for Habitat Challenge
2021 remained unchanged except for the agent’s camera’s tilt angle. Our experimen-
tal setup follows the Habitat Challenge 2021 benchmark. An agent is spawned at a
random starting position and orientation in an unseen environment and asked to
navigate to target coordinates specified relative to the agent’s start location. Target
coordinates are specified once at the start of the episode and doesn’t update during
the navigation. No ground-truth map and GPS+Compass sensor is available, the
agent must only use its visual sensory input (an RGB-D camera) to navigate.

Driven by experiments in reality the agent’s specification matches
the LoCoBot’s 1 specification. Base radius is 0.18m and height is 0.88m.

1LoCoBot is a low-cost mobile manipulator suitable for both navigation and manipulation
(http://www.LoCoBot.org/).

http://www.LoCoBot.org/
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FIGURE 3.1: LoCoBot (an open source low cost robot).

The action space consists of four actions:

• STOP - finishes navigation episode;

• MOVE_FORWARD - moves the agent (0.25 + ε1) meters forward;

• TURN_LEFT - turns the agent (30 + ε2) degrees left;

• TURN_RIGHT - turns the agent (30 + ε3) degrees right.

were ε1, ε2, ε3 are the noise values, acquired by benchmarking the LoCoBot robot.
Even though there are four discrete actions it doesn’t guarantee the deterministic
position and orientation transformation. The agent may experience rotation and
translation noise both while rotating and moving forward. As a result, identical
action sequences can lead to vastly different final locations.

The RGB and Depth sensor readings are noisy as well. Camera’s resolution is
360 × 640 pixels with 70 degrees horizontal field of view and -20 degrees tilt angle.
Depth sensing is clipped to [0.1m, 10m]. Sliding along the walls is disabled.

3.2 Model Architecture

3.2.1 Navigation Policy

Two layer Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
model, with a ResNet-18 (He et al., 2016) encoder is used to approximate the navi-
gation policy. Policy observation space consists of Depth sensor and idealistic
GPS+Compass sensor (ground-truth localization, that is replaced by the visual odom-
etry estimates during evaluation). Before passing through the feature encoder, visual
observations are transformed using ResizeShortestEdge and CenterCropper obser-
vation transforms. Where first resizes the shortest edge of the input to 256 pixels
while maintaining aspect ratio and second center crops the input to 256 × 256 pix-
els.

1LoCoBot image source: https://www.generationrobots.com/en/403494-locobot-autonomous-
mobile-manipulator-ros-compatible.html.

https://www.generationrobots.com/en/403494-locobot-autonomous-mobile-manipulator-ros-compatible.html
https://www.generationrobots.com/en/403494-locobot-autonomous-mobile-manipulator-ros-compatible.html
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We leverage Decentralized Distributed Proximal Policy Optimization (DD-PPO)
algorithm to train the policy, as the large scale training allows to find an optimal
navigation policy faster. We consider navigation policy training setup introduced
by Wijmans et al., 2020 as the initial setup in our experiments. We train agents for
more than 2 billion steps of experience with 128 workers.

3.2.2 Visual Odometry

FIGURE 3.2: Visual odometry module.

The visual odometry model is represented as ResNet-18 encoder followed by a com-
pression block with two fully connected layers on top (size 512), taking the pair
of RGB-D frames as input and predicting the relative pose change (see Figure 3.2).
Compression block consists of 3×3 convolutional kernel followed by GroupNorm
(Wu and He, 2018) layer and ReLU activation function. We also replaced Batch-
Norm (Ioffe and Szegedy, 2015) layers in the canonical ResNet-18 architecture with
GroupNorm and added a DropOut (Srivastava et al., 2014) with 0.2 probability be-
tween fully connected layers. Meta-information about action and/or collision is in-
corporated as an embedding - vector of fixed length that is concatenated to the flat-
tened output that comes from the compression layer. The DropOut is not applied to
neurons that correspond to embedding vector. We also downscale the observations
twice from 360 × 640 pixels to 180 × 320 pixels during training and evaluation.

The model is trained with batch size 16, Adam optimizer with learning rate
0.0001 and MSE Loss 3.3 for translation and rotation. To speed up training we run ex-
periments in distributed mode with 2 parallel workers on the node with two NVidia
GeForce RTX 3090.
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3.2.3 Navigation Policy and Visual Odometry Integration

FIGURE 3.3: PointGoal navigation agent architecture.

Figure 3.3 shows how the RL navigation policy and visual odometry module are
integrated together. Where gt−1 - goal coordinates (wrt. current pose), at - action to
take, ht−1 and ht - hidden states. Predicted pose change is subtracted from the goal
location and the result is feed into policy as a new goal location. The initial goal
location estimate is equal to ground truth goal location.

3.3 Datasets

3.3.1 Navigation Policy

FIGURE 3.4: Gibson scenes.

