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Abstract

A lot of imaging data is generated in medical, and particularly in the microscopy
field. Researchers spend a lot of time analyzing this data due to slow algorithms
and exhaustive manual work. Recent advancements in machine learning and es-
pecially deep learning areas resulted in methods that could be used to efficiently
solve challenges in the microscopy imaging field. Image segmentation is one of the
most common labor-intensive tasks that could be automated with deep learning ap-
proaches. One of the biggest challenges for computer algorithms in this domain is
the problem of domain shift. The domain shift is the difference between the dis-
tribution of the data used for training and the distribution of the new upcoming
data. In this work, we show that deep neural networks could efficiently segment
microscopy images with the domain shift present. Moreover, we show that trans-
fer learning from other medical tasks is an effective strategy to reduce the amount
of required annotated data, whereas fine-tuning ImageNet models for microscopy
segmentation gain little benefit.
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Chapter 1

Introduction

1.1 Motivation

All essential biological processes that occur in living systems could be traced back
to the microscopic scale. Microscopy imaging allows us to understand the life pro-
cesses on this scale by analyzing the changes in cellular physical and biochemical
properties and behavior under the influence of internal and external factors [1, 2].

A cell represents the smallest building block for any living organism. Normally,
cells are grouped into cell lines (types of cells) based on their tissue of origin, physical
shape, structure, density, and biochemical properties. These differences make the
space of microscopy images vast and heterogeneous.

Microscopy imaging helps in drug discovery (reaction of the cells based on ap-
plied chemicals), allows a more reliable understanding of genetic perturbations (changes
in cell properties over time) or a better interpretation of blood tests (live analysis of
blood cells) [3].

Numerous image acquisition techniques (image modalities) introduce additional
complexity into microscopy image processing. These modalities result in different
types of images that require different approaches for the downstream analysis. In
this thesis, we used two popular modalities - brightfield and fluorescence.

The brightfield modality technique is one of the most popular forms of microscopy
imaging. This technique takes the dark specimen and contrasts it by the surround-
ing bright light field [4]. Brightfield images are cheap and relatively easy to acquire.
However, these images often have low contrast values and thus are more challeng-
ing to analyze even for a human. An example of a brightfield image is presented in
Figure 1.1.

FIGURE 1.1: Brightfield microscopy image.
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Fluorescent images, in contrast, are obtained using special fluorescent dyes that
absorb incoming light and emit it back at a predefined wavelength. Using fluores-
cent signal biologists can experimentally highlight different parts of cells and pro-
duce noise-free images. However, obtaining such images is an expensive process,
compared to the acquiring brightfield images, as one needs special chemical dyes.
An example of a fluorescence image is presented in Figure 1.2.

Microscopy image analysis usually constitutes object segmentation, edge detec-
tion, object counting, and object area calculation [5]. At present, the majority of the
aforementioned tasks are not fully automated, requiring practitioners to invest a lot
of time into the manual work. In this work, we will address the problem of cell nu-
clei segmentation, which could be set as a semantic segmentation task. The main
challenge is to accurately find distinct regions of the image that correspond to the
nuclei and separate them from regions that correspond to the background [6].

FIGURE 1.2: Cell nuclei highlighted by the fluorescent dye.

Artificial intelligence approaches and especially deep neural networks have be-
come one of the most important technologies over the past decade. They demon-
strate incredible results in different domains 1. Deep neural networks have shown
very prominent results in the field of microscopy image segmentation and could
significantly decrease the amount of time spent by a human on these problems [7].

Neural networks produce remarkable results but require large amounts of anno-
tated data. In the microscopy field, it is normally hard to obtain sufficient amounts
of data labeled by a professional biologist. Therefore, the performance of the deep
neural networks is highly dependent on a sufficient amount and good quality of
the data. Additionally, after being trained on one dataset (source domain), neural
networks could produce a significantly worse performance on the new data (target
domain). This is caused by differences in the distributions of the target and source
domain datasets which is called the domain shift. In the microscopy field this differ-
ence is caused by different intensity levels, the variability of patterns across different
types of cells and noise [8].

Transfer learning is a popular strategy to reduce the amount of annotated data
required for model training. It is normally done by fine-tuning the pre-trained net-
work. The data, that the network was previously trained could be from a general
domain [7] or other medical domains [9].

Transfer learning has shown to yield better results when the tasks of the source
and target network are similar [10]. Recent studies show that transferring weights

12010 – 2019: The rise of Deep Learning

https://thenextweb.com/artificial-intelligence/2020/01/02/2010-2019-the-rise-of-deep-learning/
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from a distant domain, like ImageNet, into medical domains would not always give
better results and may harm the performance of the model [11].

In this work, we will examine what training strategy is the most robust to the
variations in the dataset for two modalities - brightfield and fluorescence. We will
perform experiments for cases when the training and testing data was sampled from
the same or different distributions. Moreover, since obtaining annotated data for
microscopy segmentation is normally hard we will explore the feasibility of using
transfer learning from two different medical domains and domain of natural objects
(ImageNet).

1.2 Research questions and goals

• What training strategy achieves the best generalization performance on hold-
out data in case hold-out data was sampled from:

– The same dataset (no domain shift)

– Different dataset (domain shift is present)

• How transferring model weights, obtained from

– Similar medical domain (small domain shift is present)

– Different medical domain (significant domain shift is present)

– Distant natural objects domain

affects training and therefore, generalization performance of the model on
hold-out data?
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Chapter 2

Related work

2.1 Rule-based approaches

Some of the most popular approaches for automated nuclei segmentation belong
to the family of rule-based methods. These methods use the experts’ knowledge
to create a set of tunable rules that would help an algorithm to identify pixels that
belong to nuclei.

One of the most well-established methods used for cell nuclei segmentation is
Otsu’s thresholding [12]. This algorithm iterates over threshold values from 0 to
255 on a grayscale image. At each step, the algorithm divides image pixels into two
distinct classes - foreground and background. Then, the variance of pixel intensities
for both classes is calculated. The algorithm searches through threshold values until
it finds the one that minimizes the within-class variance for both foreground and
background pixels

Typically, Otsu’s thresholding is used in combination with the watershed trans-
formation algorithm [13]. This algorithm treats the image as a “topographic map”
where the intensity of each pixel is representing the “height of the point”. For exam-
ple, dark areas can be interpreted as valleys and lighter parts as hills or mountains
[14].

