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Abstract

The physics of body dynamics is a complex problem solved by the nervous sys-
tem in real-time during the planning and execution of movements. The human arm
and hand have complex mechanics involving hundreds of muscles that actuate over
30 degrees of freedom (DOF). To date, the problems of this complexity remain un-
solved in engineering; yet, the nervous system computes control signals in a robust,
accurate, and time-efficient manner. Neuroprosthetics require similar computations
for the decoding of intent and encoding of sensory feedback. The trade-off of re-
quired computational accuracy and latency is hard to resolve with classical physics;
thus, this research aims to develop "good-enough" approximations of these compu-
tations using machine learning methods, such as artificial neural networks (ANN).
The kinematic and kinetic temporal computations that rely on the diverse number
of terms within the equations of motion are consistent with the recurrent neural
network (RNN) architectures. This study will test the general hypothesis that the
inverse dynamics of arm and hand can be captured with RNN formulation and ex-
plore the utility of different architectures: i) simple Recurrent ANN, ii) Gated Re-
current Unit (GRU) ANN, and iii) Long Short-Term Memory (LSTM) ANN. The in-
verse problem is the mapping from joint kinematics (position, velocity, acceleration)
to joint kinetics (torque). The training and testing datasets were derived from the
physical model of arm and hand performing point-to-point movements between re-
alistic postures arranged in a grid within the physiological range of motion. Lastly,
we assessed the execution latency of the machine learning solutions in the context
of real-time requirements for prosthetic applications.
Keywords: Inverse Dynamics, RNN, joint torques, joint kinematics, joint kinetics,
hand dynamics, arm dynamics, locomotion, motion control.
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Chapter 1

Introduction

1.1 Motivation

The problem of decoding control signals for arm and hand movements has not yet
been fully solved, even though several approaches show promise. The human hand
has 24 degrees of freedom (DOF): 4 in each finger, 3 for extension and flexion, and
one for abduction and adduction; the thumb is more complicated and has 5 DOF,
leaving 3 DOF for the rotation of the wrist (Agur, 1999). In addition to this, the arm
itself also has 4 DOF for elbow and shoulder joints. Due to the complexity of hand
structure and functions, we need a complex biological "computer" in our head to
control it. As a result, the most significant part of our motor cortex responsible for
hand motion control. So, solving a task of controlling arm and hand dynamics from
control signals to the limb’s exact position in space amongst the most challenging
tasks in human locomotion simulation.

Many pieces of research focus on pattern recognition of EMG signals to classify
a limited amount of gestures. Usually, the number of gestures is not high and lies
within interval 4-12 gestures. Larger data sets are rare. However, despite promising
results with high accuracy reported, pattern recognition usage in real-life applica-
tions could be complicated due to the small number of gestures. When the number
of gestures increases, the accuracy of pattern recognition decrease as highlighted in
Atzori, Cognolato, and Müller, 2016.

Solving the outlined problem will lay a foundation for future prosthetic limb im-
provements and enhance its range of supported movements. In addition, we could
improve the robustness of human-machine interactions by solving limb dynamics
problem with the help of Artificial Neural Networks (ANN) formulation. Finally,
high performance and minimal response time of prosthetics in daily activities will
improve amputees’ quality of life by reducing their disability.

1.2 Problem Background

The mapping of control signals recorded from cortex, nerves, or muscles during con-
tractions and relaxations to precise limb position in space is a non-linear one. Con-
sidering this, any model which tries to map control signal to arm and hand position
in space directly needs to solve a highly complex relationship. Thus, it could not
be solved as a time series problem and approached as a pattern recognition prob-
lem with fewer gestures. As a result, the practical application of such solutions is
limited also. The required model should solve two parts of the system - muscu-
loskeletal transformation (MT) and limb dynamics (LD). Existing Machine Learning
approaches attempt to solve both MT and LD parts all together - without breaking
them apart.
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In the current research, the idea is to use the approach described in Sobinov et
al., 2020, where the musculoskeletal transformation was solved already. Hence this
work will focus only on the kinematic part - find a model based on ANN formulation
to approximate limb dynamics. This problem is known as Inverse Dynamics (ID)
problem in robotics and biomechanics.

Inverse Dynamics is the problem of finding the torques to produce a required
acceleration in the rigid-body model (Featherstone, 2007). In a nutshell, the ID prob-
lem could be described by the equation:

τ = ID(model, q, q̇, q̈) (1.1)

where q, q̇, q̈, and τ are vectors of joints positions, velocities, acceleration, and
torques, respectively, and a model is a rigid-body model (Featherstone, 2007). Re-
lation between vectors q, q̇, q̈ could be described by formulas q̇ = dq

dt and q̈ = dq̇
dt .

One possible way to solve the ID problem for body i is to use the Recursive
Newton-Euler algorithm, which consists of the following steps.

FIGURE 1.1: Forces acting on body i by Featherstone, 2007

Step 1:
vi = vλ(i) + Si q̇i (1.2)

where Si is a motion freedom matrix, vi is the velocity of body i and could be de-
fined recursively as the sum of the velocity of its parent λ(i) and the velocity across
the connecting joint (Featherstone, 2007). Initial value v0 = 0. By differentiating
equation 1.2, recurrent relation for acceleration could be obtained:

ai = aλ(i) + Si q̈i + Si q̇i (1.3)

where Si is a motion freedom matrix and ai is an acceleration of body i by Feather-
stone, 2007. Initial value a0 = 0.

Step 2: Net force action on body i is f B
i and calculated by equation:

f B
i = Iiai + vi ×∗ Iivi (1.4)

where Ii is inertia of body i and ×∗ dual cross-product operator × by Featherstone,
2007.
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Step 3: From figure 1.1 fi is the force transmitted from body λ(i) to body i
through joint i, and f x

i is the external forces applied to body i (Featherstone, 2007).
The net force on the body i calculated by the formula:

f B
i = fi + f x

i − ∑
j∈µ(i)

f j (1.5)

which could be rearranged to recurrence relation of the joint forces:

fi = f B
i − f x

i + ∑
j∈µ(i)

f j (1.6)

as explained by Featherstone, 2007. Generalized torques at the joints could be found
by the equation:

τi = ST
i fi (1.7)

where Si is a motion freedom matrix by Featherstone, 2007.
Also, there is a temporal relation in this problem. For example, at time step t + 1

position of the limb in space will depend on two factors: distance covered within
a time step t + 1 and the limb’s initial position at time step t. The proposed model
should consider such a temporal relationship where the final result on step t+ 1 also
depends on step t.

1.3 Goals of Research

To achieve desired results, it is also essential to have some physical model used dur-
ing ANN training. As a possible option, we will use the musculoskeletal model
created by colleagues from the Neural Engineering Lab (NEL) at West Virginia Uni-
versity (WVU) to provide input and target data for network training. The baseline
model is described in detail in section 3.1. Finally, to allow such ANN model appli-
cation in some real-life scenarios, there is also an important constraint. The resulting
model should work in real-time and have a latency as small as possible for the for-
ward propagation.

The main goal is to find suitable recurrent neural network (RNN) models de-
signed to work with sequential data in Natural Language Processing (NLP) domain.
Next, we suggest applying the resulted model to find a robust mapping between
joint kinematics and torques to identify a simulated limb’s precise motion in space.
In general, we would like to find an ANN model to solve the Inverse Dynamics
problem. Moreover, such an ANN model, in addition to joint kinematics-torques
mapping described above, should learn temporal dependency between resulted tra-
jectory on each time step from a previous one. Afterward, we plan to integrate such a
model into the Artificial Physic Engine (APE) tool, which will approximate physical
processes with ANN instead of direct calculations.

1.4 Structure of Master Thesis

Further in this thesis following parts are included:

• chapter 2 contains information about other researches in this field and a review
of related works;

• chapter 3 describes available data itself, how data was generated for this re-
search, and its analysis;
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• chapter 4 is about the research approach used and solution structure;

• chapter 5 covers details of conducted experiments;

• chapter 6 summarize obtained results, discuss research limitations and outline
future work directions.
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Chapter 2

Related Work

2.1 Inverse Dynamic Problem and ANN

In the past, there were successful attempts to approximate human arm and hand
motion with the help of Artificial Neural Networks (ANN) of type Recurrent Neural
Network (RNN), results are described by Draye et al., 1995. In this work, the authors
used Electromyography (EMG) signals as model input to approximate a trajectory
when drawing figure "eight" with a straight arm. For such tasks, feed-forward ANN
is not a good fit since such networks do not learn temporal relationships between
samples (Draye et al., 1995). In our study, EMG signals are mapped to joint kine-
matics (joint positions, velocities, and accelerations) as described by Sobinov et al.,
2020.

In general, the recurrent internal structure of RNN models gives the latest enough
computational power to approximate dynamic systems, as highlighted by Ogun-
molu et al., 2016. Also, RNN could solve Inverse Dynamics (ID) problem in robotics
for robot tracking control of flexible joints robot Baxter (Chen and Wen, 2019), which
indicates that RNN can cope with such problems. Finally, in Hartmann et al., 2012
RNN was applied to a musculoskeletal robot arm with 7 DOF, comparable with a
human arm in structure and complexity. In the current research, we use a more
complicated model, which includes a hand as well. Hence the total number of DOF
is equal to 23, thus increasing problem complexity.

