
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Point cloud human pose estimation using
capsule networks

Author:
Oleksandr ONBYSH

Supervisor:
Andrii BABII

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
https://www.linkedin.com/in/alexanderonbysh/
https://nure.ua/en/staff/andrii-babii
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Oleksandr ONBYSH, declare that this thesis titled, “Point cloud human pose esti-
mation using capsule networks” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Abstract
Faculty of Applied Sciences

Master of Science

Point cloud human pose estimation using capsule networks

by Oleksandr ONBYSH

Human pose estimation based on points cloud is an emerging field that develops
with 3D scanning devices’ popularity. Build-in LiDAR technology in mobile phones
and a growing VR market creates a demand for lightweight and accurate models
for 3D point cloud. Widely advanced deep learning tools are mainly used for struc-
tured data, and they face new challenges in unstructured 3D space. Recent research
on capsule networks proves that this type of model outperforms classical CNN ar-
chitectures in tasks that require viewpoint invariance from the model. Thus capsule
networks challenge multiple issues of classic CNNs like preserving the orientation
and spatial relationship of extracted features, which could significantly improve the
3D points cloud classification task’s performance.

The project’s objective is to experimentally assess the applicability of capsule
neural network architecture to the task of point cloud human pose estimation and
measure performance on non-synthetic data. Additionally, measure noise sustain-
ability of capsule networks for 3D data compared to regular models. Compare mod-
els’ performance with restricted amount of training data.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Contents

Declaration of Authorship ii

Abstract iii

1 Introduction 1
1.1 Problem . 1
1.2 Challenges . 2
1.3 Motivation . 2
1.4 Research Gap . 2
1.5 Objective . 3
1.6 Paper structure . 3

2 Related work 4
2.1 Deep learning approaches for point cloud 4

2.1.1 Projection-based methods . 4
2.1.2 Volumetric-based methods . 5

2.2 Point-based Methods . 6
2.3 Human pose estimation . 7

2.3.1 Image-based methods . 7
2.3.2 point-cloud-based methods . 8

2.4 Capsule network . 9
2.4.1 Capsule networks for point cloud classification 9
2.4.2 Capsule networks for point cloud regression 9

3 Research Hypothesis and Problem 11
3.1 Hypotheses . 11
3.2 Problems . 11

4 Dataset and evaluation metrics 12
4.1 Dataset . 12

4.1.1 ITOP . 12
4.2 Evaluation metric . 12

5 Methodology 17
5.1 Data preparation . 17

5.1.1 Human extraction . 17
Threshold filtering . 19
Clusterization . 20

5.1.2 Point cloud normalization . 21
5.1.3 Adding noise to data . 22

Gaussian noise . 22
Outlier noise . 23

5.2 Network architecture . 23

v

5.2.1 Loss aggregation . 25
5.3 One stage network training . 25
5.4 How noise affects model’s performance 26
5.5 Influence of dataset size on model’s performance 27

6 Experiments 28
6.1 Experiment setup . 28
6.2 Effectiveness of one stage training . 29
6.3 Results on ITOP dataset . 32
6.4 How noise affects models’ performance 33
6.5 Models’ performance with the lack of data 37

7 Conclusions 38
7.1 What was done? . 38

Capsule-based model for human pose estimation 38
Capsule-based model and noisy data 38
Capsule-based model and train dataset size 39

7.2 Future work . 39
Data preprocessing . 39
New datasets . 39
New loss aggregation strategies 39

Bibliography 40

vi

List of Figures

1.1 Example of human pose estimation key points Rovai, 2020 1

2.1 MVCNN processing pipeline (Su et al., 2015) 5
2.2 VoxNet processing pipeline (Maturana and Scherer, 2015) 5
2.3 An example of octree grid (Riegler, Ulusoy, and Geiger, 2017) 6
2.4 PointNet architecture (Qi et al., 2017a) 6
2.5 An example OpenPose network result (Cao et al., 2019) 8
2.6 Architecture of DNN presented by (Zhou, Dong, and Saddik, 2020) . . 8
2.7 The architecture of 3DCapsNet (Cheraghian and Petersson, 2018) . . . 9
2.8 Reconstructed point cloud from capsule local patches (Wu et al., 2020) 10

4.1 Four examples of depth images from ITOP dataset. The darker the
color the closer it’s located to the camera 13

4.2 Four examples of front view subset of ITOP. Upper images are depth
representation. Bottom images show human point clouds (blue) with
key joints (red) . 14

4.3 Four examples of top view subset of ITOP. Upper images are depth
representation. Bottom images show human point clouds (blue) with
key joints (red) . 14

4.4 Example of key joints with names from ITOP dataset 15
4.5 Example of the mAP plot. On the X axis - allowed distance between

predicted and ground truth coordinates to be considered as a right
detection. On the Y axis - mean Average Precision for given distance.
The values for distance = 10 cm is highlighted on the plot. 16

5.1 Example of preprocessing stages. Blue - points filtered by threshold.
Red - points removed by human segmentation. Green - extracted
human point cloud. Purple - key human joints 18

5.2 Example of raw data from ITOP dataset (front view) 18
5.3 Example of point cloud after applying of threshold filter 19
5.4 Example of point cloud after applying human extraction 21
5.5 Example of pllying the Gaussian noise to the point cloud (Uchida, 2021) 23
5.6 Example of addition the outlier noise to the point cloud (Uchida, 2021) 24
5.7 Network architecture . 24
5.8 Capsule model trained on noiseless dataset expected to act like de-

noiser on noisy data . 26
5.9 Visualization of different dataset fractions. Each squad represent sub-

set of point cloud for human model in dataset. Yellow - subset is used
for training. Red - subset is not used for training. Green - test subsets . 27

6.1 Reconstruction loss function for two stage (red) model and one stage
model(blue) . 29

6.2 Regression loss function for two stage (red) model and one stage model(blue) 30

vii

6.3 Two stage model for side view. mAP for different distance errors for
two stage model. 10 cm distance mAP is highlighted 30

6.4 One stage model for side view. mAP for different distance errors for
two stage model. 10 cm distance mAP is highlighted 31

6.5 Two stage model for top view. mAP for different distance errors for
two stage model. 10 cm distance mAP is highlighted 31

6.6 One stage model for top view. mAP for different distance errors for
two stage model. 10 cm distance mAP is highlighted 32

6.7 One stage model for top view. mAP for different distance errors for
two stage model. 10 cm distance mAP is highlighted 34

6.8 Example of human points clouds with added noise. σ− 0.1, NP = 300 35
6.9 Example of noisy point cloud (left), and restored point cloud by cap-

sule network (left) . 36

viii

List of Tables

4.1 General statistic for ITOP dataset . 13

6.1 The comparison of one stage and two stage training pipeline (based
on Formula 4.2 metric) . 29

6.2 Comparison of proposed model with SOTA models on ITOP side view
dataset . 32

6.3 Comparison of proposed model with SOTA models on ITOP top view
dataset . 33

6.4 The comparison of capsnet model and PoseNet on dataset with differ-
ent amount of noise on ITOP side view dataset 36

6.5 The comparison of capsnet model and PoseNet trained on different
amound of data (ITOP side view) . 37

ix

List of Abbreviations

CapsNet Capsule network
AP Average precision
mAP Mean average precision
ITOP Invariant Top View dataset
SOTA State Of The Art

x

List of Symbols

P set of points in D space (point cloud)
J set of key joints positions
N resolution of point cloud (number of points in one cloud)
dCD Chamfer distance

1

Chapter 1

Introduction

1.1 Problem

Human pose estimation is a task based on a human’s image or 3D points, and the
model should locate the main joints in the human’s body (head, neck, left and right
arms, spin, etc.) as shown in the Figure 1.1. Each joint is represented as a point in
2D or 3D space based on the task’s objective.

FIGURE 1.1: Example of human pose estimation key points Rovai,
2020

A 3D point cloud is simply a set of points with three positional coordinates
and represents points in 3D space. The points represent the shape of the object in
3D space. 3D point clouds are usually gathered by 3D scanners or dual-lens cam-
eras.The output of scanners is point cloud where each point corresponds to some
point on scanning surface with predefined precision. With the rapid growth of LI-
DAR and VR fields, the importance of accurate and fast 3D point cloud human pose
estimation algorithms is clear.

2 Chapter 1. Introduction

1.2 Challenges

The obvious challenge of human pose estimation is the potential space of different
human postures. The small change in the body part position changing the target
pose. The task gets more complicated with different obstacles like clothes. Using
recent ML algorithms such as deep learning on 3D point cloud results in many chal-
lenges. Some of the common issues are:

• The high dimensionality of the input space. Compared to pose estimation
based on images, 3D point cloud has higher-dimensional space.

• Noisy inputs from 3D point cloud scanners. The sparsity and accuracy of
the point cloud greatly influence the model’s performance. The accuracy and
granularity of points are significantly dependent on the scanning device. Com-
pact LIDAR scanning devices the most popular and less accurate.

• Geometric-viewpoint relation. The human body has a strict geometric relation
between body parts, which is invariant to the viewpoint. Most of the deep
learning algorithms are not viewpoint agnostic resulting in additional chal-
lenges for human pose estimation.

• Lack of data. The amount of data for 3D point cloud human pose estimation
is significantly less than regular image datasets. This fact is due to the high
complexity of collecting 3D point cloud data, e.g., need special multicamera
or LIDAR equipment, need diverse human positions, need different human
constitutions.

