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Abstract

The Bluetooth Low Energy (BLE) Mesh network technology is one of the newest
technologies in the wireless communication domain. Due to low cost and low power
consumption, it has already become widespread and has the potential for a wide
range of applications.

However, the flooding algorithm on which based BLE Mesh data transmission
process impacts strongly on networks reliability. Because improper network setup
can be critical to ensuring sufficient network reliability, it is necessary to be able
to predict the network reliability in order to be able to reconfigure the network to
improve its reliability.

In this master thesis, we propose neural network approaches that predict the
reliability of both the entire network and its individual nodes. Presented results
demonstrate that trained neural networks are scalable by providing high accuracy
of predictions on networks of different sizes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, much attention has been paid to wireless communication networks
[Zhang, Patras, and Haddadi, 2018]. Along with a wide range of wireless network
technologies such as Bluetooth, WiFi, Near-Field Communication (NFC), mobile net-
works (e.g. 3G, 4G and 5G), Bluetooth Low Energy (BLE) technology [Bluetooth SIG,
2010] has become one of the most widely-adopted technologies due to high energy
efficiency and widespread availability in user equipment. BLE technology is suit-
able for small portable and autonomous devices. For example, it makes possible to
coordinate real-time networks of wearable devices, health care or home automation
networks just by smartphone since almost every smartphone is equipped with this
technology.

The BLE provides communication between directly connected devices located
close to each other within the distance typically limited up to 50 meters, so it is used
for short-range communication. However, this is one of the main limitations of BLE
use. Including, for this reason, the technology fails to realize its full potential, despite
the widespread. Therefore, in July 2017 was released Bluetooth Mesh [Bluetooth SIG,
2017], that wholly based on the BLE protocol stack. BLE Mesh neworks can connect
thousands of devices providing transmission of only short messages between nodes
with relatively small energy consumption.

Constructing such a large mesh network is important to ensure the high reliabil-
ity of its operation, namely, a high packet delivery ratio. Furthermore, since building
a network takes a lot of time and effort, it is desirable to model such a network to
assess its reliability and optimize weaknesses. To our knowledge, some studies [Liu
and Cerpa, 2014, Ateeq et al., 2020] predict the reliability of connections between
specific nodes, but they do not consider the overall reliability of the entire network.
To fill this gap, in this work, we propose an approach that can predict the reliability
of each of the network nodes and the entire BLE Mesh network. With this approach,
it will be possible to predict network reliability and decide on changing its settings
to improve its performance.

1.2 The proposed method

Taking into consideration all of the above, we propose the following:

• applying neural network techniques for better evaluation of networks reliabil-
ity. In particular, we will solve a node regression task and compare the per-
formance of the regression model on networks, differ by sizes and number of
nodes;
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• checking the possibility of applying trained models.

The data used in this work are synthetic. To obtain it, a dynamic simulator was
used, a detailed description of which is given in chapter 4.

1.3 Goals of the master thesis

1. To provide an overview of previous work related to the analysis and eval-
uation of BLE Mesh networks and machine learning methods to predict the
reliability of data transmission in wireless networks.

2. To apply neural network model for a prediction of the reliability of BLE Mesh
networks.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 contains an overview of the wireless communications domain and a
complete description of the BLE Mesh Standard.

• Chapter 3 presents work related to the BLE Mesh domain and applying ma-
chine learning methods in wireless communications.

• Chapter 4 introduces the data used throughout this work.

• Chapter 5 describes the basis of neural network methods and proposes our
approach.

• Chapter 6 discusses solution experiments and corresponding results.

• Chapter 7 summarizes our contributions and list the directions for future work.
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Chapter 2

Background

This chapter contains a wireless communication domain overview and a detailed
description of BLE Mesh technology. Mainly, we focused on the importance of net-
work topology and introduce the concept of network reliability. To provide a clear
explanation of the features of the networks studied in this paper, the principles of
BLE technology and the process of transmitting messages over the BLE Mesh net-
work are fully explained.

2.1 Wireless communication networks

In recent years, wireless communication technologies have made significant progress.
Many of them are involved in implementing the Internet of Things (IoT) concept
that includes residential, industrial, commercial, healthcare, military and many oth-
ers applications. By active involvement in research and exploration of industry and
academia, IoT devices and applications have both increased and diversified expo-
nentially.

Nowadays, wireless technologies are extremely heterogeneous in terms of proto-
cols, performance, reliability, latency, cost and coverage [Cilfone et al., 2019]. There-
fore, each of wireless technologies may be optimal depending on the properties of
the protocol, the proposed network topology, environment and network operation
scenarios and other factors [Chakkor et al., 2014].

2.1.1 Wireless network topologies

One of the basic characteristics of the network is its topology. Wireless networking
topologies can be generally divided into four types: one-way, bi-directional, star and
mesh networks [Silicon Labs, 2013]. Since the first two provide a connection only
between the two nodes, they are fundamental for constructing the last two [Farej
and Abdul-Hameed, 2015].

A star topology is a topology in which all nodes are individually connected to a
central hub (e.g. Wi-Fi or mobile networks). This topology is attractive because of
its simplicity, but at the same time, it has some disadvantages. For example, simul-
taneous transmission of data from a large number of nodes in the network can cause
traffic overload through the central hub. As a result, central hub failure leads to the
failure of the entire network.

Unlike star-based networks, mesh-based networks (e.g. ZigBee, Thread, BLE
technologies) allow communication of any nodes with each other within their range
of communication. The possibility to transmit data from one node to many other
nodes at the same time provides a robust connection between all nodes, so the failure
of one node has little effect on the entire network. However, redundant connections
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FIGURE 2.1: Network topologies

Leon and Nabi, 2020

between nodes carry the risk of uncontrolled data transmission, so setting up and
monitoring such mesh networks is critical.

2.1.2 Reliability

Reliability is among the key performance requirements for many IoT applications.
The reliability of a wireless network is formally defined as the network’s ability to
perform satisfactorily during its mission time when used under the stated conditions
[Kuo and Zuo, 2002]. By stated conditions, we mean clearly defined environmental
conditions in which the network is deployed and the protocol parameters under
which the network operates.

Based on the definition, reliability can be considered from two different perspec-
tives [Deif and Gadallah, 2017]. On the one hand, the network must be guaranteed to
function for a certain period of time, so network reliability is related to the concept
of network lifetime which is directly affected by the level of energy consumption
of each node in networks with energy constraints. On the other hand, the network
must ensure a sufficiently high rate of successful data transmissions (in other words,
adhere to a certain low threshold for data packet loss).