Otsu’s thresholding is easy to implement but it is computationally inefficient due
to exhaustive search through all possible threshold values. Moreover, it has shown
to be sensitive to noise and variations in pixel intensity levels [15]. Finally, Otsu’s
thresholding commonly requires manual parameter tuning from dataset to dataset
or even from image to image.

Further work aimed at improving the execution time of Otsu’s method [16]. The
authors proposed a sequence of steps that replaced the exhaustive threshold value
search. First, the color histogram values of the input image are obtained. A color his-
togram is a representation of the distribution of colors in an image. This histogram is
then used to calculate the number of gray shades (unique pixel intensities between
white and black) in the image. Initial global threshold value then is calculated as

T =
∑ h× shades

∑ h
(2.1)

, where h is the color histogram values and shades is the number of gray shades
in the image

At each iteration, the image is segmented using a threshold value of T. New
threshold values Tf g and Tbg for two classes are calculated using (2.1). Finally, the
global threshold value is updated as

T =
Tf g + Tbg

2
(2.2)
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These steps are repeated until the difference in T in the successive iterations is
not zero.

Authors state that their modification works a hundred times faster than the orig-
inal algorithm. They use accuracy as the ratio between the number of correct pre-
dictions to the total number of predictions. Improved version achieves 0.84 pixel
accuracy compared to classical Otsu’s thresholding with a value of 0.79

To summarise, rule-based approaches are easy to implement, but they require a
lot of human interaction and fine-tuning. In addition, they yield poor results with
images with significant amounts of noise or with high variance in pixel intensity
values.

2.2 Machine learning approaches

Machine learning approaches were the next step in the attempt to automate nuclei
segmentation [15]. Usually, these methods are used in combination with threshold-
ing or image gradient extraction to produce more accurate results. Machine learn-
ing algorithms could be used for segmentation in either supervised or unsupervised
mode.

Classification models belong to the family of supervised learning algorithms.
They predict the class for each pixel in the image using the knowledge about neigh-
boring pixels and ground truth generated by experts. Frequently, classification mod-
els are combined with thresholding algorithms. Using thresholding as the first step
to classification algorithms, allows the model to concentrate on important features
like object contours. Therefore, this combination should increase the effectiveness
and performance of the whole pipeline.

Popular classification models for biological images segmentation are: k-nearest
neighbors (KNN), decision trees, support vector machines, and random forests [17].
These models were shown to work well in segmentation [15]. Nonetheless, they re-
quire a reasonable amount of labeled data (normally produced manually) for train-
ing which is not always available. Moreover, classification models similar to thresh-
olding methods that were described in the previous section may be sensitive to pixel
intensity variations and noise [18].

Clustering models belong to the family of unsupervised learning algorithms.
These models search for hidden patterns in the input data. Such patterns allow
the algorithm to categorize the data into several distinct regions. Normally, these
methods are combined with thresholding or color histogram extraction methods to
improve the resulting performance [17].

Most of the reviewed works seem to consider K-Means clustering, DBSCAN and
Expectation-Maximization (EM) algorithm with Gaussian Mixture Models (GMM)
[15]. Clustering models do not require labeled data and could produce fair results.
However, they are sensitive to initialization and the amount of noise in the data. [19,
20].

Another strategy is called Markov Random Fields (MRF) modeling. It is a sta-
tistical model that predicts the relationship between the neighboring pixels. MRFs
use a Bayesian hypothesis that neighboring pixels should fall into the same class.
Usually, this approach is combined with clustering algorithms. This combination
gives better results than standalone clustering methods [15]. Despite obvious ad-
vantages, these approaches tend to depend a lot on initial parameter selection and
are computationally inefficient [21].



6 Chapter 2. Related work

Machine learning models have been shown to achieve very good results in medi-
cal image segmentation. They usually outperform rule-based methods and are more
practical as they do not require a lot of manual tuning [15]. However, they are
sensitive to noise and pixel intensity variations which may involve complex pre-
processing of the images to generate good results.

2.3 Deep learning approaches

Deep learning approaches, such as deep artificial neural networks, have been suc-
cessfully applied to solve numerous problems in the area of medical image process-
ing [22]. Deep learning models require neither manual parameter tuning as rule-
based methods nor complicated pre- and post-processing mechanisms as machine
learning approaches. Artificial neural networks may be robust to noise, pixel inten-
sity variations and distribution differences between the images [23, 24]. Moreover,
these approaches normally yield better results than classical approaches [25].

In this work, we will consider deep learning approaches to solve the microscopy
image processing task. Therefore, now we will review several noteworthy applica-
tions of deep neural networks in medical image processing. More specifically, we
will talk about applications in segmentation problems.

One of the noticeable applications of deep learning in microscopy imaging is
nerve fiber segmentation [26]. Authors use a U-Net [27] like architecture to segment
huge biopsy images [26]. U-Net is a fully convolutional neural network (FCN) that
was developed for biomedical image segmentation. This architecture consists of two
parts: encoder and decoder. The encoder part performs image downsampling and
learns feature representations. On the other side, the decoder part performs image
upsampling and locates the features on the image. The network uses skip connec-
tions between the encoder and decoder sides to locate the features more accurately.
In this study, smaller images (patches) were extracted from the original images and
used as input to the network. For each input patch, the network generates a binary
mask, where pixels that belong to the fiber tissue are separated from the background.
Obtained binary masks are stitched together to create the full-size mask of the origi-
nal image.

The authors use a pixel-wise F1 score as an evaluation metric. The F1 score met-
ric is a harmonic mean between precision and recall, which is computed based on
true positives (TP), false negatives (FN) and false positives (FP). In this work, true
positives are the pixels that are correctly classified as tissues. False positives and
false negatives denote pixels that are incorrectly classified as the opposite class.
The results show that this approach outperforms classical machine learning mod-
els. Moreover, their strategy yields better results than a manual segmentation by a
novice biologist and almost as good as segmentation by an expert level professional.