1.3 Motivation

Human pose estimation is an important task that is used in different fields. A lot
of research work was done to solve the task of human pose estimation using point
clouds. These works made significant progress in the regression task and showed
good performance on public datasets. However, most methods use the end-to-end
approach of learning, paying less attention to the inner structure of point cloud ob-
jects. The mutual relationship between an object’s parts (in our case human body)
plays a crucial role during the regression. The recent works (Cheraghian and Pe-
tersson, 2018; Wu et al., 2020) which use capsule-based methods for point clouds,
show that these types of models could consider object’s part relationships. More-
over, auto-encoder capsule-based networks could learn objects’ properties in un-
supervised manner (Wu et al., 2020). These properties of capsule networks look
promising for tasks where viewpoint invariance is a substantial challenge. More-
over, some experiments (Wang et al., 2020; Gritsevskiy and Korablyov, 2018) stated
that capsule networks need less data for convergence compared to non-capsule mod-
els. Besides, it is more noise agnostic than regular convolutional networks due to
latent space inside the capsule network.

1.4 Research Gap

• There is no capsule-based model for 3D human pose estimation task.

• There is no comparison of the influence of noisy data on capsule-based and
non-capsule-based models for 3D space.

1.5. Objective 3

• There is no comparison of how well capsule-based works with limited dataset
compared to regular models.

1.5 Objective

The work’s objective is to propose a model based on a capsule network for a 3D point
cloud human pose estimation. Evaluate the model on public benchmark dataset for
human pose estimation. Compare results with state of the art approaches for the
task as mentioned earlier. Evaluate the influence of the noise in training dataset on
capsule-based and non-capsule-based networks. Measure the performance of the
models with different sizes of training dataset.

1.6 Paper structure

Section 2 covers the related work of human pose estimation based on both 2D images
and 3D point clouds. This section described conventionally, and state of the art
approaches for solving the issue. Reviews capsule networks for different 3D point
cloud tasks like point classification, segmentation, and position estimation.

The rest of the paper is organized in the following manner:

• Section 3 presents the project’s hypothesis and problems;

• section 4 describes the dataset which is used for training and evaluation along
with evaluation metrics;

• section 5 describes the approach for solving the project’s objectives;

• section 6 describes experiments on project’s objections described in 5;

• section 7 sums up the paper’s ideas and present brief conclusions and possible
future work in this field.

4

Chapter 2

Related work

In this chapter, we overview common approaches to solve problems with point
clouds. We review common techniques, models, and algorithms for point clouds.

In Section 2.1 and Section 2.2 we review common approaches on how to use point
clouds in deep learning, along with preprocessing methods for 3D point data.

In Section 2.3 we review models and techniques for the task of human pose esti-
mation, both for 2D and 3D spaces.

In Section 2.4 we review the initial work on the capsule network which were
released for the task of image classification. Also, we review few works which adapt
capsule networks for 3D point cloud data.

2.1 Deep learning approaches for point cloud

The different number of points and high dimensionality of the point cloud input
makes it challenging to use regular 2D convolutions. The typical approach for such
an issue is the conversation of the point cloud to a different format. Such approaches
are projection-based methods, volumetric-based methods, and other geometric-based
methods.

2.1.1 Projection-based methods

Projection-based methods take point cloud and project it into a different panel view.
After the projection, each view provides a set of combined features for target classi-
fication, regression, or segmentation. The critical challenge for the projection-based
algorithm is the multi-view feature aggregation into one global feature space.

MVCNN (Su et al., 2015) is the first CNN-based architecture which recognize ren-
dered views of different shapes independently from each other. The model’s perfor-
mance shows that even from one view the 3D shape could be recognized with com-
petitive accuracy. Adding more views increase the overall accuracy of the model.
The processing pipeline if the MVCNN is shown in Figure 2.1.

MHBN (Yu, Meng, and Yuan, 2018) (Multi-view Harmonized Bilinear Network)
is the continuation of MVCNN. The approach proposes to integrates local convolu-
tional features by harmonized bilinear pooling to produce a compact global descrip-
tor. To persist the information from different views, the View-GCN (Wei, Yu, and
Sun, 2020) proposes constructing view-graph with multiple views as graph nodes,
then designing a graph convolutional neural network over view-graph to learn dis-
criminative shape descriptor hierarchically. All projection-based methods struggle
from high memory consumption and high computational complexity since, for one
feature extraction, the model should be run for the number of different views.

2.1. Deep learning approaches for point cloud 5

FIGURE 2.1: MVCNN processing pipeline (Su et al., 2015)

2.1.2 Volumetric-based methods

Volumetric-based methods map the point cloud into a 3D grid. Then conventional
3D convolutions are using for feature extraction. VoxNet (Maturana and Scherer,
2015) is the first method that exploits the volumetric representation of the point
cloud. In this work, each cloud point is mapped to a discrete voxel point. The size of
the target grid is 32 x 32 x 32 voxels. After the mapping, three convolutional layers
are using to produce the target feature representations. Processing steps of VoxNet
is shown in Figure 2.2

FIGURE 2.2: VoxNet processing pipeline (Maturana and Scherer,
2015)

The more advanced volumetric-based models use octrees data structure. OctNet
(Riegler, Ulusoy, and Geiger, 2017) propose to represent the point cloud as several
octrees along a regular grid (Figure 2.3), each octree is encoded as a bit string, and
features are generated through naive arithmetic. This approach reduces the mem-
ory consumption of the model during the training and inference stages. The next
iteration of octrees representation of point cloud is proposed in O-CNN (Wang et al.,

6 Chapter 2. Related work

2017). The model uses 3D convolutions to extract features from octrees. This model
also uses octree representation. The model takes the average normal vectors if 3D
model from leafs of octants and runs 3D CNN on this to perform classification.

FIGURE 2.3: An example of octree grid (Riegler, Ulusoy, and Geiger,
2017)

2.2 Point-based Methods

Compared with projection-based methods and volumetric-based methods that ag-
gregate points from a spatial neighborhood, point-based methods attempt to learn
features from individual points. Most of the recent work focuses on this direction.

The first work which uses a point-based approach is PointNet (Qi et al., 2017a).
PointNet learns pointwise features independently with several MLP layers and ex-
tracts global features with a max-pooling layer. The input (an n× 3 2D tensor) is first
multiplied by an affine transformation matrix predicted by a mini-network (T-Net)
to hold invariance under geometric transformations. The point set is then passed
through a group of MLPs followed by another joint alignment network, and a max-
pooling layer to obtain the final global feature. The model’s architecture is depict in
Figure 2.4

FIGURE 2.4: PointNet architecture (Qi et al., 2017a)

The second iteration of PointNet is PointNet++ (Qi et al., 2017b). PointNet++ in-
troduces a hierarchical neural network that applies PointNet recursively on a nested
partitioning of the input point set. Using metric space distance, the model could
learn local features with increasing contextual scale. The state-of-the-art model for

2.3. Human pose estimation 7

point-based classification is Point Attention Transformers (Yang et al., 2019). The
research for the first time proposes the mechanism of sampling which is end-to-end
and task agnostic. The sampling is named "Gumbel Subset Sampling" - GSS. This
sampling is used to select the most representative subset of the point cloud from the
initial data. Using Gumble-Softmax, the model could provide a continuous point
subset in the training phase, and a strict discrete subset in the test phase. Using such
an approach the model is able to learn a more robust representation of the input data
with less computational complexity.

2.3 Human pose estimation

The latest research approaches in the field of human pose estimation are based on
deep learning. There are two main approaches to the task:

• pose estimation based on 2D images (mostly RGB);

• pose estimation based on the 3D point cloud.

The latter approach is more recent and promising. The 3D perspective gives more
information for the models about body position in the space. Also, 3D point clouds
mitigate the issue with occluded parts of the body. 2D image is a 2D projection of
3D space, and this transformation leads to the loss of information.

2.3.1 Image-based methods

The approaches for 2D image human pose estimation are divided into two types:

• top-down approach

• bottom-up approach

In the top-down approach, the first step is person detection and then pose regres-
sion. In the bottom-up approach, all body parts are detected first and then grouped
according to the body’s position.

OpenPose (Cao et al., 2019) is the most popular example of bottom-up approaches
for multi-person pose estimation. The network first extracts features from the image
using the VGG feature extractor. Then features are passed to two separate branches,
the first branch predicts body parts key points, the second branch predicts the asso-
ciativity between body parts. The result of human pose estimation from OpenPose
is shown in Figure 2.5.

RMPE (AlphaPose) (Fang et al., 2018) is a top-down model. This approach pro-
poses to use a four-stage pipeline. The first step is Symmetric Spatial Transformer
Network (SSTN). In this step, the model extracts the human region using a bound-
ing box. The second step is a Single Person Pose Estimator (SPPE). This step model
uses extracted human regions to estimate key joints of the human body. The third
step is spatial De-Transformer Network (SDTN). This step remap estimated human
joint coordinates back to the original coordinate system. The last step is parametric
pose Non-Maximum Suppression (NMS). This step handles the issue with redun-
dant pose deductions.

8 Chapter 2. Related work

FIGURE 2.5: An example OpenPose network result (Cao et al., 2019)

2.3.2 point-cloud-based methods

Point cloud-based estimation is a relatively young field due to the recent growth of
popularity of point cloud scanning devices.

The first model for human pose estimation based on point cloud was presented
by Diaz Barros, Garcia, and Sidibé, 2015. The paper presents an approach where
based on a predefined human body skeleton the input point cloud is clustered using
PCA and Expectation maximization algorithms.

The recent work in this field is presented by Zhou, Dong, and Saddik, 2020. The
work takes point clouds as input data and model the surface of the object, in this
research - human body, using deep human pose network. The pros of this approach
is that it’s an end-to-end model. It takes 2D depth image, transforms it to 3D point
cloud, and then estimate key human joint coordinates. The model’s architecture is
shown in Figure 2.6

FIGURE 2.6: Architecture of DNN presented by (Zhou, Dong, and
Saddik, 2020)

More point cloud human pose estimation methods will be covered in the next
subsection. The next subsection covers models which are based on capsule architec-
ture.