Later in this work, we determine that each node of the network is guaranteed
to operate for a certain period, and therefore the issue of network lifetime is not
considered. That is why we focus on the second aspect of reliability and determine
the ratio of successfully delivered packets as the main characteristic of the network.

2.1.3 Physical model

Although wireless technologies are very different, they are all equally subject to the
physical processes of wireless transmission of information. Based on the wireless
communication theory [Rappaport, 1996; Ahlin, Zander, and Slimane, 2006], we in-
troduce a model of data transmission between nodes in the network. We consider
wireless communication channel between two nodes. Firstly, to calculate how much
of the transmitted power PTx actually ends up at the receiving side of the commu-
nication link (due to propagation) is used the simplest free-space path loss model
(FSPL) [Vihlborg, 2011]:

L(d) =
(

4πd
λ

)2

(2.1)
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where d is distance between transmitter node and receiver node.
Then power of received signal PRx is defined as:

PRx = PTx · L(d) = PTx

(
4πd

λ

)2

(2.2)

where λ is wavelength of the wireless communication channel.
While describing a wireless communication network, it is crucial to take into ac-

count internal (from other nodes transmitting on the same channel) and external
(from existing wireless networks at the same frequency) interference. Given impact
of interference, it is necessary to define a way to measure the quality of a commu-
nication link, the so called Signal-To-Interference-Plus-Noise-Ratio (SINR) of the link
[Iyer, Rosenberg, and Karnik, 2009]. The SINR is defined as:

SINR =
PRx

Iint + Iext + N
(2.3)

where Iint, Iext, N are power of the internal interference, power of the external
interference and power of noise at the receiver respectively.

Then theoretical probability of a bit error in any packet transmission is defined
as Bit Error Rate (BER) as a function of SINR:

BER =
1
2
· er f c

(√
SINR

2

)
(2.4)

where er f c(·) is the complimentary error function.
Finally, we can measure theoretical probability of a failed packet transmission

(probability that none of the bits of the packet will be damaged) as Packet Error Rate
(PER):

PER = 1− (1− BER)n (2.5)

where n – size of the packet in bits.

2.2 BLE Mesh technology

The Bluetooth Low Energy (BLE) technology was officially introduced in 2010 with
the v4.0 of the Bluetooth Core Specification [Bluetooth SIG, 2010] for short-range
low-power wireless communication. Over the past few years, it has become one
of the most widely-adopted short-range technologies thanks to its simplicity, low-
power consumption, low-cost and robustness. Nevertheless, BLE topology has been
restricted to point-to-point and one-to-many until the introduction of Bluetooth Mesh
Profile in 2017 [Bluetooth SIG, 2017]. The Bluetooth Special Interest Group (SIG) has
defined the mesh profile as a networking technology built on top of the BLE pro-
tocol. It allows many-to-many communication of up to a theoretical maximum of
32,767 nodes in 4,096 possible sub-networks.

2.2.1 BLE protocol

Bluetooth mesh is designed to be used without the need to establish connections
among devices in the network. To achieve this connection-less approach, all data
transmissions in a BLE Mesh network are broadcast under the advertising/scanning
scheme of BLE. Basically, BLE protocol uses only three broadcasting channels (2402,



6 Chapter 2. Background

FIGURE 2.2: Bluetooth Mesh node types

Rondon et al., 2020

2426, 2480 MHz). Each broadcast transmission is sent using those three channels one
after another during an advertisement event to have a higher probability of mes-
sages reaching a receiver. The scanner nodes scan a channel during a time window
and then switch into another channel – it means they do not scan a channel all the
time. BLE nodes are not synchronized to each other, so each node has random access
to the channels. This avoids energy losses when the node is in a state of waiting for
a long time. However, it is worth noting that such behaviour of nodes can cause
frequent collisions, leading to the overlap of messages, hence losing information.

2.2.2 Bluetooth Mesh topology

Unlike other technologies such as WiFi or ZigBee, until 2017, the BLE protocol stack
used a simple point-to-point network topology enabling one-to-one device commu-
nications. In contrast, a mesh network has a many-to-many topology and is an at-
tractive alternative to traditional centralized star network topologies. Therefore, the
release of BLE Mesh in 2017 was a necessary step that allowed data transmission
between pairs of nodes in a dynamic and non-hierarchical way.

All nodes in BLE mesh can transmit and receive messages, but different features
allow each node to play notable roles in the network. There are four types of nodes
in BLE Mesh networks: proxy nodes, friend nodes, low power nodes, relay nodes.
Proxy nodes can receive messages from a non-mesh-supported BLE device and re-
transmit them over the BLE Mesh network. The primary function of friendly nodes
is storing and transmitting messages to their corresponding low power nodes. The
friendship mechanism between these nodes is one of BLE Mesh Standard’s latest in-
novations, which allows the low power node to be asleep, conserving energy, and
being activated in a case when requested by a friendly node. Finally, relay nodes
can receive and retransmit Bluetooth Mesh messages – they provide connectivity
between non-directly connected nodes, so the end-to-end communication range is
extended far beyond the radio range of each node. This is one of the most important
features since the relay process makes Bluetooth mesh multi-hop communication
possible.
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2.2.3 Managed flooding

The Bluetooth Mesh transmission model is based on managed flooding, which de-
fined by Mesh Standard. By this model, every node within the radio range of the
transmitter receives all its messages. If a receiver is a relay node, it retransmits mes-
sages to nodes more distant from the transmitter. Compared to other wireless proto-
cols, this model does not require complex routing tables or any routing protocols, re-
ducing the required memory amount and defining the model as the simplest among
any other protocols in the IoT context [Darroudi and Gomez, 2017]. As a result,
using a flooding algorithm results in a highly resilient and reliable network due to
messages’ movement to their destination via multiple paths through the networks.

However, the uncontrolled flow of resenting messages through the relay nodes
results in a potentially high risk of congestion and packet loss, also known as the
broadcast storm problem [Ni et al., 1999]. Therefore, some measures optimize the
way flooding works in Bluetooth mesh networking:

• Time-To-Live (TTL) limitation sets the maximum number of hops over which
message is relayed before arriving at its destination node.