Another noticeable work [2] compares deep learning approaches like U-Net [27]
and DeepCell [28] with Random Forest algorithm and CellProfiler rule-based ap-
proach [29] in a cell perturbation segmentation task. The authors use pixel-wise F1
score and Jaccard index to evaluate the models. Such a combination of metrics ad-
dresses both pixel and object level performance of the model. Jaccard index quanti-
fies the percentage of overlap between the ground truth mask and model prediction
output. The results show that deep learning produces better results than machine
learning and rule-based approaches. Moreover, U-Net was shown to perform faster
than DeepCell and make fewer errors.
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Another work compares several deep learning approaches for natural light (bright-
field) and fluorescent microscopy segmentation [30]. The authors compare the per-
formance of DeepCell, U-Net, and Mask R-CNN [31]. Mask R-CNN is a deep neural
network originally aimed to solve instance segmentation problems. This network
operates in two stages. First, it generates predictions about the regions where the
object might be on the image. Second, it predicts the class of the object, draws the
bounding box and generates a pixel-level mask of the object based on the predictions
from the first stage.

Pixel-wise F1 score and AUROC metrics were used to evaluate the strategies.
Authors show that DeepCell segments one image more than 500 times slower than
other approaches rendering it impractical. Consistently with the previous study [28],
U-Net outperformed Mask R-CNN in terms of pixel-wise performance, which in its
turn was still superior to DeepCell.

Deep learning approaches are widely adopted in different medical image pro-
cessing tasks. They normally produce better results than machine learning approaches
and require less manual interaction. Nevertheless, training neural networks requires
a lot more labeled data comparing to classical machine learning approaches [22].
One of the possible solutions is to reuse knowledge from other domains - transfer
learning. Deep neural networks may be sensitive to hyperparameter selection and
require considerable computational resources for training.

2.4 Transfer learning

Training a deep neural network from scratch may be a hard and computationally
expensive task. In this chapter, we will review some of the noticeable works that use
a strategy called transfer learning, that may potentially make model training faster
and decrease the required amount of labeled data.

A remarkable work [32] aims to understand the superior performance of deep
learning approaches. The authors explored features that deep neural networks con-
sider important by visualizing activations of hidden layers. These visualizations
were compared between different architectures trained on the same set of images
(ImageNet dataset). The results showed that all models learned strikingly simi-
lar features despite drastically different architectures. The authors suggest that the
weights that the network learns may be reused in different tasks. Therefore, the
authors try to adapt weights from the ImageNet pre-trained model to the Caltech
Pedestrian Detection task [33]. The results show that pre-trained model weights
could be efficiently transferred in the new domain with some adaptation. The pro-
cess of adaptation is usually called fine-tuning. In essence, fine-tuning is a process
to take some model that was trained for a given task and make it perform a second
similar task. Assuming the original task is similar to the new task, using a network
that has already been designed & trained allows us to take advantage of the feature
extraction that happens in the front layers of the network without developing that
feature extraction network from scratch [34].

This study shows us that transferring weights from ImageNet domain to the
other might introduce several benefits. First of all, this approach requires less re-
sources for training the model, as the fundamental parts of the network (first layers)
are already trained. One only needs to fine-tune the weights on a new domain, by
training the network for several epochs, which in practice takes much less time than
training from scratch. This approach helps if you don’t have a lot of labeled training
data since you don’t need to train the network from scratch. Other works show that
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transfer learning might produce even better results than training the model from
scratch [35].

One of the works examined the effect of the transfer learning on chest disease
classification problem [36]. The authors compared pre-trained ResNet-50 [37] with
the same model trained from scratch. The authors evaluated models separately us-
ing pixel-wise F1 score. The results show that the pre-trained model produces better
results in the classification of seven out of eight different diseases. Moreover, it re-
quires less data to perform on par with the model trained from scratch.

Further work aimed to improve the accuracy of chest disease classification with
transfer learning approaches [38]. The authors use a DenseNet-121 model [39] pre-
trained on the ImageNet dataset. They re-train the whole model on 98,000 frontal
chest x-ray images. The results show that their approach produces from 1% to 9%
better results than previous works with respect to pixel-wise F1 score [36, 40]. More-
over, the authors show that their approach yields results as good or even better than
expert level practicing radiologists. The main feature of this work from previously
mentioned work [36] is that authors are using different network architecture and
more data for fine-tuning.

Other works mentioned the benefits of transfer learning for diabetic retinopa-
thy (DR) detection [41]. The authors replaced random forest classifiers, used in the
medical device for diagnosing DR, with a convolutional neural network. They used
Inception-v3 [42] pre-trained on ImageNet dataset and fine-tuned it on 25,000 DR
images. They show that this modification resulted in a 6% increase in pixel-wise F1
score, compared to the randomly initialized network.

One more interesting work examines the feasibility of transfer learning from
ImageNet domain to medical domain tasks [11]. The authors compare the per-
formance of pre-trained and randomly initialized models on two medical tasks -
chest x-ray segmentation and DR detection. They select ResNet-50 and Inception-
v3 as prominent ImageNet competitors. The results show that much smaller archi-
tectures achieve almost the same pixel-wise accuracy as larger ImageNet models.
Authors explore the layer activations and model outputs and conclude that large
models adapt to new domains much slower than the small ones. Therefore, they
state that transfer learning from a natural domain like ImageNet doesn’t always
give an improvement. The results show that randomly initialized models achieve
96.4%, whereas pre-trained fine-tuned models achieve 96.7% of pixel-wise accuracy
in both tasks. Moreover, the authors state if the number of weights is large, then
transfer learning may even harm the performance, compared to training the model
from scratch or using a smaller model.

