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Abstract

Crystalline structures are vital to the modern technology. Yet, we are still only start-
ing to figure out how to properly estimate their directional properties using machine
learning techniques. In order to improve that, I build upon the theory and codebase
of Euclidean Neural Networks (networks equivariant to 3D rotations). The main
contributions of this work are: a derivation of the decompositon/reconstruction
equations of elastic tensor that enables using it as a train target, optimized CUDA
implementation of the core operation PeriodicConvolution that makes it fast and
scalable, and an analysis of the trends of geometric structures and electronic proper-
ties of the crystal in Materials Project Database and how these trends impact hyper-
parameters for convolutional neural network architectures such as Euclidean Neural
Networks.

Supplementary materials can be found at: https://github.com/L-sky/Master_Thesis
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Chapter 1

Introduction

1.1 Motivation

Many wonders of the modern world harness the emergent phenomena that arise
in condensed matter. To see this you do not need to look any further than your
smartphone. The touchscreen is a liquid crystal. Beneath it, the integrated circuit and
image sensor are made from single crystal wafers of semiconductors. The battery is
made of complex layers of polycrystalline and polymer materials.

The properties of known materials set the physical limits on what technology
can achieve, and finding new ones that allow to push the limits is a nontrivial task.
Recently celebrated with the Nobel Prize in Chemistry 2019, lithium-ion batteries
required more than a decade (1970’s - 1980’s) worth of improvements, particularly
of the material of cathode, before achieving commercial viability [1].

With the exponential increase in computing power, computational physics and
chemistry methods, such as density functional theory [2], have become widespread
and are readily used for practical materials design. Material properties that once
could only be obtained through experiments in laboratories, nowadays can be esti-
mated reasonably accurate via computer modelling.

Yet, modeling many technologically critical phenomena (that rely on many-body
quantum interactions) still remains out of practical reach. Accurate methods scale
poorly with a number of atoms in a structure - cubic increase in required compute or
worse [3]. Depending on the method, structure of interest, and requested accuracy,
one calculation may take hours, days or even weeks on high-performance comput-
ing resources. The development of the new commercially viable materials has still
become progressively more costly.

The pharmaceutical industry faces similar issues. It takes years to decades and
billions US dollars to develop one eventually approved drug [4]. Recently, machine
learning has been extensively applied in an attempt to alleviate bottlenecks in drug
discovery pipelines [5, 6].

Most machine learning approaches for chemistry focus on a single molecule (of-
ten represented as topological graphs) with limited numbers of atoms and atom
types. Although model considers a single molecule, values of the targeted property
are usually averaged over the different conformations - distinct spatial arrangements
of said molecule, particular conformations are hard to discern. In contrast, for the
crystals, spatial arrangement is crucial, and relatively small changes can have dra-
matic effect - for example, graphite versus diamond. This means that building mod-
els that can efficiently and naturally process 3D geometry is of upmost importance
for applying neural networks to the challenges of materials science.
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1.2 Thesis structure

In this thesis, I build upon the theoretical basis of Euclidean Neural Networks (which
naturally handle geometry and the datatypes of properties of physical systems) and
e3nn software implements. In the remainder of this chapter I give background for
the topics discussed in the subsequent chapters. In Chapter 2, I analyze Materials
Project Database (de facto the only widespread benchmark dataset for crystal prop-
erties prediction). In particular, I focus on how it constraints the choice of represen-
tation / network hyperparameters. In Chapter 3, I overview theory of the Euclidean
Neural Networks, how e3nn works and what are the limitations. Later in the chap-
ter, I present my improvements to the implementation. In Chapter 4, I provide the
decomposition of elastic tensor into the components that are compatible with e3nn,
as well as reconstruction.

Note: Writing a thesis takes time. For that reason, Chapter 3 is based on the now
legacy release called se3nn: https://github.com/mariogeiger/se3cnn

The contemporary release of e3nn: https://github.com/e3nn/e3nn retains the same
theoretical basis, but some changes were made to the implementation.

1.3 Background

1.3.1 Crystals

A crystal structure is composed of a unit cell that periodically repeats (infinitely) in
all directions given by defining vectors ~A,~B, ~C (see Figure 1.2). A unit cell itself is
an oblique prism that contains particular arrangement of atoms: 3D positions and
atom types.

FIGURE 1.1: Unit cell
given by side lengths

and angles

FIGURE 1.2: Unit cell
given by vectors

A unit cell can be equivalently specified either with triplet of vectors (see Figure
1.2) or with side lengths and pairwise angles (see Figure 1.1). The later definition
is useful for classification of structures into one of the seven lattice types (see Table
1.1). Lattice types can serve as a proxy to help determine the number of indepen-
dent components in a higher order tensors (see for example number of independent
components of the elastic tensor - column Cijkn in Table 1.1).

https://github.com/mariogeiger/se3cnn
https://github.com/e3nn/e3nn
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TABLE 1.1: Lattice types [7]

Lattice type Side lengths Angles Cijkn [8]

Cubic a = b = c α = β = γ = 90◦ 3

Tetragonal a = b 6= c α = β = γ = 90◦ 6, 7

Orthorhombic a 6= b 6= c α = β = γ = 90◦ 9

Hexagonal a = b α = β = 90◦, γ = 120◦ 5

Monoclinic a 6= c α = γ = 90◦, β 6= 90◦ 13

Rhombohedral a = b = c α = β = γ 6= 90◦ 6, 7

Triclinic otherwise 21

If inequalities for side lengths and angles in Table 1.1 to be forfeited, following hier-
archical tree can be arranged (see Figure 1.3).

FIGURE 1.3: Hierarchy of lattice types from lowest symmetry to high-
est symmetry.

1.3.2 Equivariance

A function f : RN → RM is said to be equivariant to the group G if for any group
action g ∈ G and x ∈ RN :

f (DN(g)x) = DM(g) f (x) (1.1)

This essentially means that order in which f and g applied can be interchanged.
While g itself is an abstract element of a group, D(g) is its matrix representation in
the particular vector space. Group actions retain vector space, e.g. DN(g) : RN →
RN .

The more commonly used property of invariance is a just a special case of Equation
1.1 when DM(g) is an identity.

1.3.3 Related work

The following are references on neural networks architectures relevant to the subject
of this thesis, ordered by data of appearance. Brief descriptions are given next to
each reference. (The release date of the first preprint used if available.)
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MPNN [9] (2017) - "Neural Message Passing for Quantum Chemistry". Generalized
and unified under the one framework prior approaches to graph convolutional neu-
ral networks.

SchNet [10] (2017) - "SchNet: A continuous-filter convolutional neural network for
modeling quantum interactions". Showed advantage of the continuous radial basis
functions (as opposed to discrete). Calculated partial derivative of the output (en-
ergy) with respect to the input (coordinates) to get force, and used it as an additional
target.

CGCNN [11] (2017) - "Crystal Graph Convolutional Neural Networks for an Ac-
curate and Interpretable Prediction of Material Properties". Explored different ap-
proaches on how to define neighborhood of an atom and thus form crystal graph.
Middle ground between explicit feature engineering and deep learning approach.

Tensor field networks [12] (2018) - "Tensor field networks: Rotation- and translation-
equivariant neural networks for 3D point clouds". Introduced formalism for net-
works (3D point clouds) that are equivariant to continuous 3D rotations.

Clebsch-Gordan Networks [13] (2018) - "Clebsch-Gordan Nets: a Fully Fourier Space
Spherical Convolutional Neural Network". Performs spherical convolutions in Fourier
space using the formalism of irreducible representations of SO(3).

3D Steerable CNNs [14] (2018) - "3D Steerable CNNs: Learning RotationallyEquiv-
ariant Features in Volumetric Data". Introduced formalism for networks (voxels)
that are equivariant to continuous 3D rotations, and gating mechanism (see Figure
3.1).

MEGNet [15] (2018) - "Graph Networks as a Universal Machine Learning Frame-
work for Molecules and Crystals". Extended MPNN appoarch by introducing state
variables that are shared among all nodes in the graph. As name suggests, state
variables allow to express shared state (temperature, external magnetic field, etc.)

e3nn [16] (2018, ongoing) - "A modular framework for neural networks with Eu-
clidean symmetry" (software). Originated as a combined implementation of ap-
proaches presented in "Tensor field networks" and "3D Steerable CNNs".

Cormorant [17] (2019) - "Cormorant: Covariant Molecular Neural Networks". Uti-
lized alternative (as compared to [12, 14, 16]) basis - complex spherical harmonics -
to formulate network equivariant to continuous 3D rotations. Used tensor products
between features to express 2-body, and more generally many-body interactions.

SE(3) Equivariant Neural Networks for Regression on Molecular Properties: The
QM9 Benchmark [18] (2020). Applied e3nn to the QM9 molecular dataset, and
showed that equivariant features improve predictions on inherently vector quan-
tities (dipole moment).
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Chapter 2

Materials Project Database

The Materials Project Database [19, 20] (release V2019.11) comprises density func-
tional theory (DFT) calculations of 124,515 crystalline structures and includes calcu-
lated properties such as formation energy, band gap, elasticity tensor, piezoelectric
tensor, and others (check [21] for an exhaustive list). The Materials Project performs
the DFT calculations with the Vienna Ab Initio Software Package (VASP) [22, 23, 24]
using the generalized gradient approximation (GGA) functional of Perdew, Burke,
and Ernzerhof (PBE) [25] and a Hubbard correction (+U) [26] for specific transition
metals oxides, fluorides and sulfides. 39.2% of the structures are tied to the Inor-
ganic Crystal Structure Database (ICSD) [27, 28] that contains both simulated and
experimentally obtained data (95% of the tied structures are experimental).