2.2 Recurrent Neural Network Types

To solve the mapping of joint kinematics to torques for a simulated realistic 27 DOF
limb, we consider the following list of suitable recurrent neural network types: the
"vanilla" RNN as baseline one, Gated Recurrent Unit (GRU), and Long Short-Term
Memory (LSTM). We described all mentioned RNN types in detail below. We choose
Recurrent Neural Networks (RNN) as the best fit for this problem because those are
well-suited for time-related data and can solve ID problems in general, as mentioned
in section 2.1. We plan to determine exact ANN architecture based on series of ex-
periments for architecture search and hyperparameters tuning.

2.2.1 Simple Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a type of ANN where for each element in the
input, each recurrent layer computes the following:

ht = ReLU(Wihxt + bih + Whhh(t−1) + bhh) (2.1)
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where ht is the hidden state at time t, xt is the input at time t, h(t−1) is the hidden state
of the previous layer at time t − 1, Wih and Whh are the input-hidden and hidden-
hidden weights matrices, bih and bhh are the input-hidden and hidden-hidden bias
terms.

FIGURE 2.1: Simple or Elman RNN reviewed by Lipton, Berkowitz,
and Elkan, 2015

Figure 2.1 shows an overall structure of simple or Elman RNN. This network was
introduced by Elman, 1990 and reviewed by Lipton, Berkowitz, and Elkan, 2015.
However, simple RNN models might suffer from vanishing or exploding gradient
problems during training as described in Bengio, Simard, and Frasconi, 1994. With
ReLU function used as nonlinearity activation function exploding gradient issue is
more likely to happen (Lipton, Berkowitz, and Elkan, 2015).

2.2.2 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a type of ANN where for each element in the input
sequence, each recurrent layer computes the following functions:

rt = σ(Wirxt + bir + Whrh(t−1) + bhr) (2.2)

zt = σ(Wizxt + biz + Whzh(t−1) + bhz) (2.3)

nt = tanh(Winxt + bin + rt ∗ (Whnh(t−1) + bhn)) (2.4)

ht = (1− zt) ∗ nt + zt ∗ h(t−1) (2.5)

where ht is a hidden state at time t; xt is the input at time t; h(t−1) is the hidden state of
a layer at time t− 1; rt, zt, nt are the reset, update, and new gates, respectively. Thus,
Wi_ and Wh_ are the input-hidden and hidden-hidden weights matrices, bi_ and bh_
are the input-hidden and hidden-hidden bias terms. σ is the sigmoid function, and
∗ is the Hadamard product.

This type of RNN was initially proposed by Cho et al., 2014 and displayed on
figure 2.2. In Chung et al., 2014, authors compared two gated RNN types - GRU and
LSTM - with simple RNN. Results indicate that both GRU and LSTM models out-
perform simple RNN on different datasets. However, there is no way to determine
which gated RNN is better than the other, and the selection of the best model de-
pends on the task and dataset itself (Chung et al., 2014). While in Zhou et al., 2016,
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FIGURE 2.2: GRU block re-printed from Zhou et al., 2016

authors proposed a new simplified version of GRU - Minimal Gated Unit (MGU)
with only one gate and no peephole connections, making it faster to train and less
computationally intensive with the same level of performance. Hence MGU could
be an excellent alternative to GRU models considering real-time response require-
ments and edge device limitations. Finally, authors in Jozefowicz, Zaremba, and
Sutskever, 2015 have found some permutations of GRU architecture that outper-
form both standard GRU and LSTM models on multiple tasks. However, the im-
provement margin was not significant for GRU architecture.

2.2.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of ANN where for each element in the
input sequence, each layer computes the following function:

it = σ(Wiixt + bii + Whih(t−1) + bhi) (2.6)

ft = σ(Wi f xt + bi f + Wh f h(t−1) + bh f ) (2.7)

gt = tanh(Wigxt + big + Whgh(t−1) + bhg) (2.8)

ot = σ(Wioxt + bio + Whoh(t−1) + bho) (2.9)

ct = ft ∗ c(t−1) + it ∗ gt (2.10)

ht = ot ∗ tanh(ct) (2.11)

where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at time
t, h(t−1) is the hidden state of the layer at time t− 1, and it, ft, gt, ot are the input,
forget, cell, and output gates, respectively. Thus, Wi_ and Wh_ are the input-hidden
and hidden-hidden weights matrices, bi_ and bh_ are the input-hidden and hidden-
hidden bias terms. σ is the sigmoid function, and ∗ is the Hadamard product.

Based on results obtained in Greff et al., 2017, it makes sense to start with what
was called the "vanilla" LSTM block setup in that paper (see figure 2.3). Such com-
monly used LSTM block architecture shows good performance on various data sets,
and none of the improvements tested in Greff et al., 2017 significantly improved this
result. However, considering the real-time model response requirement, simplifying
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the LSTM block to reduces its computational cost makes sense. Following experi-
ments from Greff et al., 2017 most significant simplifications are coupling of input
and forget gates and removing peephole connections because both of these changes
do not decrease performance significantly. In work by Jozefowicz, Zaremba, and
Sutskever, 2015, authors have found some permutations of GRU architecture that
outperform the standard LSTM model on multiple tasks. However, the LSTM model
with dropout or increased forget bias might have better results, but this depends on
the particular dataset and task at hand (Jozefowicz, Zaremba, and Sutskever, 2015).
Finally, Chung et al., 2014 showed that gated RNN, like GRU and LSTM, outper-
forms simple RNN architecture for different tasks, but results were not that clear to
decide which one is better, and the decision should be taken based on the task to
solve.

FIGURE 2.3: "Vanilla" LSTM block setup as described in Greff et al.,
2017

The most relevant hyperparameters are the learning rate and size of hidden layers.
It is confirmed by analysis done in Greff et al., 2017 with the help of the fANOVA
framework for assessing hyperparameter importance. So, it makes sense to tune
only these two hyperparameters while searching for the best-performing model.
Lastly, authors in Greff et al., 2017 prove that we could treat hyperparameters as
independent for the sake of tuning simplification. The measured interaction be-
tween the two mentioned hyperparameters is insignificant. In Greff et al., 2017, it
also suggested tuning the learning rate with the help of a smaller network to save
time. However, exact LSTM network architecture remains an open question since
even in Greff et al., 2017, authors used different network architectures for different
datasets.



9

Chapter 3

Data

3.1 General Information

This research arm and hand model is a simplified model of the real bio-mechanical
system. Hence the number of DOF is reduced down to 23. Colleagues from Neu-
ral Engineering Lab (NEL) at West Virginia University (WVU) generated data for
this research using a Simulink model in MATLAB. Figure 3.1 depicts the internal
structure of this model, which is similar to the human hand in structure, and figure
3.2 shows this model in action. Additional details of the internal model design are
shown on figures B.1 and B.2 in appendix B. We did not use data from real subjects
in this research. List of all DOF used in this research provided in table 3.1 with a
description of which joint it corresponds to.

FIGURE 3.1: Simulink model internal schematics by NEL at WVU

We organized all data into 1053 files, recording a particular movement of simulated
hand between starting and ending positions. Each file name follows a pattern -
{movement type}_{start position}_{end position}_{movement duration in s}.

All possible movements between the selected postures were created using the
bell-shaped velocity constraint with zero starting and final velocities. The grid was
defined by 3 × 3 × 3 postures spanning positions on both sides of the body mid-
line and covering the central area of space between shoulders. The total number of
movements, defined by the combinatorial combination C(n, k) = n!

[k!(n−k)!] , where n
is the number of postures and k is the number of postures in a selection (k = 2),
was 351. The shape of the Gaussian curve defined the velocity maximum and three
movement durations (0.5 s, 1.0 s, 2.0 s) to evaluate the impact of varied dynam-
ics. Thus, this dataset captured a diverse subset of dynamic repertoire (reaching,
defense, and manipulation) typically examined in primate research of limb control
(Graziano and Aflalo, 2007).
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FIGURE 3.2: Simulink model visualization used for data generation
by NEL at WVU

DOF Name Description
ra_wr_s_p hand rotation motion; supination is negative; pronation is positive
ra_wr_e_f wrist flexion/extension motion; flexion is positive
ra_cmc1_ad_ab thumb proximal abduction/adduction motion
ra_cmc1_f_e thumb proximal flexion/extension motion
ra_mcp1_f_e thumb central flexion/extension motion
ra_ip1_f_e thumb distal flexion/extension motion
ra_mcp2_e_f index proximal flexion/extension motion
ra_pip2_e_f index central flexion/extension motion
ra_dip2_e_f index distal flexion/extension motion
ra_mcp3_e_f middle proximal flexion/extension motion
ra_pip3_e_f middle central flexion/extension motion
ra_dip3_e_f middle distal flexion/extension motion
ra_mcp4_e_f ring proximal flexion/extension motion
ra_pip4_e_f ring central flexion/extension motion
ra_dip4_e_f ring distal flexion/extension motion
ra_mcp5_e_f pinky proximal flexion/extension motion
ra_pip5_e_f pinky central flexion/extension motion
ra_dip5_e_f pinky distal flexion/extension motion
ra_sh_ab_ad shoulder abduction/adduction motion
ra_sh_e_f shoulder flexion/extension motion
ra_sh_rot shoulder rotation motion
ra_el_e_f elbow flexion/extension motion
ra_wr_ad_ab wrist abduction/adduction motion; radial deviation is negative

TABLE 3.1: DOF details

The resulting data was organized as the structure containing [q, q̇, q̈, τ], where q is the
vector of joint positions, q̇ and q̈ are its angular velocity and acceleration, and τ is the
joint torque. For the 23 DOF model, each vector contained 92 signals sampled at 10
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FIGURE 3.3: Action Zones in the Motor Cortex of the Monkey from
Graziano and Aflalo, 2007

kHz - 10 cycles per millisecond (ms). For Inverse Dynamic (ID) problem positions,
velocity and acceleration represent input variables, resulting in 69 input features - 3
features per DOF. While torques data represents target variables, thus there are 23
target features the model needs to predict.