Summarizing, transfer learning is easy to implement a technique that may im-
prove the performance of the deep neural network. It may drastically reduce the
amount of labeled data needed, which was presented in several works [36, 41]. We
decide to use transfer learning in our work and compare the performance of a fine-
tuned model with a randomly initialized model. If the fine-tuned model will pro-
duce better results this may potentially have a huge impact on the biology field.
This will mean that one doesn’t need a lot of labeled microscopy data (which is usu-
ally hard to obtain) and expensive computational resources to perform automated
microscopy data segmentation.
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Chapter 3

Proposed approach and
implementation

3.1 Dataset

For model training and evaluation two datasets of fluorescence and brightfield modal-
ities provided by PerkinElmer company (measured by Opera Phenix microscope)
[43] were used. These datasets represent the results of corresponding cell mea-
surements of seven cell types. An example of the images is presented in Figure
3.1. The ground truth masks are generated from the fluorescence modality using
PerkinElmer Harmony software with manual parameter tuning. The output of the
software was manually evaluated by the human expert [30].

FIGURE 3.1: Differences between cell lines in a) brightfield and b)
fluorescent images.

These datasets provide high-resolution images and quality-labeled ground truth
masks of size 1080 × 1080 px. The distribution of the data across the cell lines is
presented in Table A.1.

Eight random overlapping patches of size 288× 288 px. are extracted from each
image in the training set. This approach allows the network to efficiently process
the data and also serves as an augmentation strategy. In the inference phase, each
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test image is divided into several sequential patches of the same size. The trained
model then predicts each patch separately. Next, the predicted patches are stitched
back to form the input image probability map, where each pixel is assigned a prob-
ability score. Scores may be interpreted as the likelihood of the pixel to belong to
foreground (nuclei).

Additionally, for transfer learning experiments we used the dataset from As-
traZeneca [44] company, measured by CellVoyager microscope. This dataset pro-
vides high-resolution 2556× 2156 px brightfield modality images of one additional
cell line. The distribution of the data in this dataset is presented in Table A.2.

3.2 Learning strategies

3.2.1 Individual models

This strategy proposes to train a separate model for each type of cells as presented
in Figure 3.2. The main benefit of this strategy is the high performance of the mod-
els on the respective cell lines. Each individual model is tested on the same type of
cells, that is used for training. The major drawback is that for a new cell line one
would need a reasonable amount of manually labeled data (which is usually hard
to obtain). Moreover, if one doesn’t have labeled data for new cell type it is unclear
which model to select for segmentation. The problem arises from the fact that mod-
els are biased towards their respective cell lines and thus may produce poor results
on different types of cells. Finally, it may be infeasible to train and maintain a vast
amount of models in practice.

FIGURE 3.2: Individual models learn the distribution of a single cell
line.

3.2.2 Master model

This strategy suggests training one model jointly on all types of cells as presented in
Figure 3.3. During the training, the model combines the knowledge about different
cells to learn a generalized representation. In practice, it’s much easier to train and
maintain only one model instead of separate model for each cell type. Furthermore,
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new data could be used to fine-tune the model. Normally, you need less labeled
data if you fine-tune the model instead of training a model from scratch [11, 45].
However, the standalone model may be sensitive to differences between cell repre-
sentations on images and data imbalance [46].

FIGURE 3.3: Master model learns a joint distribution from several cell
lines.

3.2.3 Naive ensemble

Ensemble methods normally produce noticeable results in different tasks [47, 48].
These methods combine a set of models called “weak learners” to create a “strong
learner”. The naive ensemble approach suggests using individual models as ensem-
ble members. The pipeline of this approach is presented in Figure 3.4. The input
image is provided to each ensemble member to produce segmentation masks. Then
these outputs are averaged to produce one final mask.

FIGURE 3.4: Naive ensemble averages individual model predictions.
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This approach is more flexible than using standalone individual models and may
yield prominent results. However, you still need trained individual models for this
strategy. Moreover, the output of each model in the ensemble is given the same
weight which may harm the performance. Some cells are more or less similar to
others in terms of shape, size, and density. Therefore, some individual models may
perform better on similar cell types, than others. The modification of the naive en-
semble approach will be described in the next chapter.

3.2.4 Weighted ensemble

As stated previously some models may perform better on cell types, that are similar
to their original training data in terms of shape, size or density of the nuclei. This
strategy incorporates knowledge about the performance of individual models on
different types of cells as presented in Figure 3.5. First of all, half of the validation
set is hold-out from each cell line. The performance of each individual model is
then measured on these hold-out sets separately by pixel-wise F1 score. Next, we
square these scores to emphasize the differences between the performance levels and
normalize them to sum to one. In the end, we obtain a weight vector of size N × 1
for each cell line, where N is the number of individual models in the ensemble.

FIGURE 3.5: Weighted ensemble uses prior knowledge about cells
similarity.

We load the corresponding ensemble weights with knowledge about cell type of
the input image. Then we multiply the predictions of each ensemble member by the
respective weight and summarize those predictions.

3.2.5 Stacking ensemble

A stacking ensemble is an approach where a new model, called meta-model, is
trained on the ensemble predictions. The meta-model should combine the predic-
tions from weak learners to produce a best-combined result. The predictions from
the weak learners are packed into a tensor of shape (K, 1080, 1080, 1), where K is the
number of individual models in the ensemble. These predictions are used as inputs
to the meta-model [49]. This strategy has shown to produce very good results in
medical image processing tasks [50]. The pipeline of this approach is presented in
Figure 3.6.
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FIGURE 3.6: Stacking ensemble uses meta-model to combine ensem-
ble predictions.

This approach requires nor the information about the cell type of the input image
neither the pre-computed weights. However, it may be hard to deploy and maintain
this strategy in practice [49].

3.3 Model training configuration

Based on the related work the U-Net architecture [27] is considered. This network
produces good results across different medical segmentation tasks [2, 26, 30]. The
weights of the network are initialized using Xavier initialization [51] which is a pop-
ular strategy that helps the network to converge faster [52]. ReLu is used as an
activation function [53].

To tune the weights in the network the Adam optimizer [54] is used with a
learning rate α = 1e− 5, the exponential decay rate for the first moment estimates
β1 = 0.9 and exponential decay rate for the second-moment estimates β2 = 0.99. A
learning rate scheduler is used to decrease the learning rate by a factor of 0.1 when
the loss function reaches the plateau. Additionally, early stopping is used to stop
model training when the difference in successive loss function values is less or equal
to 0.01.