• Message cache contains all of the recently seen messages. The node compares
the newly received message with the already processed ones and decides to
ignore further or forward it. This method reduces message forwarding without
reducing network capacity and reliability.
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Chapter 3

Related Work

This chapter aims to inform a curious reader about previous research work. Firstly,
we provided a review of researches on the BLE Mesh Standard. The vast majority
of them explore the possibilities of BLE Mesh networks, focusing on strengths and
weaknesses. In addition, there are works dedicated to the optimization of the BLE
protocol parameters in mesh networking, and works analyzed the influence of the
BLE mesh network topology on its reliability.

At the same time, numerous studies in the literature estimate and optimize the
reliability of connections in wireless networks using machine learning methods, par-
ticularly neural networks, and show significant results.

3.1 BLE Mesh evaluation and optimization

Because the BLE Mesh technology is relatively new, the first studies were dedi-
cated to its analysis and evaluation. Darroudi and Gomez, 2017 comprehensively
reviewed the state of the art BLE mesh network solutions. Their conclusions con-
tain a detailed description of the advantages and disadvantages of the BLE mesh
networking. Baert et al., 2018 provided a detailed overview of how the BLE Mesh
standard operates, performs, and tackles other BLE mesh networking issues. Af-
ter evaluating the latency performance of both dense and sparse BLE-based mesh
networks, the authors conclude requiring an advanced management mechanism for
optimizing the performance of the mesh network.

As BLE Mesh built on top of BLE technology, some researchers have figured out
how to configure BLE protocols parameters to optimize mesh network performance
properly. Liendo et al., 2018 proposed an approach to obtain the appropriate config-
uration of the three time-parameters of the BLE protocol (scanning interval, scanning
window and advertising interval). Their method increased up to 89 times the battery
lifetime of low-power devices by optimizing energy consumption and guaranteeing
a maximum acceptable critical latency. At the same time, Hernandez-Solana et al.,
2020 showed the relationships and interaction between different parameters of the
BLE stack and highlighted problems that arise when they are not properly config-
ured.

Rondon et al., 2020 provided general guidelines to ensure the reliability and scal-
ability of the mesh network. For this, the authors considered such network perfor-
mance indicators as packet loss rate, the time delay, and packet errors per unit time.
They conclude that the correct operation of the network protocol strongly depends
on each of the time parameters’ mutual settings, so the appropriate setting of both
advertising and scanning processes has a decisive influence on transmitting mes-
sages. However, experiments have shown that scalability remains problematic for
BLE Mesh networks due to message flooding.
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Other comprehensive experiments to measure BLE Mesh protocol performance
and capacity to deliver messages reliably were performed on a static network with
fixed time parameters by Leon and Nabi, 2020. As a result, the paper described
the data rate limitations of the technology. It was summarized that when nodes
are oversaturated and transmitting messages with a high frequency, the technology
cannot provide an acceptable packet delivery performance.

As mentioned previously in subsection 2.2.3, uncontrolled message retransmis-
sions produced by relay nodes can oversaturate the network and reduce its reliabil-
ity. Therefore, algorithms for finding the optimal location of relays have been pro-
posed. Hansen et al., 2018 considered relay selection approaches, where only a few
nodes are relays and can retransmit messages. The authors compared three heuristic
algorithms whose task to form a connected set of relays so that each network node
has been connected to at least one relay node. The algorithms evaluated are Greedy
Connect, K2 Pruning and Dominator!. Each algorithm outputs a fully connected
network and can run distributed on each network node without centralized con-
trol. To compare the performance of algorithms is used Packet Delivery Ratio (PDR)
metric. The authors concluded that each of the algorithms increases packet deliv-
ery probability experiencing the conditions of optimal use of each of them. Bęben,
Bąk, and Sosnowski, 2020 introduced another relay node management method. To
minimize the number of active relay nodes of the BLE Mesh network, the authors
formulated the Minimum Relay Tree (MRT) problem and provided an exact solu-
tion based on integer linear programming. The authors emphasized the efficiency
of the algorithm in dense networks. They concluded method reaches a compromise
between the amount of energy consumed and the message delivery ratio.

3.2 Wireless network reliability evaluation using machine learn-
ing approaches

With the ever-increasing availability of performance data, data-driven techniques
are becoming popular in prediction and optimization tasks. It is observed that many
communication parameters influence different performance metrics characterized as
essential requirements in wireless network applications.

In particular, some researches have been conducted to predict the reliability of
wireless network connections with the Packet Delivery Ratio (PDR) as an apt met-
ric. Liu and Cerpa, 2014 used the physical-layer information of a particular link, that
is, Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Link
Quality Indicator (LQI) as input features to predict the success probability of deliv-
ering the next packet. They showed that logistic regression works better compared
to naive Bayes classifier and artificial neural networks. At the same time, neural
networks demonstrate excellent results in predicting Packet Loss Ratio (PLR) based
on the inter-packet interval, the number of nodes, received packets and erroneous
packets as inputs [Kulin et al., 2017]. One more paper proposed a deep learning so-
lution for forecasting PDR [Ateeq et al., 2020]. Using a real dataset, contained thou-
sands of configurations of preconfigured stack parameters from different layers, was
achieved accuracy up to 98%.

Although the proposed neural network approaches to predict the reliability of
wireless communications showed excellent results, they consider only individual
connections without evaluating the reliability of the whole network.

One of the most critical parameters that affect network reliability is nodes’ trans-
mission power. On the one hand, transmission power minimization solutions aim
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to reduce energy consumption and, as a consequence, to increase the network’s life-
time. On the other hand, the lowest possible transmission power can increase the
network’s vulnerability to the interference caused by bad SINR [Kim and Kwon,
2008]. Therefore, different algorithms can reduce energy consumption and improve
channel capacity, where channel capacity is defined as the highest information rate
that can be achieved with arbitrarily small error probability.

There are many transmission power control studies, which mainly focus on im-
proving the sum rate channel capacities in a single-hop ad hoc interference network.
Sun et al., 2018 used a deep learning network (following a supervised learning ap-
proach) to approximate the classical solution [Shi et al., 2011]. The main advantage
of this paradigm is computational efficiency since, once trained, deep networks can
run faster than the classical algorithms that they are imitating. Unfortunately, this
method has a poor generalization to scenarios out of training examples, and thus, it
cannot be scaled on a network of different topologies.