2.4. Capsule network 9

2.4 Capsule network

The concept of the capsule was first proposed by Hinton (Sabour, Frosst, and Hinton,
2017) and has been widely used in 2D and 3D deep learning (Kakillioglu et al., 2020;
Qin et al., 2020; Duarte, Rawat, and Shah, 2018; LaLonde and Bagci, 2018).

Capsules are represented as a set of vectors. The length of the capsule’s vec-
tor represents the probability of the object’s presence. The direction of the vector
describes the object’s property e.g. position, viewpoint, size, shape, etc. For cap-
sules’ training Hinton proposes a new algorithm (Sabour, Frosst, and Hinton, 2017)
called dynamic routing. The forward pass with dynamic routing propagates the in-
put data from lower-level capsules to higher-level ones. Lower-level capsules pass
learned and predicted data to the higher-level capsules. If multiple lower-level cap-
sules agree (activated) then higher-level capsules activate accordingly. With each
iteration of dynamic routing, each capsule gets more accurate.

2.4.1 Capsule networks for point cloud classification

The first work where capsule networks were applied to the problem of point cloud
classification is 3DCapsNet (Cheraghian and Petersson, 2018). In this work, a new
capsule-based layer is proposed - ComposeCaps. ComposeCaps learns spatially rel-
evant feature mapping that can be exploited for 3D point cloud classification. The
architecture of the network is shown in Figure 2.7

FIGURE 2.7: The architecture of 3DCapsNet (Cheraghian and Peters-
son, 2018)

The second iteration of capsule applicability to 3D classification is the 3D point
capsule network (Zhao et al., 2019). 3D point capsule network is an auto-encoder
designed based on capsule networks. In this work researchers propose new archi-
tecture with a capsule network encoder that encodes input point cloud to capsules’
latent space, and a decoder that decodes latent capsules. The proposed architecture
works for several common point cloud-related tasks, such as object classification,
object reconstruction, and part segmentation.

2.4.2 Capsule networks for point cloud regression

The only work which is currently presented on the topic of point cloud regression
is Capsule-HandsNet (Wu et al., 2020). This project is inspired by this research.
Capsule-HandsNet uses model based on capsule auto-encoder proposed in Zhao et
al., 2019. The model is an end-to-end, it takes hand point cloud and predicts key
joints. The latent space of the model provides an ability to "memorize" the internal

10 Chapter 2. Related work

structures of the object such as symmetry, junction, relative location of object’s parts,
etc. The restored point cloud is combined from local patches predicted by capsules
inside of the decoder (Figure 2.8).

FIGURE 2.8: Reconstructed point cloud from capsule local patches
(Wu et al., 2020)

11

Chapter 3

Research Hypothesis and Problem

3.1 Hypotheses

Model Comparison hypothesis: This project’s main objective is to create a model
for human pose estimation based on point cloud using a capsule-based neural net-
work, which shows competitive performance on well-known benchmarks.

Noise resistance hypothesis: The impact of noise in the training dataset on the
capsule-based model should be less compared to non-capsule-based models. A hy-
pothesis is made based on 2D image recognition using capsule networks Sabour,
Frosst, and Hinton, 2017.

Dataset size hypothesis: The dataset’s size for compatible results should be smaller
for capsule-based networks compared to non-capsule ones. The assumption is made
based on experiments presented is Sabour, Frosst, and Hinton, 2017; Wang et al.,
2020; Gritsevskiy and Korablyov, 2018 based on 2D image classification.

3.2 Problems

Noise problem. To achieve the project goal mentioned above, we need to generate
realistic noise for point cloud data. We need to compare how noisy data influence
capsule-based and not capsule-based models.

Models’ retrain problem. To achieve the project’s third goal, we need to retrain the
reference SOTA 1 model with truncated training data. After this compare retrained
model with the reference capsule-based model.

1state of the art

12

Chapter 4

Dataset and evaluation metrics

In the Section 4.1 we describe the dataset which is used for training and evaluation
purpose for our task of the human pose estimation. In Section 4.2 we define the
evaluation metric for the aforementioned task.

4.1 Dataset

The most common datasets for the task of human pose estimation from point clouds
are ITOP (Haque et al., 2016) and EVAL (Liu et al., 2020). In this work we concentrate
on ITOP dataset since it’s more widely used (Shotton et al., 2011; Ho Yub Jung et al.,
2015; Carreira et al., 2016; Chen et al., 2020; Moon, Chang, and Lee, 2018) thus has
more related works for results’ comparison.

4.1.1 ITOP

ITOP dataset was first released in the work of Haque et al., 2016. The dataset com-
prises depth images of people in different poses. An example of the depth map from
the dataset is shown in Figure 4.1.

The snapshots of poses are taken from two different viewpoints: the side view,
and the top view. In side view, the camera faces a person directly in front (the whole
body is seen). In the top view, the camera is placed above the person’s head and
shots the view from the top (torso usually occluded by shoulders and arms).

The dataset is collected inside of the room thus some furniture items appear in
the dataset. Due to excess obstacles in the field of view of the camera, we apply pre-
processing pipelines to extract only human point clouds. The pipeline is described
in Section 5.1. Figures 4.2 and 4.3 show examples of side and top views respectively.

The 3-dimensional (x, y, z) coordinates are relative to sensor’s position. The dis-
tance is measured in meters. Thus, if x coordinate hasa value of 2, it means that the
point is 2 meters right relatively to the sensor’s (0, 0, 0) reference point.

Ground truths consist of 15 joint key point coordinates - head, neck, shoulders,
elbows, hands, torso, hips, knees, and feet. An example of named joints is shown in
Figure 4.4. Table 4.1 covers general statistics on dataset size.

4.2 Evaluation metric

Since we are working on the regression task, we use mean Average Precision (mAP)
as our main metric of the model’s performance. The ground truths are coordinates
of key human joints (denoted as J). The output of the regression model is also joints’
coordinates of the same size as J (denoted as Ĵ).

4.2. Evaluation metric 13

TABLE 4.1: General statistic for ITOP dataset

View Split Frames People

side train 39,795 16
side test 10,501 4
top train 39,795 16
top test 10,501 4

FIGURE 4.1: Four examples of depth images from ITOP dataset. The
darker the color the closer it’s located to the camera

14 Chapter 4. Dataset and evaluation metrics

FIGURE 4.2: Four examples of front view subset of ITOP. Upper im-
ages are depth representation. Bottom images show human point

clouds (blue) with key joints (red)

FIGURE 4.3: Four examples of top view subset of ITOP. Upper images
are depth representation. Bottom images show human point clouds

(blue) with key joints (red)

4.2. Evaluation metric 15

FIGURE 4.4: Example of key joints with names from ITOP dataset

To be able to compare our results with the work of others (Haque et al., 2016;
Moon, Chang, and Lee, 2018; Guo et al., 2017) we use the same approach of calcula-
tion of AP using 10 cm distance threshold. By this rule (Formula 4.1) the predicted
joint is considered correctly detected if the L2 distance to ground truth is equal or
less that 10 cm. The resulting mAP is calculated by averaging AP by the number of
samples (Formula 4.2).

For further convenience, we will also apply the plot with mAP values for dis-
tances from 0 cm to 100 cm (Example in Figure 4.5).

AP(J, Ĵ) =
{

1, ‖J − Ĵ‖ < 10 cm
0, otherwise

(4.1)

mAP =
∑M

i=0 AP
(

Ji, Ĵi
)

M
(4.2)

16 Chapter 4. Dataset and evaluation metrics

FIGURE 4.5: Example of the mAP plot. On the X axis - allowed dis-
tance between predicted and ground truth coordinates to be consid-
ered as a right detection. On the Y axis - mean Average Precision for
given distance. The values for distance = 10 cm is highlighted on the

plot.

17

Chapter 5

Methodology

In this section, we introduce the methodology for our proposed approaches for the
task of human pose estimation using the point cloud. As we reviewed in Chap-
ter 2, the key issue of any model which uses point clouds as input data, it’s a huge
spatial variation of the data. Point clouds much diverse compared to 2D images in
terms of location and rotation. Capsule networks show promising results on 2D data
(Sabour, Frosst, and Hinton, 2017), and such models handle better spatial invariance
compared to regular NN models.

The chapter consists of two main sections. In Section 5.1 we cover the prepro-
cessing for the input data and ground truths and methods of adding artificial noise
to the input data.

In Section 5.2 we cover the network’s architecture and algorithms for performing
network training.

5.1 Data preparation

In this section, we cover the main preprocessing steps for datasets. Preprocessing
consists of:

1. human extraction;

(a) threshold filtering;

(b) clusterization & human cluster selection;

2. point cloud normalization;

3. adding noise to data (optional).

In the first step, we remove the most obvious points which don’t represent hu-
man posture. In the second step, we perform clustering and segmentation to extract
"human" clusters. The third step is optional and is used in Section 6.4 where we
measure the performance of different models with various levels of noise.

All steps of the preprocessing pipelines are shown in Figure 5.1: threshold filter-
ing, clusterization, and segmentation.

5.1.1 Human extraction

To start working with point cloud for human pose estimation we need to extract
human points out of the overall point cloud. As we can see from Figure 5.2, the raw
point cloud contains not only a human point cloud but also other objects which are
located in the room, such as walls, cupboards, and other objects. These obstacles
will not only harm the model’s performance but will also greatly slow the model’s
training and inference due to the excess number of points.