Binary cross-entropy loss function is used since the problem is stated as binary
segmentation.

3.4 Experiments setting

First, we perform two experiments that assess the overall performance of the train-
ing strategies presented above. These experiments measure the impact of the do-
main shift on the performance of these strategies. In essence, domain shift represents
the difference between the distribution of the data used for training (target domain)
and the new data (source domain).

The first experiment evaluates the training strategies when the target domain
and source domain data come from the same distribution. We use seven cell lines for
both training and testing. This allows us to minimize the discrepancy between the
domains. The master model was trained on 256 images from each cell line, resulting
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in 1792 images in the training dataset. Individual models were trained on 256 images
from the corresponding cell line. As stated in the previous chapter ensembles are
constructed from seven trained individual models.

Additionally, we performed experiments to show how much data is necessary
to train a model with reasonable performance. We train each strategy on a different
number of images for both modalities separately. The master models are trained
on N × M images from each respecting cell line. N here refers to the powers of
two in the range from 0 to 8. M represents the number of cell lines which is equal
to 7. The individual models are trained on N images from the corresponding cell
line. In the case of the stacked ensemble, the meta-model was trained on N×M im-
ages/masks, predicted from the hold-out validation set by each ensemble member.
In each experiment, we have trained new randomly initialized models. The results
of these experiments could be found in Appendix C.

The second experiment evaluates training strategies when the target and source
data come from different distributions. We conduct a series of experiments where
we train the models using six cell lines (source domain) and one cell line is hold-
out (target domain). This hold-out cell line testing set is used for evaluation. This
experiment is performed for each of the seven cell lines in sequence. The master
model here is trained on 256 images from six cell lines which yield 1536 images
in the training set. The ensembles are constructed from the six individual models
trained in the previous experiment and evaluated on images from the seventh, left
out cell line.

Finally, we examine the impact of transfer learning using the master model as the
main strategy. We use three different strategies in this experiment: no fine-tuning,
fine-tune only on the target domain and fine-tune on both target and source do-
mains.

In the first strategy, we use a model that was trained only on source domain data.
This strategy should indicate how distant are the target and source domains and will
produce good results if these domains are very similar (which is rarely the case).

The second strategy proposes to fine-tune a model only on the target domain
data. Such situation may happen when one has a pre-trained model but doesn’t have
access to the data, that the model was originally trained on (from source domain).
This strategy inevitably leads to the degradation of performance on the source but
allows us to gain performance on the target domain. The results will show whether
it’s better to train a new model from scratch (for target domain) or fine-tune an al-
ready trained model.

The last strategy proposes to use the same amount of the data from both target
and source domains for fine-tuning the model. This approach is applicable when
one has access to the original model training data and labels. The motivation is to
preserve the performance on the source domain while gaining on the target.

We compare the results from these strategies with a randomly initialized master
model trained solely on the target domain to evaluate the applicability of the transfer
learning approach.

For the experiments from a distant domain (ImageNet), we used U-Net like ar-
chitectures with ResNet101 [37] and VGG-16 [55] backbones and compared these
fine-tuned models with U-Net master model trained from scratch. In essence, a
backbone represents what architecture is used for encoder and decoder parts in U-
Net like systems.

We performed additional experiments to evaluate how the size of the dataset for
fine-tuning impacts the performance of the strategies presented above. The results
of these experiments are available in Appendix D.
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3.5 Model evaluation

3.5.1 Pixel-wise metrics

To address the pixel-level performance of the models the pixel-wise F1 score is con-
sidered. This metric is used in various works dedicated to medical image segmenta-
tion [2, 26, 30] and makes the results comparable. The F1 score which is a harmonic
mean between precision and recall is calculated using equation 3.1

F1 = 2 · precision · recall
precision + recall

(3.1)

where

precision =
true positives

true positives · false positives
(3.2)

recall =
true positives

true positives · false negatives
(3.3)

3.5.2 Object-wise metrics

The object-level performance of the model is a crucial part of microscopy image
segmentation since we are mostly interested in the correct segmentation of distinct
nuclei. To address the object-level performance of the models an object-wise F1 score
based on the Intersection-over-Union (IoU) metric is considered. The IoU metric,
also referred to as the Jaccard index quantifies the overlap between the ground truth
mask and model prediction. First, the predictions of the model are thresholded by
different values in range [0.5, 0.95 with step 0.05. At each step, the IoU metric is
calculated using equation 3.4.

IoU =
ground truth∩ prediction
ground truth∪ prediction

(3.4)

These values are then averaged. Next, we compute true positives, false positives
and false negatives based on the IoU metric. Lastly, using equation 3.1 we compute
object-wise F1 score.

3.5.3 Error metric scores

The results for both modalities would be presented in terms of pixel- and object-
wise F1 error. Models trained on the fluorescence data usually achieve relatively
big values of the F1 score close to 1. Therefore, it’s hard to infer from the plots how
much one training strategy is better than others in terms of the F1 score. To make
the results for both modalities comparable we will use error scores. The F1 error is
calculated using the equation 3.5.

F1 err = 1− F1 (3.5)
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Chapter 4

Experiments results

4.1 Performance of training strategies when source and tar-
get distributions are the same

To show which type of training is preferred when training and test data are sampled
from the same distribution, we compared all five aforementioned strategies.

4.1.1 Fluorescence modality results

Fluorescent data is normally easy to segment for both biologists and computer sys-
tems. The cell nuclei on this type of data are well distinguishable as presented in
Figure 3.1. Therefore all strategies achieve very small values of both pixel- (Figure
4.1) and object-wise (Figure 4.2) F1 error scores.

FIGURE 4.1: Ensemble strategies achieve the smallest pixel-wise F1
error.

The weighted and naive ensemble strategies show slightly better results due
to the combination of individual models (which solely demonstrate excellent re-
sults). The stacked ensemble produces relatively moderate performance and the
meta-model doesn’t give an improvement in fluorescence case (compared to the
naive ensemble which consists only of individual models). The master model per-
forms the worst (in comparison), but the difference between the master model and
weighted ensemble (which achieves the best performance) error scores is less than
0.01.