The final name of any feature consists of a prefix concatenated with the respective
DOF name with the help of the underscore symbol "_". Throughout this work, we
are using the following prefixes:

• pos for position data per DOF, for example, pos_ra_el_e_f ;

• vel for velocity data per DOF, for example, vel_ra_el_e_f ;

• acc for acceleration data per DOF, for example, acc_ra_el_e_f ;

• tor for torque data per DOF, for example, tor_ra_el_e_f.

3.2 Exploratory Data Analysis

As part of the research, we performed Exploratory Data Analysis (EDA) on given
data to check any abnormalities or specifics. As a result, we identified that 42 input
features out of 69 have a constant value of 0 for all recorded movements in the whole
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dataset. Such specific is known and related to the movement type which is used to
collect the data. We do not include the intended movement of hand DOF in the cur-
rent dataset on purpose. Hence the majority of velocity and acceleration features for
those DOF are not used and equal to 0. Since training on zero-valued features does
not yield any meaningful results, those features were excluded from further usage in
all 1053 files leaving only 27 meaningful features for training, validation and testing.
Such exclusion also helps to reduce dataset size and speed up processing. Table 3.2
contains an EDA summary of non-zero input features. If we include the intended
movement of hand into the dataset, those features will be essential and could not be
excluded anymore. However, such movements are not in the scope of this research
and will be part of future work.

Feature name Min Max Mean UoM
pos_ra_wr_e_f* 0.0873 0.0873 0.0873 rad
pos_ra_cmc1_ad_ab* 0.43635 0.43635 0.43635 rad
pos_ra_cmc1_f_e* 0.43635 0.43635 0.43635 rad
pos_ra_mcp1_f_e* -0.3927 -0.3927 -0.3927 rad
pos_ra_ip1_f_e* -0.7854 -0.7854 -0.7854 rad
pos_ra_mcp2_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_pip2_e_f* 1.0472 1.0472 1.0472 rad
pos_ra_dip2_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_mcp3_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_pip3_e_f* 1.0472 1.0472 1.0472 rad
pos_ra_dip3_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_mcp4_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_pip4_e_f* 1.0472 1.0472 1.0472 rad
pos_ra_dip4_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_mcp5_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_pip5_e_f* 1.0472 1.0472 1.0472 rad
pos_ra_dip5_e_f* 0.7854 0.7854 0.7854 rad
pos_ra_sh_e_f -0.383972 2.356194 0.724635 rad
pos_ra_sh_rot 0.000000 1.431170 0.548809 rad
pos_ra_el_e_f 0.087266 2.234021 1.231427 rad
pos_ra_wr_ad_ab* 0.085 0.085 0.085 rad
vel_ra_sh_e_f -12.96415 9.24831 -0.710687 rad/s
vel_ra_sh_rot -6.523361 6.771084 -0.000928 rad/s
vel_ra_el_e_f -9.743755 10.156626 0.157892 rad/s
acc_ra_sh_e_f -89.151843 89.151843 -5.895056e-13 rad/s2

acc_ra_sh_rot -46.563383 46.563383 -1.490752e-14 rad/s2

acc_ra_el_e_f -69.845074 69.845074 1.542024e-13 rad/s2

TABLE 3.2: EDA results for input features

In the table 3.2, we marked with an asterisk "*" those features which have constant
value across the whole dataset. As was mentioned in section 3.1, the current dataset
consists only of actions where there is no intended movement of the hand. Because
of this reason, position features for the wrist and fingers do not change during the ac-
tion and remain constant. However, as could be seen from table 3.3, a minor amount
of torques is still required to keep hand DOF in a stable position during movement.
It happens due to other forces applied to arm and hand segments during movement,
including gravity force. Also, the content of table 3.3 confirms the initial observation
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that the current dataset is focused around elbow and shoulder joints only - the most
significant amplitude of torques applied to elbow and shoulder DOF to execute a
movement. Therefore, we kept all of the input features with constant values in the
model since those are still relevant for final results predictions.

Feature name Min Max Mean UoM
tor_ra_wr_s_p -0.737575 0.288719 -0.069673 N ·m
tor_ra_wr_e_f -1.021415 1.711340 -0.008283 N ·m
tor_ra_cmc1_ad_ab -0.089691 0.244647 0.022555 N ·m
tor_ra_cmc1_f_e -0.104478 0.151575 -0.005417 N ·m
tor_ra_mcp1_f_e -0.045148 0.072021 0.007732 N ·m
tor_ra_ip1_f_e -0.013673 0.009171 0.001053 N ·m
tor_ra_mcp2_e_f -0.045963 0.142117 -0.000329 N ·m
tor_ra_pip2_e_f -0.017351 0.060641 -0.000069 N ·m
tor_ra_dip2_e_f -0.002087 0.007087 0.000002 N ·m
tor_ra_mcp3_e_f -0.050628 0.155408 -0.000345 N ·m
tor_ra_pip3_e_f -0.017948 0.062216 -0.000070 N ·m
tor_ra_dip3_e_f -0.002110 0.006693 0.000002 N ·m
tor_ra_mcp4_e_f -0.034543 0.106487 -0.000231 N ·m
tor_ra_pip4_e_f -0.012739 0.043525 -0.000052 N ·m
tor_ra_dip4_e_f -0.001679 0.004946 3.297148e-07 N ·m
tor_ra_mcp5_e_f -0.021682 0.066597 -0.000144 N ·m
tor_ra_pip5_e_f -0.007879 0.026493 -0.000034 N ·m
tor_ra_dip5_e_f -0.001121 0.003064 -4.562871e-07 N ·m
tor_ra_sh_ab_ad -12.861373 32.386611 3.198925 N ·m
tor_ra_sh_e_f -48.406797 49.133783 5.980571 N ·m
tor_ra_sh_rot -32.820674 39.781555 1.569562 N ·m
tor_ra_el_e_f -21.420735 41.259662 6.176702 N ·m
tor_ra_wr_ad_ab -2.679080 0.984739 -0.246989 N ·m

TABLE 3.3: EDA results for output features
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Chapter 4

Methodology and Research
Approach

4.1 Methodology

For this research, we decided to go with a methodology that is inspired by the sci-
entific method. Hence our research consists of five phases: problem understanding,
data analysis, data preprocessing, model selection, and results evaluation. However,
this process is not linear, and we iteratively repeated phases multiple times.

4.1.1 Problem Understanding

As part of this phase, we defined and set the goals of this research. We captured
those goals in section 1.3. Also, we studied the problem background of Inverse Dy-
namics (ID) itself and how it is addressed by usual means. We outlined this informa-
tion in section 1.2. Next, according to defined goals, we reviewed related work. We
reviewed similar researches about solutions to ID problems in the area of robotics. In
addition, we reviewed researches where arm dynamic was approximated from sur-
face Electromyography (EMG) signals. In all of the reviewed cases, successful results
were achieved with the help of Recurrent Neural Networks (RNN), albeit on more
simplified models, if compared with current research. Also, using EMG signals to
approximate hand dynamics is a different approach than the ID problem. However,
it indicates that RNN models are well suited for dynamic systems approximation.
Subsequently, we also review related work regarding different RNN model types,
their performance on different tasks, and potential simplifications, which might
be useful considering edge device limitations and real-time response requirements.
Section 2 contains a summary of the review results. As the last step of this phase, we
prepared an execution plan for this research.

4.1.2 Data Analysis

In this phase, we studied available data and performed Exploratory Data Analysis
(EDA). Chapter 3 describes what kind of data we had to approach the ID problem,
who and how generated the data for this research, and summarizes the results of
EDA. This step is essential for the successful execution of this work. EDA of the pre-
vious dataset version reveals severe data abnormalities that force to discard dataset.
Those abnormalities are cases when joint positions were beyond the physical capa-
bilities of a real joint, for example, 11 radians. Flaws in the model used for data
generation were a root cause of mentioned abnormalities. To avoid such issues and
re-collect a new dataset, we adjusted our model and reduced the number of revolute
joints connected in series. Those were replaced with a spherical joint (for shoulder)
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and a combination of universal joint and revolute joint (for wrist and thumb). Such
changes reduce models’ complexity and numerical error that arise due to having
many separate revolute joints and rotation between them. Afterward, we performed
the same analysis for the new dataset, and data quality was acceptable - no more se-
vere abnormalities and data corresponds to the task specifics.