We use the Habitat Challenge subset of Gibson 2 dataset for training the RL nav-
igation policy. It consists of meshes that do not exhibit significant reconstruction
artifacts such as holes or texture quality issues (with ratings of 4 or higher). The

2Gibson scenes image source: http://gibsonenv.stanford.edu/database.

http://gibsonenv.stanford.edu/database/
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scenes were collected from real indoor spaces using 3D scanning and reconstruc-
tion. There are 86 scenes in total: 72 in train split and 14 in validation split. Subset
of Gibson scenes is visualized in Figure 3.4.

For PointGoal task we use Gibson navigation episodes corresponding to Sim2LoCoBot
experiment configuration pointnav_gibson_v2.zip 3 (meets LoCoBot specification).

3.3.2 Visual Odometry

FIGURE 3.5: RGB-D observation.

Visual odometry model is trained and evaluated on generated statical dataset
that consists of pairs of observations navigation agent receives before and after tak-
ing a particular action. We employ the visual odometry dataset collection protocol
suggested by Datta et al., 2020, where the agent with access to ground-truth localiza-
tion is used to unroll trajectories from which the pairs of RGB-D frames with meta
information about collisions, actions taken and egomotions are uniformly sampled.
But we use shortest path follower agent to unroll trajectories instead of DD-PPO
agent used by (Datta et al., 2020). Also, our dataset generation code supports multi-
core parallelization that significantly speed-ups the process. In parallel mode each
worker receives the scene and samples the frames from corresponding navigation
episodes. An example of RGB-D observation is visualized in Figure 3.5.

Training dataset was collected by sampling 20% of pairs of observations from
11000 navigation episodes (130881 pairs of observations in total). Validation dataset
was collected by sampling 75% of pairs of observations from 994 navigation episodes
(34339 pairs of observations in total). Figure 3.6 shows the distributions of actions in
training and validation datasets respectively.

To study the impact of large scale training we increased the training dataset size
from 130881 pairs of observations to 641052 keeping the actions and collisions dis-
tributions the same.

3.4 Metrics and Evaluation

3.4.1 Navigation Policy

After calling the STOP action, the agent’s navigation performance is evaluated using
the Success weighted by Path Length metric

SPL =
1
N

N

∑
i=1

Si
li

max(pi, li)
(3.1)

3https://dl.fbaipublicfiles.com/habitat/data/datasets/pointnav/gibson/v2/pointnav_gibson_v2.zip

https://dl.fbaipublicfiles.com/habitat/data/datasets/pointnav/gibson/v2/pointnav_gibson_v2.zip
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and it’s soft version SoftSPL

So f tSPL =
1
N

N

∑
i=1

(
1− dTi

diniti

)(
li

max(pi, li)

)
(3.2)

where, li = length of shortest path between goal and target for an episode i, pi =
length of path taken by agent in episode i, Si = binary indicator of success in episode
i, diniti and dTi denote the geodesic distance to target upon episode start and termi-
nation. An episode is considered successful if on calling the STOP action, the agent
is within 0.36m (2 x agent-radius) of the goal position.

3.4.2 Visual Odometry

For the visual odometry we consider the regression loss i.e. how good the predicted
pose change matches true pose.

L =
1
N

N

∑
i=1

(
(x− x̂)2 + (y− ŷ)2 + (z− ẑ)2)+ 1

N

N

∑
i=1

(θ − θ̂)2 (3.3)

where x, y, z represent the xyz coordinate of the agent measured in metres and θ
represents the orientation of the agent in radians; (x, y, z, θ) is the ground truth agent
pose, (x̂, ŷ, ẑ, θ̂) is the estimated pose, N number of RGB-D pairs in the dataset.

We use Mean Absolute Error (MAE) for measuring model accuracy and report
total MAE for all actions in total and for each type of action separately.

MAE =
1
N

N

∑
i=1

(|x− x̂|+ |y− ŷ|+ |z− ẑ|) + 1
N

N

∑
i=1
|θ − θ̂| (3.4)
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(A) Training dataset. (B) Validation dataset.

(C) Training dataset (collisions). (D) Validation dataset (collisions).

(E) Training dataset (no collisions). (F) Validation dataset (no collisions).

FIGURE 3.6: Actions distribution in visual odometry training and val-
idation datasets.
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Chapter 4

Experiments

In this chapter we present our experimental results on designing robust visual odom-
etry module for realistic PointGoal navigation.

In Section 4.1 we first study the importance of incorporating mata-information
(potentially) available to the agent by adding action and collision embeddings. Sec-
ondly, we check if the model robustness can be improved by cropping out parts of
the visual observations that don’t intersect. Then we analyse the impact of enrich-
ing the dataset by reflecting the observations along X axis and swapping source and
target frames for rotations. Also we train a separate model for each type of actions.
Finally, we show how the model generalization performance changes at large scale
training.