18 Chapter 5. Methodology

FIGURE 5.1: Example of preprocessing stages. Blue - points filtered
by threshold. Red - points removed by human segmentation. Green

- extracted human point cloud. Purple - key human joints

FIGURE 5.2: Example of raw data from ITOP dataset (front view)

5.1. Data preparation 19

Threshold filtering

Threshold filtering is the first step in preprocessing pipeline. The aim of this step is
to filter out the most obvious points which don’t belong to the human posture. After
manual checks we came up to such parameters side view dataset:

xmin = −1 xmax = 1
ymin = −1.4 ymax = 2
zmin = −1.5 zmax = 3.5

(5.1)

and for top view dataset:

xmin = −0.91 xmax = 0.85
ymin = −0.63 ymax = 0.57
zmin = 0 zmax = 2.6

(5.2)

Formula 5.1 and 5.2 set min-max distance values from camera view. The camera
sensor is considered as center - (0, 0, 0). In this way, x coordinate represents left-right
direction from the camera center, y - top-bottom, and z - the depth.
An example of a threshold filtered point cloud could be seen in Figure 5.3.

FIGURE 5.3: Example of point cloud after applying of threshold filter

20 Chapter 5. Methodology

Since thresholds were manually selected it’s crucial to validate that all human
points clouds fit these boundaries. In our case, we run checks on resulting point
clouds after the segmentation step which will be described later. By this check, we
confirmed that at the end of our extraction pipeline each example in the dataset
contains exactly one big cluster (number of points > 2000). This check doesn’t guar-
antee that our method works well on each example, but it’s enough to say with high
probability that it works on the vast majority of cases. However, it’s worth stressing
that this step in our pipeline could be improved in future work.

Clusterization

Clusterization & extraction are the next steps in preprocessing pipeline. In this step,
we cluster the point cloud from the threshold filtering step (Subsection 5.1.1) and
extract the human cluster. For clusterization step we propose the nearest-neighbour
search algorithm (Nearest neighbor search 2021) with kd-tree data-structure, using
FLANN 1.

The aim of the clusterization is to separate human clusters and small noisy clus-
ters from the point cloud. As we can see from the Algorithm 1, for each point in the
initial point cloud P we try to put it to some cluster based on the distance (radius -
r) to that cluster. If the distance is less than the radius to each cluster then this point
creates a new cluster. At the end of clusterization, we get a set of clusters C.
Since the human cluster always the biggest, at the end of clusterization we take the
argmax and get human cluster Chuman.

In the previous paragraph, we made an assumption that human is the biggest
cluster out of all clusters. Although the assumption holds for the ITOP dataset it
doesn’t guarantee the same performance for other datasets. Thus, this step in pre-
processing pipeline could be improved in future work.

In Figure 5.4 we can see the point cloud before clusterization, after, and the re-
sulting human cluster (the biggest cluster).

1Fast Library for Approximate Nearest Neighbor

5.1. Data preparation 21

FIGURE 5.4: Example of point cloud after applying human extraction

Algorithm 1: Point cloud clusterization and human extraction (PCL - Eu-
clidean Cluster Extraction)

Result: human point cloud cluster - Chuman
1 create a Kd-tree representation for the input point cloud dataset P ;
2 set up an empty list of clusters C, and a queue of the points that need to be

checked Q ;
3 for every point pi ∈ P do
4 add pi to the current queue Q ;
5 for every point pi ∈ Q do
6 search for the set Pk

i of point neighbors of pi in a sphere with radius
r < dth ;

7 for every neighbor pk
i ∈ Pk

i , check if the point has already been
processed, and if not add it to Q;

8 end
9 when the list of all points in Q has been processed, add Q to the list of

clusters C, and reset Q to an empty list ;
10 end
11 the algorithm terminates when all points pi ∈ P have been processed and

are now part of the list of point clusters C ;
12 Chuman = arg max

x∈C

5.1.2 Point cloud normalization

To allow the network to learn more quickly the optimal parameters for each point
cloud we normalize the input data to a standard scale.

22 Chapter 5. Methodology

We use the classic normalization technique where we scale the data to have zero
mean and unit variance. We calculate the mean and max values for each axis X, Y,
and Z. Then we scale point cloud and ground truth key joints coordinates according
to these values. (see Formula 5.3 and Formula 5.4).

Pnormalized =
P−mean(P)

max(P)−min(P)
(5.3)

Jnormalized =
J −mean(P)

max(P)−min(P)
(5.4)

To calculate reconstruction and regression loss for the network we need to denor-
malize reconstructed point cloud, and regressed key joints coordinates. For denor-
malization, we use the same mean, max, and min values by which we normalized
the data in the first place (see Formula 5.5 and Formula 5.6).

P̂denormalized = P̂ · (max(P)−min(P)) + mean(P) (5.5)

Ĵdenormalized = Ĵ · (max(P)−min(P)) + mean(P) (5.6)

5.1.3 Adding noise to data

Noise is the common thing in point cloud data. The origin of the noise could be
environmental conditions such as dust, fog, and other particles in the air. Also, the
noise appears due to the unperfectness of the lidar and other sensors creating point
clouds.

In Experiment 6.4 we investigate how models perform on data with different
amounts of artificial noise. For that, we need to generate noise which could be sim-
ilar to the real world. We propose to use two types of noise which are widely used
(Hermosilla, Ritschel, and Ropinski, 2019; Lv and Li, 2020; Rakotosaona et al., 2020):

• Gaussian noise;

• outlier noise.

Gaussian noise

The Gaussian noise adds noise to the initial points in the point cloud P. With proba-
bility of p the Gaussian noise (σ, µ) is added to the point p ∈ P. In this way, we simu-
late the unperfectness of the detecting device when the device makes measurements
with some fraction of error. The generation process is described in Algorithm 2

Algorithm 2: Adding Gaussian noise to point cloud (Uchida, 2021)

Result: human point cloud with Gaussian noise - ˆPhuman
1 for every point pi ∈ P do
2 if uniRand() < Probnoise then
3 Set px to px + Gaus(σ, µ) ;
4 Set py to py + Gaus(σ, µ) ;
5 Set pz to pz + Gaus(σ, µ) ;
6 end
7 end

An example of applying the Gaussian noise to the point cloud could is shown in
Figure 5.5

5.2. Network architecture 23

FIGURE 5.5: Example of pllying the Gaussian noise to the point cloud
(Uchida, 2021)

Outlier noise

The outlier noise adds new points to the initial point cloud P. The amount of outlier
noise is defined by the fraction of the noise points compared to the initial number
of human points. The noise point is taken from the uniform distribution U(a, b).
Where a and b are min-max values from the initial point cloud. In this way, outlier
noise uniformly fills the bounding box of the initial point cloud.

An example of the addition of the outlier noise to the point cloud is shown in the
Figure 5.6

5.2 Network architecture

In this section, we cover the network architecture for the task of human pose estima-
tion, the loss functions, and the process of training.

We designed a network based on the work of Wu et al., 2020 to estimate the hu-
man pose. In this work, we perform a one-stage training strategy compared to the
previous two-sage approach. The aforementioned work performs two-stage train-
ing. The first stage consists of training an autoencoder part (based on capsules) of
the network to recreate the input human point cloud. The second stage takes an
autoencoder with frozen layers from the first stage and trains a regression part of
the model which uses capsule outputs as input data. Such an approach requires
two steps in the training pipeline and increases the number of hyperparameters to
tune the network. In this work, we propose a one-stage training scheme which is
described in Section 5.3.

24 Chapter 5. Methodology

FIGURE 5.6: Example of addition the outlier noise to the point cloud
(Uchida, 2021)

FIGURE 5.7: Network architecture

5.3. One stage network training 25

5.2.1 Loss aggregation

In this work, we propose one-stage training based on loss aggregation. We will
compare the results of the training with both a two-stage training scheme and a
simple "loss sum" aggregation strategy in Section 6.2. We use Chamfer distance as a
loss function for encoder-decoder part. The Chamfer distance is defined as:

dCD (P1, P2) = ∑
x∈P1

min
y∈P2
‖x− y‖2

2 + ∑
y∈P2

min
x∈P1
‖x− y‖2

2 (5.7)

Where P1 ∈ R3 and P2 ∈ R3 represent point clouds from the human point cloud
and the point cloud recovered from latent capsules.

For the regression part of the network, we use classical MSE2 loss. The regression
loss is defined as:

LossE(T, J) =
1
N

N

∑
i=1

(
‖ji − F (ti)‖2

)
+ λ‖w‖2 (5.8)

Where T is a feature vector from latent capsules. J is the ground truth human joints.
And F is the regression network.

Since two losses have a different magnitude of values and at different points of
time could differ in terms of "picking the low hanging fruit", we need aggregation to
mitigate such issues.

The common approach of loss aggregation is usage of the weighted sum of losses
(Redmon et al., 2016; Cipolla, Gal, and Kendall, 2018; Zhao et al., 2018) (e.g. L =
(a f1 + b f2) where L is loss function, a, b - loss weights, and f1, f2 - aggregated loss
functions). These approaches struggles from increased huperparameter size since
weights for losses should be chosen by hand.

We have selected an aggregation based on logarithms of losses’ product. Such a
decision is based on the assumption that our losses greater than 0 and the magnitude
is not drastic. The logarithm, in this case, mitigates the issue of vanishing gradient
in the case when two losses approaching zero.

The result loss function is shown in Formula 5.9.

L = log (LossE(T, J)) + log (dCD (P1, P2)) (5.9)

The methodology of comparing different approaches is covered in 5.3. The ex-
periment comparison between one-stage training vs two-stage training is covered in
6.2.

5.3 One stage network training

In this section, we describe the method of training the model in one stage manner
compared to two staged in Wu et al., 2020.

The work Wu et al., 2020 proposes to split the training phase into two steps: the
auto-encoder training phase and the regression training phase.

In the first phase regression network is frozen (Figure 5.7) and PointNet, convo-
lution layers, capsule layers, and decoder are trained.

In the second phase, Wu et al., 2020 propose taking the trained auto-encoder part
from the previous step, freeze, and train only the regression part.