In this section, I show how to choose convolutional neural network hyperpa-
rameters in a data-driven way, explore caveats of modelling properties and perform
some general analysis on structure composition.

2.1 Bugs

Being an active and evolving endeavor, the Materials Project Database is not devoid
of bugs. The ones that I personally uncovered:

• Some structures had attribute ’theoretical’ set to ’None’ whereas it should be
’True’ (meaning that the structure has not been tied to an experimentally ob-
tained one) [29]. (fixed)

• For 11 structures, U-values used for Hubbard correction are permuted [30]. (af-
fected structures currently have attribute ’is_compatible’ set to False, hence no
longer being downloaded as a part of the database under the default settings)

• For 3158 structures, value of the attribute ’run_type’ matches neither of the
expected ’GGA’ nor ’GGA+U’ [31]. (expected to be fixed in the next release)

I exclude structures affected by the issue with invalid (displayed?) ’run_type’ (3158
structures, 2.5% of the database) from the further analysis.
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2.2 How to chose hyperparameters

Hyperparameters of the interest that I am going to focus on:

• number of layers in a network

• radial cutoff

The radial cutoff of a continuous convolutional layer defines the radius of the
sphere around atom within which another atoms are considered to be its "neighbors"
(see Figure 2.1 (left)). The underlying assumption implied by using convolutional
layers is that "interactions are predominantly local"→ "only neighbor atoms propa-
gate information to each other". This assumption allows to improve from quadratic
to linear scaling in compute and memory with respect to the linear increase in the
number of atoms in a unit cell, which makes runs on larger structures practically
feasible. Concept of the "neighborhood" as a volume within a sphere is widely used
besides e3nn, for example see Refs. [10, 15].

Additional convolutional layers result in an increase of the effective "neighbor-
hood", referred to as the receptive field, although it does not remain spherical (see
Figure 2.1). Linear increase in the number of layers gives linear increase of the recep-
tion field "radius", and corresponds to the linear increase in memory and compute.
In comparison, linear increase of radial cutoff corresponds to the cubic increase in
memory and compute.

Under the limited resources, it appears favorable to decrease the radial cutoff
and increase the number of layers. However, for neural network to be useful it is
important to preserve the ability of the atoms to communicate information between
each other. This imposes lower bound on the radial cutoff.

FIGURE 2.1: Expansion of the reception field after the first layer.

2.2.1 Radial cutoff

In this section, I am going to argue that 5 Å is a good choice for the radial cutoff.
The base premise is that atoms must be able to exchange information, otherwise

the whole construction loses its validity - respective structures must be discarded.
For some model implementations, like MEGNet [32], this fail-safe is hardwired -
the model would throw an explicit error in presence of isolated atoms. However,
the exclusion of isolated single atoms is not a sufficiently strict rule. Structures can
have disconnected clusters; this case violates the premise that atoms must be able to
exchange information, but in a more subtle way, each individual atom propagates
information, but clusters do not.
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Obviously, rejecting too many structures is undesirable. As can be seen from
Figures 2.2 and 2.3, rejection rate remains fairly small.
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distance, Å

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

it
y

exclude

4 Å
5 Å

FIGURE 2.2: Distribution of distances atom - closest neighbor.
Clipped at 6 Å. For 174 structures distance is bigger. Maximum distance: 13.4 Å.

Atom is isolated if the distance exceeds the radial cutoff.
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FIGURE 2.3: Distribution of diameters of crystal graphs for rcut = 5.0 Å.
Clipped at 9. For 152 structures diameter is bigger. Maximum finite diameter is 32.

"-1" marks the case of disconnected components - infinite diameter.
Diameter is the max length among shortest paths between nodes in the graph.
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At the time of writing, there is no merit in pushing radial cutoff further. Excluded
structures have no particular significance, while difference in required compute re-
sources would be considerable. Moreover, for larger radial cutoffs, it rapidly be-
comes more common to have multiple copies of the same atom (from translated unit
cells) in the "neighborhood" (as evident from Figures 2.4, 2.5). The same features get
used multiple times, resulting not only in a diminished returns on compute, but also
in a heighten likeliness of a signal being unstable (see Appendix B.2.2).

2.2.2 Number of layers

Number of layers should be big enough for each atom in the unit cell to consolidate
information from the whole unit cell. Diameter of the graph (see Figure 2.3) is the
smallest value that satisfies the condition. For Materials Project Database, 4 layers
with a radial cutoff of 5 Å is sufficient to cover 98% of structures.



2.2. How to chose hyperparameters 9
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FIGURE 2.4: Distribution of radii of the largest sphere that fits in unit cell.
Clipped at 15 Å. For 107 structures radius is bigger. Maximum: 24.7 Å.

At most one copy of an atom appears in the "neighborhood" if radial cutoff is
less than the radius.
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FIGURE 2.5: Distribution of radii of the smallest sphere enclosing unit cell.
Clipped at 50 Å. For 718 structures radius is bigger. Maximum: 211.5 Å.

Every atom in original unit cell appears in the "neighborhood" at least once if
the radial cutoff exceeds the radius.



10 Chapter 2. Materials Project Database

2.3 Properties

2.3.1 Band gap

The band gap is the minimum amount of energy required to excite an electron from
valence band to conductive band [33]. Electrons in conductive band participate in
conductivity. In simplified version, materials with zero band gap are conductors
(usually metals) - pass electrical current; with "small" band gap (semi-conductors) -
pass electrical current if suitable electric field applied to the material, with "big" band
gap (insulators) - do not pass electrical current. There is no solid line between "small"
and "big" band gap. For purposes of this work, I will only make distinction between
zero and non-zero values. While the band gaps predicted by DFT at the level of
GGA are know to be inaccurate due to well understood theoretical limitations, it is
still useful to predict these values for coarse guidance in materials design.
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FIGURE 2.6: Distribution of band gap.

From Figure 2.6, it is apparent that band gap distribution is extremely skewed.
45% of materials have zero band gap, making it reasonable to model the distribution
as a product of Bernoulli distribution and some other distribution. I claim that it is
going to be advantageous for network training stability to have distribution mod-
eled in the following form:

Band gap ∼ B(p){σ(D(0, 1) + µ)}2 (2.1)

where B(p) - Bernoulli distribution; D(0, 1) - standardized distribution of square
root of non-zero band gap (see Figure 2.7); µ and σ are respectively mean and stan-
dard deviation of the distribution of non-zero band gap.
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FIGURE 2.7: Distribution of standardized square root of non-zero band gap.
mean = 1.274, standard deviation = 0.612 (before standardization),

skew = −0.097, kurtosis = −0.802

2.3.2 Formation energy

Total formation energy is a difference in energies between structure as a whole and
its constituent parts. Further into negatives the formation energy is, more stable the
structure is. Conversely, positive values indicate that structure is prone to decay.

Note: Hereafter, the "formation energy" refers to the formation energy per atom.

Figure 2.8 is visually akin to bi-modal distribution and in fact, the peaks can be
explained based on the run type used in the simulation (see Figure 2.9). Credit goes
to Simon Verret for suggesting this reason.

Whether the difference between sub-distributions is due to the innate proper-
ties of materials for which either of run types has been chosen, or due to simulation
method itself, which would imply systematic error - remains a mystery. It can be re-
solved via comparison to the calculations based on theoretical model of higher order.
Unfortunately, said calculations are too computationally expensive for the scope this
work. As for now, we shall refrain from exploiting bi-modality. The distribution can
still be standardized in way as if it was uni-modal.
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FIGURE 2.9: Distribution of formation energy by run type.
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2.4 Extras

2.4.1 Structure sizes

The distribution of the number of atoms in a unit cell follows distinctive pattern
due to parity (see Figure 2.10). Analogous behaviour has been observed earlier for
ICSD [34]. In Ref. [34], author argues that parity pattern may be explained through
symmetry broken centered Bravais lattices [7] (which is, in a sense, artifact of how
unit cells are constructed), quote:

"... breaking some symmetries in a face-centered lattice may lead to the necessity
to describe it by a supercell, corresponding to either a base-centered lattice (... factor
of 2 in Nat) or a simple lattice (... factor of 4 in Nat). ... for symmetry-broken super-
cells of base- and body-centered lattices ... factor of 2, when the broken symmetry
necessitates the description by a simple Bravais lattice" [34]. (Nat - number of atoms
in a unit cell)

As for a decaying number of examples for more populated unit cells, it is ex-
pected as DFT calculations have cubic scaling in required compute with linear in-
crease in Nat [3].
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FIGURE 2.10: Distribution of the number of atoms in a unit cell.
Clipped at 100. 3.1% of structures has more than 100 atoms in unit cell.

Maximal number of atoms in a unit cell is 444.
Parity is marked with a color.

2.4.2 Atomic composition

Presence of the different atom types in MP is not uniform (see Figure 2.11), with
noble gases and radioactive elements being expectably underrepresented (Tables 2.1,
2.2). Noble gases are chemically inert, the only thing keeping a crystal comprised
of noble gas elements together is Van der Waals force (which is relatively weak).
Radioactive elements disrupt structure formation through decay.
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FIGURE 2.11: Presence of the atom types across structures.