In Section 4.2 we analyse navigation performanve of policy with standard and
narrowed success region radius and report the navigation metrics for visual odom-
etry models from Section 4.1.

In Section 4.2.2 we report our results in Habitat Challenge 2021 benchmarks.

4.1 Visual Odometry

We run our experiments using visual odometry model architecture described in Sec-
tion 3.2. We start from the baseline model that consists of a ResNet-18 encoder
followed by a compression block with two fully connected layers on top and then
describe the impact of proposed regularization techniques in corresponding subsec-
tions. All experiments were run for 50 epochs. We compare the model performance
using MAE 3.4 between ground-truth and estimated egomotion for all types of ac-
tions in total and for each type of actions separately. We plot the metrics chart for
all experiments in the subsection and report validation metrics values on 20 and 40
epochs. Per-action metric charts are reported in the Appendix A.2. We add Table 4.7
with aggregated metrics values across all experiments from Section 4.1 in the end of
the section. Corresponding agent’s navigation metrics are reported in Table 4.8 of
Section 4.2.

4.1.1 Embeddings

In this section we study the impact of adding meta-information during training in
the form of action and collision embeddings. Embeddings are represented as a fixed
vectors of lenght 8 that are concatenated to the flattened output from the feature
encoder. We analyze two possible ways of incorporating meta-information: con-
catenating the embedding to the first fully connected layer that goes after encoder
and concatenating the embedding to all fully connected layers.
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Following experiments were launched:

• baseline with action embedding (bs + act_emb);

• baseline with collision embedding (bs + col_emb);

• baseline with action and collision embeddings (bs + col_emb + act_emb);

• baseline with action embedding concatenated to every fully collected layer (bs
+ act_emb 2fc);

• baseline with action and collision embeddings concatenated to every fully col-
lected layer (bs + col_emb + act_emb 2fc).

TABLE 4.1: Embeddings: visual odometry metrics (subject to 1e+2
multiplication).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs
20 4.61 5.41 3.48 3.67 2.37 1.58 3.61 3.17
40 4.10 4.53 3.47 3.65 1.85 1.29 2.65 2.49

bs + col_emb
20 5.51 6.99 3.48 3.73 2.98 2.15 3.90 4.18
40 4.65 5.45 3.56 3.67 2.40 1.64 3.28 3.45

bs + act_emb
20 3.13 2.86 3.45 3.48 1.32 0.99 1.74 1.76
40 2.89 2.39 3.43 3.65 1.15 0.78 1.62 1.65

bs + col_emb + act_emb
20 3.10 2.80 3.37 3.62 1.37 1.02 1.79 1.87
40 3.00 2.56 3.48 3.65 1.26 0.84 1.74 1.85

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

bs + col_emb + act_emb 2fc
20 3.08 2.80 3.38 3.49 1.24 0.94 1.59 1.65
40 2.87 2.43 3.31 3.57 1.17 0.85 1.55 1.60

The results in Table 4.1 and Figure 4.1 and Figure 4.2 show that adding meta-information
in form of action and collision embeddings helps neural network to train faster. We
believe that it serves as a switch and activates the neurons that correspond to a par-
ticular action type. The training and validation metrics curves are much lower than
the beseline. And the way how the meta-information is incorporated also matters.
We see that, for example, model with action embedding concatenated to every fully
collected layer (bs + act_emb 2fc) has lower MAE than model with action embedding
concatenated only to the first fully collected layer (bs + act_emb).
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FIGURE 4.1: Embeddings: translation MAE.
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Rotation MAE
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FIGURE 4.2: Embeddings: rotation MAE.
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4.1.2 Visual Observations Intersection Region Crop

In this section we raise the question whether the whole region of visual observation
is important for egomotion estimation. To answer the question we run experiments
where we use only intersection region between visual observations for training. The
hypothesis is that by cropping only an intersection region we may remove redun-
dant information and thus achieve more accurate results. We use the model (bs +
act_emb 2fc) from previous experiments as a baseline.

We crop observations as follows:

• for MOVE_FORWARD action center crop;

• for TURN_LEFT action crop left part of the source frame and right part of the
target frame;

• for TURN_RIGHT action crop right part of the source frame and left part of
the target frame.

Figure 4.3 demonstrates the example of 320 × 450 observations crop. Figure 4.4
demonstrates the example of 320 × 350 observations crop. The examples of visual
observation crop for other types of actions are added in Appendix A.1.

Following experiments were launched:

• baseline with observations crop 320×450 downsampled to 160×225 (bs + act_emb
2fc + 320x450->160x225);

• baseline with observations crop 320×450 downsampled to 180×320 (bs + act_emb
2fc + 320x450->180x320);

• baseline with observations crop 320×320 downsampled to 180×320 (bs + act_emb
2fc + 320x350->180x320).