The results for each cell line separately could be found in Figure B.1 and Fig-
ure B.2 respectively. All strategies show relatively the same performance across
cell lines. The models make most errors on HepG2 and MCF7 cell lines due to the
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high density (and therefore heterogeneity) of the cells on these images. In contrast,
HT1080, MDCK and NIH3T3 are less complex and thus models perform better on
these cell lines in fluorescence modality.

FIGURE 4.2: Individual models slightly outperform stacked ensemble
approach on object-level.

Despite having a slightly higher error, the master model doesn’t require any ad-
ditional information about the underlying dataset (cell lines info) and needs no in-
tricate training pipeline. Therefore, it seems to be the most reasonable strategy for
fluorescence data segmentation. In other words, if one expects to segment the same
or similar type of fluorescent data in the future it might make sense to train one big
network (master model) what will perform this task, rather than building a complex
system of individual models (which may not yield a significant performance gain).

Additionally, we evaluated how the size of the training dataset affects the per-
formance of the strategies. The results of this experiment are presented in Figure C.1
and Figure C.2. In essence, one training image is enough for all strategies to pro-
duce satisfactory results with average error scores of 0.025 for pixel- and 0.035 for
object-wise metrics. The naive, weighted and stacked ensemble achieve steady per-
formance increase (as the number of training images increases), whereas individual
and master model oscillates starting from 8 training images from each cell line due
to limited standalone model capacity.

4.1.2 Brightfield modality results

In contrast to fluorescence modality, brightfield data is much harder to segment for
both biologists and computer algorithms. The cell nuclei are much less distinguish-
able compared to fluorescence, which may be noticed in Figure 3.1. Therefore, both
pixel- (Figure 4.3) and object-wise (Figure 4.4 ) F1 errors are significantly higher than
for the fluorescence.

The individual model strategy achieves the best performance in both metrics.
From this point onwards this strategy will be considered as the upper bound of
achievable performance on brightfield segmentation task for a separate cell line.
However, as stated before this strategy requires a reasonable amount of annotated
data (which is normally hard to get for brightfield modality). The stacked ensem-
ble demonstrates prominent results and the positive effect of the meta-model here
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FIGURE 4.3: Individual models show superior performance in bright-
field modality.

FIGURE 4.4: Stacked ensemble produces satisfactory results for
brightfield modality in both pixel and object-wise levels.

is clearly visible (in contrast to fluorescent modality) as the naive ensemble demon-
strates relatively unsatisfactory results. The weighted ensemble produces worse re-
sults than the master model and stacked ensemble and is impractical for complex
brightfield modality. The master model achieves moderate error scores by using
joint knowledge about different cell lines. It is easier to implement than other strate-
gies and should be considered for brightfield data segmentation as well as for fluo-
rescent.

The results for each cell line separately could be found in Figure B.3 and Fig-
ure B.4 respectively. The HepG2 and MCF7 seem to be the most complex cell lines
(which was already seen in fluorescence experiments) with the addition of A549 for
brightfield modality. The models produce reasonable results on HT1080, MDCK,
NIH3T3 and HeLa cell lines. In general, the pattern of performance is relatively the
same for both brightfield and fluorescence.

The effect of the training set size for brightfield is presented in Figure C.3 and Fig-
ure C.4. In contrast to fluorescence, brightfield models require much more annotated
data to produce satisfactory results. All strategies show a continuous decrease in er-
ror metrics with the increase of training set size. Therefore, for brightfield modality,
it’s good to obtain as much good-quality labeled data as possible.
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4.2 Performance of training strategies when source and tar-
get distributions are different

In this experiment, we compare the aforementioned training strategies when train-
ing and testing data are sampled from different distributions. The individual model
strategy is not added as it could not represent target and source domains at the same
time.

4.2.1 Fluorescence modality results

FIGURE 4.5: The stacked ensemble is the least domain shift robust
strategy.

FIGURE 4.6: Master model and weighted ensemble show best results
in both pixel- and object-wise scores.

As well as for experiments with no domain shift, all training strategies achieve
low errors and the particular difference is minor. The weighted ensemble and master
model show the best pixel- (Figure 4.5) and object-wise (Figure 4.6) performance.
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However, the latter doesn’t need the information about the input cell line and thus
is simpler to use in practice. Moreover, the master model strategy is easier to adapt
in case of new upcoming data (from different distributions). The stacked ensemble
strategy renders impractical for fluorescence segmentation with domain shift, as the
naive ensemble (which doesn’t have meta-model) produces slightly better results.

The results for each cell line separately could be found in Figure B.5 and Figure
B.6. The stacked ensemble (which achieves the highest error in general) performs
the best on the complex HepG2 cell line. It could indicate that a stacked ensemble is
a useful strategy for more complex cases. In essence, the strategies demonstrate the
same pattern of performance as in the case without domain shift.

In conclusion, the master model or naive ensemble strategy should be consid-
ered for fluorescence data segmentation when the target and source domains data is
sampled from different distributions and introduces domain shift.

4.2.2 Brightfield modality results

Stacked and weighted ensemble strategies achieve almost the same level of perfor-
mance on the object level (Figure 4.8), but the stacked ensemble has a visibly lower
pixel-wise error (Figure 4.7). This supports the statement from the previous chapter,
that the stacked ensemble produces better results for complex tasks.

The master model strategy adapts to the cases with domain shift by the joint com-
bination of the data from different cell lines in one model. This approach achieves
almost the same level of performance as a weighted ensemble. Moreover, the differ-
ence between the error of the stacked ensemble (which is the best) and the master
model is 0.05 for pixel- and 0.04 for object-wise errors which are relatively minor.

FIGURE 4.7: Stacked ensemble achieves the best pixel-wise results in
brightfield modality with domain shift.

The results for each cell line separately could be found in Figure B.7 and Figure
B.8 respectively. The general pattern follows the figures presented above. However,
as well as for fluorescence modality, the stacked ensemble is significantly notably on
a complex HepG2 cell line.