4.1.3 Data Preprocessing

This phase of research focuses on how to modify and process available data for the
upcoming models. During this phase, we split all available data into train, valida-
tion, and test sets. We used the train and validation set during the model selection
phase, while the test set we kept aside till the results evaluation phase. Due to the
enormous size of the initial dataset, we decided not to perform cross-validation on
the train set and instead have a separate validation dataset. As a result, we per-
formed model training and validation cycles faster and iterated rapidly on different
model architectures.

Another important aspect, which comes from data understanding, is the neces-
sity to scale the data. We decided to scale input data to make training more robust
and stable by shifting the scale of data closer to the ANN weights scale. It is es-
sential if we consider the vulnerability of simple RNN models to vanishing or ex-
ploding gradient issues. Also, considering that model of hand and arm used for this
research consist of 23 DOF, the Inverse Dynamic (ID) problem could be treated as a
multi-target non-linear regression problem with 23 target variables or features, each
with its scale. Due to this reason, it might be complicated to optimize with the help
of Mean Squared Error (MSE) loss. In such a case, optimization happens for features
with the most significant scale and ignores others. We found two options for deal-
ing with such cases - either scale target features to make them more equal or use
weighted MSE. In weighted MSE, some weights are assigned to one or another tar-
get feature. Since weighted MSE requires expert knowledge to correctly weight each
target feature and adjustments of weights might be required based on new data, we
decided to discard this option and scale target features.

As the last step of this phase, we prepared data for RNN model consumption.
This process consists of two parts. Firstly, RNN models work with sequences of data.
Hence we executed sequencing for train, validation, and test datasets. Secondly, due
to the enormous size of available data, we had to take only its part. It also makes
sense from the future practical application of the resulted model. However, even the
reduced dataset was still too big to fit into memory, requiring special handling for
big datasets. We solved this issue with the help of Hierarchical Data Format (HDF)
files, which allow storing and reading datasets from disk. As a result, scaled and
sequenced data was persisted on the disk for utilization during the next phase. We
recorded all detailed information about this step in section 4.2.1.

4.1.4 Model Selection

We split the model selection phase into two parts: to find the most suitable archi-
tectures with hyperparameter tuning and to evaluate the relative performance of
different architectures after final model training. We described all details for both
parts in chapter 5 while capturing all details of the training pipeline itself in section
4.2.2.
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The main goal of our model development is to use computationally light mod-
els that provide a “good-enough” description of limb dynamics, considering the re-
quirements of real-time model response and potential edge device limitation. Pre-
viously, we have demonstrated how musculoskeletal dynamics could be described
with high-quality approximations using our new formulation that relies on the in-
formation theory to determine the composition of the approximating power polyno-
mial functions (Sobinov et al., 2020). We have taken this approach further to leverage
machine learning for the solution of not only the musculoskeletal dynamics (Sobi-
nov et al., 2020), but also the limb dynamics that is typically accomplished by solving
the equations of motion. Furthermore, this approach based on artificial neural net-
works (ANN) can simplify the application of our models in movement control and
assessment problems.

The mapping from posture to torque τ(t) = ANN{q(t), q̇(t), q̈(t)} was per-
formed by several types of ANNs: 1) Recurrent Neural Net (RNN); 2) Gated Re-
current Unit (GRU); and 3) Long Short-Term Memory (LSTM). The subjective choice
of hyperparameters was based on error magnitude and rate during training with a
diverse set of parameters in the preliminary training session for a limited number
of epochs evaluating the entire training dataset. All models were assessed by MSE
score on the scaled validation dataset. We kept the test dataset as a hold-out dataset
during this phase and did not use it in model assessment. In general, we considered
relatively simple architectures with one or few recurrent layers and a fully connected
layer as the output one. We avoided more complex architectures and parked those
for later if simple ones will fail.

Overall, we selected five candidate architectures - one type of RNN architecture
as a baseline and two types for each GRU and LSTM architectures using the same
general hyperparameters. We trained all five candidate models with a more sophis-
ticated pipeline and without the temporal limit. We used the mean squared error of
each model on the original non-scaled validation dataset with random initial setup,
the models trained until no further improvement was registered.

4.1.5 Results Evaluation

In this phase, we executed the final evaluation of model performance with the help
of a hold-out test set. In addition to calculating MSE scores for the test dataset, we
will also evaluate selected model performance on all test set files directly to inves-
tigate which files are most challenging to predict and visualize those results. Also,
we will validate model average time for forward propagation of one sample, assess
model performance on noisy data and data with different lengths of sequence. Fi-
nally, together with colleagues from the Neural Engineering Lab (NEL) at WVU, we
agreed to evaluate the selected model by connecting it to the musculoskeletal model
used for data generation. However, this only possible after the selected model will
be transferred to MATLAB. It is out of the scope of this thesis; hence, this evaluation
will take place later and be part of future work. More details about model evaluation
could be found in sections 5.2 and 5.3.1.

4.2 Solution Structure

We executed all experiments and data processing with the help of the Google Colab
Pro service using GPU-enabled runtimes with enhanced RAM.



4.2. Solution Structure 17

4.2.1 Data Processing Pipeline

As a first step, we split all 1053 files into training, validation, and test sets with a ratio
of 0.7, 0.15, and 0.15, respectively. As a result, the training set consists of 737 files of
different movement duration. Validation and test set both have 158 files, each with
a different movement duration as well. Therefore, the distribution of movement
duration approximately equals for training, validation, and test sets.

Available data first needs to be split into multiple sequences of fixed length to
feed it into models of type RNN. We chose a sequence length of 100, equal to a
sequence of 10 ms length in the original dataset. We decided not to use padding.
Hence, for each file, sequences were only created from sample 100 and above. After
sequencing the training dataset, it became evident that such an enormous amount
of data does not fit into memory. To cope with such an issue, we decided to store
data on disk in *.h5 files, a data file stored in Hierarchical Data Format (HDF). With
this approach, it was possible to slice all training set files and store data on a disk.
For ANN model training, we utilized the PyTorch framework. Hence, we used a
custom-built PyTorch Dataset, which reads data from the *.h5 file on the fly when
queried based on the given index. When dealing with *.h5 files, it is essential to
know how data will be stored on a disk to optimize writing or reading.

For this work, reading performance was essential; hence, we discarded auto-
matic chunking of the *.h5 file, leading to long-running batch reading from such
dataset. Instead, we handpicked chunk sizes for input and target datasets as 3*100*27
and 300*23, respectively. This minor change improves the batch’s reading speed,
leading to faster model training and validation. Afterward, we built a simple cus-
tom PyTorch Dataset object intended to read data from *.h5 files and return a tuple
of input and corresponding target arrays. Data for training supplied by PyTorch
DataLoader in batches with shuffling enabled to ensure that it will be unbiased. As
a result, data for training was supplied in randomly sampled batches from all files
of the training dataset. The same prepossessing we also applied to validation and
test sets - splitting into sequences, storing in *.h5 file, and shuffling when consumed
via DataLoader. Shuffling is not required for validation and test sets, but the same
pipeline was used for all sets.

However, usage of the original dataset for training is inconvenient due to its
vast size, which leads to prolonged training. Also, from the future application point
of view, there is no practical usage in the model, which needs to estimate predic-
tions ten times per 1 ms. Therefore, we decided to take each tenth time step from
the original dataset and collect a new reduced dataset. Now, the sequence of 100
timesteps corresponds to 100 ms of duration. Thus, the amount of data was reduced
significantly, which positively impacted both - speed of model training and potential
model practical application in the future.

As a next step, we have created a simple RNN model as a proof of concept model
consisting of one RNN layer and one Fully Connected (FC) layer on top. RNN layer
parameters are: hidden_size = 23, nonlinearity = ’relu’ and FC layer parameter is
in_features = 23. We used the FC layer as the last step without any activation func-
tion because the model could predict values that lie outside of the range for the ReLU
function used in the RNN layer, such as negative torque values. After training such
a model, we assessed its performance on some files from the test set. We noticed an
obvious gap in results visualizations related to the usage of MSE as a loss function
for optimization. We have very different amplitude among all 23 target features, as
shown in table 3.3, with the biggest range for elbow and shoulder joints and a minor
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range for finger joints. As a result, the model pays maximum attention during gra-
dient descent to target features related to elbow and shoulder joints and completely
ignores others. To address this issue, we decided to apply either standardization or
normalization to input and target data. With the help of the simple RNN model de-
scribed above, we have assessed three possible preprocessing scenarios. First, apply
standardization to input and target features. Second, apply normalization to input
and target features. Third, the mixed scenario with normalization applied to input
features and standardization applied to target features. Afterward, we assessed the
MSE score between true and predicted target features with inverse scaling for each
scenario. Scenario with standardization of both input and target features yields the
lowest MSE score. Hence, we recollected all datasets adding standardization as a
preprocessing technique and the sequencing of data.