(A) Source RGB observation. (B) Source RGB observation cropped.

(C) Target RGB observation. (D) Target RGB observation cropped.

FIGURE 4.3: TURN_LEFT crop 320 × 450.
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(A) Source RGB observation. (B) Source RGB observation cropped.

(C) Target RGB observation. (D) Target RGB observation cropped.

FIGURE 4.4: TURN_LEFT crop 320 × 350.

TABLE 4.2: Crop: visual odometry metrics (subject to 1e+2 multipli-
cation).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

bs + act_emb 2fc + 320x450->160x225
20 3.28 3.41 3.03 3.19 1.24 1.09 1.40 1.49
40 3.14 3.18 3.01 3.16 1.15 0.95 1.38 1.44

bs + act_emb 2fc + 320x450->180x320
20 3.12 3.15 3.02 3.16 1.26 1.02 1.57 1.57
40 2.94 2.89 3.00 3.00 1.18 1.00 1.41 1.42

bs + act_emb 2fc + 320x350->180x320
20 3.17 3.58 2.59 2.67 1.18 1.14 1.19 1.27
40 2.76 3.05 2.36 2.41 0.98 0.95 1.02 1.00

Models that are trained on the whole images usually learn to estimate egomo-
tion for MOVE_FORWARD action better than for rotations (high color contrast in
Table 4.2 between Forward and Left, Right columns both for rotations and transla-
tions). In our series of experiments we were incrementally removing regions of the
image that don’t intersect increasing the share of the intersection region between
source and target frames. In (bs + act_emb 2fc + 320x450->180x320) experiment we
crop the region of 320 × 450 pixels and downscale it to 180 × 320 pixels, in (bs +
act_emb 2fc + 320x350->180x320) experiment we crop the region of 320 × 350 pixels
and downscale it to 180 × 320 pixels. Experiments results show that model trained
on the observation crops that have high share of intersection can estimates the ego-
motion for rotations better than the model trained on the whole images, but on the
other hand the estimation performance for MOVE_FORWARD action degradates.
We may also see that downscaling to 180 × 320 pixels works better than downscal-
ing to 160 × 225 pixels. The difference in the performance can be better spot in the
plots in Appendix A.2.2.
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FIGURE 4.5: Crop: translation MAE.
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FIGURE 4.6: Crop: rotation MAE.
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4.1.3 Frames Flip

In this section we analyze the effect of enriching the training dataset diversity by
randomly reflecting 50% of visual observations along the X axis during training as
demonstrated in Figure 4.7. The same type of augmentation can also be applied
at test-time and compute the final egomotion as the average egomotion between
original and flipped frames reflected back. We use the model (bs + act_emb 2fc)
from Subsection 4.1.1 as a baseline.

Following experiments were launched:

• baseline with vertical flip augmetarion (bs + act_emb 2fc + vflip).

(A) Source RGB observation. (B) Source RGB observation flipped.

(C) Target RGB observation. (D) Target RGB observation flipped.

FIGURE 4.7: MOVE_FORWARD flip.

TABLE 4.3: Flip: visual odometry metrics (subject to 1e+2 multipli-
cation).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

bs + act_emb 2fc + vflip
20 2.92 2.54 3.37 3.44 1.14 0.85 1.51 1.53
40 2.73 2.30 3.23 3.32 1.03 0.73 1.41 1.41

Such type of augmentation improves both translation and rotation MAE for all check-
points. Thus, we may conclude that using the diverse training dataset results in
more accurate visual odometry model.
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FIGURE 4.8: Flip: translation MAE.
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FIGURE 4.9: Flip: rotation MAE.
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4.1.4 Frames Swap

In this section we analyze the effect of enriching the training dataset diversity by
adding inverse observations for rotations during training as demonstrated in Fig-
ure 4.10. Specifically, we swap the source and target frames for TURN_LEFT and
TURN_RIGHT observation pairs thus increasing the dataset size and changing the
actions distribution as shown in Figure 4.11. The same type of augmentation can
also be applied at test-time and compute the final egomotion as the average egomo-
tion between original and swapped frames. We use the model (bs + act_emb 2fc +
vflip) from Subsection 4.1.3 as a baseline.

Following experiments were launched:

• baseline with fames swap during training (bs + act_emb 2fc + vflip + inv_rot).

(A) Source RGB observation. (B) Source RGB observation.

(C) Target RGB observation. (D) Target RGB observation.

FIGURE 4.10: TURN_LEFT - left column, TURN_RIGHT - right col-
umn.
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(A) Actions distribution in the original train-
ing dataset.

(B) Actions distribution in the training dataset
with inverse rotations added.

FIGURE 4.11: Visual odometry datasets action distribution.