TABLE 2.1: Noble gases

Element Structures

He (2) 5

Ne (10) 0

Ar (18) 1

Kr (36) 13

Xe (54) 143

TABLE 2.2: Radiactive elements

Element Structures

Tc (43) 644

Pm (61) 513

Po (84) 0

At (85) 0

Rn (86) 0

Fr (87) 0

Ra (88) 0

Ac (89) 296

Th (90) 954

Pa (91) 250

U (92) 2038

Np (93) 338

Pu (94) 385

Note: All radioactive elements have only unstable isotopes, however meaning of
the "unstable" vary. Tc can have half-life over four million years, while Fr - only 22
minutes.
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Chapter 3

Euclidean Neural Networks
(E(3)NN)

Euclidean Neural Networks (E(3)NNs) are a general class of neural networks that are
equivariant to the symmetries of 3D Euclidean space, 3D translation, rotations, and
(optionally) inversion [12, 13, 14]. Equivariance means that order of action of neural
network and these operations (translations, rotations, (optionally) inversion) on the
input can be interchanged. This built-in equivariance guarantees that E(3)NNs can
identify patterns in 3D in any orientation, avoiding the need for expensive (500 fold)
data augmentation typically required for 3D convolutional neural networks to em-
ulate rotation equivariance. Additionally, because these networks are equivariant at
every layer, these networks can represent equivariant functions with substantially
fewer parameters than traditional methods.

Crystal symmetries in 3D are characterized by the 230 space groups and tabu-
lated in the International Tables of Crystallography [35]. These space groups are
subgroups of 3D Euclidean symmetry E(3). Thus, any symmetry of any crystal
given as an input to E(3)NN, will be preserved, as desired.

The preexisting code base of E(3)NN [36] includes a PeriodicConvolution as
well as a toy example on how to use it for crystal structures, but it is not optimized
as needed for real-world cases. Medium-sized network (on GPU) triggers out-of-
memory exception when given a single structure with more than 60 atoms in a unit
cell, and having that many atoms is not rare (see Figure 2.10). Speed is also an issue -
estimated time for one train epoch on full Materials Project dataset exceeds 12 hours.
In order to alleviate it, I created optimized CUDA routine for PeriodicConvolution
that is fast and scalable.

In this chapter, I briefly overview the theory behind E(3)NN, pinpoint aspects in
the previous implementation that caused issues, and present my optimized solution.
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3.1 Theory

Euclidean neural networks are a subset of convolutional neural networks where the
filters are constrained to be separable into a radial function and angular function
where the scalar radial function is learned and the angular functions are spheri-
cal harmonics, Klm(~r) = R(l)(|r|)Ylm(r̂). There are additional mathematical con-
sequences due to this filter choice that effects how we combine filter and feature
information as described in Appendix A.

3.1.1 Real Spherical Harmonics

Real spherical harmonics are equivariant to rotations in 3D:

Y`m(Ω + δΩ) =
`

∑
m′=−`

D`
mm′(R(δΩ))Y`m′(Ω) ≡ D`

mm′(R(δΩ))Y`m′(Ω) (3.1)

where Ω ≡ (θ, φ) - polar and azimutal angles, δΩ - rotation angle, Y`m - real spherical
harmonic, D`

mm′(R(δΩ)) - matrix representation of rotation R(δΩ) in the space of
real spherical harmonics of rotational order ` (also referred as rotational matrix over
real spherical harmonics [37, 38]).

Real spherical harmonics are defined as follows (arguments θ, ϕ implied):

Y`m =


√

2(−1)m Im[Y|m|` ] if m < 0

Y0
` if m = 0
√

2(−1)mRe[Ym
` ] if m > 0

(3.2)

where Y`
m - complex spherical harmonic.

In e3nn, real spherical harmonics are additionally multiplied by factor (−1)−`:

Y`m → (−1)`Y`m (3.3)

Complex spherical harmonics:

Ym
` (θ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`−m)!
(`+ m)!

Pm
` (cos θ)eimϕ (3.4)

where (−1)m - QM normalization, Pm
` - Associated Legendre Polynomials.

Associated Legendre Polynomials:

Pm
` (z) = (1− z2)m/2 dm

dzm P`(z)

P−m
` (z) = (−1)m (`−m)!

(`+ m)!
Pm
` (z) (3.5)

`, m ∈N∪ {0}, m ≤ `, z ∈ [−1, 1]

where P` - Legendre Polynomials.

Legendre Polynomials:

P0(z) = 1, P`(z) =
1

2``!
d`(z2 − 1)`

dz`
, ` ∈N, z ∈ [−1, 1] (3.6)
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3.1.2 Periodic Convolution: precursor

F(out)
a`in`jm = ∑

b∈N(a)
F(in)

g(a,b)`in jK`m (3.7)

where N(a) - neighborhood of a, g(a, b)→ b∗, F - features, K - filters.

After convolution number of indices increased. In order to mitigate it, equivariance
preserving contraction should be done:

F(out)
a`outi

= ∑
b∈N(a)

∑
`in

`in

∑
j=−`in

`out+`in

∑
`=|`out−`in|

`

∑
m=−`

C`out`in`ijmF(in)
g(a,b)`in jK`m (3.8)

where C - coupling coefficients (see Appendix A).

Note: rotational orders `in, `out are fixed by the shape of input and the required shape
of output respectively, hence ` should be adjusted to satisfy the equation 3.8.

3.1.3 Periodic Convolution and Kernel

In the original implementation, Periodic Convolution is different from what given
in equation 3.8. Coupling coefficients and sum over `, m detach from Periodic Con-
volution and combine with filters to form another operation called Kernel. With
normalization and multiplicities (multiple copies of the same rotation order) intro-
duced, it results in the following.

Periodic Convolution:

F(n+1)
a(`outui) =

1√
|N(a)| ∑

b∈N(a)
∑

(linvj)
F(n)

g(a,b)(`invj)Kab`out`inuivj (3.9)

Kernel:

Kab`out`inuivj = W`out`inab ∑
(`m)

C`out`in`ijmY`mabRab`out`inuv` (3.10)

F(n) - features after layer n;
F(0) - input features;
C - coupling coefficients (see Appendix A);
W - normalization coefficients (see Equation B.36);
Y - real spherical harmonics;
R - Radial Basis Model output;
|N(a)| - size of the set N(a);
N(a) - set of neighbors of atom a;
v - input multiplicity;
u - output multiplicity;
j ∈ [0, 2`in + 1];
i ∈ [0, 2`out + 1];
a - index of an atom;
b - index of a neighbor atom.
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∑
(`invj)

≡∑
`in

k(`in)

∑
v=0

2`in+1

∑
j=0

∑
(`m)

≡
`out+`in

∑
`=|`out−`in|

2`+1

∑
m=0

Sets of `out and `in are defined per layer. `out for one layer is a `in for next. Each
`out, `in is equipped with user defined output u and input v multiplicity respectively.

3.1.4 Gate

FIGURE 3.1: Gate

F` =

{
f
(

F̃`
)

if ` = 0

g
(

F̃(gates)
`=0

)
F̃` if ` > 0

(3.11)

f , g are some non-linearities. For scalars (` = 0) non-linearity can be applied directly
without breaking equivariance. For higher order components (` > 0), a non-linearity
can be applied by operating on the vector norm, which is invariant to rotation, or
"gating" the higher order components with a separate scalar feature. Later is used.
Each rotational order ` among ` > 0 for all components m, gets one corresponding
scalar feature (` = 0(gates)) as a multiplicative coefficient.



3.2. Issues of the original implementation 19

3.2 Issues of the original implementation

3.2.1 Real spherical harmonics: serialization

FIGURE 3.2: Original routine for real spherical harmonics.
csh - complex spherical harmonic, rsh - real spherical harmonic

Compute times (per call) are provided for the relative comparison:

• Angles conversion, GPU-CPU and CPU-GPU transfers, post-processing: 0.5 ms

• Computing csh: 2× 3.55 ms = 7.1 ms (recursive sequential implementation)

• Combining csh into rsh: 1.0 ms

Total: 8.7 ms (per call).

The main issue is underused parallelism. The real spherical harmonics routine is
usually requested for pack of thousands of entries - the backbone csh routine applies
essentially the same calculation process to all entries one-by-one.

3.2.2 Kernel to Periodic Convolution: memory bottleneck

The kernel output Kab`out`inuivj dominates memory usage.

Consider:

• |a| = 100 atoms in a structure

• |b| = 12 neighbor atoms for each atom a

• `out = `in = [0, 1, 2, 3, 4] - rotational orders of output/input representations

• |u| = |v| = 16 - multiplicities for each rotational order

• |i| = 2`out + 1 and |j| = 2`in + 1 - number of components per rotational order

• 64-bit entries - rounding error at 32-bit breaks equivariance after a couple of
layers

When all numbers are plugged in, the size of K appears to be 1.2 GB. Keep in mind
that in train mode PyTorch saves it to the buffer for backward pass on each layer!

In comparison, the next largest (and unavoidable) object is Radial Basis Model out-
put Rab`out`inuv` under the same considerations requires just 152 MB.
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3.2.3 Kernel to Periodic Convolution: serialized operations

All input tensors in Equations 3.9 and 3.10, aside for W, have varying length for
one or more logical indices. Padding leads to the quite dramatic memory overhead.
At the same time, PyTorch does not support batching operations with varying rules
within a batch. Therefore, in original implementation contingent blocks (for which
operations can actually be vectorized) get picked one by one in a loop (serialization),
which results in low GPU utilization.