However, Chowdhury et al., 2020 proposed an unsupervised approach that di-
rectly employs the optimization objective as a loss function and uses graph neural
networks to facilitate generalizability across network topologies. Numerical experi-
ments proved generalizability to unseen scenarios such as different network densi-
ties and network sizes.
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Chapter 4

Data

In this chapter, we substantiated the expediency of creating a simulator. The princi-
ples of its operation and the initial analysis of its performance are described.

In the second part of the chapter, we explain what data obtained from the simula-
tions we use in our work and present the results of comparative analysis of different
datasets.

4.1 BLE Mesh simulator

The research of wireless network technologies requires numerous practical experi-
ments. During full-fledged real experiments, it is necessary to rebuild the investi-
gated network each time and change the used data transmission protocol parame-
ters. In most cases, it can be expensive both in financial terms and the time involved.
Hence, different simulation tools are developed to check proposed solutions in some
test environments.

After analyzing the available open-source simulators that implement Bluetooth
mesh networking, we concluded that we could use none of the implementations
found. The reasons for this are the lack of documentation or insufficient functional-
ity for the planned experiments. For example, the most thoroughly described simu-
lator is FruityMesh 1. Although it is based on the BLE protocol, it does not use a BLE
Mesh Standard having many distinctive features and cannot be used in our work.
In addition, none of the studies reviewed in the section 3.1 and which uses its own
simulator for experiments does not provide to its implementation. Thus, we use a
BLE Mesh simulator implemented by the UCU Machine Learning Lab 2 in collabo-
ration with Infineon Technologies 3 which can be easily modified according to our
needs.

4.1.1 Simulator architecture

The simulation tool has been implemented in Python and belongs to the group of
dynamic simulators.

Firstly, an advertising/scanning scheme was implemented in which each node
is sequentially switched between two states. Being in one of two states, the node is
alternately tuned to each of the three frequency channels, transmitting or receiving a
packet. The principle of packet transmission between two nodes is completely based
on the physical model described in the subsection 2.1.3. Thus, the packet will be
delivered from the transmitter to the receiver if they operate on the same frequency
channel simultaneously.

1https://www.bluerange.io/docs/fruitymesh/index.html
2https://apps.ucu.edu.ua/en/mllab/
3https://www.infineon.com/

https://www.bluerange.io/docs/fruitymesh/index.html
https://apps.ucu.edu.ua/en/mllab/
https://www.infineon.com/
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The simulator allows creating a network of any topology determined by each
node’s features. Each node is characterized by its location, the ability to retrans-
mit received packets (relay function) and transmission power, which determines the
maximum range of packet transmission. Transmitting packets across the mesh net-
work is based entirely on the managed flooding model (subsection 2.2.3).

Since this work examines the network’s reliability, it is necessary to identify cases
where the packet is scanned by the receiving node but will still be lost. So, packets
in the simulator can be lost for the following reasons:

• overlapping packets - in case of simultaneous receipt of two or more packets
to the receiver node, they are lost;

• insufficient transmission power - weak received signal strength increases the
risk of packet loss.

4.1.2 Simulator setup

Implementation of the simulator allows us to set both the parameters of the BLE
protocol and the BLE Mesh standard. However, the aim of this work is not to analyze
the BLE protocol parameters. Therefore, these parameters are fixed and listed in the
table 4.1.

TABLE 4.1: BLE protocol parameters

Random back-off delay (ms) 0-30

ScanInterval (ms) 20

TinterPDU (ms) 1

Packet length (bits) 312

In this paper, we focused on the topology of the studied mesh networks. By
simulating networks of different topologies, we can investigate how one or another
characteristic of the network affects its reliability. Therefore, for each network simu-
lation, the following network parameters are set:

• number of nodes in network;

• location, transmission power, role (relay/not relay) of each node;

• emission rate (number of randomly generated packets per second);

• simulation duration.

Besides these parameters, parameters such as sensitivity (minimum received sig-
nal strength to receive the packet), TTL and message cache are fixed (table 4.2).

Setting all these parameters completely determines the configuration of a partic-
ular network, and allows to simulate its operation (to transmit packets for a certain
time). By performing simulations, we can obtain numerical indicators that charac-
terize the various properties of this network. After each simulation experiment we
get a set of statistical values:
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TABLE 4.2: BLE Mesh Standard parameters

Transmission power (dBm) -30 - -20

Sensitivity (dBm) -95

TTL 4

Message cashe 32

Emission rate (packets/s) 50

• network PDR;

• PDR of every multi-hop connection between two nodes (as a matrix);

• average packet delivery delay;

• ratio of lost packets.

It is very important to note that in all experiments, we consider squared envi-
ronments (without loss of generality). Furthermore, the location of each node is set
randomly, as well as its transmission power (from a specific range). Thus, due to
each node’s different transmission power, there may be cases of one-way communi-
cation between nodes. Finally, in order for the studied networks to be homogeneous,
all nodes are relays.

4.2 Data analysis

The behaviour of the network during the simulation is influenced by many parame-
ters (which we set at the beginning). Some parameters characterize a specific node,
which has little effect on the network’s overall performance, but some parameters
directly impact the network, which we will explore below.

The most important network indicator for us is the Packet Delivery Ratio (PDR)
value which means the ratio of the number of packets that have reached the destina-
tion node to all created unique packets. It evaluates the reliability of the connection
of the network and is a basic metric in this work.

4.2.1 Emission rate analysis

We first investigated the effect of the emission rate on network reliability. To ensure
a uniform network load, each node in the network has the same probability of gen-
erating a packet at any given time, and we only specify the number of packets to be
generated per second.

An experiment was conducted in four networks, different in size of the environ-
ment and the number of hosted nodes, and only the emission rate changed during
the simulations. The figure 4.1 shows that an increase in the emission rate inevitably
leads to a decrease in the PDR. Since the effect of this parameter is transparent and
predictable, we fixed its value at level 50 packets/s for further experiments.

4.2.2 Network topology analysis

Depending on the size of the network environment and the number of nodes in the
network, the network structure can change significantly, which affects the packet



14 Chapter 4. Data

FIGURE 4.1: Emission rate analysis

transmission process. That is why such characteristics of complex network theory
[Barabási and Pósfai, 2016] as the average shortest path and connectedness were
considered.