We used the already available implementation of Scalers in the Python scikit-
learn library for both standardization and normalization. MinMaxScaler 1 from
scikit-learn is an implementation of the normalization technique, while Standard-
Scaler 2 is a class implementing standardization. We chose the scikit-learn imple-
mentation because there is a possibility to fit Scalers on streaming data in smaller
chunks. With the help of this feature, we fit it on our data, which does not fit into
memory as a single chunk. Instead, we used all of the files, which comprise a train
set and fit Scaler on those files. We kept files from validation and test sets aside to
avoid bias in the model and simulate a real-life application where not all data might
be known upon training, including Scaler’s fitting. We preserved fitted Scalers to
use those as part of the pipeline and execute the inverse transformation of model
predictions in both cases.

As a result, with the sequence of length 100, we collected and preserved a train-
ing dataset of size 804037 samples each of shape 100*27 for the input part and 1*23
for the target part. The validation and test datasets sizes are 153858 and 166358 sam-
ples, respectively, with the same sample shapes. Both datasets were also preserved
to save time during training.

4.2.2 Model Training Pipeline

As a next step, we created an overall pipeline for the hyperparameters tuning, which
will be used during our experiments described in chapter 5. This pipeline consists of
model training for 15 epochs with mini-batch gradient descent optimization across
the whole dataset. For gradient descent, we used PyTorch implementation of Adam
optimization algorithm, which Kingma and Ba, 2015 initially proposed. Also, it in-
cludes model validation after each epoch. Finally, to assess model quality, we used
the MSE loss metric between model predictions and scaled target features.

Furthermore, we set up a pipeline for final model training for the best-found set
of hyperparameters. This pipeline is more complicated than the one we used for
hyperparameters tuning and includes the Learning Rate (LR) scheduler, early stop-
ping feature, and checkpoint saves after each epoch. In this pipeline, we validated
trained models on the validation dataset only, and the test dataset is only used after
training is over.

When optimization happens in the vicinity of optimum point initial value of
learning rate for model training might not be optimal, despite showing good re-
sults initially. It happens because gradient descent jumps over an optimum due to
the right direction but high length. To avoid such issues and to make optimization

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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more precise in the vicinity of optimum value, we included an LR scheduler in our
pipeline. As LR scheduler, we used the out-of-the-box class ReduceLROnPlateau 3

from the PyTorch library. This scheduler reduces LR by a chosen factor if there are
no improvements for a certain number of epochs for the observed metric. As an
observed metric for the LR scheduler, we decided to use MSE loss on the validation
dataset for original non-scaled data. We perform inverse transformation with previ-
ously persisted Scaler object of scaled target values and model predictions to achieve
this, then only MSE is calculated. Thus, we ensure that LR reduction will happen if
there is no improvement of MSE loss on original data and not on scaled one. Other
parameters of the LR scheduler are factor = 0.5, which will reduce LR by half, and
patience = 5, which will trigger LR reduction only after five unsuccessful epochs.

We did not limit the number of epoch for training so that all models could con-
verge as best as possible. However, to save time and avoid inefficient training after
model optimization reaches optimum, we build an early stopping feature as a cus-
tom class. It allows checking if the network does not show any improvements for
the observed metric over a particular number of epochs and stops further training
as inefficient. Furthermore, to allow the LR scheduler to execute its role, we set the
patience parameter of the early stopping class to 16, allowing the LR scheduler to
reduce the rate twice in a row before training is interrupted.

Lastly, we were using a Google Colab Pro environment for this research, where
any runtime has a timeout regardless of whether training is over or not. Considering
that, we have implemented a save of model checkpoint after each epoch. It allows
to resume training from any point in time or revert to the best model based on the
original MSE score on the validation dataset. We did not use the test dataset during
training.

After training is over for all models, we evaluated the results by using a hold-
out test dataset. Pipeline for evaluation is relatively lean - best performing model
according to original validation MSE score is loaded from the respective checkpoint
and evaluated by two metrics - scaled test MSE and original test MSE. Original test
MSE metric obtained by using persisted Scaler, which we fit initially on train data
only. In addition, we also evaluated models on series of experiments to check how
different models behave on data with added noise or data collected with different
lengths of sequence. Furthermore, we perform measurements of averaged time re-
quired for model forward propagation of one sample to compare different architec-
tures. Lastly, we visualized some of the experiments to improve the understand-
ing of model performance. For all mentioned experiments, no additional pipelines
were created, except for the visualization part. In all of the cases, we used existing
pipelines for model testing or data preprocessing tweaked and tuned with the help
of input parameters.

3https://pytorch.org/docs/master/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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Chapter 5

Experiments

5.1 RNN Architecture Search and Hyperparameters Tuning

To search for the best set of ANN parameters for optimal training, we chose to per-
form a grid search for three model parameters - LR, hidden layer size, and the num-
ber of layers. Therefore, a similar grid search was executed for all three types of
models - simple RNN, GRU, and LSTM. Based on the results of research by Greff
et al., 2017, we know that for LSTM most important hyperparameters are the learn-
ing rate and size of the hidden layer, which could be tuned independently from
each other. However, no such research confirms the same for simple RNN and GRU
model types. Hence, we used the same grid for all three model types and treated all
hyperparameters as interdependent. We did this for fair competition between dif-
ferent model types. Table 5.1 shows the exact values of hyperparameters we choose
for tuning. In summary, for each architecture, we executed 18 experiments based on
a defined hyperparameters grid.

Speaking about LR hyperparameter, initially, we planned to tune one more value
which is 0.005, but training with such a rate was inefficient and did not converge.
As a result, we discard this value and end up with only two possible values for LR.
We did not choose any smaller values since we would use LR Scheduler for final
training, which will reduce the rate based on training progress. As for the hidden
size hyperparameter, we choose its values based on the number of target features
equal to the number of DOF in our model. Hence, the hidden layer sizes are 1×,
3×, and 5× by number of DOF. Lastly, we have chosen values for the number of
layers hyperparameter in the same way. We did it by taking multiplication factors
for model hidden size hyperparameter with step 2 to enable more diverse models.
However, considering the requirement we have about the real-time model response,
we kept the overall architecture relatively simple. We intentionally did not go above
five recurrent layers in the model.

Hyperparameter Grid Values
Number of Layers 1 3 5
Hidden Size 23 69 115
Learning Rate 0.001 0.0005 -

TABLE 5.1: Grid used for hyperparameter tuning of ANN models

We have collected results of hyperparameter tuning of simple RNN model in the
table 5.2. Also, we collected results for GRU and LSTM models in tables 5.3 and 5.4,
respectively. In bold, we have highlighted the lowest achieved MSE score based on
the standardized validation dataset for all three model types. In general, we could
conclude that for all models LR parameter plays an important role. Lower values of
LR are preferable to achieve faster convergence and make training more stable. As
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for the number of layers hyperparameter, with the increase of its models, shows a
worse validation MSE score. This rule holds in general except few cases with small
hidden feature sizes. Such behavior on validation data is probably related to model
overfitting to training data due to the high amount of parameters when the number
of layers is higher. Lastly, higher values of hidden features size hyperparameter
lead to lower validation MSE score in general, which indicates that such models can
generalize better on previously unknown data. As a result, we could conclude that
models, which have a higher amount of hidden features and smaller amounts of
recurrent layers, are powerful enough to generalize better on validation data and
avoid overfitting.

Learning
Rate = 0.001

Hidden Size Learning
Rate = 0.0005

Hidden Size
23 69 115 23 69 115

Number
of
Layers

1 0.02120858 0.00766305 0.00715601 Number
of
Layers

1 0.02349921 0.00645291 0.00376442
3 0.01211087 0.00763333 0.00838280 3 0.01528858 0.00481066 0.00434209
5 0.01350686 0.01054625 0.01346354 5 0.01150493 0.00759974 0.00796293

TABLE 5.2: Validation MSE loss score of hyperparameters tuning for
RNN model

Learning
Rate = 0.001

Hidden Size Learning
Rate = 0.0005

Hidden Size
23 69 115 23 69 115

Number
of
Layers

1 0.00684158 0.00330278 0.00481885 Number
of
Layers

1 0.00455494 0.00268362 0.00307620
3 0.00723735 0.00709713 0.00802608 3 0.00308833 0.00441637 0.00576102
5 0.00733653 0.00956555 0.01528571 5 0.00482277 0.00432470 0.00819317

TABLE 5.3: Validation MSE loss score of hyperparameters tuning for
GRU model

Learning
Rate = 0.001

Hidden Size Learning
Rate = 0.0005

Hidden Size
23 69 115 23 69 115

Number
of
Layers

1 0.00368882 0.00221740 0.00237145 Number
of
Layers

1 0.00274252 0.00172109 0.00171244
3 0.00284546 0.00205254 0.00285071 3 0.00270155 0.00158603 0.00172317
5 0.00353208 0.00338600 0.00418648 5 0.00266886 0.00190042 0.00189096

TABLE 5.4: Validation MSE loss score of hyperparameters tuning for
LSTM model

As a next step, we trained the most promising architectures for each model type after
successfully identifying the most optimal parameters. Finally, we have added one
additional architecture for GRU and LSTM types with the same hyperparameters
identified for simple RNN. This time we performed training using a more compli-
cated pipeline compared to the one used for hyperparameters tuning. It is described
in detail in section 4.2.2. The following section will give more details about the re-
sults of the final model training.