3.2.4 Layer layout: delayed garbage collection

FIGURE 3.3: Original (nested) layer

In Python, garbage collection depends on link counting. When number of links to a
variable reaches zero, underlying memory gets released. Intermediate variables cre-
ated within a function have zero links once function ends, unless explicitly deleted.
Nested layout unnecessary extends the lifetime of those no longer used variables,
which results in higher peak memory usage.
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3.3 Solutions

TABLE 3.1: Effect of the implemented solution on the execution time

Time is given for one training epoch on full MP database.
Specifications for machine can be found in supplementary materials.

Implemented solution Execution time,

(cumulative) hours per epoch

Original implementation 12 (estimate)

Merged Periodic Convolution and Kernel (Python) 5

Custom CUDA implementation for real spherical harmonics 4

Merged Periodic Convolution and Kernel (CUDA) 1.5

+ sequential layer layout

3.3.1 Real spherical harmonics: custom CUDA implementation

FIGURE 3.4: New routine for real spherical harmonics

We do not need spherical harmonics for large rotation orders `. That allows to by-
pass recursive formula. I used online tables with explicit expressions (no recursion)
[39]: for real spherical harmonics in Cartesian basis (` ≤ 4), and for complex spheri-
cal harmonics in Spherical basis (5 ≤ ` ≤ 10) to construct list of explicit expressions
in Cartesian basis (` ≤ 10). Those I coded in the CUDA extension that fully utilizes
paralleling over the inputs.

Compute times (per call):

• Input normalization, post-processing: 0.18 ms

• Computing rsh: 0.0076 ms - more than 1000x faster than prior backbone routine

Total: 0.19 ms (per call) - overall speedup is 46.8x.

Tricks of the trade. The (fixed) coefficients evaluation requires square roots and
divisions. ’constexpr’ forced it from the run time (recalculate on each execution) to
the compile time (calculate once and embed the result as a part of the code), so that
the only arithmetic operations in the remaining routine comprises are multiplication
and addition - a major boost to the performance.
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3.3.2 Merge Kernel and Periodic Convolution

To avoid the issue of stashing Kernel outputs K (described in 3.2.2) we combine Ker-
nel and Periodic Convolution into the single operation. The single operation from
the viewpoint of PyTorch. This requires the backward() operation for calculation
of gradients with a custom custom operation (see C.2, C.3 for derivation). Other-
wise, the auto-generated computation graph in PyTorch will contain many nodes
corresponding to small operations, each equipped with its own buffer, cumulatively
leading to the very same memory issue.

In Ref. [18], Ben Miller addresses the problem in a similar way for the full Convo-
lution (all-to-all interactions between atoms in a structure). Although, keep in mind
that it is inapplicable to Materials Project Database as structures in it are relatively
large - even optimized full Convolution will result in out-of-memory exception.

3.3.3 Kernel and Periodic Convolution: CUDA implementation

See Appendix C for the details of implementation.

3.3.4 Layer layout: nested to sequential

FIGURE 3.5: New network layout

FIGURE 3.6: New (sequential) layer
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The purpose of the introduced Data Hub block is to preprocess and store variables
that are going to be reused in the network. Those variables can be attributed either to
the network or to the input. Network-lifetime variables: coupling coefficients C and
memory offsets (see Appendix C) are calculated once when network is instantiated
and never change. Input-lifetime variables: absolute distances r and real spherical
harmonics Y are replaced once new input is supplied, but reused within a network
across the layers (for both forward and backward passes).
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Chapter 4

Elastic Tensor

Euclidean Neural Networks support training on tensors of an arbitrarily high rank
while preserving rotation equivariance. It is most common to express geometric
tensors of physical system as Cartesian tensors. However, E(3)NNs operate on geo-
metric tensors in the irreducible basis. Therefore, it is necessary to express tensor in
irrep components that in the case of the elastic tensor can be associated with specific
real spherical harmonics.

In this chapter, I derive forward and inverse transformations between Cartesian
coordinates and components of real spherical harmonics (which transform as the
irreps of SO(3)) for the elastic tensor.

4.1 Definition

The elastic tensor (also called elasticity tensor) is a rank-4 tensor that quantifies the
response of a body to deformations. In particular, it appears in Hooke’s Law for
continuous media [8]:

σij = Cijknεkn i, j, k, n ∈ {1, 2, 3} (4.1)

where σ - stress tensor; ε - strain tensor; C - elastic tensor, {1, 2, 3} ≡ {x, y, z}.

For comparison, Hooke’s Law for linear spring [40]:

F = k∆x (4.2)

where F - counteracting force; k - elasticity coefficient; ∆x - displacement from equi-
librium position.

The elastic tensor C has the following symmetries [8]:

σij = σji εkn = εnk Cijkn = Cknij = Cjikn = Cijnk (4.3)

Consequently, elastic tensor has at most 21 independent elements out of 81 that an
arbitrary rank-4 tensor can posses. This implies that equation 4.1 is redundant. One
of the approaches to partially reduce redundancy is Voigt notation, hereby is the
variation used in MP [41, 42].

In the compact form:

σ̃i = C̃ij ε̃ j i, j ∈ {1, . . . 6} (4.4)

where mapping for indices: 11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6.
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In the full form:



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(4.5)

4.2 Decompositions (literature)

Depending on the type of lattice system crystal can have additional point symme-
tries and consequently less than 21 independent components [8]. I focus only on the
most general case - triclinic lattice system.

There are multiple ways to decompose the elastic tensor. In particular, Ref. [43]
shows decomposition to and reconstruction from harmonic tensors. The exact corre-
spondence between harmonic tensors and spherical harmonic tensors is not appar-
ent (they are not the same thing!). From Ref. [44], we know that there should be two
copies of ` = 0, two copies of ` = 2 and one of ` = 4 irreps.

Ref. [45] presents the decomposition of the elastic tensor in complex spherical
harmonic components, as well as the reconstruction, appears to be the closest match.
Whats left is adapting the approach to real spherical harmonics.

4.3 Real spherical harmonic decomposition

Following Ref. [45], conversion from Cartesian coordinates (i, j, k, n) to covariant
components (α, β, γ, δ) for elastic tensor C:

Cαβγδ = CijknKαiKβjKγkKδn (4.6)

and inverse:

Cijkn = Cαβγδ Jiα Jjβ Jkγ Jnδ (4.7)

where matrices K, J are normalized permutation matrices (see Appendix E.1):

K = −
√

3
4π


0 1 0

0 0 1

1 0 0

 J = −
√

4π

3


0 0 1

1 0 0

0 1 0

 =
4π

3
KT (4.8)

Reconstruction equation for elastic tensor in covariant components, indices (αβγδ)
are implied for C, A, B, D, E, H:

C = Aq00 +
2

∑
m=−2

Bmq2m + Ds00 +
2

∑
m=−2

Ems2m +
4

∑
m=−4

Hms4m (4.9)

where q00, q2m, s00, s2m, s4m are real spherical harmonic components.
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A, Bm, D, Em, Hm are fixed coefficients calculated as follows (see Appendix E.2 for
derivation):

A(αβγδ) = G0,1,1
0,α,βG0,1,1

0,γ,δG0,0,0
0,0,0 (4.10)

B(αβγδ)
m =

(
G0,1,1

0,α,βG2,1,1
m,γ,δ + G0,1,1

0,γ,δG2,1,1
m,α,β

)
G0,2,2

0,m,m (4.11)

D(αβγδ) =
2

∑
m′=−2

G2,1,1
m′,α,βG2,1,1

m′,γ,δG0,2,2
0,m′,m′ (4.12)

E(αβγδ)
m =

2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δG2,2,2
m,m1,m2

(4.13)

H(αβγδ)
m =

2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δG4,2,2
m,m1,m2

(4.14)

where G are the real Gaunt (R-Gaunt) coefficients [46, 47] (see Appendix D).

The decomposition equation is an inverse of the Equation 4.9, the easiest way to ob-
tain it is to employ matrix multiplication. Let C, A, B, D, E, H be flatten into column-
vectors over indices (αβγδ), then:

C = [A, Bm, D, Em, Hm]



q00

q2m

s00

s2m

s4m


= TS (4.15)

C has shape [81× 1], T [81× 21], S [21× 1].

Due to its index permutation symmetries C contains identical entries. Correspond-
ing rows of T are identical as well. It is possible to select a subset of linearly inde-
pendent components (see Appendix E.3) such that:

Ĉ = T̂S (4.16)

where hat denotes subset, Ĉ has shape [21× 1], T̂ [21× 21], S [21× 1].

T̂ is a full rank matrix, meaning that decomposition equation is simply:

S = T̂−1Ĉ (4.17)

Exact values of matrices
(

8π
3
2

)
T̂ and

(
1

8π
3
2

)
T̂−1 are provided in supplementary

materials.
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Chapter 5

Conclusion

5.1 Contribution

In this thesis, I presented the following contributions: First, I performed an analysis
over Materials Project Database, which is the first analysis on this database as such
(that I am aware of). It revealed that choice of radial cutoff and number of layers
in the network do not have to be arbitrary - data gives strong prior. For Materials
Project Database it is 5 Å and 4 layers respectively. Second, I contributed the opti-
mized CUDA implementation for Periodic Convolution in e3nn that enables scal-
ing to real-world scenarios. And finally, I derived decomposition and reconstruction
transformations for elastic tensor, so that it can be used as a prediction target in e3nn.