In networks, a path is a route that runs along the links of the network. A path’s
length represents the number of links the path contains. The shortest path dij be-
tween nodes i and j is the path with the fewest number of links. In a directed net-
work (our case), the existence of a path from node i to node j does not guarantee
the existence of a path from j to i. Then the average path length is the average dis-
tance between all pairs of connected nodes in the network. Because the studied
mesh networks provide multi-hop communication, the average shortest path is an
informative indicator that gives intuition about the size of the network.

Another essential utility of networks is to ensure connectedness. A network is
connected if all pairs of nodes in the network are connected. Conversely, if a network
is disconnected, it consists of some components (connected subnetworks). The con-
cept of network connectedness is fundamental by mesh network examination. Since
the nodes are placed randomly (which is typical for real networks), on the one hand,
with a small number of nodes, cases of disconnected networks are possible. How-
ever, on the other hand, too many nodes in the network can be excessive and lead
to network congestion in crowded places. Therefore, the influence of the number of
nodes on the connectedness of the network in different environments was studied.
We calculated the ratio of disconnected nodes in the network that do not belong to
the largest connected component of the network.

We conducted some experiments to study the impact of the number of nodes
in networks of different sizes (40× 40m2, 80× 80m2, 120× 120m2, 160× 160m2) on
networks characteristics: ratio of disconnected nodes, average shortest path, PDR.

The figure 4.2 shows that in a disconnected network, increasing the number of
nodes reduces the number of disconnected nodes, which contributes to an increase
in PDR. However, as soon as the network becomes connected, further addition of
new nodes reduces the PDR. As for the average shortest path, with the increase in
the number of nodes, it reaches a specific stable value, which does not change with
the subsequent addition of nodes, and therefore depends only on the size of the
environment and the transmission ranges of nodes.
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FIGURE 4.2: Network size analysis
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4.3 Datasets

Based on the analysis results, we decided to investigate networks that differ in size,
number of nodes, and hence, in the average shortest path. Thus, four datasets were
simulated. Each dataset consists of a different number of simulated samples (net-
works), but within one dataset, the size of the networks and the number of nodes
are constant. The comparative characteristics of these datasets are given in the table
4.3.

TABLE 4.3: Datasets description

Specification Dataset 1 Dataset 2 Dataset 3 Dataset 4
Samples (networks) 2000 1000 600 400
Nodes per sample 10 15 25 30

Sizes (m2) 40× 40 80× 80 120× 120 160× 160
Average path length 1.11 1.51 2.15 2.72

Average PDR 0.808 0.710 0.573 0.431

Special attention needs to be paid to the analysis of PDR metric values. The table
4.3 shows that the average PDR values for each dataset are significantly different.
After plotting visualizations of the PDR distributions for each dataset using boxplots
(figure 4.3a), we saw that the range of PDR values is relatively small, and the number
of outliers is small. This means that these PDR values have low variance, so little
variability within each of the datasets.

Since after each simulation, we have statistics of each of the broadcast packets,
it is possible to aggregate these indicators, not at the whole network level but each
of the network nodes level. Moreover, since packets are generated uniformly in a
random manner, we can decompose the PDR of the network as the average PDR of
all its nodes, where PDR of the node is defined as the ratio of successfully delivered
packets generated by this node. Calculating the relationship between the PDR of the
network and the average PDR of all nodes of this network, we obtained a correlation
coefficient greater than 0.99, which indicates the absolute validity of this approach.

Having plotted similar boxplots for the distribution of PDR nodes (figure 4.3b),
we observe distributions with much larger variance, which means nodes in the mesh
network of similar sizes can have essentially different PDRs. This is a positive result
for further use in our work.
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(A) Network PDR

(B) Node PDR

FIGURE 4.3: PDR distributions in each dataset
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Chapter 5

Approach

In this chapter, we described the basis of neural network methods, especially deep
neural networks and graph neural networks.

We also introduced our approach to solving node regression task. Finally, we
described data preprocessing techniques of graph data and proposed deep neural
network models.

5.1 Neural networks

The usage of artificial neural networks has risen sharply over the past decade. They
have recently gained high popularity due to their high-efficiency performance in
weather forecasting, speech to text, handwriting recognition, face recognition, and
many other problems [Deng and Yu, 2014; Liu et al., 2017]. Therefore, most of the re-
cent state-of-the-art papers include some neural network in their model or pipeline.

The artificial neural network normally consists of the input layer, a hidden layer,
and the output layer consisting of neurons [Bishop, 1995]. A neuron is an object that
is characterized by its input size, weight vector and activation function. Then each
layer is just a collection of neurons that work on the same features of an object. One
layer can be considered as a function; after applying it, we get some new space of
features. Then we apply another such layer to this feature space. Layers can be of
different types, and by combining several different layers according to certain prin-
ciples, we can get a neural network with good performance. Thus, a neural network
is a non-linear transforming function that consists of several functions’ sequential
application.

5.1.1 Deep neural networks

An artificial neural network that contains multiple hidden layers between the input
and output layer is called Deep Neural Network (DNN) [Goodfellow, Bengio, and
Courville, 2016]. The most straightforward deep neural network is a multilayer per-
ceptron (MLP) [figure 5.1], where all neurons are fully pairwise connected between
two adjacent layers. These layers are traditionally called dense or fully connected.
Deep neural network propagates signal through layers modelling non-linear rela-
tionships between input and output.

The training of the neural network consists of forward and backward passes
[Glorot and Bengio, 2010]. On forward pass, the input is propagated through layers,
and the error function is calculated. On the backward pass, it figures out how each
weight impacts total error computing the gradients via the chain rule, and modi-
fies the network weights to decrease this error. Training continues until the error
function converges to zero or training is stopped by other conditions in the perfect
setting.
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FIGURE 5.1: Multilayer Perceptron architecture

Kain, 2018

(A) 2D Convolution (B) Graph Convolution

FIGURE 5.2: 2D Convolution vs. Graph Convolution

Wu et al., 2016

Deep neural networks allow investigating hidden patterns of sophisticated fea-
tures, especially from high-dimensional spaces, which are hard to handcraft other-
wise [Hinton and Salakhutdinov, 2006].

5.1.2 Graph neural networks

Recently, the number of applications where data are generated from non-Euclidean
domains is dramatically increased. It turned out that traditional neural network
methods are not able to effectively process such data [Bacciu et al., 2020]. Therefore,
models have been proposed based on existing deep learning approaches but accept
inputs in the form of graphs with complex relationships between objects. These
methods are called Graph Neural Networks (GNN).