5.2 Final Models Training

To train the final models, we used a pipeline described in section 4.2.2. After success-
ful training, we will evaluate each model on a hold-out test dataset. Since training
for final models consists of multiple epochs, we chose only models from epoch with
the lowest MSE score based on the original non-scaled validation dataset for the fi-
nal evaluation. To calculate such an MSE metric, we used persisted Scaler object,
which was fit initially on train data only. We collected all training results in table 5.5,
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including epoch number on which best score for original validation MSE achieved.
Also, training for all models was executed with a learning rate = 0.0005. In this
table, models RNN_1_115, GRU_1_69, and LSTM_3_69 are found by hyperparame-
ters tuning. In contrast, we added models GRU_1_115 and LSTM_1_115 to the list
to compare final results on equal with baseline model RNN_1_115. In table 5.5, we
also highlighted the best performing model in bold if to judge by scaled and origi-
nal validation MSE scores. The most successful model is LSTM_1_115, according to
those metrics. Its training took a moderate number of epochs - 34.

Model Name
Number
of Layers

Hidden
Size

Scaled
Validation MSE

Original
Validation MSE

Epochs
to Train

RNN_1_115 1 115 0.00327048 0.00433565 27
GRU_1_69 1 69 0.00114785 0.00180974 90
LSTM_3_69 3 69 0.00144839 0.00174503 47
GRU_1_115 1 115 0.00112260 0.00146464 455
LSTM_1_115 1 115 0.00108824 0.00116210 34

TABLE 5.5: Candidate models training results

5.3 Final Models Evaluation

After training is over for all candidate models, we evaluated all of them on a hold-
out test dataset in a series of experiments. We did not use this data before, neither
during model training nor as criteria to make a model selection. If not stated other-
wise, we used the MSE score on the original non-scaled test dataset as a metric in all
of the experiments. This metric is calculated with the help of previously persisted
Scaler, which was fit on train data only.

Experiment 1: First, we assessed model performance in general on the test dataset
by calculating scaled and original MSE scores for each model. Original test RMSE
metric is calculated simply as

√
Orig.Test.MSE.

Model Name Scaled Test MSE Original Test MSE Original Test RMSE
RNN_1_115 0.00383323 0.00657948 0.08111398
GRU_1_69 0.00262797 0.00364660 0.06038707
LSTM_3_69 0.00427745 0.00333634 0.05776109
GRU_1_115 0.00228220 0.00144345 0.03799275
LSTM_1_115 0.00184871 0.00167773 0.04096008

TABLE 5.6: Candidate models evaluation results on test dataset

Results: We have organized the results of the evaluation in table 5.6. In this table,
we highlighted in bold the lowest scaled and original test MSE scores. Interesting
to note that those scores belong to two different models. If to judge by scaled test
MSE metric, then the most performing model is the same as per validation met-
rics - LSTM_1_115 (see table 5.5). However, if the original test MSE metric is to
judge, which is much more important for practical application of the model, then
the most performing model is GRU_1_115. Also, the less performing model is sim-
ple RNN_1_115, if to judge by the same criteria - original MSE score.

Experiment 2: Next, we checked how models perform on individual files from
which the test dataset was composed. To check this, we executed all models on each
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file and measured the RMSE score per file. Also, we calculated averaged RMSE score
across all models.

FIGURE 5.1: Test files RMSE density plot

Results: We collected the results of this experiment on figure 5.1. There are a density
plot of RMSE values for each model separately and averaged RMSE score across all
models. Each plot visualizes the distribution of RMSE values across all 158 files in
the test set estimated with kernel smoothing. From this figure, we could conclude
that model GRU_1_115 has the highest peak with the lowest mean value, indicating
the lowest RMSE score for a broader list of files. It is closely followed by model
LSTM_1_115, which shows the second-best performance. Models LSTM_3_69 and
GRU_1_69 show similar results, while model RNN_1_115 shows the highest RMSE
scores per file among all models. It is indicated by the low height of the peak coupled
with the highest mean value and some outliers on the right side of the density plot
further away than for any other model.

Experiment 3: Next, we would like to measure and assess the average time all
models require to execute forward propagation of one sample (batch size equals one)
of size sequence length × the number of input features. When the model is applied
in practice, it needs to predict just one sample on each time step. Here we only mea-
sure how much time the model requires to calculate its prediction without backward
propagation and optimization. It allows us to judge how fast the model response is.
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To do this, we took all 158 test files and performed prediction in batches of size one
on both devices - CPU and GPU. By doing this, we calculated the average time of
forward propagation per model and device. All measurements were performed on
a Google Colab Pro High-RAM environment powered by GPU.

Device RNN_1_115 GRU_1_69 LSTM_3_69 GRU_1_115 LSTM_1_115
CPU 1.971 5.219 13.886 5.459 5.025
GPU 1.354 1.356 3.337 1.354 1.379

TABLE 5.7: Average timing of forward propagation for one sample in
milliseconds

Results: We summarized the results of this experiment in the table 5.7, all timings
provided in milliseconds (ms). According to these results, when the model is ex-
ecuted on a GPU device, there is no noticeable difference between different RNN
types models with only one recurrent layer. However, model LSTM_3_69 with three-
layered architecture is almost three times longer to perform a forward propagation
of one sample than one-layered models. When a model is executed on a CPU de-
vice, the results are different. The fastest model on CPU is RNN_1_115, which has
a timing slightly below 2 ms. On the other hand, gated RNN models with one re-
current layer take around 5-5.5 ms for forward propagation, two and a half times
slower than simple RNN. Furthermore, same as with GPU device, the longest for-
ward propagation time belongs to the LSTM model with three layers - around 14
ms, which is almost three times slower than other gated RNN models.

Experiment 4: Next, we would like to assess model performance on sequences
with a length less than 100, which we used for initial model training. To do so, we
choose to assess models’ performance similar to in experiment 1. This time, all mod-
els were assessed on the initial test dataset for reference and three other test datasets
with sequences of 50, 20, and 10. This experiment should indicate if models could
generalized well or "memorize" initial distribution from train data due to similar
movements.

Model Name Sequence 100 MSE Sequence 50 MSE Sequence 20 MSE Sequence 10 MSE
RNN_1_115 0.00657948 0.00700876 0.01623526 0.08437408
GRU_1_69 0.00364660 0.01486074 0.09703008 0.20517447
LSTM_3_69 0.00333634 0.01608654 0.20361219 1.40760101
GRU_1_115 0.00144345 0.00482661 0.03463733 0.12392941
LSTM_1_115 0.00167773 0.00276157 0.00834123 0.07718295

TABLE 5.8: Original MSE score on test dataset with different sequence
length

Results: We have gathered results on this experiment in the table 5.8. Overall, for
all models, performance decrease with the decrease of sequence length. However,
a pattern is different for each model. The three-layered model LSTM_3_69 showed
the worst results on all sequences of shorter length, despite intermediate results on
the initial sequence of length 100. Performance of model GRU_1_69 also decreases
significantly, but not as fast as for model LSTM_3_69. Model GRU_1_115 showed
the second-best MSE score on sequence length 50, but shorter sequences were more
challenging to predict precisely. Model RNN_1_115 showed the second-best result
on the shortest sequence of length 10, which was not expected since this model had
the highest MSE score on the original sequence of length 100. Also same simple
RNN model showed the second-best score on the sequence of length 20. The most
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performing model on all sequence lengths was model LSTM_1_115, which has the
second-best MSE score on the initial sequence of length 100 and best scores on all
shorter sequences.

Experiment 5: Following up experiment 4 above, we also measured the average
time required for forwards propagation of one sample using sequences of shorter
length. We again used sequences of length 50, 20, and 10 to assess timings for each
of them. The overall setup of this experiment is the same as in experiment 3. This
experiment aims to measure how much time the model requires to calculate its pre-
diction when input sequences have a shorter length than the one used for training.
As in experiment 3, measurements does not include backward propagation and op-
timization step.

FIGURE 5.2: Average timing of forward propagation for one sample
with different sequence length in milliseconds

Results: A figure 5.2 shows the results of this experiment, all timings recorded in
milliseconds (ms). Results for the sequence of length 100 were added here for ref-
erence based on table 5.7. In general, there is nothing unexpected in the results.
With the reduction of sequence length, forward propagation time also decreases.
For example, with the sequence of length 50, the timing of forward propagation ap-
proximately equal to half of the timing for the sequence of length 100. The same rule
applies for the sequence of length 20 if compared with the sequence of length 50. For
the sequence of length 10, a reduction in time still happens, but the factor not that big
anymore, especially for GPU devices. Interesting to note that for model RNN_1_115,
execution on CPU device is faster than on GPU for sequences of lengths 10 and 20.
Due to some administrative costs applied to manage asynchronous GPU execution,
calculations are simple enough and executed faster on the CPU for short sequences.
It is an important observation considering edge device limitations of computational
power.