5.2 Future work

There are two main vectors of the further development: engineering and theory.
On the side of engineering. Euclidean Neural Networks fit nicely within a theo-

retical framework of message passing neural networks (MPNN) [9] and can benefit
from results of ongoing research in the field of graph neural networks. However, as
it currently is, my optimized CUDA extensions are not compatible with a graph neu-
ral network software frameworks that implement MPNN, such as pytorch-geometic
[48] and DGL [49], hence it is a priority to make respective adjustments.

As for the theory. Procedure described in Chapter 4 and Ref. [45] for elastic
tensor is not general. In a sense that direct transfer of it is not valid just for any tensor
(e.g. it is not valid for piezoelectric tensor di(jk)). It would be desirable for future
work to extend these procedures to arbitrary rank tensors with various additional
index permutation symmetries.
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Appendix A

E(3)NN: Coupling coefficients

(Credit for the derivation presented in this appendix belongs to Mario Geiger)

In order for the feature tensor to not increase number of indices on each layer of a
network (see Equation 3.7), an equivariant contraction operation is required. Pur-
pose of this appendix is to show how to obtain coefficients C for a contraction op-
eration of a given form such that operation is indeed equivariant. Throughout this
appendix, Einstein summation notation is used (repeated indices are summed over).

Z`outi = C`out`in`ijmF`in jK`m (A.1)

where F, K, Z - irrep tensors (e.g. input, kernels, output); C - coupling coefficients.

Irrep tensors act under proper rotations in the same way as real spherical harmonics.
Under some rotation of space, Equation A.1:

D`out
ii′ Z`outi′ = C`out`in`ijmD`in

jj′ F`in j′D`
mm′K`m′ (A.2)

where D ≡ D(R(δΩ)) - rotation matrix over real spherical harmonics [37]. Note
that D is a square matrix, and upper script (it is not an index per se) defines the size.

Substitute A.1 into A.2 and rearrange:

D`out
ii′ C`out`in`i′knF`inkK`n = D`in

jj′ D`
mm′C`out`in`ijmF`in j′K`m′ (A.3)

From construction, if coupling coefficients C abide Equation A.3, then equivariance
is retained.

From orthonormality of D follows:

D`out
ii∗ D`out

ii′ = δi∗i′ (A.4)

where δ - Kronecker’s delta.

Contraction of both sides of A.3 with A.4 gives:

C`out`in`i∗knF`inkK`n = D`out
ii∗ D`in

jj′ D`
mm′C`out`in`ijmF`in j′K`m′ (A.5)

In A.5, relabel k→ j′, n→ m′, i∗ → i′ and match sides, then:

C`out`in`i′ j′m′ = D`out
ii′ D`in

jj′ D`
mm′C`out`in`ijm (A.6)

Hence, valid values of C`out`in`ijm belong to null-space of
(

I − D`out
ii′ D`in

jj′ D`
mm′

)
, where

I - identity matrix, and D`out
ii′ D`in

jj′ D`
mm′ gets reshaped into square matrix (ijm)× (i′ j′m′).
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Appendix B

E(3)NN: Normalization

In this appendix, I derive expression for normalization coefficients W such that ev-
ery component of output features has unit variance. In Ref. [18], Ben Miller with
help of Mario Geiger derives W based on integration over initial distribution of net-
work weights. I am going to use integration over the space instead, with operations
defined as follows:

Mean:

〈X〉 ≡ µ ≡ 〈X〉θ,φ,r ≡
1

4π

3
r3

cut

∫ π

θ=0

∫ 2π

φ=0

∫ rcut

r=0
Xr2 sin θ dθ dφ dr (B.1)

Variance:
Var(X) ≡ σ2 ≡ 〈X2〉 − 〈X〉2 (B.2)

Covariance:
Cov(X, Z) ≡ 〈XZ〉 − 〈X〉〈Z〉 (B.3)

Additionally, I am going to review special cases stemming from periodicity of crys-
tals. For those purposes, it is convenient to use division into Periodic Convolution
and Kernel, as given by equations 3.9, 3.10.

F(n+1)
a(`outui) =

1√
|N(a)| ∑

b∈N(a)
∑

(linvj)
F(n)

g(a,b)(`invj)Kab`out`inuivj (B.4)

Kab`out`inuivj = W`out`inab ∑
(`m)

C`out`in`ijmY`mabRab`out`inuv` (B.5)

I drop non-essential indices to avoid visual clutter.
F(n+1) → F′, F(n) → F, (`invj)→ j′

F′a =
1√
|N(a)| ∑

b∈N(a)
∑
j′

Fg(a,b)j′Kabj′ (B.6)

K = W ∑
(`m)

C`mY`mR` (B.7)
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B.1 Kernel

B.1.1 Mean

〈K〉 =
〈

W ∑
(`m)

C`mY`mR`

〉
= W ∑

(`m)

C`m〈Y`mR`〉 (B.8)

〈Y`mR`〉 ≡ 〈Y`m(θ, φ)R`(r)〉θ,φ,r = 〈Y`m(θ, φ)〉θ,φ 〈R`(r)〉r (B.9)

〈Y`m(θ, φ)〉θ,φ ≡
1

4π

∫ π

θ=0

∫ 2π

φ=0
Y`m(θ, φ) sin θdθdφ =

{
1

2
√

π
, if ` = 0, m = 0

0, otherwise
(B.10)

〈R`(r)〉r =
3

r3
cut

∫ rcut

r=0
R`(r)r2dr ≡ µR`

(B.11)

Substitute B.11 and B.10 into B.9:

〈Y`mR`〉 =
µR0

2
√

π
[` = 0][m = 0] (B.12)

[` = 0] - Iverson notation: if condition in the bracket True, then 1, otherwise 0.

Substitute B.12 into B.8:

µK`
= 〈K`〉 = W

C00µR0

2
√

π
[` = 0] (B.13)

Assertion 1. µR0 = 0. We can force all µR`
and σ2

R`
. As for now, only µR0 being zero

is important, otherwise further expressions for variances jump in complexity.

〈Y`mR`〉 = 0 (B.14)

µK = 0 (B.15)

B.1.2 Variance

Var(K) = Var

(
W ∑

(`m)

C`mY`mR`

)
=

= W2Var

(
∑
(`m)

C`mY`mR`

)
=

= W2 ∑
(`m)

Var (C`mY`mR`) + 2W2 ∑
1≤i<j≤n

Cov
(

CiYiR f (i), CjYjR f (j)

)
=

= W2 ∑
(`m)

C2
`mVar (Y`mR`) + 2W2 ∑

1≤i<j≤n
CiCjCov

(
YiR f (i), YjR f (j)

)
(B.16)

All transformations rely on general variance and covariance properties without any
further assumptions. Indices i, j go through the pairs (`m), f (...) accounts for the
fact that R does not have index m.
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Using B.14:

Var (Y`mR`) = 〈(Y`mR`)
2〉 − 〈Y`mR`〉2 = 〈Y2

`m〉θ,φ〈R2
`〉r (B.17)

From orthonormality of real spherical harmonics follows:

〈
Y2
`m(θ, φ)

〉
θ,φ ≡

1
4π

∫ π

θ=0

∫ 2π

φ=0
Y2
`m(θ, φ) sin θdθdφ =

1
4π

(B.18)

Caveat: equality B.18 is only valid if r 6= 0. If r = 0, then angles θ, φ are not well
defined and value should set to be zero for all `, m except for ` = m = 0. This is
going to be crucial for self-interactions.

〈R2
`〉r = 〈R2

`〉r − 〈R`〉2r + 〈R`〉2r ≡ σ2
R`

+ µ2
R`

(B.19)

Substitute B.18 and B.19 into B.17:

Var (Y`mR`) =
1

4π

(
σ2

R`
+ µ2

R`

)
(B.20)

Cov
(

YiR f (i), YjR f (j)

)
= 〈YiYjR f (i)R f (j)〉 − 〈YiR f (i)〉〈YjR f (j)〉 =

= 〈YiYj〉θ,φ〈R f (i)R f (j)〉r − 〈Yi〉θ,φ〈Yj〉θ,φ〈R f (i)〉r〈R f (j)〉r
(B.21)

Recall that i 6= j, therefore from orthogonality 〈YiYj〉θ,φ = 0, and 〈Yi〉θ,φ〈Yj〉θ,φ = 0,
because at most one of i, j can correspond to ` = 0, m = 0, which is the only non-zero
option for 〈Y`m〉, therefore:

Cov
(

YiR f (i), YjR f (j)

)
≡ 0 (B.22)

Substitute B.22 and B.20 into B.16:

Var(K) ≡ σ2
K =

W2

4π ∑
(`m)

C2
`m
(
σ2

R`
+ µ2

R`

)
(B.23)
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B.2 Periodic Convolution

Features are attached to the space. They implicitly depend on coordinates through
index g(a, b).

Assertion 2. Input features have zero mean and unit variance. We can always force
it on the first layer.

µF = 0, σ2
F = 1 (B.24)

B.2.1 Mean

From linearity:

〈F′a〉 =
〈

1√
|N(a)| ∑

b∈N(a)
∑
j′

Fg(a,b)j′Kabj′

〉
=

=
1√
|N(a)| ∑

b∈N(a)
∑
j′

〈
Fg(a,b)j′Kabj′

〉 (B.25)

Assertion 3. Features and Kernel outputs are linearly independent.