In contrast to the fluorescence modality, the stacked ensemble strategy proves to
be the most effective in the brightfield modality when the domain shift is present.
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FIGURE 4.8: The weighted ensemble is more robust to domain shift
on the object-level.

However, since the stacked ensemble is hard to implement, the master model strat-
egy could be considered due to minor differences in error scores.

4.3 Transfer learning

Results presented in this chapter are focused on brightfield modality as models
trained on fluorescent images seem to yield indistinguishable performance levels.

4.3.1 From medical domain with similar data distribution

In this experiment, we advanced the idea from the previous Chapter 4.2. We took
models trained on the data from six cell lines (source domain) and used the remain-
ing seventh cell line as the target domain. The difference between domains in this
experiment is relatively small as all images come from the same distribution.

FIGURE 4.9: Fine-tuning on both domains produces slightly worse
results than training a separate model for the target domain.
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FIGURE 4.10: The object error scores of all strategies are not signifi-
cantly different from a model trained from scratch.

The model trained on source domain data, without fine-tuning on the target do-
main, achieves the highest error scores (Figure 4.9 and Figure 4.10). The difference
between the errors of the source domain model (no fine-tuning) and the target do-
main model (trained on target from scratch) is significant with value 0.1.

Fine-tuning only on the target domain allows us to reduce error on the target
domain, compared to the model trained from scratch. This happens at the price of
much worse model performance on the source domain. However, if performance
on the target domain is the goal, this strategy produces better results, compared to
training a randomly initialized model.

In contrast to the previous strategy, model fine-tuned on the data from both do-
mains achieves reasonable performance on the target domain and mostly preserves
the level of performance on the source domain. This is the most preferable strategy
for similar tasks (domains) if one has access to the source domain data originally
used for model training.

Additionally, we evaluated how the size of the dataset that is used for fine-tuning
affects the performance of the model on both domains. We used the powers of two
in the range from 0 to 8 as in the previous Chapter 4.1.

If we fine-tune only on the target domain a significant increase in error on the
source domain is noticeable from the very start (Figure D.1 and Figure D.2). Never-
theless, the performance of the model on the target domain using only one image for
fine-tuning is significantly better as the models trained from scratch on one image
in previous chapters (Figure B.7). However, with the increasing number of images,
the performance of the fine-tuned model converges to the same values as the model
trained from scratch in the previous chapter. Therefore, fine-tuning only on the tar-
get data is reasonable when one has a relatively small amount of labeled data from
the target domain.

In contrast, with fine-tuning on both domains the model loses the performance
on source domain if we use few images (Figure D.3 and Figure D.4). However, with
the increasing amount of images the model restores almost the same performance as
originally on the source domain (with the difference of 0.01 for pixel- and 0.006 for
object-wise error). Moreover, it continuously gains the performance on the target do-
main with increasing the number of images. On the peak number of 256 fine-tuning
on both domains achieves almost the same level of performance as fine-tuning solely
on target domain data.
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4.3.2 From medical domain with different data distribution

In this experiment, we used an additional brightfield modality dataset provided by
the AstraZeneca company as the source domain. The target domain is represented
by seven cell lines dataset used in the previous experiments.

FIGURE 4.11: No fine-tuning provides unsatisfactory results due to
the big domain shift.

FIGURE 4.12: Fine-tuning only on target produces significant degra-
dation on the source domain.

In contrast to the previous experiment with no domain shift, the source domain
model without fine-tuning yields poor results on both pixel- (Figure 4.11) and object-
wise (Figure 4.12) levels.

If we fine-tune the source domain model only on target domain data we achieve
essentially the same performance as if we would train a target domain model from
scratch. The same pattern is observed when no domain shift is present. In contrast,
fine-tuning only on the target domain significantly reduces the model performance
on the source domain. Therefore, this strategy should be applied if the performance
of the model on the target domain is the main goal.

Fine-tuning the domain model on the data from both domains produces satis-
factory results. The model preserves the performance on the source domain and
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achieves reasonable performance on the target domain with a difference of 0.05,
compared to the model trained from scratch.

With respect to the previous experiment, we evaluated how the size of the dataset
used for fine-tuning affects the performance of the models on both domains.

The results for the strategy of fine-tuning only on target domain data are pre-
sented in Figure D.5 and Figure D.6 for pixel- and object-wise metrics respectively.
The performance of the model on the source domain degrades more notable when
the tasks are fairly different (compared to the case when tasks were similar). The
error score for the source domain increases from 0.18 to 0.495 which means that half
of the predictions of the model become incorrect. Moreover, the source model shows
slower adaptation to the target domain, than in the case when the domain shift is not
present.

Respectively, the results of different dataset size for the strategy of fine-tuning on
both domain data are presented in Figure D.7 and Figure D.8 for pixel- and object-
wise metrics. The performance of the model on the source domain almost doesn’t
change whereas the performance on the target domain slowly rises with the increas-
ing number of images. For this strategy, it is preferable to obtain at least 64 or 128
annotated images (from both domains) to produce satisfactory results.

4.3.3 From natural objects domain (ImageNet)

The last part of transfer learning experiments evaluated the effect of transfer learning
from the distant domain of natural objects (ImageNet). The results presented below
correspond to 2016 images (whole training set) used for fine-tuning or training (in
case of U-Net).

FIGURE 4.13: ResNet101 slightly outperforms U-Net trained from
scratch in both pixel and object metrics.

From the results, the ResNet101 as a backbone has the smallest pixel- (Figure 4.13
and object-wise (Figure 4.14) error scores. The U-Net trained from scratch has 0.02
higher pixel and 0.04 higher object errors, than the ResNet101. However, the ResNet-
101 system has more than 67.4 million parameters and the VGG-16 system has more
than 37.8 million parameters. Whereas the U-Net model used in this experiment
has almost 2.3 million parameters. Therefore, it renders the usage and further fine-
tuning of large ImageNet models impractical for brightfield segmentation, as much
smaller U-Net architecture yields almost the same performance.