Experiment 6: Last but not least, we checked candidate models’ performance on
test data with added noise. We added noise by sampling it from random Gaussian
normal distribution with mean and standard deviation from data. We added noise
on a per-feature basis and to input features only. We used two levels of noise for this
experiment 1% and 5% of noise. This experiment will show how resilient models are
to the noise, which could appear in practice due to faulty sensors or other reasons.

Results: We collected the results of this experiment in table 5.9. Original MSE
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Model Name
No Noise
Original MSE

Noise 1%
Original MSE

Noise 5%
Original MSE

RNN_1_115 0.00657948 0.01176509 0.09137829
GRU_1_69 0.00364660 0.00525671 0.03442241
LSTM_3_69 0.00333634 0.24412315 1.47980811
GRU_1_115 0.00144345 0.00247943 0.02095914
LSTM_1_115 0.00167773 0.00669904 0.07798817

TABLE 5.9: Candidate models evaluation results on test dataset with
added noise

metric without noise was added for reference from experiment 1 table 5.6. Accord-
ing to these results most resilient to noise is model GRU_1_115. Its MSE score de-
graded by approximately factor 2 only with 1% of noise and by factor 15 with 5%
of added noise. Model GRU_1_69 achieved second best results on noisy data - MSE
score degraded by factor 1.5 and 9.5 for noise levels 1% and 5% respectively, but
absolute values still lower than for model GRU_1_115. Finally, model LSTM_1_115
performance degraded by factors 4 and 46 with the addition of noise. Three-layered
model LSTM_3_69 performance degradation with noise was the highest among all
other models.

5.3.1 Results Visualization

It also makes sense to visualize some of the predictions for files included in the test
set to assess the mentioned models’ results. In our case, the target feature space has
a size of 23. As a result, such visualizations are too big to be included in the body of
this thesis. Hence we have included all of them in appendix A. In this section, we
will only provide a brief description and a reference to the respective figure. Since
it is impossible to visualize all 158 files of the test set, we instead decided to check
which files all models perform best or worth. Results of this check are collected
in table 5.10. Out of 158 test files, we choose the top 5 files with the highest and
lowest average original MSE score across all models. All figures mentioned below
are plotted in original non-scaled values.

Filename RNN_1_115 MSE GRU_1_69 MSE LSTM_3_69 MSE GRU_1_115 MSE LSTM_1_115 MSE Average MSE
Highest average original MSE on test set files

reach_1_12_0.5 0.66973072 0.27498683 0.15527545 0.21080871 0.21323116 0.30480658
reach_3_19_0.5 0.18227339 0.58483177 0.25480074 0.15544073 0.20417245 0.27630382
reach_2_26_0.5 0.06152614 0.00662388 0.55219090 0.01066955 0.00389768 0.12698163
reach_10_16_0.5 0.07737701 0.16701087 0.11544502 0.01230989 0.02224136 0.07887683
reach_1_19_0.5 0.14101827 0.01648147 0.01007973 0.05558154 0.03505260 0.05164272

Lowest average original MSE on test set files
reach_13_23_2 0.00006896 0.00000944 0.00000692 0.00000019 0.00000660 0.00001842
reach_23_26_2 0.00012363 0.00000503 0.00000688 0.00000028 0.00000672 0.00002851
reach_4_5_2 0.00019248 0.00000345 0.00000494 0.00000043 0.00000447 0.00004116
reach_18_27_1 0.00018506 0.00000645 0.00000609 0.00000024 0.00001350 0.00004227
reach_23_24_2 0.00019856 0.00001117 0.00000212 0.00000075 0.00000809 0.00004414

TABLE 5.10: Top-5 files by highest and lowest average original MSE
score on test set

Based on the content of table 5.10, we decided to visualize file reach_1_12_0.5, which
turns out one of the most challenging for all models. During visual inspection of fig-
ure A.1, it is obvious why averaged MSE score is high - model RNN_1_115 predic-
tions are very volatile and not stable. The same happens with model LSTM_1_115
but on a smaller scale. Despite this volatility, all models are still good at capturing
the overall dynamics of the model - the overall trajectory is correct.
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We also visualized file reach_13_23_2 to show all models’ performance on file
with the lowest averaged MSE score. It could be found on figure A.2. From this fig-
ure, it is clear that all models dealt very well with predictions, except for the baseline
RNN_1_115 model, which experiences some glitches predicting the tor_ra_sh_ab_ad
feature. However, except mentioned feature, even the baseline model performs well
on this file.

The next visualization on figure A.3 demonstrates the ability of model LSTM_1_115
to generalize when dealt with sequences of shorter lengths. According to figure A.3,
there is almost no difference between model predictions with a sequence length of
100 and a sequence length of 50. For the majority of features, those two plots coin-
cide or very close to each other. The sequence of length 20 predictions is not that
precise anymore and usually shows the same shape but at some distance from the
correct prediction. However, for some features, predictions are precise even with
such a short sequence. Finally, the model rarely predicts close to correct results with
the sequence of length 10. Nevertheless, it can still capture overall system dynamics
by predicting the correct shape almost for all features.

Lastly, figures A.4, and A.5 shows model GRU_1_115 performance on data with
added noise. Noise is added per feature basis from Gaussian normal distribution.
From figure A.4, we could conclude that 1% of normal Gaussian noise added to
data does not prevent the model from predicting this specific file. For all features,
the overall trend is closely following true values. As for figure A.5, 5% of normal
Gaussian noise makes model prediction much more volatile. However, the model
can still capture the overall trend in data, and noisy predictions follow it. For many
features visually, it looks like model predictions are far away from true values, but
this is due to the tiny scale of those features.
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Chapter 6

Results

6.1 Conclusion

Based on the results described in sections 5.2 and 5.3, we could conclude that RNN
networks can capture recurrent relation of Inverse Dynamic problem and approxi-
mate successfully joint torques by using history of joint kinematics data (joint posi-
tions, velocities, and accelerations).

As part of this research, we have identified and evaluated five different RNN
model architectures that could be used to solve Inverse Dynamics problem. Those
models are RNN_1_115, GRU_1_69, LSTM_3_69, GRU_1_115 and LSTM_1_115. Ta-
ble 5.5 contains additional details about these models. Initially, all models were eval-
uated on a hold-out test dataset (table 5.6 for reference) to assess their performance
on unknown data. In this research, we organized joint kinematics data in sequences
of length 100 for initial model training. However, we also evaluated all models on
sequences of shorter length to validate the ability of models to generalized well to
data and not to "memorize" it. Also, we did measurements of the time required for
models forward propagation of one sample. Such measurements, shown in table 5.7
and on figure 5.2, will help to judge which model is faster or slower than others,
which is vital for future practical application of models. Lastly, we evaluated all
models for resistance to noise added to the data, which might occur in practice due
to faulty hardware. Table 5.9 shows information about how different models behave
with noise added to the data.

Based on table 5.6, we could conclude that using RNN architectures with more
than one recurrent layer does not bring any significant benefits from the perfor-
mance point of view. Moreover, table 5.7 and figure 5.2 indicate that RNN models
with more than one layer are significantly slower than models with one layer only.
Hence the usage of a multi-layered RNN model for real-time approximation of ID
problems will be complicated. In addition, considering results in table 5.8, we could
also conclude that multi-layered RNN models poorly perform on sequences differ-
ent from those used during training. It might indicate that model is not generalized
well and remembers the trends in data due to the high amount of parameters. Fi-
nally, according to table 5.9, the three-layered LSTM model is very vulnerable to
the noise in data, and its performance degrades significantly even with minor noise
added.

In this research, gated RNN models (LSTM_1_115 and GRU_1_115) with a higher
number of hidden features demonstrated the most successful results, as shown in
table 5.6. However, it is worth noting that such models are relatively slower than
simple RNN models when executed on CPU devices (table 5.7 and figure 5.2 for
reference). Also, when we tested such models on data sliced in sequences of shorter
length than the one used during training, their performance degrades less than for
other models, except the simple RNN model. Results of this experiment could be
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found in table 5.8. Hence we could conclude that a higher amount of hidden features
allow a model to generalize better even on different sequence lengths than the model
was trained on. Lastly, models LSTM_1_115 and GRU_1_115 demonstrate higher
noise resilience that all other models (table 5.9 for reference). It is a good trait if
considering model application in practice, where noisy data might occur. It is also
worth highlighting that other GRU model GRU_1_69 demonstrate high resilience to
noisy data, which assumes a specific feature related to GRU architecture.