Using B.15 or B.24:

〈F′a〉 =
1√
|N(a)| ∑

b∈N(a)
∑
j′

〈
Fg(a,b)j′

〉 〈
Kabj′

〉
= 0 (B.26)

µF = 0 pertains throughout the layers.

B.2.2 Variance

Assertion 4. Pair of products of feature and Kernel output are linearly independent
across index j′ ≡ (`invj), and across index b unless g(a, b1) = g(a, b2).

Var(F′a) = Var

(
1√
|N(a)| ∑

b∈N(a)
∑
j′

Fg(a,b)j′Kabj′

)
=

=
1

|N(a)|Var

(
∑

b∈N(a)
∑
j′

Fg(a,b)j′Kabj′

)
=

=
1

|N(a)|Var

(
∑
j′

∑
b∈N(a)

Fg(a,b)j′Kabj′

)
=

=
1

|N(a)|∑j′
Var

(
∑

b∈N(a)
Fg(a,b)j′Kabj′

)
(B.27)

I consider two extreme cases:

1. g(a, b) are different for all b ∈ N(a) for a fixed a

2. g(a, b) are the same for all b ∈ N(a) for a fixed a
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Case 1: all neighbor atoms are different

g(a, b) are different for all b ∈ N(a) for a fixed a - this always holds for molecules.
As for the crystals, it is sufficient, but not generally necessary to have radial cutoff
smaller than the radius of the largest sphere that can fit within the unit cell.

Using assertions #4, #3, #2 and B.15, B.23:

Var

(
∑

b∈N(a)
Fg(a,b)j′Kabj′

)
= ∑

b∈N(a)
Var

(
Fg(a,b)j′Kabj′

)
=

= ∑
b∈N(a)

(
µ2

Fσ2
K + µ2

Kσ2
F + σ2

Fσ2
K
)
=

= ∑
b∈N(a)

(
µ2

K + σ2
K
)
=

= |N(a)|
(
µ2

K + σ2
K
)
=

= |N(a)|W
2

4π ∑
(`m)

C2
`m
(
σ2

R`
+ µ2

R`

)
(B.28)

Substitute B.28 into B.27:

Var(F′a) =
W2

4π ∑
j′

∑
(`m)

C2
`m
(
σ2

R`
+ µ2

R`

)
(B.29)

Assertion 5. for all `, j′: σ2
R`
≡ σ2

R, µR`
≡ µR. This can be forces.

Var(F′a) =
W2

4π

(
σ2

R + µ2
R
)
∑
j′

∑
(`m)

C2
`m (B.30)

Coupling coefficients C appear to abide the same summation identity as Wigner-3j
symbol. For the lack of theoretical proof, I numerically verified following conjecture
for all valid combinations of `out ∈ {0, . . . 10}, `in ∈ {0, . . . 10}, ` ∈ {0, . . . 20}.

∑
j′

∑
(`m)

C2
`m ≡ ∑

(`invj)
∑
(`m)

C2
`out`in`ijm =

= ∑
`in

k(`in)

∑
v=0

`out+`in

∑
`=|`out−`in|

`in

∑
j=−`in

`

∑
m=−`

(
C`out`in`ijm

)2
=

= ∑
`in

k(`in)

∑
v=0

`out+`in

∑
`=|`out−`in|

1
2`out + 1

=

= ∑
`in

k(`in)

∑
v=0

1 + 2min(`out, `in)

2`out + 1
=

=
1

2`out + 1 ∑
`in

k(`in)

∑
v=0

(1 + 2min(`out, `in))

(B.31)
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Var(F′a) =
W2

4π

(
σ2

R + µ2
R
) 1

2`out + 1 ∑
`in

k(`in)

∑
v=0

(1 + 2min(`out, `in)) (B.32)

Setting Var(F′a) = 1 and solving for W gives:

W =

√
4π
√

2`out + 1√
σ2

R + µ2
R

√
∑`in ∑k(`in)

v=0 (1 + 2min(`out, `in))
(B.33)

Notice that for µR = 0, σ2
R = 1, expression turns out to be the same as in the Ref. [18]:

Wr 6=0 =

√
4π
√

2`out + 1√
∑`in ∑k(`in)

v=0 (1 + 2min(`out, `in))
(B.34)

Returning to the self-interactions (r = 0), mentioned caveat results in C`m → C00,
changing the sum:

Wr=0 =

√
4π
√

2`out + 1√
∑`in ∑k(`in)

v=0 (1)
(B.35)

Combined:

W = Wr 6=0[r 6= 0] + Wr=0[r = 0] (B.36)

Case 2: all neighbor atoms are the same (copies)

g(a, b) are the same for all b ∈ N(a) for a fixed a - this happens for example when
unit cell contains atoms of the only one atom type.

Using assertion #2 and B.15:

Var

(
∑

b∈N(a)
Fg(a,b)j′Kabj′

)
= Var

(
Fb∗ j′ ∑

b∈N(a)
Kabj′

)
=

= µ2
FVar

(
∑

b∈N(a)
Kabj′

)
+ σ2

F

〈
∑

b∈N(a)
Kabj′

〉2

+ σ2
FVar

(
∑

b∈N(a)
Kabj′

)
=

= Var

(
∑

b∈N(a)
Kabj′

) (B.37)

I consider 3 subcases:

1. Independence

2. Destructive interference

3. Constructive interference
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1. Kernel outputs K are independent over index b.

Var

(
∑

b∈|N(a)|
Kabj′

)
= ∑

b∈|N(a)|
Var

(
Kabj′

)
= |N(a)|σ2

K (B.38)

Identical to the case 1.

2. Kernels perfectly counteract each other.

Var

(
∑

b∈|N(a)|
Kabj′

)
= 0 (B.39)

Consequently,

Var
(

F′`out

)
= 0 (B.40)

Combined with Eq. B.26 this means that signal completely vanishes.

3. Kernels perfectly align with each other.

Var

(
∑

b∈N(a)
Kabj′

)
= |N(a)|2σ2

K (B.41)

Assuming normalization coefficient W as given by Eq. B.36, it yields:

Var
(

F′`out

)
= |N(a)| ≥ 1 (B.42)

If this subcase is ever to occur practically, then it almost certainly is going to
result in signal / gradients explosion - breaking the training.
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Appendix C

Periodic Convolution with Kernel
In order to avoid huge memory peaks induced by the Kernel output (as outlined in
Sections 3.2.2, 3.3.2), Periodic Convolution (Eq. 3.9) and Kernel (Eq. 3.10) operations
should be merged into the following:

F(n+1)
a(`outui) =

1√
|N(a)| ∑

b∈N(a)
∑
`in

W`out`inab ∑
(vj)

∑
(`m)

C`out`in`ijmF(n)
g(a,b)(`invj)×

×Y`mabRab`out`in`uv

(C.1)

F(n) - features after layer n;
F(0) - input features;
C - coupling coefficients (see Appendix A);
W - normalization coefficients (see Appendix B);
Y ≡ Y(~r/|~r|) - real spherical harmonic;
R ≡ R(|~r|) - Radial Basis Model outputs;
|N(a)| - size of the set N(a);
N(a) - set of neighbours of the atom a;
v ≡ v(`in) - input multiplicity;
u ≡ u(`out) - output multiplicity;
j ∈ [0, 2`in + 1];
i ∈ [0, 2`out + 1];
a - index of the origin atom;
b - index of the neighbor atom;
g(a, b)→ b∗ - map neighbor atom index to the index in the original unit cell;
b∗ ∈ [0, |a| − 1].

∑
(vj)
≡

k(`in)

∑
v=0

2`in+1

∑
j=0

(C.2)

∑
(`outui)

≡ ∑
`out

k(`out)

∑
u=0

2`out+1

∑
i=0

(C.3)

∑
(`m)

≡
`out+`in

∑
`=|`out−`in|

2`+1

∑
m=0

(C.4)

Sets of pairs (`out, |u| = k(`out)) and (`in, |v| = k(`in)) are defined by user per layer.
(`out, |u|) for one layer is (`in, |v|) for the next.

Note. The order of indices in algebraic expressions matches the one in software im-
plementation. However, not all indices are explicit, in a sense that in implementation
one physical index may contain several logical indices stacked, due to later having
variable length. Padding is not an option due to memory constraints.
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C.1 Forward pass

Calculation of the Periodic Convolution comprises two stages:

• Stage 1: calculate Bab(`outui) - equivalent to message function in Ref. [9].

• Stage 2: reduce Bab(`outui) over b - equivalent to message aggregation in Ref. [9].

C.1.1 Routine: Stage 1

FIGURE C.1: Division of work on CUDA (forward pass)

"Parent" kernel factors in memory offsets corresponding to the `out and `in
indices, and then splits the work among "Child" kernels that perform ac-
tual calculations. |uiab|means size of the combined set over those indices.

I decided to use dynamic parallelism [50] (Figure C.1) as it simplifies the code while
avoiding issues with thread divergence and a huge number of invocations of empty
kernels. For example, boundaries of summation over ` depend on `out, `in. Having
blocks over `out, `in fixes summation boundaries (within each block).

Operations to be used in kernels are computationally cheap: addition and mul-
tiplication. At the same time, inputs may be rather large, making interactions with
memory a major limiting factor. In order to mitigate this, memory accesses should be
coalesced whenever possible. In simple words, it is better if accessed memory loca-
tions across threads within a block align. For that reason, it makes sense to transpose
some inputs before passing to the kernel.