In particular, motivated by Convolution Neural Networks (CNNs) from deep
learning, that showed state-of-the art performance in many Computer Vision tasks
[LeCun, Kavukcuoglu, and Farabet, 2010], new generalizations and definitions of
convolutions have been rapidly developed over the past few years to handle the
complexity of graph data [Wu et al., 2016]. A graph convolution can be generalized
from a 2D convolution. As illustrated in the figure 5.2, an image can be considered
as a special case of graphs where pixels are connected by adjacent pixels. Like 2D
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convolution, one may perform graph convolutions by taking the weighted average
of a node’s neighbourhood information.

Each node of graph convolution layer collects features of its neighbours that were
propagated through trainable filters (convolutions) - so called, message passing:

hl+1
v = φ

(
hl

v, Ψ
(
{ψ(hl

u)|u ∈ Nv}
))

(5.1)

where Nv - all node v neighbours, hl
v - node v state at l-th layer, {ψ(·)} - messages

from neighbours, Ψ - aggregation function which is permutation invariant, φ
(
hl

v, ·
)

- combine function, which update node state.

Based on the equation 5.1, different graph convolution models were proposed
depending on the aggregation and combine functions. Kipf and Welling, 2016 intro-
duced Graph Convolution Network (GCN) that is a multilayer network, where each
layer can be formulated as:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l+1)

)
(5.2)

where Ã = A + I - is adjacency matrix with self-connections (I), D̃ = ∑j Ãij, W
- trainable weights and H is output of previous layer or H(0) = X is input, X - is
node features. This model scales linearly in the number of graph edges and learns
hidden layer representations that encode both local graph structure and features of
nodes.

Such Convolutional GNNs can extract high-level node representations by graph
convolution. With a multilayer perceptron as the output layer, GNNs are able to
perform node-level tasks (node regression and node classification tasks) in an end-
to-end manner [Wu et al., 2016].

5.2 Pipeline

When evaluating the reliability of a BLE Mesh network, it is difficult to specify a
feature vector that would fully describe the entire network. Therefore, we propose
to consider not the whole network, but each of its nodes separately, providing it with
information about a particular local part of the network.

Therefore, we move from the problem of graph regression to node regression,
and propose two approaches in its solution using neural networks.

5.2.1 Data preparation

As described in the chapter 4, we have four generated datasets that contain samples
(networks), and samples of different datasets differ in size, number of nodes, and
hence, in the average shortest path. Each network contains its nodes and existed
edges between them. Therefore, we can obtain node features and edge features.
Nodes are characterized only by their transmission power. However, it can be ex-
pressed in two units - in milliwatts (mW) and decibel-milliwatts (dBm) 1 with the
following relationship between them:

PdBm = 10 · log10PmW (5.3)

1https://en.wikipedia.org/wiki/DBm

https://en.wikipedia.org/wiki/DBm
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PmW are used in mathematical description of wireless transmissions while PdBm
are more informative when comparing different signals with each other due to the
nature of the attenuation of the signals in space [Decibel Tutorial: dB and dBm vs. Gain
and Milliwatts].

Most network information is contained in the edge features. Each edge has the
following physical features:

• Received Signal Strength Indicator (RSSI) - the main property of wireless link
which indicates the strength of the signal from transmitter node and directly
affects the reliability of the connection.

• distance between transmitter and receiver.

• BER defines the error probability of any bit in the packet.

Features aggregation. Since we solve the node regression problem, and most of
the information is contained in the edges, we must create feature vectors for each
node. To do this, we aggregate the features of all output edges of the node, sort
the RSSI values, and rearrange all other features in the order of the corresponding
RSSIs. In this approach, the dimensions of the node feature vector will depend on
the number of nodes in the network. Therefore, we decided to consider only the five
nearest receiver nodes to the transmitter node to ensure equal conditions for each
node. Considering transmission power (dBm) of a particular node and sorted edge
features of its five nearest receiver nodes, we get a 16-dimensional feature vector of
this node.

RSSI distribution. However, information about the five nearest nodes may not
fully describe the node and the network topology around it. This becomes espe-
cially critical with increasing network size. Therefore, for each node, the cumulative
distribution of the RSSI values greater than the sensitivity threshold (-95 dBm) was
calculated.

This means that we calculate how many receiving nodes fall within a certain
range of a particular node. The values -65, -70, -75, -80, -85, -90, -95 (dBm) fixed
ranges were chosen, so we get the absolute distribution as a descending sequence of
seven numbers. We normalized each of the sequences separately, and in order to be
able to compare them with each other, we also normalized them by the total num-
ber of nodes in the network. Adding normalized RSSI distributions of a particular
node’s neighbours as features, we get a 30-dimensional feature vector of this node.

Train/validation/test split. After generating node features sets, we stack all the
nodes of all dataset networks together, obtaining the final dataset for the regres-
sion task. To get valid experimental results, we should split each dataset into three
non-intersecting subsets. We use the training set to fit the model, validation set to
estimate prediction error for model selection and parameter tuning and test set for
final evaluation.

There is no direct rule in what proportion should be done such splitting. Ac-
cording to Hastie, Tibshirani, and Friedman, 2001, the typical split might be 50% for
training and 25% for validation and testing. Due to the specificity of our domain,
we decided to keep 70% of data for training, 15% for validation, and 15% for the test
set.
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5.2.2 Training models

Multilayer perceptron. We chose the multilayer perceptron as the first proposed
model. On each of the four datasets, we trained a separate MLP model, using the
data preprocessing techniques from the previous subsection.

After achieving satisfactory accuracy on each of the datasets, we propose to com-
bine all data into one dataset, dividing it into train, validation, test sets in proportion
to each of the datasets. Then, after training one more MLP model on the generalized
data, we want to test whether this model can show improvements on each of the
initial datasets’ test sets. Thus, we will test the scalability of this approach.

Graph Convolution Network. Another approach in solving the node regression
task is the use of graph neural networks. There is no need to use data preprocessing
techniques because we can represent the input data in the form of graphs, separat-
ing node features (1-dimensional vectors) and edge features (3-dimensional vectors),
thus representing the network in its natural form.

To set the network topology, we use an adjacency matrix A, where nonzero aij
determines the existence of a wireless communication channel from node i to node
j.

Based on the vanilla GCN model, we need to improve it because it does not con-
sider the edge features. For this, we aggregate neighbours’ node features and edge
features separately during the message passing process and stack their representa-
tion together into one feature vector. Then, this vector and current node state are
combined and update node state.