ResNet101 gains the performance faster on pixel level with the increasing num-
ber of images (Figure D.9), but U-Net and VGG-16 (which demonstrate very similar
performance throughout few images) perform better on the object level from the



4.3. Transfer learning 25

start (Figure D.10). Additionally, the ResNet101 model demonstrates a surprising
peak of error increase on 32 images which decreases thereafter. This is explained
by previous work that states that the larget the model the slower it adapts to a new
domain [11].

FIGURE 4.14: The VGG-16 yields the worst results for object and pixel
errors.
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Chapter 5

Conclusions

Microscopy segmentation is a labor-intensive task that requires a significant amount
of manual human work. Institutions and private companies are using rule-based
and machine learning algorithms to automate this process. However, most of these
algorithms lack computational efficiency and produce relatively unsatisfactory re-
sults. Moreover, the high heterogeneity of the data introduces additional complexity
for both biologists and computer algorithms.

In this thesis, our main focus was on exploring the effects of various possible
training strategies and transfer learning approaches in microscopy segmentation.

The training strategies compared in this thesis are: training an individual model
for each cell line, training one model jointly on all cell lines and ensemble strate-
gies that combine individual models. We implemented three ensemble approaches:
naive (basic averaging), weighted (weighted sum of predictions) and stacked (using
an additional model to combine the predictions).

We compared the aforementioned strategies under two conditions: either train-
ing data (source domain) and testing data (target domain) are sampled from the
same dataset, or from different datasets.

In the first case, naive and stacked ensembles produce noticeably better results
but are harder to implement compared to a standalone model (that produces rela-
tively close results). Consequently, a master model (trained jointly on all cell lines)
proves to be the most reasonable training strategy for both modalities.

In the second case, the master model demonstrates superior performance in fluo-
rescence whereas stacked ensemble proves to be the most effective strategy in bright-
field.

The fluorescence models need fewer annotated images for accurate segmenta-
tion, whereas for brightfield modality it is preferable to obtain as much data as possi-
ble to produce sufficient performance. Moreover, some cell lines (HepG2 and MCF7)
are more heterogeneous than others (MDCK, A549, and HeLa) and cause the models
to produce a higher number of errors.

Transfer learning from a similar or different medical task showed to be an effec-
tive strategy that requires less annotated data to obtain the same or superior perfor-
mance compared to a randomly initialized model. Fine-tuning the model on the data
from both domains is the preferred strategy as it preserves most of the performance
on source and yields reasonable performance on the target domain.

Transferring weights from a distant domain of natural objects (ImageNet) seem
to be inefficient as it requires significantly bigger models (compared to the U-Net
model used throughout the work) to produce slightly better results.

Further work could consider performing the aforementioned experiments with
different deep artificial network architectures. Moreover, one of the possible im-
provements is to perform transfer learning from brightfield to fluorescent modality
and vice versa.
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Appendix A

Data distribution

Cell line Training set size Validation set size Testing set size Total
A549 286 66 80 432
HT1080 284 78 70 432
HeLa 293 58 81 432
HepG2 283 82 67 432
MCF7 290 70 72 432
MDCK 292 79 61 432
NIH3T3 288 71 73 432
Summary 2016 504 504 3024

TABLE A.1: Distribution of the data in primary dataset from
PerkinEIlmer

Training set size Validation set size Testing set size Total
628 78 78 784

TABLE A.2: Distribution of the data in AstraZeneca dataset
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Appendix B

Performance on separate cell lines

B.1 Source and target domain from the same distribution

FIGURE B.1: Pixel-wise performance of the strategies in fluorescence
modality (no domain shift).

FIGURE B.2: Object-wise performance of the strategies in fluores-
cence modality (no domain shift).
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FIGURE B.3: Pixel-wise performance of the strategies in brightfield
modality (no domain shift).

FIGURE B.4: Object-wise performance of the strategies in brightfield
modality (no domain shift).
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B.2 Source and target domain from different distributions

FIGURE B.5: Pixel-wise performance of the strategies in fluorescence
modality (domain shift present).

FIGURE B.6: Object-wise performance of the strategies in fluores-
cence modality (domain shift present).
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FIGURE B.7: Pixel-wise performance of the strategies in brightfield
modality (domain shift present).

FIGURE B.8: Object-wise performance of the strategies in brightfield
modality (domain shift present).
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Appendix C

The effect of training set size

C.1 Fluorescence modality

FIGURE C.1: Effect of training set size on pixel-wise performance of
the fluorescence models.

FIGURE C.2: Effect of training set size on object-wise performance of
the fluorescence models.
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C.2 Brightfield modality

FIGURE C.3: Effect of training set size on pixel-wise performance of
the brightfield models.

FIGURE C.4: Effect of training set size on object-wise performance of
the brightfield models.
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Appendix D

Effect of fine-tuning dataset size

D.1 [Similar domains] Fine-tune only on target domain

FIGURE D.1: Pixel-wise metrics for fine-tuning on target with differ-
ent number of images (no domain shift).

FIGURE D.2: Object-wise metrics for fine-tuning on target with dif-
ferent number of images (no domain shift).
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D.2 [Similar domains] Fine-tune on both target and source
domains

FIGURE D.3: Pixel-wise metrics for fine-tuning on both domains with
different number of images (no domain shift).

FIGURE D.4: Object-wise metrics for fine-tuning on both domains
with different number of images (no domain shift).
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D.3 [Different domains] Fine-tune only on target domain

FIGURE D.5: Pixel-wise metrics for fine-tuning on target with differ-
ent number of images (domain shift present).

FIGURE D.6: Object-wise metrics for fine-tuning on target with dif-
ferent number of images (domain shift present).
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D.4 [Different domains] Fine-tune on both target and source
domains

FIGURE D.7: Pixel-wise metrics for fine-tuning on both domains with
different number of images (domain shift present).

FIGURE D.8: Object-wise metrics for fine-tuning on both domains
with different number of images (domain shift present).
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D.5 [Distant domain] Effect of fine-tune and train set size

FIGURE D.9: Pixel-wise metrics for fine-tuning distant domain model
with different number of images.

FIGURE D.10: Object-wise metrics for fine-tuning distant domain
model with different number of images.
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