R(ab)(`out`in`uv) → R(`out`in`uv)(ab)

Fg(a,b)(`invj) → F(`invj)g(a,b)

"Parent" kernel factors in memory offsets (denoted with tilde):

B`outuiab → B̃uiab

W`out`inab → W̃ab

C`out`in`ijm → C̃`ijm

F`invjg(a,b) → F̃vjg(a,b)

R`out`in`uvab → R̃`uvab

(C.5)

Note: upper script (n) is dropped, as it is no longer needed to discern input and
output features.



C.2. Backward pass for the features 39

"Child" kernel:

B̃uiab += W̃ab

k(`in)

∑
v=0

2`in+1

∑
j=0

`out+`in

∑
`=|`out−`in|

2`+1

∑
m=0

C̃`ijm F̃vjg(a,b)Y`mabR̃`uvab (C.6)

where "+=" corresponds to the summation over `in (across blocks), which techni-
cally happens within "Child" kernels by means of atomicAdd() function.

Once all kernels completed their tasks, transpose B:

B(`outui)(ab) → B(ab)(`outui)

C.1.2 Routine: Stage 2

F(n+1)
a(`outui) =

1√
|N(a)| ∑

b∈N(a)
Bab(`outui) (C.7)

This operation can be done in PyTorch via index_add(). Indices it requires corre-
spond to mapping h(a, b) → a. Keep in mind that mapping is required, because ab
is a single physical index in implementation.

C.2 Backward pass for the features

FIGURE C.2: Division of work on CUDA (backward pass for F)

The backward pass for the features is defined as:

∇F(n)
b∗(`invj)∗ = ∑

a
∑

(`outui)
Ḡa(`outui)

∂F(n+1)
a(`outui)

∂F(n)
b∗(`invj)∗

(C.8)

where Ḡ - incoming gradients.

Given Eq. C.1, partial derivative in Eq. C.8 expands as follows:

∇Fb∗(`invj)∗ = ∑
a

∑
(`outui)

Ga(`outui) ∑
b∈N(a)

∑
`in

W`out`inab ∑
(vj)

∑
(`m)

C`out`in`ijm×

×Y`mabRab`out`in`uvδb∗g(a,b)δ(`invj)∗(`invj)

(C.9)

where Ga(`outui) =
Ḡa(`outui)√
|N(a)|

- scaled gradients.
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Contraction over Kronecker’s delta δ(`invj)∗(`invj) gives:

∇Fb∗(`invj)∗ = ∑
(ab)

∑
(`outui)

∑
(`m)

W`out`∗inabC`out`∗in`ij∗mGa(`outui)Y`mabRab`out`∗in`uv∗ (C.10)

∑
(ab)
≡∑

a
∑

b∈N(a)
δb∗g(a,b) (C.11)

The calculation of the backward pass for the features comprises two stages based on
equations C.10, C.11:

• Stage 1: calculate ∇Bab(`invj)∗

• Stage 2: reduce ∇Bab(`invj)∗ over ab

C.2.1 Routine: Stage 1

For the memory coalescence reasons, inputs should be transposed before passing to
the kernel:

Ga(`outui) → G(`outui)a

R(ab)(`out`∗in`uv∗) → R(`out`∗in`uv∗)(ab)

"Parent" kernel factors in memory offsets (denoted with tilde):

∇B(`invj)∗ab → ∇B̃v∗ j∗ab

W`out`inab → W̃ab

C`out`∗in`ij∗m → C̃`ij∗m

G`outuia → G̃uia

R`out`∗in`uv∗ab → R̃`uv∗ab

(C.12)

"Child" kernel:

∇B̃v∗ j∗ab += W̃ab

k(`out)

∑
u=0

2`out+1

∑
i=0

`out+`in

∑
`=|`out−`in|

2`+1

∑
m=0

C̃`ij∗mG̃uiaY`mabR̃`uv∗ab (C.13)

where "+=" corresponds to the summation over `out (across blocks), which techni-
cally happens within "Child" kernels by means of atomicAdd() function.

Once all the kernels completed their tasks, transpose ∇B:

∇B(`invj)∗(ab) → ∇B(ab)(`invj)∗

C.2.2 Routine: Stage 2

∇Fb∗(`invj)∗ = ∑
a

∑
b∈N(a)

δb∗g(a,b)∇Bab(`invj)∗ (C.14)

This operation can be done in Pytorch via applying index_add() function to∇Bab(`invj)∗

given g(a, b) mapping as indices.
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C.3 Backward pass for the Radial Basis Model outputs

FIGURE C.3: Division of work on CUDA (backward pass for R)

The backward pass for the Radial Basis Model outputs is defined as:

∇R(ab)∗(`out`in f (`)uv)∗ = ∑
a

∑
(`outui)

Ḡa(`outui)

∂F(n+1)
a(`outui)

∂R(ab)∗(`out`in f (`)uv)∗
(C.15)

where Ḡ - incoming gradients.

Given Eq. C.1, partial derivative in Eq. C.15 expands as:

∇R(ab)∗(`out`in`uv)∗ = ∑
a

∑
(`outui)

Ga(`outui) ∑
b∈N(a)

∑
`in

W`out`inab ∑
(vj)

∑
(`m)

C`out`in`ijm×

×Fg(a,b)(`invj)Y`mabδ(ab)∗(ab)δ(`out`in`uv)∗(`out`in`uv)

(C.16)

where G = Ḡ√
|N(a)|

- scaled gradients.

Contraction over both Kronecker’s deltas gives:

∇R(ab)∗(`out`in`uv)∗ =
(2`∗out+1)

∑
i=0

(2`∗in+1)

∑
j=0

(2`+1)

∑
m=0

Ga∗(`∗outu∗i)W`∗out`
∗
ina∗b∗C`∗out`

∗
in`
∗ijm×

×Fg(a∗,b∗)(`∗inv∗ j)Y`∗ma∗b∗

(C.17)

Unlike the routines described in the previous sections, this calculation does not ben-
efit from division in stages.

C.3.1 Routine

Before passing to the kernel, inputs should be transposed:

Fg(a∗,b∗)(`∗inv∗ j) → F(`∗inv∗ j)g(a∗,b∗)

Ga∗(`∗outu∗i) → G(`∗outu∗i)a∗
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"Parent" kernel factors in memory offsets (denoted with tilde):

∇R(`out`in`uv)∗(ab)∗ → ∇R̃(`uv)∗(ab)∗

G(`∗outu∗i)a∗ → G̃u∗ia∗

W`∗out`
∗
ina∗b∗ → W̃a∗b∗

C`∗out`
∗
in`
∗ijm → C̃`∗ijm

F(`∗inv∗ j)g(a∗,b∗) → F̃v∗ jg(a∗,b∗)

(C.18)

"Child" kernel:

R̃(`uv)∗(ab)∗ = W̃a∗b∗

(2`∗out+1)

∑
i=0

(2`∗in+1)

∑
j=0

(2`+1)

∑
m=0

C̃`∗ijmG̃u∗ia∗ F̃v∗ jg(a∗,b∗)Y`∗ma∗b∗ (C.19)

Once all the kernels completed their tasks, transpose ∇R:

∇R(`out`in`uv)∗(ab)∗ → ∇R(ab)∗(`out`in`uv)∗
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Appendix D

Real Gaunt coefficients

The complex (real) Gaunt coefficients are coefficients in decomposition of product of
two complex (real) spherical harmonics into a combination of single complex (real)
spherical harmonics.

Y`2
m2

Y`3
m3

=
`2+`3

∑
`1=|`2−`3|

`1

∑
m1=−`1

G̃`1,`2,`3
m1,m2,m3

Y`1
m1

(D.1)

Y`2
m2

Y`3
m3

=
`2+`3

∑
`1=|`2−`3|

G̃`1,`2,`3
−(m2+m3),m2,m3

Y`1
−(m2+m3)

(D.2)

Y`
m - complex spherical harmonic, G̃`1,`2,`3

m1,m2,m3 - complex Gaunt coefficient.

Y`2m2Y`3m3 =
`2+`3

∑
`=|`2−`3|

`1

∑
m1=−`

G`1,`2,`3
m1,m2,m3

Y`1m1 (D.3)

Y`m - real spherical harmonic, G`1,`2,`3
m1,m2,m3 - real Gaunt coefficient.

Note: equation D.2 comes from D.1 based on the fact that complex Gaunt coefficient
can be non-zero only if m1 +m2 +m3 = 0. This is not true for real Gaunt coefficients,
therefore we don’t have similar identity for equation D.3.

Properties of real Gaunt (R-Gaunt) coefficients [46]:

1. Invariant to permutations of pairs (`, m), (`1, m1), (`2, m2)

2. Zero when number of negatives in (m, m1, m2) is odd

3. Zero when (`, `1, `2) does not satisfy |`1 − `2| ≤ ` ≤ `1 + `2

4. Zero when sum `+ `1 + `2 is odd

5. Zero |m| > ` for any of (`, m) pairs

Properties #1, #3, #4, #5 are inherited from complex Gaunt coefficients.
Property #1 allows canonical order (I decided to use descending order over m’s):

m1 ≥ m2 ≥ m3 (D.4)
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Explicit expressions for real Gaunt coefficients [47]:
Note: compared to the source, following has different grouping of cases where one
of m’s is zero. Canonical order m1 ≥ m2 ≥ m3 assumed.