TABLE 4.4: Swap: visual odometry metrics (subject to 1e+2 multipli-
cation).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs + act_emb 2fc + vflip
20 2.92 2.54 3.37 3.44 1.14 0.85 1.51 1.53
40 2.73 2.30 3.23 3.32 1.03 0.73 1.41 1.41

bs + act_emb 2fc + vflip + inv_rot
20 2.89 2.62 3.20 3.30 1.06 0.82 1.37 1.37
40 2.76 2.42 3.17 3.23 0.96 0.69 1.28 1.32

Enreaching the training dataset with inversed source and target frames makes dataset
less imbalanced and improves rotation MAE.
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FIGURE 4.12: Frames swap: translation MAE.
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FIGURE 4.13: Frames swap: rotation MAE.
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4.1.5 Separate Model per Each Action Type

In this section we analyze how the MAE changes if we train separate model (sepact)
for estimating egomotion for each type of actions separately. We use the model (bs
+ act_emb 2fc) from Subsection 4.1.1 as a baseline.

Following experiments were launched:

• separate model for MOVE_FORWARD (bs + sepact_fwd);

• separate model for TURN_LEFT (sepact_left);

• separate model for TURN_RIGHT (sepact_right).

TABLE 4.5: Sepact: visual odometry metrics (subject to 1e+2 multi-
plication).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

sepact_right
20 3.49 NA NA 3.49 1.73 NA NA 1.73
40 3.46 NA NA 3.46 1.71 NA NA 1.71

sepact_left
20 3.34 NA 3.34 NA 1.76 NA 1.76 NA
40 3.27 NA 3.27 NA 1.55 NA 1.55 NA

sepact_fwd
20 2.75 2.75 NA NA 0.97 0.97 NA NA
40 2.27 2.27 NA NA 0.77 0.77 NA NA

In the table above MAE metrics for (bs + act_emb 2fc) experiment were computed
on the whole validation dataset, but (sepact_right), (sepact_left) and (sepact_fwd)
on the dataset items of a corresponding action type (also the plots in Figure 4.14 and
Figure 4.15) so we can’t directly compare these experiments. We show per-action
metrics in the Appendix A.2.5. In figures in Appendix A.2.5 we may see that starting
from the 25 epoch the sepact models usually have lower MAE than single model for
all types of actions. It is worth mentioning that in this case we use 3 times more
parameters than the baseline (single model).
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FIGURE 4.14: Separate model: translation MAE.
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FIGURE 4.15: Separate model: rotation MAE.
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4.1.6 Large Scale Training

We study the impact of training on the larger dataset consisting of 641052 pairs of
observations in contrast to 130881 pairs of observations. We use the model (bs +
act_emb 2fc) from Subsection 4.1.1 as a baseline.

Following experiments were launched:

• baseline + Large dataset (bs + act_emb 2fc + lscale).

TABLE 4.6: Large scale: visual odometry metrics (subject to 1e+2
multiplication).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

bs + act_emb 2fc + lscale
20 2.37 1.88 2.97 3.03 0.82 0.53 1.22 1.18
40 2.21 1.65 2.91 2.95 0.77 0.48 1.15 1.15

Training on large dataset significantly decreases translation and rotation MAE. We
believe that by increasing dataset size more the model robustness can be enhanced
further.
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FIGURE 4.16: Large scale training: translation MAE.
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FIGURE 4.17: Large scale training: rotation MAE.
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4.1.7 Summary

We summarize all the above experiments in one table below.

TABLE 4.7: Visual odometry metrics (subject to 1e+2 multiplication).

Experiment name Epoch
Translation MAE Rotation MAE

Total Forward Left Right Total Forward Left Right

bs
20 4.61 5.41 3.48 3.67 2.37 1.58 3.61 3.17
40 4.10 4.53 3.47 3.65 1.85 1.29 2.65 2.49

bs + col_emb
20 5.51 6.99 3.48 3.73 2.98 2.15 3.90 4.18
40 4.65 5.45 3.56 3.67 2.40 1.64 3.28 3.45

bs + act_emb
20 3.13 2.86 3.45 3.48 1.32 0.99 1.74 1.76
40 2.89 2.39 3.43 3.65 1.15 0.78 1.62 1.65

bs + col_emb + act_emb
20 3.10 2.80 3.37 3.62 1.37 1.02 1.79 1.87
40 3.00 2.56 3.48 3.65 1.26 0.84 1.74 1.85

bs + act_emb 2fc
20 3.00 2.67 3.39 3.47 1.25 0.96 1.58 1.68
40 2.89 2.43 3.41 3.58 1.16 0.82 1.59 1.63

bs + col_emb + act_emb 2fc
20 3.08 2.80 3.38 3.49 1.24 0.94 1.59 1.65
40 2.87 2.43 3.31 3.57 1.17 0.85 1.55 1.60