2mean squared error

26 Chapter 5. Methodology

Our proposed solution is to train two forks of the network simultaneously. To
achieve this we propose to aggregate two losses from each network’s heads (decoder
and regression). Doing this we expect to improve the performance of the network in
terms of speed and accuracy.

The details of losses aggregation are covered in Section 5.4.
To verify the hypothesis that such an approach should improve the model’s per-

formance we will compare two cases: classical two-stage, and our proposed one
stage. As a benchmark, we will use the ITOP dataset with the mAP metric described
in Formula 4.2. The experiment results could be found in Section 5.3.

5.4 How noise affects model’s performance

In this section, we describe a pipeline of models’ evaluation with noisy data. The
noise generation technique is described in Section 5.1.3. We compare our model
with SOTA model for the task of human pose estimation on ITOP (Haque et al.,
2016) dataset. Current SOTA is PoseNet (Moon, Chang, and Lee, 2018) model.

The assumption we try to test is that a capsule-based network should perform
better with noisy data due to the internal representation of the point cloud inside
the network. The internal representation is held by latent capsules. In this way,
the capsule-based network, due to its reconstruction part, should act like a denoiser
which should help in the regression part of the task. The expected behavior of the
model is shown in Figure 6.9. Contrariwise, models which don’t contain internal
representation should perform worse on the same dataset.

FIGURE 5.8: Capsule model trained on noiseless dataset expected to
act like denoiser on noisy data

To test the above assumption we use a capsule-based model which was trained
on the dataset without noise and evaluate it on an evaluation set with a different
amount of uniform and Gaussian noise. Also, we use the pre-trained PointNet

5.5. Influence of dataset size on model’s performance 27

model as a reference. We will measure the absolute drop of mAP (described in For-
mula 4.2) with each increase of the noise amount.

5.5 Influence of dataset size on model’s performance

In this section, we describe the pipeline of model evaluation for the experiment with
a reduced training set.

In this part, we try to test the assumption that capsule-based models need less
training data to perform equally on the evaluation set compared to non-capsule-
based models. This assumption was proven for classification tasks on the MNIST
dataset in Sabour, Frosst, and Hinton, 2017, but wasn’t reproduced on more complex
data.

The capsule-based model due to its internal representation should faster come
up with point cloud patterns compared to classical approaches. In this way, capsule-
based models need less training data to perform equally on the evaluation dataset.

To test the above assumption we will train capsule-based model and SOTA model
(PoseNet) with different fractions of training set till convergence. Then, we will eval-
uate the performance of both models on the evaluation set. We will measure the
absolute drop of mAP (described in Formula 4.2) with each fraction of the training
set.

The dataset reduction is done by removing unique people from the set. In the
ITOP training dataset there are 16 unique people which result in 39, 795 point clouds.

We will use the model’s performance on 100% dataset (full train dataset) as
reference values for both models. Then we will decrease the train dataset size to
15/16 − 93%, 12/16 − 75%, and 8/16 − (50%) from the overall size. The schematic
visualization of dataset reduction is shown in Figure 5.9.

FIGURE 5.9: Visualization of different dataset fractions. Each squad
represent subset of point cloud for human model in dataset. Yellow -
subset is used for training. Red - subset is not used for training. Green

- test subsets

28

Chapter 6

Experiments

In this chapter we describe experiment results based on methodology stated in Chap-
ter 5. We use ITOP dataset (Haque et al., 2016) for comparison with different models.
To compare our results with existing models we use as a reference such models: RF
(Shotton et al., 2011), RTW (Ho Yub Jung et al., 2015), IEF (Carreira et al., 2016), VI
(Haque et al., 2016), REN (Chen et al., 2020), Pose-net (Moon, Chang, and Lee, 2018),
all of which were overviewed in Chapter 2.

In Section 6.2 we show our results with one stage straining scheme compared to
the two-stage described in Section 5.3.

In Section 6.3 we show the performance of the one-stage training model on the
ITOP dataset (Haque et al., 2016). Also, we compare our results with state-of-the-art
models for the same task.

In Section 6.4 we show a comparison of models’ performance on a dataset with
additional noise described in Section-5.4. As a reference model we use SOTA model
- Pose-net (Moon, Chang, and Lee, 2018).

In Section 6.5 we compare our proposed model with the SOTA Pose-net model
with truncated dataset size to assess models’ convergence.

6.1 Experiment setup

In this section, we describe the basic setup for our experiments. Some experiments
have additional changes to the training/evaluation pipelines described in dedicated
subsections.

All experiments were performed on a server with 8 CPU core, 1 GPU card Nvidia
Tesla P100 (16.2 Gb of video memory), and 60 Gb of RAM. As a training framework,
Pytorch 1.8.1 was used based on CUDA 10.1 video driver. This setup was powered
by the Google Colab backend.

All point clouds from the ITOP dataset were preprocessed according to Sec-
tion 5.1. For threshold filtering and normalization we use NumPy Python library,
and for point cloud clusterization and human extraction we use C++ PCL (strawlab/python-
pcl 2021) library with Python bindings. After preprocessing we reduce the number
of points in the human cloud to 2,000 to speed up the model’s training time. The
Adam optimizer (Kingma and Ba, 2017) was used for all experiments. The initial
learning rate is lr = 10−4 with learning rate decay of 10−1 each 30 epochs. The av-
erage number of epoch to a fully trained model is 80, after this time of epoch our
model starts to oscillate on the plateau. The average training time in such a setup is
16 machine hours. The batch size of 12 was used. After each epoch of the training
dataset, we run evaluation pipelines to measure the model’s performance, on each
evaluation run we save such metrics: reconstruction loss (Formula 5.7), regression
loss (Formula 5.8), total loss (Formula 5.9), mAP for 10 cm distance (Formula 4.2).

6.2. Effectiveness of one stage training 29

For visualization purposes, we also save input and reconstructed point clouds (P
and P̂ accordingly).

6.2 Effectiveness of one stage training

In this section, we compare our proposed approach of a one-stage training scheme
with the original two-stage one (Wu et al., 2020).

The main objective of one-stage training is to reduce the number of hyperparam-
eters and speed up training via aggregation strategy of reconstruction and regression
losses in the network. There are two experiments conducted on the original architec-
ture described by Wu et al., 2020 and our proposed method described in Section 5.3.

At first, we train capsule networks with a two-stage setup. For the first stage, we
use the setup described in Section 6.1 and freeze the regression part of the network,
thus we train only the reconstruction part. In this setup, we run 70 epochs and
save the model. The second stage uses weights of the model from the first step, but
now freeze feature extractor and reconstruction parts of the network and train only
regression. In this setup, only 20 epochs are needed to fully converge.

The second experiment adopts our proposed solution with loss aggregation. In
this experiment, we train all the networks at once, without freezing any layers. This
experiment is done according to Section 6.1.

The comparison of the two experiments is shown in Table 6.1.

TABLE 6.1: The comparison of one stage and two stage training
pipeline (based on Formula 4.2 metric)

Dataset Two stage training One state training (our method) Difference

ITOP front view 79.6% 83.1% 3.5%
ITOP side view 70.8% 74.2% 3.4%

FIGURE 6.1: Reconstruction loss function for two stage (red) model
and one stage model(blue)

30 Chapter 6. Experiments

FIGURE 6.2: Regression loss function for two stage (red) model and
one stage model(blue)

FIGURE 6.3: Two stage model for side view. mAP for different dis-
tance errors for two stage model. 10 cm distance mAP is highlighted

6.2. Effectiveness of one stage training 31

FIGURE 6.4: One stage model for side view. mAP for different dis-
tance errors for two stage model. 10 cm distance mAP is highlighted

FIGURE 6.5: Two stage model for top view. mAP for different dis-
tance errors for two stage model. 10 cm distance mAP is highlighted

32 Chapter 6. Experiments

FIGURE 6.6: One stage model for top view. mAP for different distance
errors for two stage model. 10 cm distance mAP is highlighted

6.3 Results on ITOP dataset

We have conducted training and evaluation of our capsule-based model on the ITOP
dataset (side and top views). The results of the evaluation, as well as the perfor-
mance of SOTA models, are shown in Table 6.2 for side view, and in Table 6.3 for top
view.

Our proposed model shows competitive results both on ITOP side view and front
view. Our model outperforms RF (Shotton et al., 2011), RTW (Ho Yub Jung et al.,
2015), IEF (Carreira et al., 2016) models on both datasets, and aslo VI (Haque et al.,
2016) on side-view only. The model still underperform REN (Chen et al., 2020),
Pose-net (Moon, Chang, and Lee, 2018) models.