Specifying the number of graph convolution layers, we indicate how deeply each
of the nodes can explore the network. But too few layers will not provide enough
information about the surrounding nodes, and too many will aggregate all the infor-
mation so that each of the nodes will have approximately the same ideas about the
network, which will not differ. Therefore, the choice of the number of layers should
be made depending on the size of the network and its density.
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Chapter 6

Experiments and evaluation

In this chapter, we described experiments to test neural proposed network models
for node regression task. Furthermore, we compared how this model deals with data
from different datasets.

Finally, we have used trained models to estimate network PDRs and optimize
node PDRs.

6.1 Metrics

For evaluation of proposed regression models, we used two basic metrics:

• MSE (Mean Squared Error) 1 metric is used while training and validation pro-
cesses as loss function and while comparing results of different models:

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2 (6.1)

where y – actual PDR values, ỹ – predicted PDR values.

• MAE (Mean Absolute Error) 2 metric is used to intuitively understand the re-
sults of the models because we can naturally interpret this metric:

MAE =
1
n

n

∑
i=1
|yi − ỹi| (6.2)

Because we also want to investigate the strength of the relationship between ac-
tual PDR values and predicted PDR values, we also use two statistical metrics:

• Pearson correlation coefficient rxy is a measure of linear correlation between
two sets of data x and y [Pearson, 1895]:

rxy =
∑n

i=1 (xi − x) (yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(6.3)

where x, y – mean values of corresponding sets;

• Spearman’s rank correlation coefficient 3 assesses how well the relationship
between two datasets can be described using a monotonic function. It is equal
to the Pearson correlation between the rank values of those two sets of data.

1https://en.wikipedia.org/wiki/Mean_squared_error
2https://en.wikipedia.org/wiki/Mean_absolute_error
3https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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6.2 Training details

Both models proposed by us in this work are fully connected.
The hyperparameters such as hidden layers dimensions, activation function, learn-

ing rate were tuned on the cross-validation technique. Thus, a sigmoid function was
used as a nonlinearity activation function. The training was conducted by the Adam
optimizer [Kingma and Ba, 2014], with an unchanged learning rate of 0.0001. The
ultimate optimization function is mean squared error function. The optimal MLP
model had three hidden layers with 100 neurons per layer. Tuned GCN had two
graph convolutional layers with 100 neurons per layer.

During training we group the data into the batches – node batches (with the
batch size 256) in the first case and graph batches (combining n graphs into one
huge graph with n components; with the batch size 16) in the second case.

6.3 Experiments

6.3.1 Node regression task

Experiments results described in this subsection below are presented in the table 6.1.
Baseline. To compare our neural network models with some baselines, we first

used basic regression models, such as linear regression, LinearSVR, RandomFore-
stRegressor and GradientBustingRegressor. As expected, ensemble models showed
the best results. In particular, RandomForestRegressor, which demonstrated the best
MSE and MAE metrics, was chosen as the baseline model. However, providing
some additional experiments, we saw that trained on one dataset (on a specific type
of networks), such a model can not achieve similar results on networks with other
characteristics.

MLP. While implementing our first neural network method were trained four
multilayer perceptrons (separately on each corresponding dataset). Also, their re-
sults on test sets were worse than baseline results; but after sequentially applying
additional data preprocessing techniques (from subsection 5.2.1), better results were
achieved.

To check the scalability of this method, we have stacked all train sets into one and
trained a generalized MLP model. We trained network for 500 epochs with hyper-
parameters shown in section 6.2. It can be seen in the figure 6.1 that the model loss
decreased on the train set during 500 epochs. However, validation loss decreased
until 200 epochs and started to grow after. This indicates model overfitting after the
200-th step. Therefore, as final model we used model trained during 200 epochs.

Furthermore, when checking the model predictions on the each of four test set,
slightly worse results were achieved. This means that this approach allows the node
to successfully determine the surrounding network topology and issue accurate re-
liability predictions regardless of the network sizes (in particular those presented in
our data).

GCN. Compared to the previous approach, where each node is a separate sam-
ple, in the second approach, each node is considered as part of the source network,
storing information about its relationship with each neighbor.

By training the graph convolution network using the edge features during the
message passing process, we obtained a neural network that converges well but not
smoothly. The figure A.1 demonstrates train losses and validation losses on each
dataset and indicates a sufficient number of epochs in each case (500, 300, 200, 500
epochs) before models overfit. Although results on the test data are inferior to the
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FIGURE 6.1: MLP model losses

previously obtained results, we are convinced that this approach can be applied to
this problem. Furthermore, advantages such as invariance to the number of neigh-
bours and scalability due to the increase in convolution layers leave room for further
research.

6.3.2 Evaluation

Having obtained an MLP model that can predict the node’ PDR, we considered two
basic ways to apply this model.

Network PDR estimation. As described in the section 4.3, provided that packets
are generated uniformly by each network node, the network’ PDR is highly corre-
lated with the average node’ PDR. Therefore, having achieved results in predicting
node’ PDR, we apply these to estimate the PDR of the network.

We have split our data in a graph manner, so all nodes of a particular graph are
used only in train, validation or test steps. Using the MLP model (trained on all
train data), we averaged node PDRs by corresponding networks and got estimated
network’ PDR. Actual network’ PDR is defined here as PDR of all packets generated
in the network. Network’ PDR predictions had low MSE and MAE metrics and
sufficiently high correlation coefficients comparing to node’ PDR predictions (table
6.2).