bs + act_emb 2fc + vflip
20 2.92 2.54 3.37 3.44 1.14 0.85 1.51 1.53
40 2.73 2.30 3.23 3.32 1.03 0.73 1.41 1.41

bs + act_emb 2fc + vflip + inv_rot
20 2.89 2.62 3.20 3.30 1.06 0.82 1.37 1.37
40 2.76 2.42 3.17 3.23 0.96 0.69 1.28 1.32

bs + act_emb 2fc + 320x450->160x225
20 3.28 3.41 3.03 3.19 1.24 1.09 1.40 1.49
40 3.14 3.18 3.01 3.16 1.15 0.95 1.38 1.44

bs + act_emb 2fc + 320x450->180x320
20 3.12 3.15 3.02 3.16 1.26 1.02 1.57 1.57
40 2.94 2.89 3.00 3.00 1.18 1.00 1.41 1.42

bs + act_emb 2fc + 320x350->180x320
20 3.17 3.58 2.59 2.67 1.18 1.14 1.19 1.27
40 2.76 3.05 2.36 2.41 0.98 0.95 1.02 1.00

sepact_right
20 3.49 NA NA 3.49 1.73 NA NA 1.73
40 3.46 NA NA 3.46 1.71 NA NA 1.71

sepact_left
20 3.34 NA 3.34 NA 1.76 NA 1.76 NA
40 3.27 NA 3.27 NA 1.55 NA 1.55 NA

sepact_fwd
20 2.75 2.75 NA NA 0.97 0.97 NA NA
40 2.27 2.27 NA NA 0.77 0.77 NA NA

bs + act_emb 2fc + lscale
20 2.37 1.88 2.97 3.03 0.82 0.53 1.22 1.18
40 2.21 1.65 2.91 2.95 0.77 0.48 1.15 1.15

In the table above we may see that prediction errors are not uniformly distributed
across action types. The experiments that have the same MAE on the same valida-
tion dataset may have completely different error distribution across actions (split of
the dataset that corresponds to a particular action type). So it makes model analysis
easier when per-action metrics are computed. Our experiments show that all mod-
els except ones that were trained on the observation crops tend to learn translation
distribution better than rotation (even the model with inversed rotations added that
has almost uniform actions distribution).

4.2 Navigation

We replaced the policy GRS+Compass signal with the output of our visual odometry
module and report the navigation metrics for models that has lowest MAE in each
experiments group from Section 4.1 in table below. No further fine-tuning was ap-
plied after replacing the ground-truth signal. We launched two navigation policies:
one with standard success zone radius - 0.36 meters and the other with narrowed
success zone radius - 0.18 meters assuming that smaller radius will force the agent
to call STOP action more accurately. To study the impact of different visual odome-
try modules we fixed the navigation policies (used the same network weights) across
all experiments.
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4.2.1 Summary

TABLE 4.8: Navigation metrics.

Experiment name Epoch
TTA

Success region
Navigation metrics

Flip Swap SPL SoftSPL Success Distance to goal

bs
20 - - 0.36 0.276 0.606 0.365 1.392
40 - - 0.36 0.307 0.612 0.408 1.235

bs + act_emb 2fc
20 - - 0.36 0.477 0.693 0.615 0.676
40 - - 0.36 0.470 0.690 0.599 0.761

bs + act_emb 2fc
20 + - 0.36 0.504 0.696 0.648 0.706
40 + - 0.36 0.524 0.714 0.665 0.623

bs + act_emb 2fc
20 - + 0.36 0.513 0.708 0.663 0.514
40 - + 0.36 0.483 0.697 0.618 0.670

bs + act_emb 2fc
20 + + 0.36 0.529 0.706 0.676 0.585
40 + + 0.36 0.506 0.709 0.638 0.661

bs + act_emb 2fc + vflip
20 - - 0.36 0.460 0.687 0.596 0.707
40 - - 0.36 0.552 0.699 0.717 0.595

bs + act_emb 2fc + vflip
20 + - 0.36 0.529 0.706 0.686 0.544
40 + - 0.36 0.548 0.701 0.708 0.531

bs + act_emb 2fc + vflip + inv_rot
20 - - 0.36 0.548 0.703 0.709 0.522
40 - - 0.36 0.525 0.695 0.678 0.573

bs + act_emb 2fc + vflip + inv_rot
20 + + 0.36 0.559 0.710 0.716 0.515
40 + + 0.36 0.573 0.697 0.746 0.528

bs + act_emb 2fc + 320x450->180x320
20 - - 0.36 0.496 0.701 0.634 0.690
40 - - 0.36 0.449 0.695 0.575 0.704

bs + act_emb 2fc + 320x350->180x320
20 - - 0.36 0.472 0.695 0.601 0.729
40 - - 0.36 0.547 0.709 0.701 0.480