Case A: {m1, m2, m3 > 0}:

G`1,`2,`3
m1,m2,m3

=



(−1)m1
√

2
2 G̃`1,`2,`3

−m1,m2,m3
if m1 = m2 + m3

(−1)m2
√

2
2 G̃`1,`2,`3

m1,−m2,m3
if m2 = m1 + m3

(−1)m3
√

2
2 G̃`1,`2,`3

m1,m2,−m3
if m3 = m1 + m2

0 otherwise

(D.5)

Case B: {m1 > 0; m2, m3 < 0}:

G`1,`2,`3
m1,m2,m3

=



(−1)m3
√

2
2 G̃`1,`2,`3

m1,−m2,m3
if m2 = m1 + m3

(−1)m2
√

2
2 G̃`1,`2,`3

m1,m2,−m3
if m3 = m1 + m2

(−1)m1
√

2
2 G̃`1,`2,`3

m1,m2,m3 if m1 + m2 + m3 = 0

0 otherwise

(D.6)

Case C: {m3 = 0; m1 = m2 > 0}:

G`1,`2,`3
m1,m2,0 = (−1)m1 G`1,`2,`3

m1,−m1,0 (D.7)

Case D: {m1 = 0; m2 = m3 < 0}:

G`1,`2,`3
0,m2,m3

= (−1)m2 G`1,`2,`3
0,m2,−m2

(D.8)

Due to property #2 all other combinations of signs of m1, m2, m3 yield 0.
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Appendix E

Elastic Tensor

E.1 Covariant components

Conversion between Cartesian basis and covariant components is given by:

xα = Kαixi (E.1)
xi = Jiαxα (E.2)

where index i signifies Cartesian coordinates, and index α - covariant components.

Matrices K and J are calculated based on following values for xi, xα:


xi=1

xi=2

xi=3

 =


x

y

z




xα=−1

xα=0

xα=+1

 =


Y1,−1

Y1,0

Y1,1

 =


−
√

3
4π y

−
√

3
4π z

−
√

3
4π x

 (E.3)

where Y - real spherical harmonics, as defined by equations 3.2, 3.3.

K = −
√

3
4π


0 1 0

0 0 1

1 0 0

 J = −
√

4π

3


0 0 1

1 0 0

0 1 0

 =
4π

3
KT (E.4)

Note: Mochizuki uses non-conventional definition of complex spherical harmonics
that results in matrices K and J being related via complex conjugation, which he
denotes as C∗ and C respectively [45].

For elastic tensor, transform should be applied to each index:

Cαβγδ = CijknKαiKβjKγkKδn (E.5)

Cijkn = Cαβγδ Jiα Jjβ Jkγ Jnδ (E.6)
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E.2 Decomposition equation and reconstruction coefficients

From Ref. [45]:

Cαβγδ = qm
0

⊕
qm

2

⊕ (
sm

0

⊕
sm

2

⊕
sm

4

)
(E.7)

where C - elastic tensor; q, s - complex spherical harmonics; m = α + β + γ + δ.

When direct sum
⊕

replaced with explicit summations, it becomes:

Cαβγδ = Amqm
0 + Bmqm

2 + (Dmsm
0 + Emsm

2 + Hmsm
4 ) (E.8)

where A, B, D, E, H are fixed coefficients; m = α+ β+γ+ δ; (α, β, γ, δ) ∈ {−1, 0,+1}.

Coefficients are obtained from expanding (Yα
1 Yβ

1 )(Y
γ
1 Yδ

1 ) using equation D.2. As
noted in Appendix D, there is no correspondence for case of real spherical, therefore
we should use more general form as in equation D.3. Consequently, relation between
m and (α, β, γ, δ) won’t be one-to-one, meaning that we would have sum over m’s,
and making expected expression for real spherical harmonics of the form:

C = Ap00 +
2

∑
m=−2

Bm p2m + Ds00 +
2

∑
m=−2

Ems2m +
4

∑
m=−4

Hms4m (E.9)

where indices (αβγδ) are implied for C, A, B, D, E, H.

Coefficients A and D stripped from index m, p0m and s0m turned into p00 and s00,
and bounds of summations set to the respective values, because spherical harmonic
component (valid for both real and complex) is zero when |m| > `.

In order to find coefficients, I expand (Y1αY1β)(Y1γY1δ):

Y1αY1β =
2

∑
`=0

`

∑
m=−`

G`,1,1
m,α,βY`m = G0,1,1

0,α,βY00 +
2

∑
m=−2

G2,1,1
m,α,βY2m (E.10)

Y(αβ)
00 ≡ G0,1,1

0,α,βY00 (E.11)

Y(αβ)
2m ≡

2

∑
m=−2

G2,1,1
m,α,βY2m (E.12)

Y1γY1δ yields the same expressions (up to relabeling). Second equality in E.10 comes
from the property #2 in Appendix D. Similarly to the Ref. [45], second step in expan-
sion gives:

• coefficient for q00 should stem from interaction Y(αβ)
00 Y(γδ)

00

• q2m: Y(αβ)
00 Y(γδ)

2m + Y(αβ)
2m Y(γδ)

00

• (s00, s2m, s4m): Y(αβ)
2m Y(γδ)

2m

For q2m it is enough to derive Y(αβ)
00 Y(γδ)

2m , as Y(αβ)
2m Y(γδ)

00 comes from relabeling.
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Y(αβ)
00 Y(γδ)

00 = G0,1,1
0,α,βG0,1,1

0,γ,δY00Y00 =
(

G0,1,1
0,α,βG0,1,1

0,γ,δG0,0,0
0,0,0

)
Y00

A(αβγδ) = G0,1,1
0,α,βG0,1,1

0,γ,δG0,0,0
0,0,0 (E.13)

Y(αβ)
00 Y(γδ)

2m1
=

2

∑
m1=−2

G0,1,1
0,α,βG2,1,1

m1,γ,δY00Y2m1 =

=
2

∑
m1=−2

G0,1,1
0,α,βG2,1,1

m1,γ,δ

2

∑
m=−2

G2,0,2
m,0,m1

Y2m =

(
G2,0,2

m,0,m1
= G0,2,2

0,m,m1

)
=

2

∑
m=−2

(
2

∑
m1=−2

G2,1,1
m1,α,βG0,1,1

0,γ,δG0,2,2
0,m,m1

)
Y2m =

(
G0,2,2

0,m,m1
6= 0 only if m1 = m

)
=

2

∑
m=−2

(
G2,1,1

m,α,βG0,1,1
0,γ,δG0,2,2

0,m,m

)
Y2m

B(αβγδ)
m =

(
G0,1,1

0,α,βG2,1,1
m,γ,δ + G0,1,1

0,γ,δG2,1,1
m,α,β

)
G2,2,0

m,m,0 (E.14)

Y(αβ)
2m1

Y(γδ)
2m2

=
2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δY2m1Y2m2 =

=
2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δ

4

∑
`=0

`

∑
m=−`

G`,2,2
m,m1,m2

Y`m =

(
G`,2,2

m,m1,m2
6= 0 only if ` is even

)
=
{0,2,4}

∑
`

`

∑
m=−`

(
2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δG`,2,2
m,m1,m2

)
Y`m

For ` = 0
(

D(αβγδ)
)

, I use that G0,2,2
0,m1,m2

6= 0 only if m2 = m1.

D(αβγδ) =
2

∑
m1=−2

G2,1,1
m1,α,βG2,1,1

m1,γ,δG0,2,2
0,m1,m1

(E.15)

E(αβγδ)
m =

2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δG2,2,2
m,m1,m2

(E.16)

H(αβγδ)
m =

2

∑
m1=−2

2

∑
m2=−2

G2,1,1
m1,α,βG2,1,1

m2,γ,δG4,2,2
m,m1,m2

(E.17)
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E.3 Linearly independent subset

Elastic tensor has the same symmetries over indices in covariant components Cαβγδ

as in Cartesian components Cijkn (see equation 4.3), which follows from same trans-
formation being applied separately over each index. This means linearly indepen-
dent subset can be obtained via selection alone. There are multiple ways to do so
(e.g. upper triangular matrix from Voigt notation), here I use increasing order of
indices for better clarity.

Symmetries:

Cαβγδ = Cγδαβ = Cβαγδ = Cαβδγ (E.18)

where C - elastic tensor; α, β, γ, δ ∈ {−1, 0,+1}.

Algorithm 1: Mapping of full set of indices to subset
Result: (α, β, γ, δ)
Given: α, β, γ, δ
if α > γ or (α = γ and β > δ) then

swap(α, γ)
swap(β, δ)

end
if α > β then

swap(α, β)
end
if γ > δ then

swap(γ, δ)
end

TABLE E.1: Indices of independent entries in elastic tensor C

”− ” ≡ −1, ” + ” ≡ +1.
"id" is a corresponding 0-based index for C flattened into a vector.

αβγδ id

−−−− 0

−−−0 1

−−−+ 2

−− 00 4

−− 0+ 5

−−++ 8

++++ 80

αβγδ id

−0− 0 10

−0−+ 11

−000 13

−00+ 14

−0 ++ 17

0 + 0+ 50

0 +++ 53

αβγδ id

−+−+ 20

−+ 00 22

−+ 0+ 23

−+++ 26

0000 40

000+ 41

00 ++ 44
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