Our model gives good results on head, neck, shoulders, torso body parts, and
struggle to estimate hands and feet. It’s difficult for a model to predict a key joint

TABLE 6.2: Comparison of proposed model with SOTA models on
ITOP side view dataset

mAP (side-view)
Body part RF RTW IEF VI REN-9x6x6 PoseNet Our model
Head 63.8 97.8 96.2 98.1 98.7 98.29 94.7
Neck 86.4 95.8 85.2 97.5 99.4 99.07 96.9
Shoulders 83.3 94.1 77.2 96.5 96.1 97.18 93.7
Elbows 73.2 77.9 45.4 73.3 74.7 80.42 73.9
Hands 51.3 70.5 30.9 68.7 55.2 67.26 58.0
Torso 65.0 93.8 84.7 85.6 98.7 98.73 97.0
Hip 50.8 80.3 83.5 72.0 91.8 93.23 89.5
Knees 65.7 68.8 81.8 69.0 89.0 91.80 88.1
Feet 61.3 68.4 80.9 60.8 81.1 87.6 80.0
Mean 65.8 80.5 71.0 77.4 84.9 88.74 83.1

6.4. How noise affects models’ performance 33

TABLE 6.3: Comparison of proposed model with SOTA models on
ITOP top view dataset

mAP (top-view)
Body part RF RTW IEF VI REN-9x6x6 PoseNet Our model
Head 95.4 98.4 83.8 98.1 98.2 98.4 94.2
Neck 98.5 82.2 50.0 97.6 98.9 98.91 96.0
Shoulders 89.0 91.8 67.3 96.1 96.6 96.87 89.2
Elbows 57.4 80.1 40.2 86.2 74.4 79.16 67.6
Hands 49.1 76.9 39.0 85.5 50.7 62.44 48.9
Torso 80.5 68.2 30.5 72.9 98.1 97.78 94.0
Hip 20.0 55.7 38.9 61.2 85.5 86.91 79.3
Knees 2.6 53.9 54.0 51.6 70.0 83.28 80.3
Feet 0.0 28.7 62.4 51.5 41.6 69.62 67.4
Mean 47.4 68.2 51.2 75.5 75.5 83.44 74.1

that is located in a relatively small point cloud (compared to whole-body).
In the Figure 6.7 we could see how the model reconstructs the human body with

each epoch. On first epochs, the model outputs just a random point cloud, and with
each new epoch, it trains to reproduce the input point cloud. As we can see from d)
in Figure 6.7 on epoch 60 the model’s approximation is pretty solid.

6.4 How noise affects models’ performance

In this section, we evaluate a capsule-based model (proposed solution) and a ref-
erence model (PoseNet) on a dataset with a different amount of noise. The experi-
ment’s description is covered in Section 5.4.

We use Gaussian noise and uniform noise as a mixin to the initial data. For the
Gaussian noise, we add noise with a probability of 1

3 (to roughly 30% of points). We
use two types of values for σ - 0.1 for mild noise and 0.2 for more aggressive.

For uniform distribution we use constant number of additional points NP = 300.
That is roughly 15% of additional points out of mean human point cloud size. In
Figure 6.8 is shown an example of human point clouds with additional noise. We
don’t add noise to ground truths key joints.

As for the capsule-based model we use the model trained on the ITOP side view
dataset from the Experiment 6.3. We will use the ITOP side view dataset as a bench-
mark for this experiment.

As for reference model we use pretrained1 PoseNet.
We inference the ITOP side view dataset with different noise parameters for both

models and measure mAP for each experiment. All experiments are collected in
Table 6.4.

1https://github.com/mks0601/V2V-PoseNet_RELEASE

https://github.com/mks0601/V2V-PoseNet_RELEASE

34 Chapter 6. Experiments

FIGURE 6.7: One stage model for top view. mAP for different distance
errors for two stage model. 10 cm distance mAP is highlighted

6.4. How noise affects models’ performance 35

FIGURE 6.8: Example of human points clouds with added noise. σ−
0.1, NP = 300

36 Chapter 6. Experiments

TABLE 6.4: The comparison of capsnet model and PoseNet on dataset
with different amount of noise on ITOP side view dataset

Noise setup PoseNet CapsNet PoseNet difference CapsNet difference

No noise (reference) 86.2% 83.1% 0% 0%
σ = 0.1, NP = 0 82.1% 81.6% 4.1% 1,5%
σ = 0, NP = 300 84.9% 81.9% 1,3% 1,2%
σ = 0.1, NP = 300 80.9% 79.2% 5,3% 3,9%
σ = 0.2, NP = 300 74.5% 70.4% 11,7% 12,7%

The reference value (dataset without noise) for the capsule-based model is 83.1%
mAP, and for PoseNet is 86.2% mAP. The PoseNet’s results are different compared
to Table 6.2 - 88.74% in table vs 86.2% in our experiment. Such difference could be
due to the fact that we don’t use an ensemble of PoseNet models for the evaluation.
This difference isn’t significant for the methodology of our experiment since we use
the difference of mAP as a metric.

As we can see capsule-based model performs better on noisy datasets compared
to the reference model. For σ = 0.1 the drop of mAP for capsule network is 1, 5% vs
4, 1% in PoseNet.

The only experiment where PoseNet outperforms capsule-based network is with
significant amount of noise σ = 0.2 and NP = 300. For this experiment capsule
network has a drop of 12, 7% of mAP vs 11, 7% for PoseNet.

To verify an assumption made in Section 5.4 that capsule-based model could act
like a denoiser due to internal latent space, we plot an input noisy point cloud and
reconstructed point cloud by the network. (Figure 6.9)

FIGURE 6.9: Example of noisy point cloud (left), and restored point
cloud by capsule network (left)

Based on the visual analysis we could say that a capsule-based network filters
the majority amount of noisy data and potentially could be used as a denoiser.

6.5. Models’ performance with the lack of data 37

6.5 Models’ performance with the lack of data

In this section, we evaluate the capsule-based model with different amounts of train-
ing data. Also, we compare the performance with the SOTA model - PoseNet.

For the capsule-based model, we run training pipelines with different training
dataset sizes (16/16 as a reference, 15/16, 12/16, and 8/16). The pipeline setup is
described in Section 6.1. After each run of training, we measure the mAP for 10 cm
distance on the test dataset.

For PoseNet we use the same approach of retraining the model with different
train sizes. The training code was used from the original2 implementation of the
model. Also, we use default parameters for the PoseNet network.

As a benchmark dataset, we use the ITOP side view.
The comparison table for the set of experiments could be found in Table 6.5.

TABLE 6.5: The comparison of capsnet model and PoseNet trained on
different amound of data (ITOP side view)

Dataset size PoseNet CapsNet PoseNet difference CapsNet difference

16/16 (full dataset) 86.2% 83.1% 0% 0%
15/16 86.0% 82.8% 0.2% 0,3%
12/16 80.2% 74.3% 6,0% 8,8%
8/16 63.7% 56.0% 30,2% 27,1%

As we can see from the results capsule-based model underperform compared
to PoseNet model. The only experiment where the capsule-based model shows a
better mAP difference is the case with 8/16 of the dataset. In this experiment capsule
model shows 27, 1% of mAP drop compared to 30, 2% in PoseNet.

Taking everything into account we can’t prove a hypothesis that a capsule-based
network works better in data lack environment compared to another SOTA model.
However, this statement is hold only for current experiment setup and could change
on other datasets.

2https://github.com/mks0601/V2V-PoseNet_RELEASE

https://github.com/mks0601/V2V-PoseNet_RELEASE

38

Chapter 7

Conclusions

7.1 What was done?

In this section we sum up our work which was concentrated on main objectives:

• Design a capsule-based model for the task of human pose estimation using
point cloud data. Compare model’s performance with SOTA models

• Verify the hypothesis that capsule-based models perform better compared to
others on noisy data

• Verify the hypothesis that capsule-based models better generalize and need
less training data compared to other models

Further in the text, we describe our results for each objection.

Capsule-based model for human pose estimation

We designed a capsule-based neural network for human pose estimation using point
clouds. We took the work Wu et al., 2020 of as a baseline architecture for our prob-
lem. We proposed the new method of one-stage training of the model which showed
improved performance both in training speed and in the model’s accuracy. We com-
pared our model with SOTA models on the well-known dataset. Our proposed net-
work shows competitive results outperforming such architectures as use as a ref-
erence such models: RF (Shotton et al., 2011), RTW (Ho Yub Jung et al., 2015), IEF
(Carreira et al., 2016), and VI (Haque et al., 2016). But still our proposed model un-
derperform in comparison with REN (Chen et al., 2020) and Pose-net (Moon, Chang,
and Lee, 2018) models.

Capsule-based model and noisy data

We designed a methodology and conducted experiments to verify the hypothe-
sis that capsule-based networks are more noise agnostic in comparison with non-
capsule-based models.

We have evaluated our proposed models and the SOTA PoseNet model on the
ITOP dataset with different amounts of artificial noise (from Gaussian and uniform
distributions). Based on our experiments capsule-based model shows better results
in most of the cases in comparison with PoseNet. Also, we have visually proved that
a capsule-based model could denoise the point cloud which we associate with the
ability of the capsule network to hold internal representation.

7.2. Future work 39

Capsule-based model and train dataset size

We designed a methodology and conducted experiments to verify the hypothe-
sis that capsule-based networks need fewer data to train in comparison with non-
capsule-based models.

We have evaluated the capsule-based model and SOTA PoseNet model on the
ITOP dataset. We have conducted multiple experiments where we reduce the train-
ing dataset size. Based on our results we don’t see any proofs that capsule-based
models could better generalize the data and thus need less training data.

7.2 Future work

Algorithms on point clouds are a really promising field. Capsule-based networks
are interesting models for this particular task. Capsule-based models could hold an
internal representation of the input data and thus reuse it to improve performance
for a variety of tasks like classification, segmentation, regression, etc.

We have shown that capsule-based models are applicable for the task of human
pose estimation, and could show compatible results.

As future work we see such areas:

Data preprocessing

We proposed a method where we preprocess the initial point cloud and extract a
person point cloud, and only then use it as an input to the network. Such an ap-
proach is not applicable to the real-world data since our techniques are greatly tight
to the ITOP dataset.

To better adapt a pipeline to the real-world use case the special extraction DNN
models could be used (Shi et al., 2020; Yang, Luo, and Urtasun, 2019). Such mod-
els don’t need handcrafted thresholds and parameters thus could be used for more
diverse datasets.

New datasets

Our research was focused on the ITOP dataset. But the EVAL dataset mentioned in
Section-4 also could be used for the evaluation.

New loss aggregation strategies

In our work, we use the product of losses as an aggregation strategy. Also, we use
the logarithm to mitigate the issue of vanishing gradient. This approach is quite
primitive and some advanced loss aggregations methods could be used (Optimizing
Multiple Loss Functions with Loss-Conditional Training).