sepact
20 - - 0.36 0.470 0.688 0.604 0.658
40 - - 0.36 0.527 0.694 0.684 0.600

bs + act_emb 2fc + lscale
20 - - 0.36 0.587 0.711 0.760 0.484
40 - - 0.36 0.599 0.707 0.780 0.427

bs
20 - - 0.18 0.265 0.591 0.353 1.502
40 - - 0.18 0.278 0.591 0.381 1.313

bs + act_emb 2fc
20 - - 0.18 0.461 0.671 0.604 0.748
40 - - 0.18 0.473 0.681 0.609 0.776

bs + act_emb 2fc + lscale
20 - - 0.18 0.548 0.682 0.720 0.586
40 - - 0.18 0.558 0.672 0.741 0.590

Our experiments show that all the regularization techniques proposed in Section 4.1
decrease the MAE improving navigation performance comparing to the baseline.
Moreover, they can be combined together. Flip and swap dataset augmentations
may be applied not only at train-time but also at evaluation-time (navigation). It
acts as a regularization and improves visual odometry module robustness at almost
no cost. According to our experiments results, large and diverse dataset training
is one of the factors that contributes to the robust navigation the most. When we
increased the training dataset size from 130881 pairs of observations to 641052 pairs
of observations (approximately 5 times increase) the navigation metrics improved
significantly (+0.11 SPL, +0.145 Success on epoch 20 and +0.129SPL, +0.181 Success
on epoch 40).The policy with the standard success zone radius has better navigation
metrics than the policy with narrowed success zone radius.

4.2.2 Habitat Challenge 2021 Benchmark

TABLE 4.9: Habitat Challenge 2021 public leaderboard (06.06.2021).

Participant team SPL SoftSPL Success Distance to goal

Ours 0.66 0.71 0.86 0.61
Differentiable SLAM-net 0.44 0.58 0.63 1.80
Habitat Team (RGBD+DD-PPO) (baseline) 0.00 0.13 0.00 5.84

Our navigation agent consisting of policy trained with standard success zone ra-
dius and visual odometry module trained in the (bs + act_emb 2fc + vflip + inv_rot)
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setup has shown competitive results in the Habitat Challenge 2021 benchmark (see
Table 4.9). The model was trained by Oleksandr Maksymets on the Facebook AI
Research cluster. Training dataset was collected by following protocol described in
Subsection 3.3.2 and consists of more than 2 million observation frames (with the
same actions distribution as shown in Figure 3.6). Our method outperforms the
state-of-the-art approach of the Habitat Challenge 2020 benchmark (+0.132 SPL and
+0.142 Success).
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Conclusive Remarks

In this master thesis, we approached the problem of PointGoal navigation. We an-
alyzed the related work in the field and outlined the research gaps in the form of
the open research questions and formulated the relevant research hypotheses that
were validated in our experiments. Proposed regularization techniques proved to
improve the visual odometry module accuracy and result in more efficient naviga-
tion and robustness to actuation and sensing noise. Navigation agent equipped with
our best visual odometry module scores competitive results (0.66 SPL and 0.86 Suc-
cess, see Table 4.9) in Habitat Challenge 2021 benchmark even without policy and
odometry fine-tuning. Our method outperforms the state-of-the-art approach of the
Habitat Challenge 2020 benchmark (+0.132 SPL and +0.142 Success). We also show
that the visual odometry model robustness to noise highly depends on the size and
diversity of the training dataset. When we increased the training dataset size from
130881 pairs of observations to 641052 pairs of observations (approximately 5 times
increase) the navigation metrics improved significantly (+0.11 SPL, +0.145 Success
on epoch 20 and +0.129SPL, +0.181 Success on epoch 40, see Table 4.8). We think
that the navigation efficiency may be improved further by incorporating new scenes
and increasing the training dataset size. On the other hand, we noticed that to reach
the competitive performance the size of the dataset may occupy a lot of space on
the disk. For instance, ∼600000 observation pairs stored on disk occupy ∼1.3TB of
disk space. And the dataset has to be regenerated every time the task specification
changes. Moreover the epoch training time increases proportionally. But we believe
that the computational and storage cost may be decreased by training visual odom-
etry model online from the Habitat simulator.

We see the end-to-end policy and visual odometry training where the visual
odometry model is trained simultaneously with navigation policy (for instance us-
ing the same observations buffer) as a good direction for future research. Model
generalization across different scene datasets is not studied well also (for instance,
training on the Gibson dataset and validating on Matterport3D and vice versa).
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Visualizations

A.1 Visual Observations Intersection Region Crop

(A) Source RGB observation. (B) Source RGB observation cropped.

(C) Target RGB observation. (D) Target RGB observation cropped.