Node PDR optimization. The low reliability of the node can be caused by the
improper placement of the node, which leads to its isolation from the entire network
or insufficient transmission power. Because we consider the location of the nodes
to be fixed, the only parameter we can change is the transmission power. Based
on the simulated data, we are convinced that increasing the transmission power
necessarily leads to an increase in the probability of delivering packets generated by
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TABLE 6.1: Node regression task. Neural network approaches results

Pearson Spearman MSE MAE

Dataset 1

RandomForestRegressor 0.80664 0.79498 0.00291 0.04216

MLP 0.79814 0.7923 0.00302 0.04295

MLP with CD features 0.80673 0.79235 0.00291 0.04241

MLP with CD features trained an all train data 0.8051 0.79496 0.00293 0.04255

GCN with edge features 0.79714 0.7939 0.0031 0.04272

Dataset 2

RandomForestRegressor 0.87151 0.82997 0.00643 0.05677

MLP 0.86224 0.82609 0.00694 0.06044

MLP with CD features 0.87529 0.83422 0.00627 0.05608

MLP with CD features trained an all train data 0.8776 0.83825 0.00615 0.05632

GCN with edge features 0.85432 0.83219 0.00739 0.05943

Dataset 3

RandomForestRegressor 0.84072 0.79795 0.00938 0.07101

MLP 0.83132 0.79575 0.0099 0.07435

MLP with CD features 0.85168 0.81122 0.0088 0.06882

MLP with CD features trained an all train data 0.85142 0.80767 0.00891 0.07099

GCN with edge features 0.84103 0.79508 0.00913 0.07198

Dataset 4

RandomForestRegressor 0.80487 0.74233 0.01196 0.08539

MLP 0.77763 0.73087 0.01342 0.0917

MLP with CD features 0.81244 0.75963 0.01154 0.08351

MLP with CD features trained an all train data 0.80965 0.75679 0.01222 0.08309

GCN with edge features 0.80888 0.74635 0.01278 0.08588

the transmitter node. That is why we aim to see if our model can predict an increase
in node PDR values with increasing transmission power.

To verify this, in each network of each of the four test datasets, we identified the
nodes with the lowest predicted value. Step by step, increasing the transmission
power (by 1 dBm) of these nodes to the maximum value (-20 dBm) and leaving all
other nodes unchanged, we generated four extended test datasets to test final MLP
model on it.

We have considered four cases of possible results with increasing transmission
power:
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TABLE 6.2: Node PDR predictions vs. Network PDR predictions

Pearson Spearman MSE MAE

Dataset 1

Node PDR predictions 0.8051 0.79496 0.00293 0.04255

Network PDR predictions 0.79821 0.75955 0.00029 0.01349

Dataset 2

Node PDR predictions 0.8776 0.83825 0.00615 0.05632

Network PDR predictions 0.86315 0.83028 0.00048 0.01752

Dataset 3

Node PDR predictions 0.85142 0.80767 0.00891 0.07099

Network PDR predictions 0.87072 0.83193 0.00039 0.01625

Dataset 4

Node PDR predictions 0.80965 0.75679 0.01222 0.0831

Network PDR predictions 0.72471 0.71837 0.00068 0.02062

• the node was isolated, but the increase in the transmission power left it iso-
lated;

• the node was isolated, and the increase in the transmission power connected it
to the nodes of the network;

• the node was not isolated, but the increase in the transmission power changed
its PDR value within the MAE error;

• the node was not isolated, and the increase in the transmission power signifi-
cantly increased its PDR value.

Table 6.3 showed ratio of each case in each of the datasets. As expected, increas-
ing the transmission power of isolated nodes in sparse networks does not increase
their reliability, so such nodes are redundant. However, if the increase in the trans-
mission power connects the isolated node to the network, the decision on its need is
made by comparing its maximum achieved reliability with the reliability of other
network nodes. In addition, the increase in transmission power of non-isolated
nodes has a more significant impact on the reliability of nodes in dense networks
of smaller sizes because, in large networks, the increase in the transmission range of
the node is less significant compared to the size of the entire network.

Thus, the proposed model can predict the change in the PDR value of the node
when changing its transmission power, which can be used to determine the optimal
transmission power.
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TABLE 6.3: Node PDR predictions while optimization

Zero PDR Zero PDR Non-zero PDR Non-zero PDR

Unchanged Improved Unchanged Improved

Dataset 1 0 0 0.69 0.31

Dataset 2 0 0 0.41 0.59

Dataset 3 0.067 0.144 0.422 0.367

Dataset 4 0.05 0.233 0.617 0.1

6.4 Implementation details

To implement our neural models, we used the framework of deep learning – PyTorch
4 with the integration of python 3.7. In addition, to represent the data in the form of
graphs, we used a library NetworkX 5 that is compatible with the Deep Graph Library
(DGL) 6 that was used to model graph neural networks.

All networks were trained on a GeForce GTX 1080 TI GPU.

4https://pytorch.org/
5https://networkx.org/
6https://docs.dgl.ai/index.html

https://pytorch.org/
https://networkx.org/
https://docs.dgl.ai/index.html
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Chapter 7

Conclusion

7.1 Contribution

In this work, we considered the task of reliability prediction of BLE Mesh networks
in a supervised fashion and made the following contributions:

1. We made a comprehensive description of the BLE Mesh networks and pro-
vided an overview of related works dedicated to evaluating their performance.

2. To the best of our knowledge, our work is the first attempt to apply neural
network models in the BLE Mesh domain, especially in reliability prediction
task.

3. We collected four synthetic datasets that differ by sizes and analyzed how dif-
ferent network parameters affect its reliability. Based on this, we proposed
some data preprocessing techniques to utilize local topology information at
the node level.

Overall, we developed two neural network approaches for the node regression
task. The first one is a multilayer perceptron that predicts the reliability of a partic-
ular node only based on its feature vector. The second one – graph convolutional
network that uses whole network while training and maintains the natural connec-
tion between the nodes. Also, both models are suitable for solving the problem, MLP
demonstrates better results on all datasets. We assume this because of the relative
simplicity of the considered networks, which does not allow GCNs to demonstrate
their full potential.

We also proved the feasibility of using the proposed models to estimate network
reliability and find the optimal transmission power of the node to achieve its maxi-
mum reliability.

7.2 Future work

We have several directions for future work:

1. Since we use the simplest model of wireless communication in this work, it is
worth noting to improve the simulator, given the various noises and interfer-
ence that are always present in the natural environment.

2. In order to satisfy the connectedness of generated BLE Mesh networks, they
are dense enough and have a relatively small average shortest path. However,
in a natural environment, such networks are more sparse and have fewer re-
ceivers in their range. Therefore, it is advisable to consider sparse networks
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and propose an algorithm for constructing such networks. In addition, we
should be considered heterogeneous networks.

3. It also makes sense to look for other data preprocessing techniques that can
extract and create some more valuable features based on wireless communica-
tions’ physical properties.

4. Taking the results of this thesis as a baseline, we can consider more complex
neural networks, particularly other graph neural networks, which have proven
their applicability in other areas of graph data.
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Appendix A

GCN training

(A) Dataset 1 (B) Dataset 2

(C) Dataset 3 (D) Dataset 4

FIGURE A.1: GCN models losses (trained on different datasets)
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