40

Bibliography

Cao, Zhe et al. (May 2019). “OpenPose: Realtime Multi-Person 2D Pose Estima-
tion using Part Affinity Fields”. In: arXiv:1812.08008 [cs]. arXiv: 1812.08008. URL:
http://arxiv.org/abs/1812.08008 (visited on 12/25/2020).

Carreira, Joao et al. (June 2016). “Human Pose Estimation with Iterative Error Feed-
back”. In: arXiv:1507.06550 [cs]. arXiv: 1507.06550. URL: http://arxiv.org/abs/
1507.06550 (visited on 05/23/2021).

Chen, Xinghao et al. (June 2020). “Pose Guided Structured Region Ensemble Net-
work for Cascaded Hand Pose Estimation”. In: Neurocomputing 395. arXiv: 1708.03416,
pp. 138–149. ISSN: 09252312. DOI: 10.1016/j.neucom.2018.06.097. URL: http:
//arxiv.org/abs/1708.03416 (visited on 05/23/2021).

Cheraghian, Ali and Lars Petersson (Nov. 2018). “3DCapsule: Extending the Cap-
sule Architecture to Classify 3D Point Clouds”. In: arXiv:1811.02191 [cs]. arXiv:
1811.02191. URL: http://arxiv.org/abs/1811.02191 (visited on 12/14/2020).

Cipolla, Roberto, Yarin Gal, and Alex Kendall (June 2018). “Multi-task Learning Us-
ing Uncertainty to Weigh Losses for Scene Geometry and Semantics”. en. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,
UT, USA: IEEE, pp. 7482–7491. ISBN: 978-1-5386-6420-9. DOI: 10.1109/CVPR.
2018.00781. URL: https://ieeexplore.ieee.org/document/8578879/ (visited
on 05/21/2021).

Diaz Barros, Jilliam Maria, Frederic Garcia, and Désiré Sidibé (Mar. 2015). “Real-
Time Human Pose Estimation from Body-Scanned Point Clouds”. In: vol. 1. DOI:
10.5220/0005309005530560.

Duarte, Kevin, Yogesh S. Rawat, and Mubarak Shah (May 2018). “VideoCapsuleNet:
A Simplified Network for Action Detection”. In: arXiv:1805.08162 [cs]. arXiv:
1805.08162. URL: http://arxiv.org/abs/1805.08162 (visited on 12/14/2020).

Fang, Hao-Shu et al. (Feb. 2018). “RMPE: Regional Multi-person Pose Estimation”.
In: arXiv:1612.00137 [cs]. arXiv: 1612.00137. URL: http://arxiv.org/abs/1612.
00137 (visited on 12/25/2020).

Gritsevskiy, Andrew and Maksym Korablyov (Apr. 2018). “Capsule networks for
low-data transfer learning”. In: arXiv:1804.10172 [cs]. arXiv: 1804.10172. URL: http:
//arxiv.org/abs/1804.10172 (visited on 05/23/2021).

Guo, Hengkai et al. (July 2017). “Towards Good Practices for Deep 3D Hand Pose
Estimation”. In: arXiv:1707.07248 [cs]. arXiv: 1707.07248 version: 1. URL: http:
//arxiv.org/abs/1707.07248 (visited on 05/19/2021).

Haque, Albert et al. (July 2016). “Towards Viewpoint Invariant 3D Human Pose Es-
timation”. In: arXiv:1603.07076 [cs]. arXiv: 1603.07076. URL: http://arxiv.org/
abs/1603.07076 (visited on 05/23/2021).

Hermosilla, Pedro, Tobias Ritschel, and Timo Ropinski (Oct. 2019). “Total Denois-
ing: Unsupervised Learning of 3D Point Cloud Cleaning”. In: arXiv:1904.07615
[cs]. arXiv: 1904.07615. URL: http://arxiv.org/abs/1904.07615 (visited on
05/23/2021).

Ho Yub Jung et al. (June 2015). “Random tree walk toward instantaneous 3D hu-
man pose estimation”. en. In: 2015 IEEE Conference on Computer Vision and Pattern

http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1507.06550
http://arxiv.org/abs/1507.06550
https://doi.org/10.1016/j.neucom.2018.06.097
http://arxiv.org/abs/1708.03416
http://arxiv.org/abs/1708.03416
http://arxiv.org/abs/1811.02191
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://ieeexplore.ieee.org/document/8578879/
https://doi.org/10.5220/0005309005530560
http://arxiv.org/abs/1805.08162
http://arxiv.org/abs/1612.00137
http://arxiv.org/abs/1612.00137
http://arxiv.org/abs/1804.10172
http://arxiv.org/abs/1804.10172
http://arxiv.org/abs/1707.07248
http://arxiv.org/abs/1707.07248
http://arxiv.org/abs/1603.07076
http://arxiv.org/abs/1603.07076
http://arxiv.org/abs/1904.07615

Bibliography 41

Recognition (CVPR). Boston, MA, USA: IEEE, pp. 2467–2474. ISBN: 978-1-4673-
6964-0. DOI: 10.1109/CVPR.2015.7298861. URL: http://ieeexplore.ieee.org/
document/7298861/ (visited on 05/23/2021).

Kakillioglu, Burak et al. (2020). “3D Capsule Networks for Object Classification With
Weight Pruning”. In: IEEE Access 8, pp. 27393–27405. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2020.2971950. URL: https://ieeexplore.ieee.org/document/
8984369/ (visited on 12/14/2020).

Kingma, Diederik P. and Jimmy Ba (Jan. 2017). “Adam: A Method for Stochastic
Optimization”. In: arXiv:1412.6980 [cs]. arXiv: 1412.6980. URL: http://arxiv.
org/abs/1412.6980 (visited on 05/23/2021).

LaLonde, Rodney and Ulas Bagci (Apr. 2018). “Capsules for Object Segmentation”.
In: arXiv:1804.04241 [cs, stat]. arXiv: 1804.04241. URL: http://arxiv.org/abs/
1804.04241 (visited on 12/14/2020).

Liu, Yipeng et al. (Dec. 2020). “Point Cloud Quality Assessment: Large-scale Dataset
Construction and Learning-based No-Reference Approach”. In: arXiv:2012.11895
[eess]. arXiv: 2012.11895. URL: http://arxiv.org/abs/2012.11895 (visited on
05/20/2021).

Lv, Chaohui and Min Li (Oct. 2020). “Point Cloud Denoising Algorithm Based on
Noise Classification”. In: 2020 International Conference on Culture-oriented Science
Technology (ICCST), pp. 123–127. DOI: 10.1109/ICCST50977.2020.00029.

Maturana, D. and S. Scherer (Sept. 2015). “VoxNet: A 3D Convolutional Neural Net-
work for real-time object recognition”. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 922–928. DOI: 10.1109/IROS.2015.
7353481.

Moon, Gyeongsik, Ju Yong Chang, and Kyoung Mu Lee (Aug. 2018). “V2V-PoseNet:
Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Es-
timation from a Single Depth Map”. In: arXiv:1711.07399 [cs]. arXiv: 1711.07399
version: 3. URL: http://arxiv.org/abs/1711.07399 (visited on 05/23/2021).

Nearest neighbor search (May 2021). en. Page Version ID: 1020801927. URL: https:
//en.wikipedia.org/w/index.php?title=Nearest_neighbor_search&oldid=
1020801927 (visited on 05/17/2021).

Optimizing Multiple Loss Functions with Loss-Conditional Training. en. URL: http://ai.
googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html
(visited on 05/24/2021).

PCL - Euclidean Cluster Extraction. URL: https://pcl.readthedocs.io/en/latest/
cluster_extraction.html (visited on 05/17/2021).

Qi, Charles R. et al. (June 2017a). “PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space”. In: arXiv:1706.02413 [cs]. arXiv: 1706.02413. URL:
http://arxiv.org/abs/1706.02413 (visited on 12/14/2020).

Qi, Charles R. et al. (Apr. 2017b). “PointNet: Deep Learning on Point Sets for 3D Clas-
sification and Segmentation”. In: arXiv:1612.00593 [cs]. arXiv: 1612.00593. URL:
http://arxiv.org/abs/1612.00593 (visited on 12/14/2020).

Qin, Yao et al. (Feb. 2020). “Detecting and Diagnosing Adversarial Images with
Class-Conditional Capsule Reconstructions”. In: arXiv:1907.02957 [cs, stat]. arXiv:
1907.02957. URL: http://arxiv.org/abs/1907.02957 (visited on 12/14/2020).

Rakotosaona, Marie-Julie et al. (2020). “PointCleanNet: Learning to Denoise and Re-
move Outliers from Dense Point Clouds”. en. In: Computer Graphics Forum 39.1.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13753, pp. 185–203.
ISSN: 1467-8659. DOI: https://doi.org/10.1111/cgf.13753. URL: https:
/ / onlinelibrary . wiley . com / doi / abs / 10 . 1111 / cgf . 13753 (visited on
05/23/2021).

https://doi.org/10.1109/CVPR.2015.7298861
http://ieeexplore.ieee.org/document/7298861/
http://ieeexplore.ieee.org/document/7298861/
https://doi.org/10.1109/ACCESS.2020.2971950
https://doi.org/10.1109/ACCESS.2020.2971950
https://ieeexplore.ieee.org/document/8984369/
https://ieeexplore.ieee.org/document/8984369/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1804.04241
http://arxiv.org/abs/1804.04241
http://arxiv.org/abs/2012.11895
https://doi.org/10.1109/ICCST50977.2020.00029
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/IROS.2015.7353481
http://arxiv.org/abs/1711.07399
https://en.wikipedia.org/w/index.php?title=Nearest_neighbor_search&oldid=1020801927
https://en.wikipedia.org/w/index.php?title=Nearest_neighbor_search&oldid=1020801927
https://en.wikipedia.org/w/index.php?title=Nearest_neighbor_search&oldid=1020801927
http://ai.googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html
http://ai.googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html
https://pcl.readthedocs.io/en/latest/cluster_extraction.html
https://pcl.readthedocs.io/en/latest/cluster_extraction.html
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1907.02957
https://doi.org/https://doi.org/10.1111/cgf.13753
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13753
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13753

42 Bibliography

Redmon, Joseph et al. (May 2016). “You Only Look Once: Unified, Real-Time Object
Detection”. In: arXiv:1506.02640 [cs]. arXiv: 1506.02640. URL: http://arxiv.org/
abs/1506.02640 (visited on 05/21/2021).