FIGURE A.1: TURN_RIGHT crop 320 × 350.
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(A) Source RGB observation. (B) Source RGB observation cropped.

(C) Target RGB observation. (D) Target RGB observation cropped.

FIGURE A.2: MOVE_FORWARD crop 320 × 350.
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A.2 Visual Odometry Per-action Metrics

A.2.1 Embeddings
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FIGURE A.3: Embeddings: translation MAE for MOVE_FORWARD
action.
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FIGURE A.4: Embeddings: translation MAE for TURN_LEFT action.
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Translation MAE (TURN_RIGHT)
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FIGURE A.5: Embeddings: translation MAE for TURN_RIGHT ac-
tion.



A.2. Visual Odometry Per-action Metrics 43

Rotation MAE (MOVE_FORWARD)
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FIGURE A.6: Embeddings: rotation MAE for MOVE_FORWARD ac-
tion.
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FIGURE A.7: Embeddings: rotation MAE for TURN_LEFT action.
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Rotation MAE (TURN_RIGHT)
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FIGURE A.8: Embeddings: rotation MAE for TURN_RIGHT action.
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A.2.2 Visual Observations Intersection Region Crop
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FIGURE A.9: Crop: translation MAE for MOVE_FORWARD action.
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Translation MAE (TURN_LEFT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

train

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

val

bs + act_emb 2fc bs + act_emb 2fc + 320x450->160x225
bs + act_emb 2fc + 320x450->180x320 bs + act_emb 2fc + 320x350->180x320

Experiment name

FIGURE A.10: Crop: translation MAE for TURN_LEFT action.
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FIGURE A.11: Crop: translation MAE for TURN_RIGHT action.
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Rotation MAE (MOVE_FORWARD)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

train

0.010

0.015

0.020

0.025

0.030

val

bs + act_emb 2fc bs + act_emb 2fc + 320x450->160x225
bs + act_emb 2fc + 320x450->180x320 bs + act_emb 2fc + 320x350->180x320

Experiment name

FIGURE A.12: Crop: rotation MAE for MOVE_FORWARD action.
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FIGURE A.13: Crop: rotation MAE for TURN_LEFT action.
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FIGURE A.14: Crop: rotation MAE for TURN_RIGHT action.
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A.2.3 Frames Flip
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FIGURE A.15: Flip: translation MAE for MOVE_FORWARD action.
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FIGURE A.16: Flip: translation MAE for TURN_LEFT action.
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FIGURE A.17: Flip: translation MAE for TURN_RIGHT action.
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0 5 10 15 20 25 30 35 40 45 50

Epoch

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

train

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

val

bs + act_emb 2fc bs + act_emb 2fc + vflip

Experiment name

FIGURE A.18: Flip: rotation MAE for MOVE_FORWARD action.
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FIGURE A.19: Flip: rotation MAE for TURN_LEFT action.
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FIGURE A.20: Flip: rotation MAE for TURN_RIGHT action.
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A.2.4 Frames Swap
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FIGURE A.21: Frames swap: translation MAE for MOVE_FORWARD
action.
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FIGURE A.22: Frames swap: translation MAE for TURN_LEFT ac-
tion.
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FIGURE A.23: Frames swap: translation MAE for TURN_RIGHT ac-
tion.
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FIGURE A.24: Frames swap: rotation MAE for MOVE_FORWARD
action.
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FIGURE A.25: Frames swap: rotation MAE for TURN_LEFT action.
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FIGURE A.26: Frames swap: rotation MAE for TURN_RIGHT action.



64 Appendix A. Visualizations

A.2.5 Separate Model per Each Action Type
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FIGURE A.27: Separate model: translation MAE for
MOVE_FORWARD action.
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FIGURE A.28: Separate model: translation MAE for TURN_LEFT ac-
tion.
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FIGURE A.29: Separate model: translation MAE for TURN_RIGHT
action.
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FIGURE A.30: Separate model: rotation MAE for MOVE_FORWARD
action.
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FIGURE A.31: Separate model: rotation MAE for TURN_LEFT action.
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FIGURE A.32: Separate model: rotation MAE for TURN_RIGHT ac-
tion.
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A.2.6 Large Scale Training
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FIGURE A.33: Large scale training: translation MAE for
MOVE_FORWARD action.
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FIGURE A.34: Large scale training: translation MAE for TURN_LEFT
action.
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Translation MAE (TURN_RIGHT)
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FIGURE A.35: Large scale training: translation MAE for
TURN_RIGHT action.
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FIGURE A.36: Large scale training: rotation MAE for
MOVE_FORWARD action.
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Rotation MAE (TURN_LEFT)
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FIGURE A.37: Large scale training: rotation MAE for TURN_LEFT
action.
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FIGURE A.38: Large scale training: rotation MAE for TURN_RIGHT
action.
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