We used a simple RNN model as the baseline model in this research. Its overall
performance was lowest among all models, as shown in table 5.6. Also, based on ta-
ble 5.9, model RNN_1_115 demonstrated a low level of noise resilience among other
models. However, the simple RNN model has other qualities, which worth men-
tioning here. First of all, according to table 5.7 and figure 5.2 simple RNN model
has the lowest timing for forward propagation of one sample. It is expected since
such a model is less computationally expensive than other models. In section 2.2,
we showed why simple RNN models are easier to calculate. Secondly, the simple
RNN model also demonstrated good generalization capabilities when evaluated on
test data of shorter sequence lengths. At this point, it is not completely clear how
model RNN_1_115 outperformed model GRU_1_115 on short sequences, and fur-
ther experiments might be required to answer this question.

In summary, we could recommend applying gated RNN models with a single
layer and a high number of hidden features to solve Inverse Dynamics problems
if model performance and noise resilience play an essential role. In particular, we
would recommend using Gated Recurrent Unit (GRU) RNN type in such cases over
LSTM and simple RNN types, according to the results of our experiments. How-
ever, suppose the time required for the forward propagation step of one sample on a
CPU device is more important than a model performance. In that case, simple RNN
architecture could be an excellent alternative to more complicated GRU and LSTM
RNN types. Such a model should have a single recurrent layer, ReLU non-linearity
function, and a high number of hidden features. Gated RNN models require much
more time to be calculated on CPU, which could be a critical decision point due to
the absence of GPU on edge devices.

6.2 Discussions

There is one major limitation for this research setup - no ability to evaluate model
response time of hardware close to edge device specifications. All experiments we
have recorded in table 5.7 and figure 5.2, we executed on Google Colab Pro envi-
ronment. Consequently, we could not use any obtained measurements to derive
conclusions about the real-time model response for the forward propagation of one
sample. Because of this reason, we could only compare models between each other
based on results in mentioned tables. However, the conclusion about how real-time
model response is only possible on the edge device. Hence, such a conclusion is not
possible in the scope of this research, but we could indicate which models forward
propagation is faster or slower than for others.

Another limitation, which worth mentioning, is that the dataset for this research
consists only of movements without the intended movement of the hand as de-
scribed in section 3.1. Such movements focus on elbow and shoulder joints, and
hand joints are not fully covered. Because of this reason, many features in the dataset
have a constant value of 0, as we have documented in section 3.2. However, despite
this dataset specifics, all models still predicting associated joints torques for hand
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DOF (figure A.2 shows the model prediction for wrist and fingers DOF). It indicates
that RNN models can capture recurrent relations of the Inverse Dynamic (ID) prob-
lem.

Lastly, we choose Recurrent Neural Networks (RNN) as a possible solution ap-
proach for the ID problem in this research. We made such a choice for two reasons:
the recurrent internal structure of ANN itself, which allow approximating dynamics
system as shown by Ogunmolu et al., 2016, and because RNN was used in the past
to approximate ID problem in different settings by Chen and Wen, 2019; Hartmann
et al., 2012. Also, Draye et al., 1995 apply RNN to approximate arm dynamic from
surface EMG signals. However, this does not mean that other ANN types could
not be used as an alternative to RNN. For example, we explored neither Convolu-
tion Neural Networks (CNN) nor Multilayer Perceptron (MLP) nor any other ANN
types in this work. Hence, the results of this research do not discard any other ANN
types as a possible alternative to RNN for ID problem approximation.

6.3 Future Work

Due to the limited timeline of this thesis, it was not possible to cover all aspects of the
research. Initially, together with colleagues from the Neural Engineering Lab (NEL)
at West Virginia University, we plan to evaluate the final RNN model in MATLAB
by linking it to the musculoskeletal model used for data generation. However, to
achieve this final model need to be implemented and trained in a MATLAB environ-
ment. Hence, one of the future research directions is to find a way to import-export
chosen model from Python to MATLAB environment or train it from scratch in MAT-
LAB itself. Also, if the model will be trained in MATLAB, this raises other questions
like performance assessment between models trained on two completely different
ecosystems. As a result, a successful model in the Python environment able to solve
the ID problem might be lacking behind in the MATLAB environment.

Another important aspect of this research was the length of the sequence. We ob-
tained all of the results of this research described in the chapter 5 with a sequence of
length 100, except specific experiments with shorter sequences. However, the choice
of the sequence length 100 might not be optimal, and the sequence length should
be evaluated as another hyperparameter. Considering the possible application of
this model in practice and the result captured in table 5.7 and figure 5.2, optimal
sequence length is crucial. It is a trade-off between faster execution of forward prop-
agation and model performance. Hence, another direction of future work might be
to evaluate the same pipeline on a sequence of shorter length and compare obtained
results with this research.

In this research, we used a dataset initially collected with a sampling rate of 10
kHz, which means ten samples per 1 millisecond (ms). In section 4.2.1, we described
why we have to down-sample it to the one sample per 1 ms. However, this choice
was somewhat arbitrary, and we did not validate other sampling rates like one sam-
ple per 2 ms or 5 ms. Furthermore, based on results in table 5.7, more complicated
gated RNN models require up to 6 ms for the forward propagation, which makes
real-time usage of such models impossible with a sampling rate of one sample per
1 ms. One possible solution could be to sample data more seldom if this has no
significant impact on model performance. As a result, we see another direction of
future work evaluating different sample rates on overall model performance and
comparing results with a sampling rate of one sample per 1 ms.
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As an alternative to RNN models, we propose to consider Universal Transformer
(UT), introduced and fully described in Dehghani et al., 2018. As highlighted in De-
hghani et al., 2018, UT is "a parallel-in-time recurrent self-attentive sequence model
that can be cast as a generalization of the Transformer model" and combines the
benefits of both feed-forward and RNN models. Authors claim that UT outperforms
Transformers and LSTM models on various sequence-to-sequence tasks and con-
firmed this with conducted experiments in the scope of Dehghani et al., 2018. Con-
sidering UT models’ complexity, we assume that an overall model response time
could be high. However, since UT models are easy to parallelize, as mentioned in
Dehghani et al., 2018, one possible measure could be to run many models in paral-
lel. Concrete decisions about UT model fine-tuning or any other Transformer model
adaptation for ID problem is another direction of future work. However, it worth
mentioning that due to the complexity of Transformer architecture, it might be chal-
lenging to use such models on edge devices.

As already mentioned in section 3.1, the dataset used in this research is limited
by movements without intended hand motion. Hence, future collaboration with the
Neural Engineering Lab (NEL) at West Virginia University is required to enrich the
dataset with additional movement types. Once enriched, it would be interesting to
evaluate current models on previously unknown data of different movement types
to assess overall models’ generalization capabilities. It also makes sense to train the
same or new models on enriched datasets to assess possibilities to improve overall
results despite evaluation. Since models trained on the current dataset already avail-
able, transfer learning could be used as one option on another dataset, or datasets
themselves need to be merged and blended.

In addition to Inverse Dynamics (ID) problem, in robotics and biomechanics,
when mapping between joint kinematics and joint torques needs to be found, For-
ward Dynamics (FD) problem also exists. In a nutshell, it is a problem to find a map-
ping between joint torques and joint kinematics on step t knowing joint kinematics
of step t− 1. Hence, FD problem approximation with the help of RNN models rep-
resents another promising direction of future research.

Lastly, there is an initiative at West Virginia University (WVU) to create a tool
called Artificial Physics Engine (APE). The solution to the ID problem is a funda-
mental part of this tool. Hence, we could identify the last direction of future work
by integrating currently obtained results for the ID problem solution as part of the
APE tool.
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Appendix A

Results Visualization

In this section following visualization are added:

• The figure A.1 shows a performance of all models on the file reach_1_12_0.5,
which has the highest averaged MSE score;

• The figure A.2 shows a performance of all models on the file reach_13_23_2,
which has the lowest averaged MSE score;

• The figure A.3 shows a performance of the model LSTM_1_115 on the file
reach_13_23_2 when a prediction happens with sequences of different lengths;

• The figure A.4 shows a performance of the model GRU_1_115 on the file reach_13_23_2
with 1% of a normal Gaussian noise added to the data;

• The figure A.5 shows a performance of the model GRU_1_115 on the file reach_13_23_2
with 5% of a normal Gaussian noise added to the data.

Due to many target features and making figures readable, each figure occupies a
separate page.
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FIGURE A.1: File reach_1_12_0.5 predictions visualization with high-
est averaged MSE score
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FIGURE A.2: File reach_13_23_2 predictions visualization with lowest
averaged MSE score
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FIGURE A.3: File reach_13_23_2 predictions with LSTM_1_115 model
and different sequences
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FIGURE A.4: File reach_13_23_2 predictions with GRU_1_115 model
and 1% of noise
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FIGURE A.5: File reach_13_23_2 predictions with GRU_1_115 model
and 5% of noise
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Appendix B

Simulink Model Details

FIGURE B.1: Typical 3DOF joint used in arm and hand model by NEL
at WVU

FIGURE B.2: Internal schematic of 3DOF joint by NEL at WVU
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Appendix C

Source Code

We collected all of the code to execute this research in the following GitHub reposi-
tory. However, we do not provide access to data since it is owned by Neural Engi-
neering Lab (NEL) at West Virginia University (WVU).

https://github.com/kai-wren/ID_ANN_approximation
https://github.com/kai-wren/ID_ANN_approximation
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