Riegler, Gernot, Ali Osman Ulusoy, and Andreas Geiger (Apr. 2017). “OctNet: Learn-
ing Deep 3D Representations at High Resolutions”. In: arXiv:1611.05009 [cs]. arXiv:
1611.05009. URL: http://arxiv.org/abs/1611.05009 (visited on 12/25/2020).

Rovai, Marcelo (Aug. 2020). Realtime Multiple Person 2D Pose Estimation using Ten-
sorFlow2.x. en. URL: https://towardsdatascience.com/realtime-multiple-
person-2d-pose-estimation-using-tensorflow2-x-93e4c156d45f (visited on
12/25/2020).

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton (Nov. 2017). “Dynamic Rout-
ing Between Capsules”. In: arXiv:1710.09829 [cs]. arXiv: 1710.09829. URL: http:
//arxiv.org/abs/1710.09829 (visited on 12/14/2020).

Shi, Shaoshuai et al. (Mar. 2020). “From Points to Parts: 3D Object Detection from
Point Cloud with Part-aware and Part-aggregation Network”. In: arXiv:1907.03670
[cs]. arXiv: 1907.03670. URL: http://arxiv.org/abs/1907.03670 (visited on
05/24/2021).

Shotton, Jamie et al. (June 2011). “Real-Time Human Pose Recognition in Parts from
Single Depth Images”. In: vol. 56, pp. 1297–1304. ISBN: 978-3-642-28660-5. DOI:
10.1109/CVPR.2011.5995316.

strawlab/python-pcl (May 2021). original-date: 2012-05-16T10:26:35Z. URL: https://
github.com/strawlab/python-pcl (visited on 05/23/2021).

Su, Hang et al. (Dec. 2015). “Multi-view Convolutional Neural Networks for 3D
Shape Recognition”. en. In: 2015 IEEE International Conference on Computer Vi-
sion (ICCV). Santiago, Chile: IEEE, pp. 945–953. ISBN: 978-1-4673-8391-2. DOI: 10.
1109/ICCV.2015.114. URL: http://ieeexplore.ieee.org/document/7410471/
(visited on 12/25/2020).

Uchida, Tomomasa (Mar. 2021). tom-uchida/Add_Noise_to_Point_Cloud. original-date:
2018-09-22T08:50:24Z. URL: https://github.com/tom-uchida/Add_Noise_to_
Point_Cloud (visited on 05/09/2021).

Wang, Peng-Shuai et al. (July 2017). “O-CNN: octree-based convolutional neural net-
works for 3D shape analysis”. en. In: ACM Transactions on Graphics 36.4, pp. 1–
11. ISSN: 0730-0301, 1557-7368. DOI: 10.1145/3072959.3073608. URL: https:
//dl.acm.org/doi/10.1145/3072959.3073608 (visited on 12/25/2020).

Wang, Yiwei et al. (2020). “Capsule Networks Showed Excellent Performance in the
Classification of hERG Blockers/Nonblockers”. English. In: Frontiers in Pharma-
cology 10. Publisher: Frontiers. ISSN: 1663-9812. DOI: 10.3389/fphar.2019.01631.
URL: https://www.frontiersin.org/articles/10.3389/fphar.2019.01631/
full (visited on 05/23/2021).

Wei, Xin, Ruixuan Yu, and Jian Sun (June 2020). “View-GCN: View-Based Graph
Convolutional Network for 3D Shape Analysis”. en. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE,
pp. 1847–1856. ISBN: 978-1-72817-168-5. DOI: 10.1109/CVPR42600.2020.00192.
URL: https://ieeexplore.ieee.org/document/9156567/ (visited on 12/25/2020).

Wu, Yiqi et al. (Oct. 2020). “3D Capsule Hand Pose Estimation Network Based on
Structural Relationship Information”. en. In: Symmetry 12.10. Number: 10 Pub-
lisher: Multidisciplinary Digital Publishing Institute, p. 1636. DOI: 10 . 3390 /
sym12101636. URL: https://www.mdpi.com/2073-8994/12/10/1636 (visited
on 12/25/2020).

http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1611.05009
https://towardsdatascience.com/realtime-multiple-person-2d-pose-estimation-using-tensorflow2-x-93e4c156d45f
https://towardsdatascience.com/realtime-multiple-person-2d-pose-estimation-using-tensorflow2-x-93e4c156d45f
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1907.03670
https://doi.org/10.1109/CVPR.2011.5995316
https://github.com/strawlab/python-pcl
https://github.com/strawlab/python-pcl
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/ICCV.2015.114
http://ieeexplore.ieee.org/document/7410471/
https://github.com/tom-uchida/Add_Noise_to_Point_Cloud
https://github.com/tom-uchida/Add_Noise_to_Point_Cloud
https://doi.org/10.1145/3072959.3073608
https://dl.acm.org/doi/10.1145/3072959.3073608
https://dl.acm.org/doi/10.1145/3072959.3073608
https://doi.org/10.3389/fphar.2019.01631
https://www.frontiersin.org/articles/10.3389/fphar.2019.01631/full
https://www.frontiersin.org/articles/10.3389/fphar.2019.01631/full
https://doi.org/10.1109/CVPR42600.2020.00192
https://ieeexplore.ieee.org/document/9156567/
https://doi.org/10.3390/sym12101636
https://doi.org/10.3390/sym12101636
https://www.mdpi.com/2073-8994/12/10/1636

Bibliography 43

Yang, Bin, Wenjie Luo, and Raquel Urtasun (Mar. 2019). “PIXOR: Real-time 3D Ob-
ject Detection from Point Clouds”. In: arXiv:1902.06326 [cs]. arXiv: 1902.06326.
URL: http://arxiv.org/abs/1902.06326 (visited on 05/24/2021).

Yang, Jiancheng et al. (Apr. 2019). “Modeling Point Clouds with Self-Attention and
Gumbel Subset Sampling”. In: arXiv:1904.03375 [cs]. arXiv: 1904.03375. URL: http:
//arxiv.org/abs/1904.03375 (visited on 12/25/2020).

Yu, Tan, Jingjing Meng, and Junsong Yuan (June 2018). “Multi-view Harmonized
Bilinear Network for 3D Object Recognition”. en. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, pp. 186–
194. ISBN: 978-1-5386-6420-9. DOI: 10.1109/CVPR.2018.00027. URL: https://
ieeexplore.ieee.org/document/8578125/ (visited on 12/25/2020).

Zhao, Hang et al. (Apr. 2018). “Loss Functions for Neural Networks for Image Pro-
cessing”. In: arXiv:1511.08861 [cs]. arXiv: 1511.08861. URL: http://arxiv.org/
abs/1511.08861 (visited on 05/21/2021).

Zhao, Yongheng et al. (July 2019). “3D Point Capsule Networks”. In: arXiv:1812.10775
[cs]. arXiv: 1812.10775. URL: http://arxiv.org/abs/1812.10775 (visited on
12/14/2020).

Zhou, Y., H. Dong, and A. E. Saddik (Oct. 2020). “Learning to Estimate 3D Human
Pose From Point Cloud”. In: IEEE Sensors Journal 20.20. Conference Name: IEEE
Sensors Journal, pp. 12334–12342. ISSN: 1558-1748. DOI: 10.1109/JSEN.2020.
2999849.

http://arxiv.org/abs/1902.06326
http://arxiv.org/abs/1904.03375
http://arxiv.org/abs/1904.03375
https://doi.org/10.1109/CVPR.2018.00027
https://ieeexplore.ieee.org/document/8578125/
https://ieeexplore.ieee.org/document/8578125/
http://arxiv.org/abs/1511.08861
http://arxiv.org/abs/1511.08861
http://arxiv.org/abs/1812.10775
https://doi.org/10.1109/JSEN.2020.2999849
https://doi.org/10.1109/JSEN.2020.2999849

	Declaration of Authorship
	Abstract
	Introduction
	Problem
	Challenges
	Motivation
	Research Gap
	Objective
	Paper structure

	Related work
	Deep learning approaches for point cloud
	Projection-based methods
	Volumetric-based methods

	Point-based Methods
	Human pose estimation
	Image-based methods
	point-cloud-based methods

	Capsule network
	Capsule networks for point cloud classification
	Capsule networks for point cloud regression

	Research Hypothesis and Problem
	Hypotheses
	Problems

	Dataset and evaluation metrics
	Dataset
	ITOP

	Evaluation metric

	Methodology
	Data preparation
	Human extraction
	Threshold filtering
	Clusterization

	Point cloud normalization
	Adding noise to data
	Gaussian noise
	Outlier noise

	Network architecture
	Loss aggregation

	One stage network training
	How noise affects model's performance
	Influence of dataset size on model's performance

	Experiments
	Experiment setup
	Effectiveness of one stage training
	Results on ITOP dataset
	How noise affects models' performance
	Models' performance with the lack of data

	Conclusions
	What was done?
	Capsule-based model for human pose estimation
	Capsule-based model and noisy data
	Capsule-based model and train dataset size

	Future work
	Data preprocessing
	New datasets
	New loss aggregation strategies

	Bibliography

